Vector Space Models

Latent Semantic Analysis

Problem with words

Even a small vocabulary as in wine example is challenging

LSA

Reduce number of columns of DTM by principal components Enables algorithms that are otherwise impractical (eg, cluster) Offers potential interpretations

Embedding

DTM represents a document as a sparse vector of m counts LSA represents a document as a point of dimension d << m Preserves distances between documents, but in lower dim

Principal Components Analysis

Find weighted linear combinations of variables that

- (a) have maximal variation
- (b) are uncorrelated with each other

Typical role

Reduce a large collection of features to a smaller number of uncorrelated variables, the principal components

Preserve most of the variation and correlations

Computation

weighted sums of variables only make sense when standardized to common scale

X = matrix of centered and standardized data (mean 0, sd 1)

Sample covariance/correlation matrix of X is S_{XX}

Leading eigenvector of S_{XX} is first principal component

PCA Algebra

First principal component

Maximizes the variance of a linear combination of the columns of the variables $X = X_1, X_2, ..., X_k$

$$\max_{z} var(X^Tz) = z^T S_{XX} z$$

Solution is first eigenvector of the covariance matrix of X

$$z = e_1$$
, where $S_{XX} e_1 = \lambda_1 e_1$

Second principal component

Second eigenvector, $S_{XX} e_2 = \lambda_2 e_2$, $\lambda_2 < \lambda_1$

Orthogonal to first, $e_1^T S_{XX} e_2=0$

Full decomposition

$$E = (e_1, e_2, ..., e_k)$$
 S_{XX} E = E diag(e_j)

Terminology

Loadings

Coefficients that define the weighted sums

Eigenvectors of the covariance matrix of X

Describe how much of each component of X goes into weighted sums

Xs need to have a common scale

Scores

The weighted combinations defined by the loadings

Uncorrelated

The variables used in principal components regression

Dimension Reduction

Ideal scenario for PCA

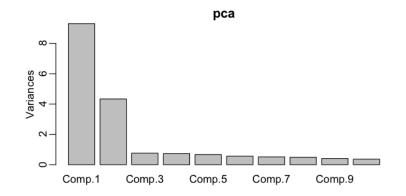
Latent variable

Observe noisy versions of underlying latent variables

$$X_j = L_j + random noise$$

If only one latent variable, could find it by simply averaging the X's, but that seems too easy.

Spectrum of matrix (scree plot)



Problem for PCA

Suppose X has a very large number of columns (m>n)

A document-term matrix has thousands of columns

Calculation of correlation matrix is slow

Size of covariance matrix increases as square of number of variables

Number of columns will exceed number of documents in some cases

Modern approaches

Avoid the calculation of covariance matrix

Singular value decomposition

Random projection

Singular Value Decomposition

Decompose any matrix into orthogonal pieces

Avoids explicitly computing the covariance matrix

Assume X is an n x m matrix of rank $d \le min(n,m)$

$$X = U \operatorname{diag}(d_j) V^T = \sum d_j u_j v_j^T$$

where U and V are orthogonal

$$U^TU = I_d, V^TV = I_d$$

 $Rank(X) = Number singular values d_j \neq 0$

spectrum

Collection of singular values known as "spectrum" of X

Caution: Outliers will be important

SVD is a squared-error approximation

PCA via the SVD

Recall characterization of PCA

Need to find matrix E s.t.

$$E^{T}S_{XX}E = diag(\lambda)$$
 or $S_{XX} = E diag(\lambda) E^{T}$

Start with SVD of X

Assume X has been centered to have mean zero

$$X = U D V^T$$

$$n S_{XX} = X^TX = (UDV^T)^T UDV^T = V D^2 V^T$$

Elements of V are the eigenvectors of S_{XX} (loadings)

Square of the singular values are the eigenvalues

Columns of U are the principal components (scores)

PCA in Regression

Latent variables, again

Response Y is related to several unobserved latent variable

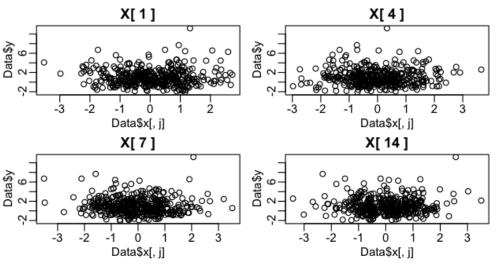
$$Y = \beta_0 + \beta_1 L_1 + \beta_2 L_2 + ... + noise$$

