

Auctioning Predictors: Combining Domain Knowledge with **Automated Search Strategies Bob Stine Department of Statistics** The Wharton School, Univ of Pennsylvania September, 2003 www-stat.wharton.upenn.edu/~stine

Examples

- Predicting the onset of bankruptcy (Credit VII)
 - 3,000,000 record database
 - $\ge 100,000$ potential predictors of many types
- Estimating risk of default on underwritten loans
 - 300,000 outstanding loans
 - Many types of predictors
 - Industry characteristics, macroeconomic factors
 - Historical record, properties of a specific loan
- Predicting efficacy of new medication
 - Lab tests, doctor opinion, patient self-reported data

Predictive modeling

Predict characteristic

- Personal bankruptcy, business loan default, reaction to drug
- Predict using features selected from LARGE database of possible features
 - Many types of features
 - Some substantively motivated, others just "available"
 - Some expensive to gather, some much cheaper
 - Some you have now, some you collect later
- Hard part
 - Once you have the data, which predictors to use?

Which features to use?

Wharton Department of Statistics

- Substantive
 - Pick predictors "by hand"
- Advantages
 - Leverage expertise, domain knowledge
 - Easy to "explain" to customer or regulator
- Disadvantages
 - Time consuming to construct
 - Did we miss something?
 - Time consuming to *maintain*
 - Has the world changed?

- Automatic
 - Algorithmic feature selection
- Advantages
 - Scans large database quickly
 - Automatic rebuilding
 - Exploits automated data streams
- Disadvantages
 - Does not exploit domain expertise.
 - Often hard to explain or interpret.
 - Overfitting

Overfitting

5

Best of both worlds?

Wharton Department of Statistics

- Substantive
 - Pick predictors "by hand"
- Advantages
 - Leverage expertise, domain knowledge
 - Easy to "explain" to customer or regulator
- Disadvantages
 - Time consuming to construct
 - Time consuming to *maintain*
 - Did we miss something?
 - Has the world changed?

- Automatic
 - Algorithmic feature selection
- Advantages
 - Scans large database quickly
 - Automatic rebuilding
 - Exploits automated data streams
- Disadvantages
 - Does not exploit domain expertise.
 - May still be hard to explain or interpret?
 - Overfitting

- Predictor streams offer predictors to consider.
- *Bidders* rate possible choices (assign a probability).
- Auctioneer selects predictor with highest rating.
- *Bidders* place bids on this predictor.
- *Auctioneer* tests whether predictor adds value.
 - Statistical test to see if predictor improves underlying model
- Winning *bidders* collect if predictor chosen for model.

Predictor streams

Differentiate domains

- Different streams for different domains, e.g.
 - One stream for macro features
 - A second stream for individual features

Experts order predictors

-Expert determines the order in which stream offers its predictors to the auction

• Bidders

-Learn which streams offer predictors that join model

- Predictor streams offer predictors to consider.
- Bidders rate possible choices (assign a probability).

Picking predictor for auction

- Multiple predictor streams, but only one is tested in each round of the auction.
- Bidders assign probabilities to streams
 Internal features, "preferences" of bidder
 Experience with this stream of predictors
- Auctioneer sums probabilities and picks the predictor that attracts the most bidder interest.

- Predictor streams offer predictors to consider.
- *Bidders* rate possible choices (assign a probability).
- Auctioneer selects predictor with highest rating.
- *Bidders* place bids on this predictor.

Bidding

Each bidder has "wealth"

- Wealth = cumulative *rate* of picking predictors that fail, i.e. each bidder has its own α rate.
- Wealth initially allocated to bidders by the auctioneer.
- Bidders bid on the offered predictor
 - Share of current wealth
 - Probability that this predictor will join model
 - Bayesian schemes, exploiting risk aversion
 - Successful bidders have more to bid
- Auctioneer collects bid from each bidder

- Predictor streams offer predictors to consider.
- *Bidders* rate possible choices (assign a probability).
- Auctioneer selects predictor with highest rating.
- *Bidders* place bids on this predictor.
- Auctioneer tests whether predictor adds value.
 - Statistical test to see if predictor improves underlying model

Evaluating a predictor

Thresholding

- Compare p-value of predictor to threshold
- Bankruptcy analysis discusses optimal thresholding
- Variety of schemes for setting threshold (AIC, BIC,...)
- For the auction, cumulative bid sets threshold
 Bidders spend α for error as they bid on predictors.
- Related ideas in multiple testing
 - $-\alpha$ -spending rules in sequential clinical trials
 - Family-wide error rates
 - Step-up/step-down testing

- Predictor streams offer predictors to consider.
- *Bidders* rate possible choices (assign a probability).
- Auctioneer selects predictor with highest rating.
- *Bidders* place bids on this predictor.
- Auctioneer sees whether predictor adds value.
 - Statistical test to see if predictor improves underlying model
- Bidders collect if predictor chosen for model.

