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Classification Problems
• Models for a categorical response

• Hate speech 
• Supreme Court decisions 
• Web ratings: Amazon star ratings, filtering phony reviews 

• Techniques
• Logistic regression for two, multinomial for several 

Variable selection (stepwise, lasso) 

• Classification trees 
Boosted trees, random forest 

• James text summarizes modern approaches
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Where’s the text?
• Regression with lots and lots of indicators

• Columns of document term matrix 
• Presents opportunities, with some evident drawbacks 

• Simple choice often works well
• Easily interpreted (as easy as any dummy variable) 
• Sets a baseline for more complex methods 

• Combine with other features
• No reason not to use other features if available 
• Examples 

wine data: words from tasting notes + alcohol + vintage 
real estate: words from listing + square footage 
medicine: doctor’s notes + lab measurements
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Review: Logistic Regression
• Probability model

• Two, mutually exclusive categories 
• Similar to linear regression in many ways 
• P(yi = 1| xi) = E(yi = 1| xi) = µi(β0,β1) = 1/(1+exp(-β0 - β1xi)) 
• Structural form has important implications 

probability goes to 0/1 as |X| gets large 
coefficients describe log odds 

• Maximum likelihood
• Estimate parameters to maximize joint probability 
 log P(y1,y2,…,yn| X) = Σi (1-yi) log (1-µi) + yi log µi 

• Independence 
• Nonlinear least squares  (iteratively reweighted least squares)
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More than two?
• Examples

• Not every election is a two-party contest! 
Multiple candidates in a primary election 

• Wine varieties 
Think of all the types of red wines that exist. 

• Multinomial logistic regression (unordered categories)
• Multinomial distribution replaces the binomial 
• P(yi = k| xi) = µi(β0,β1) = exp(-βk0 - βkixi)/(Σk exp(-βk0 - βkixi)) 
• Constrained to sum to 1 

Reduces to binomial in the case of k=2 categories 
Interpretation of coefficients is different in this specification

74



Wharton
  Department of Statistics

Model Selection
• Which features belong in the logistic regression?

• Text presents challenge
• Suppose we consider picking columns from the document-term 
matrix as predictive features 

• Suppose we consider picking combinations of columns from the 
document-term matrix 

• Feature selection
• Selection criteria such as AIC, BIC, or stepwise choices 
• Number of choices overwhelm design of criteria 

e.g. AIC designed to pick order of polynomial or autoregression 

• Assumptions not well suited to the problem (eg “true model”) 
• Speed becomes limiting factor (recall nonlinear estimation)
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Penalized Selection
• Problem

• Goodness-of-fit statistics like R2 always go up as add features 
• Maximum likelihood behaves the same way 
• Overfitting results 

• Approach
• Add a penalty to the likelihood 
• Adding a parameter must improve the fit more than the penalty 
added by increasing model complexity 

• Question
• How much penalty does adding a parameter incur?
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Lasso
• Penalized likelihood

• Choices 
  L0  maxβ loglike(β) – λ #{βj ≠ 0}   AIC, BIC  
  L1  maxβ loglike(β) – λ Σ |βj| 
  L2  maxβ loglike(β) – λ Σ βj2    Ridge regr 

•  λ controls the amount of the penalty 

• Lasso = L1 penalty

• Advantages
• Fast computing because objective function is convex  
• Criterion sets many βj = 0, unlike ridge penalty
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Penalty Parameter
• Choice of tuning parameter λ

• Really big:  model is parsimonious 
• Really small: model has many features 

• Bias-Variance tradeoff
• Big models have little bias, but high variance 
• Small models reverse this balance 

• Choice uses cross validation
• Ten-fold cross-validation of the training data 
• Fit model to 9/10, predict the other 1/10.  Repeat 
• Pick λ that minimizes the error
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Partitioning Models: Trees
• Familiar metaphor

• Biology 
• Medical diagnosis 
• Org chart 

• Structure at-a-glance

• Properties
• Recursive, partitioning items into unique leaf 
• Increasing specialization  

• How to grow a tree from data?
• What rules identify the splitting variables, split points?
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Classical Example
• Fisher’s iris data

• Classification tree: categorical response 
• 50 flowers from 3 species of iris 
• four variables: length and width of sepal and petal 
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Splitting rules are 
not unique

Splits are parallel 
to plot axes

Stop?