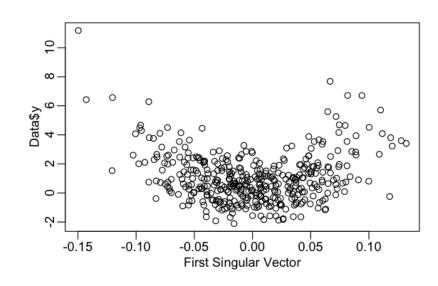
Observe many noisy versions of the latent variables

$$X_j = L_j + random noise$$

No evident connect between Y and X's

Singular vector (PC) reveals nonlinear dependence





Latent Semantic Analysis

LSA ≈ PCA of document-term matrix C

Conceptual motivation

Distributional hypothesis: Word types that are used in the same way (same context) have similar meaning

Each document is a mixture of themes or "topics" that dictate word usage (see explicit model tomorrow)

Questions

How to standardize the variables

PCA is most sensible when variables have been standardized.

Not sensible to make columns of C have equal SD (remember sparsity)

PCA designed for a multivariate normal world. C is sparse

Conventions for LSA

Centering

Not done. Counts are all positive with mean near zero.

Scaling is interesting

Length normalization

Reduce the influence of longer documents, replacing

 $C_{ij} \rightarrow C_{ij}/n_i$ or possibly $C_{ij} \rightarrow C_{ij}/sqrt(n_i)$

Term frequency - inverse document frequency (tf-idf)

Give more weight to words that are common in a document (tf), but not so common elsewhere (idf).

Let d_i denote the number of documents in which w_i appears.

$$C_{ij} \rightarrow C_{ij} \times \{\# docs\}/dj$$

Combinations, such as

$$C_{ij} \rightarrow log(1 + C_{ij}) \times log(\{\# docs\}/d_j)$$

Another Choice: Token Space

Recall the binary matrices that preserve text information

 t_1

t2

t₃

 t_5

tN

W indicates word type

D identifies documents

N = total # tokens n = # documents m = # word types

accuments						
d_1	d_2	d ₃		dn		
1	0	0		0		
1	0 0	0		0		
1	0	0		0		
0	1	0		0 0		
0	1	0		0		
0						
0	0			1		
0	0			1		

documents

word types					
W ₁	W_2	W 3			
0	0	1			
1	0	0			
0	1	0			
0	1	0			
0	0	0			
0	0	0			

Wm

DTM ≈ Covariance

Document-type matrix is nxm matrix $D^{T}W = C$

Counts of the word types in each document $C_{ii} = \#\{w_i \text{ in } d_i\}$

View columns of W and D as indicators

Because most types are rare, means ≈ 0 and $C_{ii} \approx N cov(d_i, w_i)$

Standardize binomial variation

Document counts: $var(D_i) = n_i/N (1-n_i/N) \approx n_i/N$

 $C_{ij} -> C_{ij}/sqrt(n_i m_j) \label{eq:counts}$ Word type counts: $var(W_j) = m_j/N \; (1-m_i/N) \approx m_i/N$

Canonical Correlation Analysis

Extension of regression models to multivariate Y

Regression

Find the linear combination of the columns of X that is most correlated with Y

CCA

Find the linear combination of the columns of X that is most correlated with a linear combination of the columns of Y

Role in text

Binary matrices D and W play roles of Y and X

Complication: computation

CCA requires standardization of X and Y

Implies inversion of m x m and n x n matrices (e.g., $(X^TX)^{-1}$)

CCA Calculation

Matrices X and Y

Centered so that column means are 0

Variance/covariances S_{XX} and S_{YY}

Covariance matrix $S_{XY} = S_{YX}^T$

Classical solution for CCA coefficients

Eigenvectors of Syy-1SyxSxx-1Sxy

Eigenvalues are the squared canonical correlations

Modern approach

Singular value decomposition of standardized covariances

LSA of Wines

Calculations

Can you do an LSA?

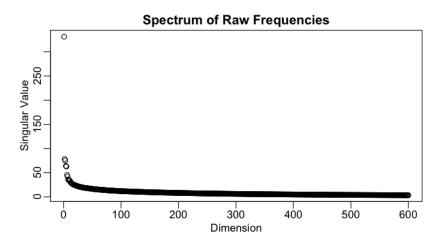
In wine example, the reduced document term matrix after collecting OOVs is a 20,508 x 2,645 matrix

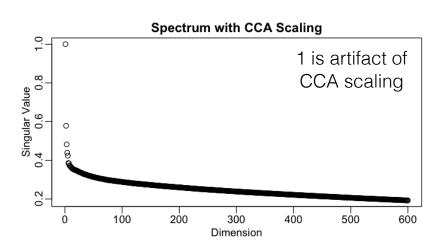
Sparse form saves room, but most SVD code cannot exploit

R takes a "long time" to do this calculation

Sample 3,000 documents for illustration We'll see how to use the full matrix shortly

Spectrum





Calculations

Can you do an LSA?