Paying off the bidders

• Auction begins with an allowed probability for error

- Total α for the auction controls the *rate* of false positives.
- Tuning parameter, typically set total α to 0.05.
- Each predictor added to model earns the auction more chance for error in considering rest of predictors
 - Finding good predictor increases the total α for the auction by 0.05.
 - Auctioneer distributes this added "wealth" to the bidders proportional to bid.
 - Bidders who bid more on good predictors accumulate "wealth" and have more to bet in future rounds.

- Predictor streams offer predictors to consider.
- *Bidders* rate possible choices (assign a probability).
- Auctioneer selects predictor with highest rating.
- *Bidders* place bids on this predictor.
- Auctioneer sees whether predictor adds value.
 - Statistical test to see if predictor improves underlying model
- *Bidders* collect if predictor chosen for model.
- Auction continues to the next round.

Predictor auction schematic

Sequential feature selection

- Auction considers predictors offered by streams *sequentially*, rather than "all at once" (batch).
- Can you really find features one-at-a-time?
- Good substantive knowledge, domain expertise
 - Predictor stream offers best conjectures first
 - Order of predictors is key to optimal predictor selection
- Weak (or no) substantive knowledge
 - Traditional automatic feature selection is batch
 - E.g., stepwise regression
 - Sequential selection works just as well and can be faster!

Sequential vs. Batch Selection

Sequential

- Try the predictors in the order offered.
- Allows an infinite stream of possible predictors.
- Can direct search in reaction to successful domains.
- Calculations are just a sequence of simple fits.

Batch

- Search through "all possible" predictors to find the best predictor out there.
- Must have all of the predictors there for search.
- Need to identify all possible predictors from the start.
- Array manipulations can be onerous in large problems.

Does it work with collinear data?

<u>Department of Statistics</u>

Yes!

- Next slide shows results of small simulation.
 - Plot shows out-of-sample error on number of n-fold dotproducts required to achieve the fit.
- Model distributes fit over many coefficients, so large unexplained variation obscures useful predictors.
- Sequential searches predictors in random order
 i.e., no useful domain knowledge is being used.
- Batch search is usual greedy stepwise solution

Sequential works...

Wharton Department of Statistics

Test problem for auction

- Dataset of 2000 persons
 - All had been accepted.
 - Roughly half turn out "good" and half "bad".
- Want to predict outcome status.
 - Have ~ 100 application characteristics
- Prior models
 - Search of linear effects: lots of features in model
 - Allowing interactions: so many possible, they control the fit.

Mixture

- Want to have a model that gives linear terms more weight, while still reserving chance for interactions.

Auction analysis

- Three streams of predictors
 - One linear, one quadratic
 - Use ordering of predictors from data file
 - One model based
 - Forms interactions from terms picked in model
- Four bidders
 - Two want linear; another wants anything
 - One looks for terms that expand current model
 - Mix of constant rate and "conservative optimist"
- Auction begins with overall error rate $\alpha = 0.05$.

Auction analysis

Prior fits

- Linear experts: fit accuracy 26%
- Quadratic (pure interaction): fit accuracy 23%
- Auction model
 - Linear bidders win heavily initially, increasing their wealth
- Final auction fit
 - Add interaction of terms in model quadratic
 - Improves fit accuracy to 29%
- Next slide shows components of auction error rate.
 Division between linear and quadratic bidders.

Auction progress: alpha & R²

Wharton Department of Statistics

Summary and discussion

- Auction modeling exploits both
 - -Domain knowledge
 - -Automatic search procedures
- Auctions possess well-developed foundations
 - -Family wide error rate and step-up/step-down test
 - Powerful heuristic motivates use
 - -Optimality of thresholding methods
 - Automatically generated threshold
 - -Analogies to economic modeling, game theory
 - Machine learning theory