Classification 
tree
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CART™
• Classification and regression trees

• A sequence of divisions of cases 
• Goal is to obtain homogeneous subsets 
• Predict new observations based on “vote” of leaf  

• Classification tree
• Categorical response (e.g. good/bad/indifferent) 
• Goal: Cases in leaf belong to one category 

• Regression tree 
• Numerical response (e.g. profitability) 
• Cases in leaf have similar value of response 

• Familiar likelihood objective
• Choose leaves to maximize likelihood
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Simple Foundation
• Bins, lots of bins

• Allow variables (characteristics) to define a large “cube” with 
dimensions given by  
  Age x Employment x Residential 

• Insert each observation into a bin 
• Score for bin is average of observations in bin 

• Trade-offs
• Don’t have to pick additive form, transformations 
• Some bins may be nearly empty, sparse 
• Issues remain 
 Which characteristics?  Which attributes?

bias 
vs

variance
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Goodness of Fit
• Two general approaches

• Classification error
• Confusion matrix: Count number wrong 

“Millions” of summary stats: sensitivity, specificity, recall, precision, f1 

• What does it mean to be wrong? 
• ROC curve and AUC 

• Proper scoring rules
• Squared error 
• Likelihoods
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Confusion Matrix
• Confusion matrix

• Common summary table 
• Misclassification rate 

• Sensitivity & specificity
• Sensitivity = P(say positive | positive) = Recall 
• Specificity = P(say negative | negative) 
• Precision = P(positive | say positive) 
• F1 = 2 (precision x recall)/(precision+recall)  harmonic mean 

• Classification error rate
• Common, but ‘coarse’ 

• What threshold would you use to classify?
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ROC Curves
• ROC Curve

• True positive (sensitivity) vs false positive (1-specificity) 
• Equivalent to Gini index 
• Only order matters, not the calibration 

• AUC
• Area under ROC curve 
• Interpret as probability 
fit correctly orders pair 

• Points of interest?
• Care about whole curve? 
• Economics of derivative
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AUC = 0.935
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Drawing the ROC
• Order cases by probabilities 
 

• Move up  
if positive case

• Move right 
if negative case
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1    1   0   1   0   0
Sort based on predictions
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Deviance 
• Twice the log of the likelihood ratio statistic

• Least squares regression.  Assume yi ~ N(0,σ2) 
• Null model 
 -2 loglike(M0) = Σ(yi)2/σ2 ~ chi-square n df = χ2n 

• Regression with k estimated coefficients  
 -2 loglike(Mk) = Σ(yi - ŷi)2/σ2 ~ χ2n-k 
assuming variables have true coefficient βk=0 

• Change in log-likelihood when add nothing useful:  
  -2(loglike(M0) - loglike(Mk)) ~ χ2k 

• Deviance
• -2 (loglike(base model) - loglike(fitted model)) ~ χ2estimated parms
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Validation
• Necessary when comparing complex models

• Easy to overfit complex models 
Model might have more potential features than observations 
Eg: Occurrence of which pairs of words indicate how Justice will decide? 

• Keep changing model until it fits the observed data all too well 

• Validation?
• Assess goodness of fit on a test set, not training data 
• How many? 

Depends on task: are models similar  

• Caution: Test set gives optimistic assessment
• Population drift
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Improving Trees
• Bias-variance trade-off

• Analogous to choice of smoothing parameter 
• Trees capture nuanced structure, but  (low bias) 
• Trees have highly irregular structure   (high var) 

• Model averaging
• Rather than fit one model, fit several and combine results 

• Classifier: majority vote 
• Regression: average predictions 

• Approaches
• Boosting  “stumps” or small trees are so-called weak learners 
• Bagging  bootstrap resampling method
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Boosting
• General method for improving any simple model 

• Build sequence of predictive models...
• Start with initial predictive model 
• Compute residuals from current fit 
• Build model for residuals  
• Repeat 
• Combine estimates from sequence of models 

• Use simpler model at each step
• Small tree (stump or bush) 
• Next response = (current response) - (learning rate) x fit  

• Weaknesses
• Loss of interpretability, at what gain?

90

Adaboost
reweighting 

cases



Wharton
  Department of Statistics

Boosting Trees
• Pick depth of tree (stumps), learning rate

• Use cross-validation to pick B
Analogous to picking λ for logistic models
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James 
Ch 8



Classification 
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wine_classify.R
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Plan
• Predicting wine color

• Two-category response 
• Easy for both logistic regression and tree 

• Predicting the type of wine
• Four-category problem 
• More challenging 

Harder to distinguish from choices of words 
Fewer observations to build a model 

• Judging models
• Common test sample hidden from each method
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Predicting Wine Color
• Red or white?