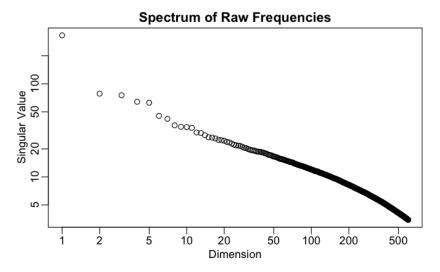
In wine example, the reduced document term matrix after collecting OOVs is a 20,508 x 2,659 matrix

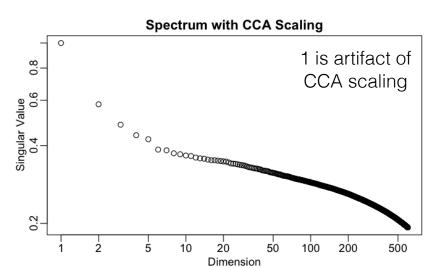
Sparse save room, but most SVD code cannot take advantage

R takes a "long time" to do this calculation

Sample 3,000 documents for illustration We'll see how to use the full matrix shortly

Spectrum (log scale)





Comparison of Spectra

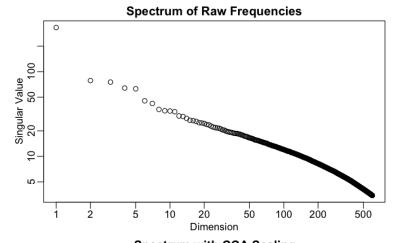
Three versions of frequency weights

None

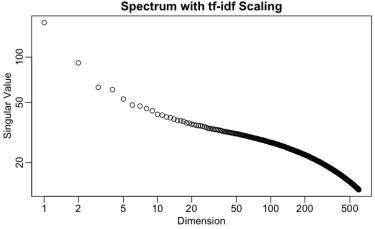
CCA scaling divide by square root of product of d_i times m_j

tf-idf (logs) —

Very similar



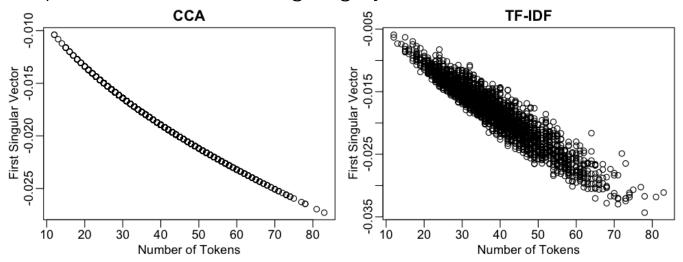




What are the singular vectors?

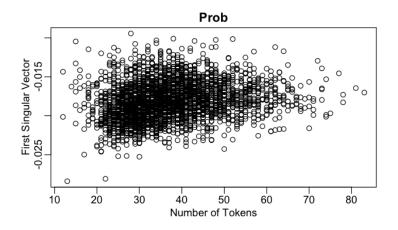
First is document length

Almost perfect for CCA scaling, highly correlated for others



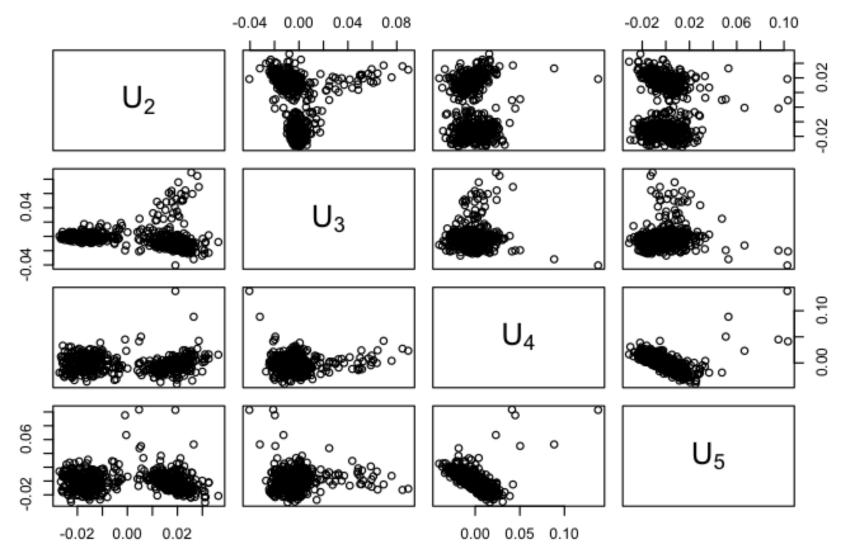
Can remove by using probability normalization

But do you want to give so much weight to small counts?



