
Topic Models
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Bayesian Methods
• Simple

• Naive Bayes, a “set the baseline” method 
• Introduces common independence assumption used in other 
models 

• Complex
• Topic models, a hierarchical modeling approach 
• Example of a probabilistic generative model 
• Unsupervised, like LSA 

Supervised version also available 

• Linked to vector space models

178



Wharton
  Department of Statistics

Naive Bayes
• Classification problem

• Assign class label to Y given collection of categorical indicators 
(e.g., word present/absent) 

• Assign to category Ŷ that maximizes conditional probability  
     maxy P(Y=y| X1, X2, …Xk) 

• Complication
• Suppose k is very large, possibly larger than number of obs 

Lack enough examples to build conditional probability from frequencies 

• Example: Federalist papers 
75 documents, but 10,000 word vocabulary 

• Naive Bayes is competitive in cases with few training examples 
Provided its assumptions hold
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Naive Bayes Solution
• Employ Bayes rule

• P(Y|X) P(X) = P(X|Y)P(Y)  – > P(Y|X) = P(X|Y)P(Y)/P(X) 
• maxy P(Y=y| X1, X2, …Xk) = maxy P(X1, X2, …Xk|Y) P(Y) 

• Assumptions
• Know prior probabilities (such as equal!)  
 maxy P(Y=y| X1, X2, …Xk) = maxy P(X1, X2, …Xk|Y) 

• Xj are conditionally independent given Y  
 maxy P(Y=y|X1, X2, …Xk) = maxy P(X1|Y) P(X2|Y)…P(Xk|Y) 

• Rationale in language 
• Reduces problem to product of frequencies from 2x2 
contingency tables in case of words/text
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Example: Federalist Papers
• Federalist papers

• 85 essays advocating US Constitution in 1787-1788 
• Revisit text by Mosteller and Wallace (1964)  
  Who wrote the 12 disputed Federalist papers? 

• Supervised classification
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Federalist Papers
• Data

• Nothing fancy: a CSV file 
Elaborate data processing needed for web-scale applications 

• Three “variables” for each of 85 documents 
   author, number, text 

• Sample 
To the People of the State of New York:  AFTER an unequivocal experience 
of the inefficacy of the  subsisting federal government, you are called upon 
to deliberate on a new Constitution for the United States of America… 

• Preprocessing
• Downcase 
• Want a document-term matrix for identifying useful words
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Results of Naive Bayes
• Simple analysis

• Identify whether a word appears or not (0/1) rather than count 
• Component probabilities P(Xw|Y) reduce to relative frequency 
of a word appearing in the papers written by each author 

• Which words to use
• Words that are reasonably common 
• Avoid words that appear in every document. 
• Avoid words that don’t get used by an author. 

• What about the prior probability?

• Compare to other classifiers
183federalist_naiveb.R
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Topic Models
• Conceptual model for the generation of text

• Text expresses an idea or “topic” 
Presidential address might move from domestic economics to foreign 
policy to health care. 

• Current topic determines the chances for various word choices 
The words “inflation” or “interest rate” are more likely to appear when 
discussing economic policies rather than foreign policy 

• Hierarchical model
• Identify the number of topics 
• Define a probability distribution for each 
• Each document mixes words drawn from topics 
• Conditional independence, given topic (naive Bayes)
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Heuristic Motivation
• Each document mixes words from collection of topics

• topic = probability distribution over words 
• Original details: Blei, Ng, and Jordan 2003

185Figure from Blei, Intro to Topic Models
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Probability Model
• Latent Dirichlet allocation (LDA)

• Define K topics
• Discrete dist over vocabulary  Pk ~ Dirichlet(α), k = 1,…, K 
• Parameter α controls sparsity of the distribution  

• Each document mixes topics
• Distribution over topics in doci   θi ~ Dirichlet, i = 1,…, n 
•θi are probabilities 

• Word probability    P(w in doc i) = Pk(w)      k ~ Multi(θi) 
• Number of words within doc allowed to be random/fixed
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Expected Word Counts
• Matrix product determines counts

• Let K x m matrix P denote the matrix with probability 
distribution Pk in the kth row. 