• Combine columns from DTM with other data
• Indicators or counts 

Do we care about how often a word was used, or just its presence? 

• Lengths and proportions 
Is the count most relevant, or the relative frequency 

• Choice of predictors is up to you! 

• Note: missing data in the other features!
• 10% missing vintage or price, 2.5% missing alcohol 
• Use same approach as in linear regression
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Logistic Model
• Exclude test sample from all models

• Set aside 10,000 …  
• Why: Test accuracy, and this will make modeling harder 

• Start with the classic variables
• price, alcohol, vintage, missing indicators, and lengths
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price isn’t 
but 

missing is
Interpretation?
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Logistic with Words
• Which words

• Start with simply using proportions of 20 most common words 
• Common words useful … proxies for length?
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…
much less 
residual 
deviance
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Logistic with Words
• Which words

• Add length to the mixture 
• Effects still strong for common words, conditional on length
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…

Interpret?
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Logistic with Both 
• Combine two prior models

• Observed quantitative features 
• Word relative frequencies + length
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add more?
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Logistic with More Words 
• Extend prior model

• Observed quantitative features 
• 40 Word relative frequencies + length
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hints of 
collinearity

much better fit! add more?
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Test Model
• Predict color of wines held back in the test sample

100

Red

White
sensitivity 0.918

specificity 0.893

precision 0.929

missclass 0.092

precision= # Red/# Claim Red 
recall = sensitivity = #Claim Red/# Red
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Calibration
• Do predicted probabilities indicate actual probability?

• Hosmer-Lemeshow test 
• Plot adds high-degree polynomial  (or loess smooth curve)
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Not a problem if 
threshold at 0.5
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ROC Curve
• Plot sensitivity on 1-specificity

• Parametric curve as vary the classification threshold
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AUC =0.969

true 
positive

false 
positive



Wharton
  Department of Statistics

Variable Selection
• Which words

• Twenty words was good, forty was better 
• Keep going… we have thousands 

• Try feature selection
• Stepwise logistic regression is slow 
• Lasso in R offers fast alternative 

glmnet package is very efficient 

• Dimension of the DTM is a challenge these tools 
Estimation data has 7336 cases with 2659 word columns 

• Baseline
• Models already achieve in-sample residual deviance 3367

103



Wharton
  Department of Statistics

Lasso Selection
• Start with set of features from prior logistic regression

• Basic variables (alcohol, price, etc) 
• Proportions of top 40 words 

• Fishbone plot
• Coefs as reduce penalty λ  
• Trace each as λ –> 0 
• Far right is logistic model 

104
analogous to ridge trace
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How many to use
• Pick value of λ using cross validation

• 10-fold cross-validation 
• 10 splits of training data (not using held back test sample) 

distinguish training from tuning from testing
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number of variables in model

mininum sparse that is 
close to minimum

Best model is 
not very sparse

Again find the 
“long tail” of 
signal in text
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Performance
• Use sparse model within 1 SE of minimum

17 coefficients are zeroed out, leaving 31 estimates 

• Similar to prior logistic regression, but with 17 fewer estimates
• Not so well calibrated away from 0.5, our threshold 
• Confusion matrix provides matching results 
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LR Lasso
sensitivity 0.918 0.915
specificity 0.893 0.891
precision 0.929 0.928
missclass 0.092 0.094
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Use More Words!
• Cast a bigger net

• Try to use Lasso to pick from wider collection of words 
• Speed decreases 

Initial fitting is fast, but picking λ by 10-fold CV slows the process
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would like a 
progress 
indicator!

111 coefs
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What are the coefficients?
• Use a word cloud, weighted by the estimates…

108

Nice to see  
the word 

‘red’!
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How well did it work?
• Comparison in the test set…

• Calibration getting far off target away from 0.5 
• Logistic model no longer working
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LR Lasso 
40

200
sens 0.918 0.915 0.982
spec 0.893 0.891 0.987
prec 0.929 0.928 0.991
miss 0.092 0.094 0.016

Quite an improvement
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More?
• Try with 500 words in model…

• Fitting remains fast, with CV slowing the process…  
but not that much. 