Additional Components

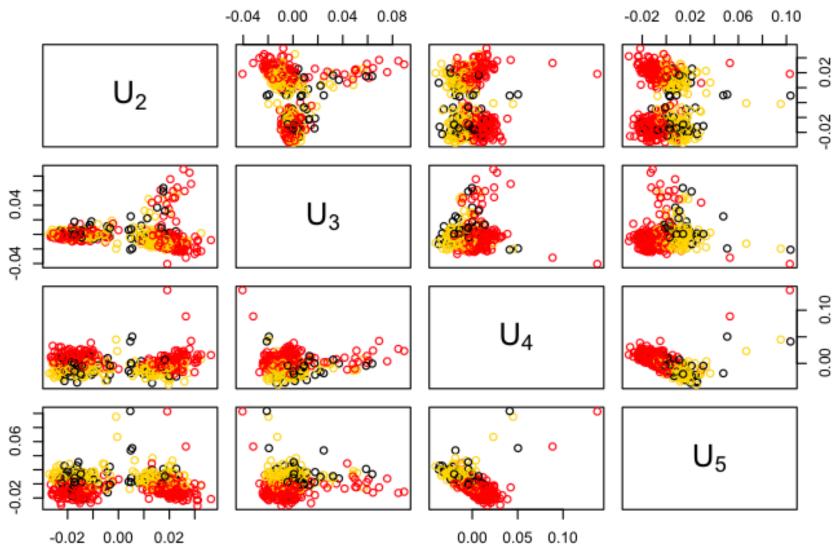
What are the evident clusters?



Additional Components

Evidently not red and white wines...

you can distinguish red from white, just not the most evident clusters



Color Recognition

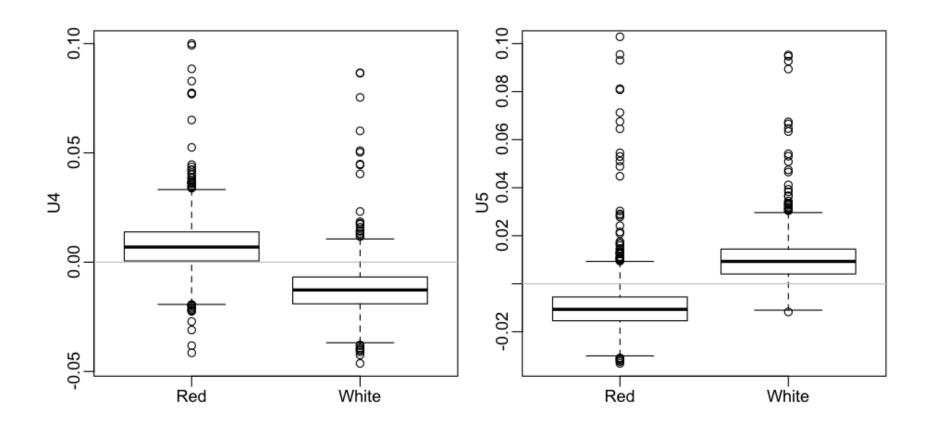
Percent Red correct

 $1442/(85+1442) \approx 94.4\%$

Percent White correct

 $810/(189+810) \approx 81.1\%$

Logistic regr did not do much better!



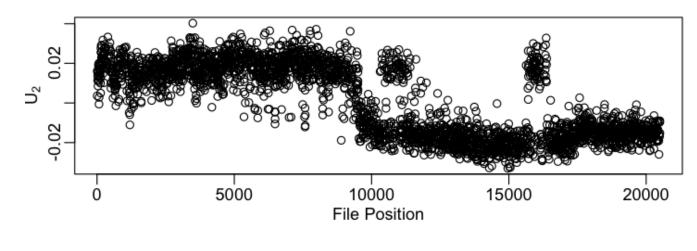
FALSE TRUE Red 1442 85 White 189 810

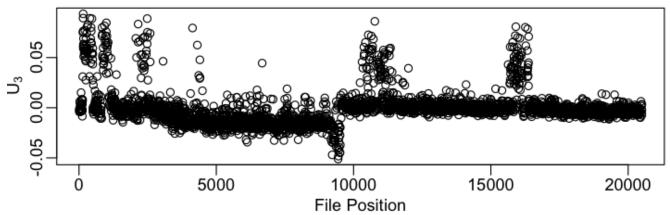
What are the other groups?