• Let the nxK matrix T denote the mix of topics in the 
documents, with the mix for document i in row i. 

• Then the expected number of word tokens of type j in 
document i is (T P)ij. 

• Factorization
• Topics models imply a factorization of the expected count 
matrix, the document term matrix C  
    E(C) = ni T P  
and the SVD is one way of factoring C!
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Example
• Simulate data from a topic model

• Pick the number K of topics 
• Pick size m of the vocabulary and the number of documents n 
• Choose αP that controls “sparsity” of topic distributions 

Small αP produces nearly singular distributions with little overlap.

188topic_models.R

αP=0.025 αP=0.100

αp = 0.025 in following
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Simulate the Documents
• Generate documents

• Choose average length of documents (poisson distribution)  
• Pick αT that controls the mix of topics within documents 

Small αT produces documents predominantly of one topic.
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αT=0.1 αT=0.4

 n=5000 
m=1000 
ni ≈ 100

K=10 topicsαT = 0.4 in following
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Word Frequencies
• Typically not very close to Zipf as we find in real text

190



Wharton
  Department of Statistics

LSA Analysis
• Compute the SVD of the counts

• Raw counts and using CCA weights 
• Number of topics stands out clearly, particularly in CCA
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LSA Analysis
• Loadings have the “ray-like” behavior 

• Similar to those in LSA analysis of wine tasting notes 
• More clearly defined
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Topic Model Analysis
• Same simulated data

• Pick number of topics (e.g., know there are 10) 
• Input the associated DTM 

• Results
• Indicates which topics most prevalent in documents 
• Associates word types with the discovered topics 

• Goodness-of-fit
• Obtain overall log-likelihood of fitted model 
• Vary the number of topics to see how fit changes
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Topic Models: Wine
• Fit topic models to the data set of wine tasting notes

• Use all 20508 documents, with 2659 word types  
after removing/merging the OOV types 

• Fit with K=10 topics 

• Topics in documents
• Lists topics comprising the 
tasting notes 
 
 

• Word types in topics
• Not real exciting… 
• Documents too short?
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Unsupervised Modeling
• Pretend we don’t have a response.

• Do frequencies of words reveal clusters?

• Unsupervised model
• No response variable 
• Which documents are similar 

• Document similarity
• Data is very sparse:  
 2659 types (OOV) but only ≈37 tokens in doc 

• Random projection preserves distances

195



Word Embedding 
n-grams
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Bigrams, n-Grams
• Document term matrix

• Associates words that appear in same “context” 
• A document defines the context 
• Natural association for modeling a property of a document 

• n-Gram matrix
• Bigram: The adjacent word defines the context 
• Trigram: The adjacent words to either side define the context 
• n-gram: Use varying numbers of adjacent words 
• Designed to study the relationship of words
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Return to Token Space
• Bigram matrix origins

• Consider two matrices with elements 0 and 1 
• Total number of rows in each = total number of word tokens -1

198
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Bigram Matrix
• Matrix calculation

• Matrix product times its “lag” 
      B = W-1T W 
so that  
   Bij = #{token of word type wi precedes wj} 

• B is an m x m matrix, where m = size of vocabulary 

• Interpretation as covariance
• Consider the rows of the Nxm matrix W as flowing over time 

stochastic process that picks the words 

• Bij = N cov(wi, wj) 
again, ignoring the mean values that will be very close to 0 

• Word order matters!
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Bigram Matrix
• Standardization

• Word types that are more common will tend to co-occur more 
often than word types that are more rare 

• Weighting, such as CCA or td-idf, are common 
CCA divides by square root of the product of the type frequencies 

• CCA weights convert the covariance into a correlation 
approximately, because sqrt(mj) ≈ sd(jth column of W) 

• Tokenization
• Key choices remain highly relevant 
• Stemming, removing punctuation, handling OOVs
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Bigrams and Models
• Hidden Markov model

• Imagine underlying language communicates sequence of 
ideas or concepts, say Hk, for k = 1,…, K 

• Each concept is associated with a certain vocabulary of 
words, say Vk. 

• We can learn about the concepts by discovering words that 
tend to occur near each other, or be used in the same way.