• Similar confusion matrix

110

207

AUC ≈ 1
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But different words…
• Similar fit, but many different words

• Collinearity becoming an issue
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Change Direction: Trees
• Try a different type of model: a classification tree

Example with a few words 

• Classify using majority vote
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deviance in node
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Bigger Tree
• Use 1000 words

• Fitting a tree is surprisingly fast 
• Shape conveys the value of certain words
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Some Details
• Inspect the terminal nodes
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Better Tree-based Classifier
• Prune tree

• Use cross-validation to remove nodes 
• Smaller tree often classifies better, avoiding overfitting 
• In this case, retains tree with 13 terminal nodes
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Boosted Trees
• Smooth out the discontinuity of tree fits

• Number of distinct predictions = number of terminal nodes 
• Averaging over many small trees smooths predictions
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Boosted Results
• Using 400 words

• Code is not so fast again as was the case with  
• Fitting process incorporates CV to control boosting process 

That’s where code can die if a word appears in test, but not training 
Seems to happen in ‘bernoulli’ mode, but not for multinomial 

• Fit as learning progresses

117

slower is better, 
but 

slower is slower
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Boosted Performance
• Using 400 words…

• Predictions range over [0,1] 

• Much more competitive, 
but not up to level of the  
regression!
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LR Lasso 
40

200 BT
s 

ens
0.918 0.915 0.982 0.969

spec 0.893 0.891 0.987 0.974
prec 0.929 0.928 0.991 0.983
miss 0.092 0.094 0.016 0.029
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Predicting Variety
• Predicting wine variety

• Four-category response: cabernet, merlot, pinot, zinfandel 
• Smaller sample size 
• Much more similar in nature of descriptions 

• Multinomial regression
• Generalization of logistic regression to more than two groups 
• Trees generalize directly… just more labels 

• Comparing models
• Common test sample hidden from each method
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Varieties
• Possible choices

• Choose top four categories of reds, 4,906 tasting notes 

• Set aside validation cases, 250 for each variety
• Limited by number of Zinfandels 

• Build initial model using numerical features
• Baseline for value of adding text 
• Inspect four linked models, one for each variety
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Fishbone Plots
• Lasso paths for the component models

121

relevant effects 
vary over the 

models



Wharton
  Department of Statistics

Coefficients
• At moderate shrinkage, very different estimates 

evident for the different varieties
• Need to choose optimal shrinkage 
• Relatively dense model with 7 estimates reduced to zero
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Calibration
• Models for different varieties are not well calibrated

123

Merlot model is better 
calibrated, but also not 
very high probabilities
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Classification Results
• Classifier accuracy… not very good

• 1000 test cases, 250 of each 
• Easy to get 25% correct without even trying! 
• Calls most things Cabernet 

For example, it correctly identifies only 10 of the Pinots, labeling 230 Pinots 
as Cabernet.
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# correct = 219+40+10+59 = 329



Wharton
  Department of Statistics

Add Words
• First 100 words

• Most common 100 word types 
• Many more “active” features in models
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Cross-Validate to Tune
• Pick tuning parameter from 10-fold CV
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Key Words
• At optimal choice for shrinkage parameter…
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Cab Merlot Pinot Zin

Cherry -4 1 3 -1

Currant 14

Plum 8

Raspberry 10

Tannin/s -4

Pear 6
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Cloud View of Coefs
• Scaled within each model

128

beware of 
warnings
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Classification
• Much more accurate than baseline model

• Accuracy increases from 33% correct to  
 191 + 133 + 145 + 103 = 572 –> 57% correct 

• Zinfandel is least accurate, plus fewest in training data 
• Still tend to classify too many as cabernet… which happens to 
be most common in the training data!
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Increase to 200 Words
• Choice of shrinkage parameter very clear

• Evident trough indicating best choice for λ
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Coefficient Clouds
• Several new terms not available to prior model 

131
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Classification
• Not much different from prior model  (57% correct)

• with 100 words 

• with 200 words
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Go Further?
• Lots more words to try

• Tried with 400 words
• Takes quite a bit longer to run, but works.  Again clear trough 
• Some new word types appear… looks like we need to be 
more careful with preparing our data (next slide) 

• Plus, have not explore the importance of 
combinations of words

• 2500 words –> 3,125,000 possible  (though many would be 0) 
• Other features based on the words present
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New Words?
• Surprise, surprise!
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Classification
• No surprising either, this gets better

• Percent correct up from 57% to 64%
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What about all of the other words that are available?
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Results for Trees
• Resemble those obtained from multinomial 

regression…

• See the associated commands in the R script.
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