Importance of data familiarity

Authorship style of the wine ratings changed over time!

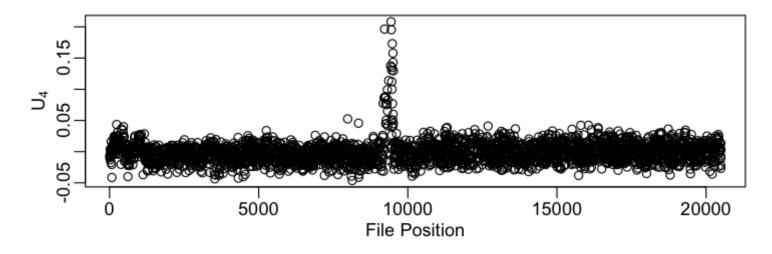
Seldom a bad idea to look for changes over "time"

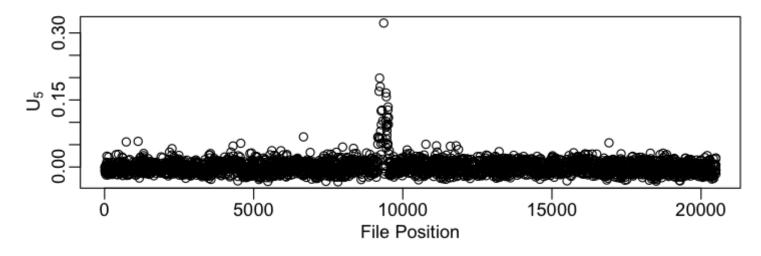




And those outliers...

What happened around position 9400?





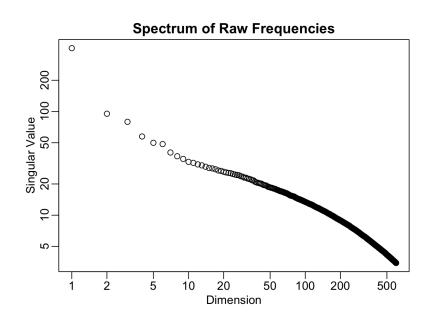
Returning to the original source text reveals what's happening in the underlying text.

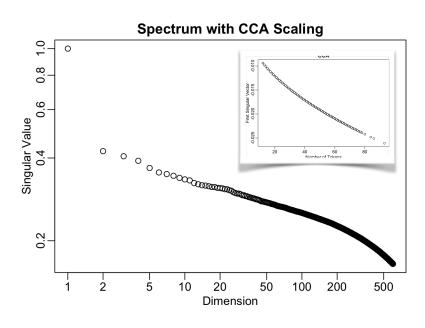
Analysis: Common Style

Pick subset of reviews that appear in common style

- Use coordinates of leading prior components
- Reviews typically have food reference

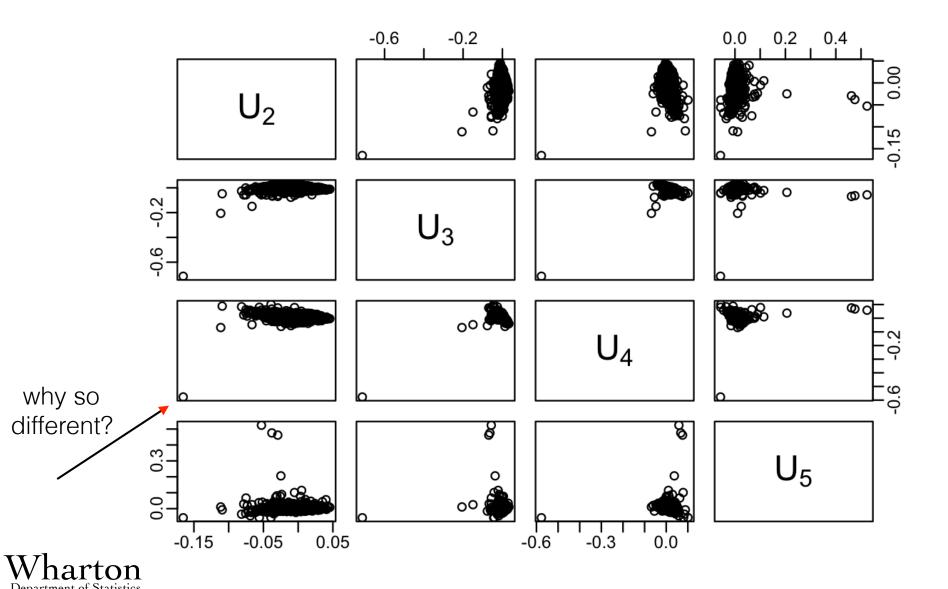
Spectra resemble those of prior analysis





Principal Components

Again find outlying documents (wine reviews)

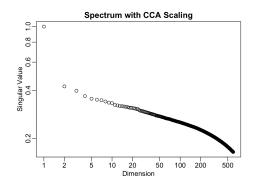


One more time!