201
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Word Embedding
• Theory 

• SVD of the bigram matrix B reveals aspects of hidden states 

• Conversion using “thin” SVD
• Retain some of the components of the SVD of bigram matrix 
(after standardizing) 
     B  –> UDVT 

• Suppose we retain d components, then the rows of U  
(an m x d matrix) provide an embedding of words in a d-
dimensional, real-valued space. 

• Random projection ideas are typically necessary for handling a 
large corpus with a diverse vocabulary (m ≈ 100,000 or more)

202

mxm



Wharton
  Department of Statistics

Examples of Embeddings
• Parts of speech

• Obtained from analysis of much larger corpus 
• Regular text rather than domain specific text like wine reviews

203
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Examples of Embeddings
• Plot of two singular vectors
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Examples of Embeddings
• Zoomed in view of same singular vectors
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Examples of Embedding
• Numbers as words and digits
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Bigrams in R
• Typically weighted, but worked better here with small 

corpus to leave raw counts.

207bigrams.R
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Word2vec
• Alternative approach to word embedding

• Derived from “deep” neural network 

• Motivating probability model
• Build a model for P(Wt|Wt-1,Wt-2, …) 
• Output a probability distribution over next word 
• Bigram case has one preceding word for the context 

• Popularity
• Algorithm for solving large neural network 
• Fast implementation, very effective demonstration
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Word2vec Structure
• Deep network

• Network structure
• Input x is dummy word indicator, (xTW) = hT    hidden state 
• Output “softmax”    yj = exp uj/sum exp uj,   uj = (hTW’)j

209Rong, “word2vec parameter encoding explained”

one-hot 
encoding

linear logit

probability 
distribution

large number of 
parameters to 

estimate
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Idea of Embedding
• Text

• The quick brown fox jumped over the fence. 

• Choose vector of coordinates  Vc to represent context word 
and to represent target word VT so that score VcTVT is high. 

• Wrong text: The quick brown fox ate over the fence. 
• Choose vector of coordinates  Vc to represent context word 
and to represent WRONG target word VW so that score VcTVw 
is small.

210
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Example
• Code widely available on Internet

• Train during class
• Compute intensive, so I will run on a server back at Penn 
• Build N = 200 dimensional hidden state vector 
• Loads a corpus to build 
• Trains in about 5 minutes 

• Word analogies
• paris:france :: london: ??? 
• king:man :: queen: ???

211

Lots better with much 
larger corpus
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More Examples
• See papers of Mikolov et al (Google)

212Distributed Representations of Words and Phrases and their Compositionality

from TensorFlow site



Deep Learning
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Deep Learning
• Continuing development of large neural networks in 

models of language

• Recursive neural network
• Sequence to sequence learning 
• Used for grammatical error correction, language translation 
• Long-short term memory (LSTM) network nodes 

• Very large networks require substantial computing 
resources to run in reasonable time

• Commonly built using graphics processors for faster matrix 
calculations
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TensorFlow Animation
• Online example of large neural networks

• Not for text 
• Useful to  
explore 
 flexibility

215
www.tensorflow.org
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Text Examples
• Language generator

• Show it lots of examples of language 
• Builds a probability model for the language 
• Can use to classify language source 

• Example
• Version of the code from Zaremba “Learning to Execute” 
• Build model (takes a while to train on a laptop!) 
• Character level generator (not words, it works at char level) 
• Need a lot more text for training than the “few” wine reviews
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Example: Generating Text
• Generate new reviews

• Can you tell the type of wine being described?

217

remember: 
character level 

generator
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Example: Scoring Text
• Scoring existing text

• DNN builds a probability model, so it can assign a likelihood 
to a review as being a review of red or of white wine.

218

Feed notes on 
tasting red 
wines into 

both models

Ability to 
compress = 

log-likelihood 

High 
compression 
= good match
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Parting Comments
• Text analytics

• Continues to move into mainstream 
• Objectives 
   Build features for “familiar” models  
   Understanding the structure of language 

• Issues of statistical modeling for large data sets remain 
Overfitting, missing data, outliers, … 

• Computing
• Methods related to deep learning have become more widely 
accessible, and hence more common 

• What’s the role for the social scientist?
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