Remove the corked wine and redo the SVD

Spectra is similar, so move on to the components

Less clumping of leading component values

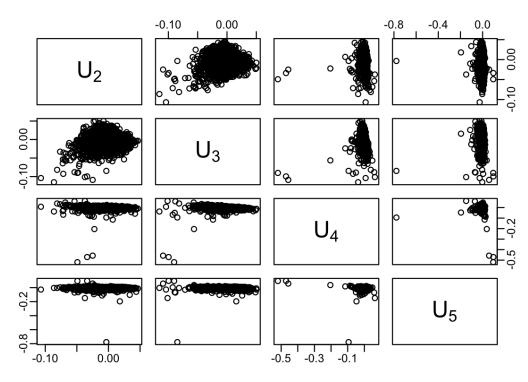


Another wacko case!

Description suggests no reason to exclude other than some novel word choices

Remove later outlier

Why some and not others?

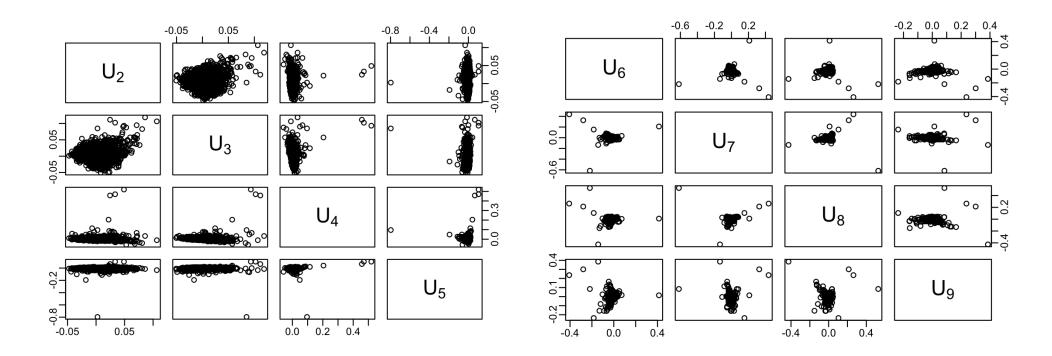


Moving Along...

Reduced to 2,999 cases

Spectrum similar to prior, more outliers remain

None so dramatic as in prior leading components Some are familiar by now!

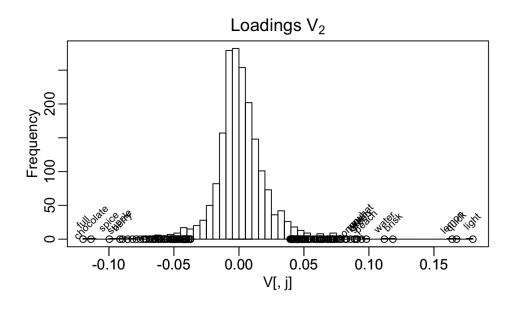


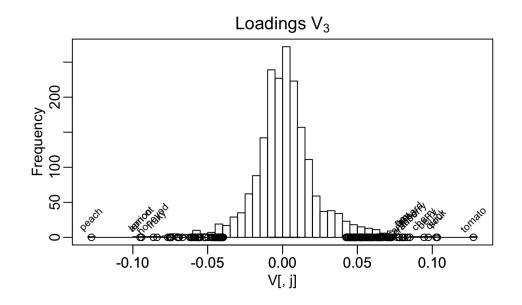
Which Words

What are the loadings of the word types?

Coefficients of the left singular vectors, V

Distribution of loadings tend to have long tails

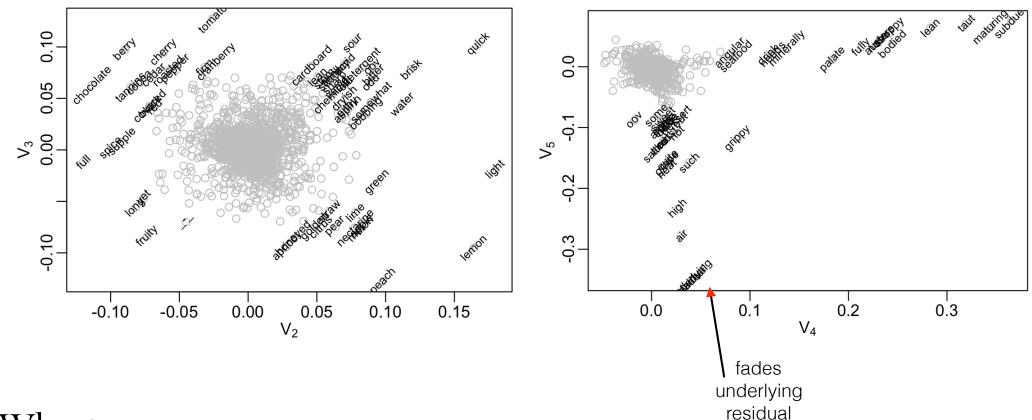




Which Words

Scatterplots of word locations

More interesting when not dominated by small subset

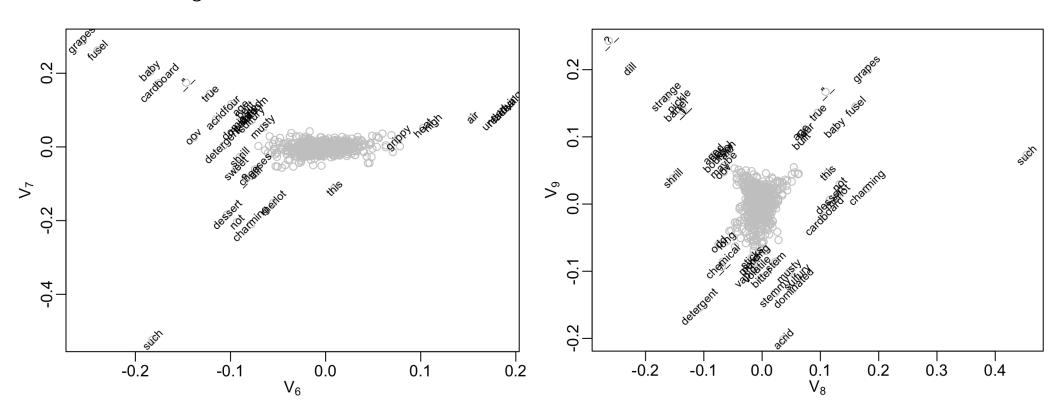


More Loadings

Concepts are shared over components of SVD

For example, the unpleasant reaction to the wine

Do negative words seem more common? negative in the sense of wine, that is



Random Projection

Recent development

Reduce the number of columns of a matrix by multiplication by a random matrix (yes, a matrix of random numbers)

Preserves much of the "structure" of the matrix, in particular, the column span

SVD by random projection

Reduces the number of columns from thousands to 100s

Reproduces the SVD in examples when you can do the calculations in R

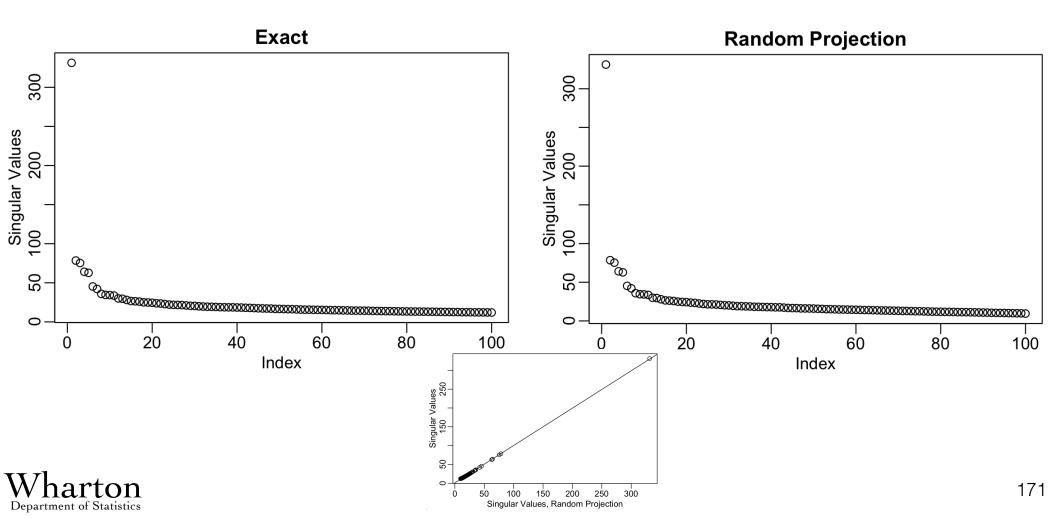
Algorithm

Power iterations improve recovery

Comparison to Exact

Compare SVD from random projection to that obtained when R can do the calculation

R can do the SVD of a 3000 x 2250 matrix

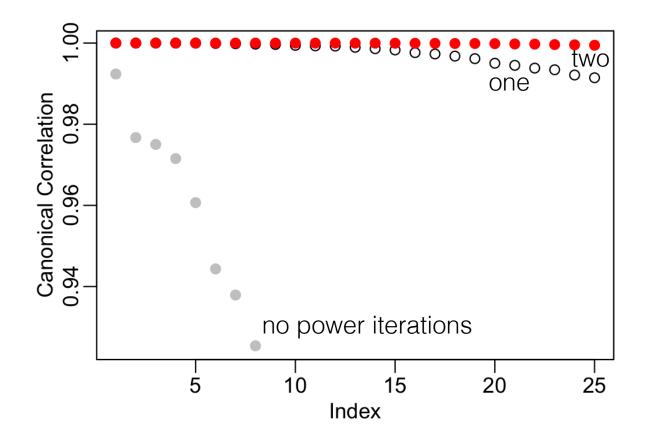


Subspaces

What is the relationship between U vectors?

Column span of the resulting singular vectors (components)

Canonical correlations show impact of power iterations



Principal Components Regression

Idea

Use random projection to compute PCs of the complete document-term matrix

CCA weighting

Transductive framework

Need to compute singular vectors for full data set, both test and train

"Okay" since no response information used in construction

Random projection

Save 200 columns, with 2 power iterations

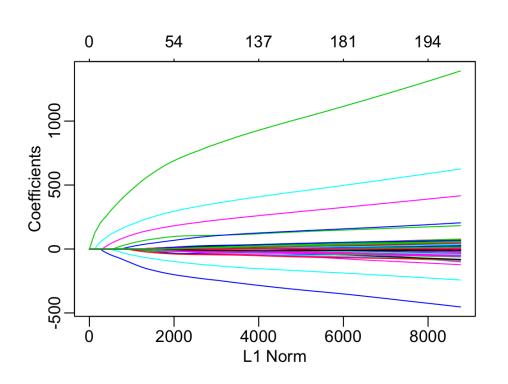


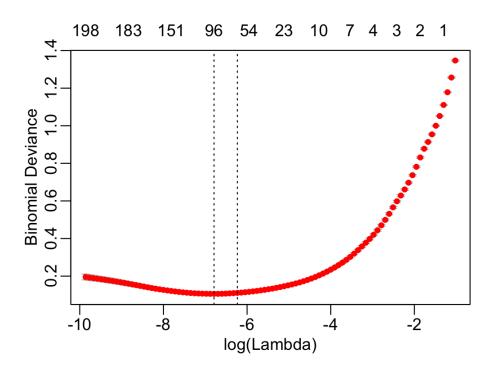
Lasso with PCs

Use singular vectors in lasso logistic regression

Only training when fit model

Big effects for U₄ - U₇





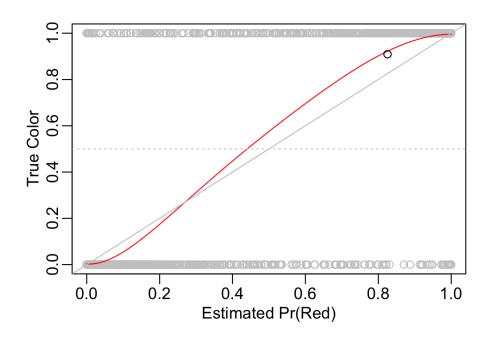
parsimonious "optimal" has 72 coefficients

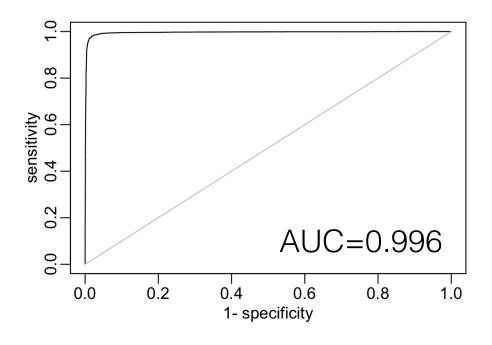
Classification Results

Calibration and ROC

Not so well calibrated

Very high AUC





Confusion Matrix

Very high accuracy, summary measures

FALSE TRUE Red 5955 77 White 118 3850

White is now "1"

	Lasso 40	200	PCR
sens	0.915	0.982	0.987
spec	0.891	0.987	0.970
prec	0.928	0.991	0.980
miss	0.094	0.016	0.017

Using the raw words worked a little better than the PCA/LSA

