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Range of ChallengesRange of Challenges
 Anticipate bankruptcy

- Which borrowers are most likely to default soon?

 Adverse effects
- Which patients are at risk of side effects from medication?

 Facial recognition
- How can we train computers to find faces in images?

 Other domains…
- Employee evaluation: Who should we hire?
- Fraud detection: Which loan applications were made up?
- Document classification: Can you find one like this?
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SimilaritiesSimilarities

Different contexts, but some similarities too …
 Rare events

- Few cases dominate costs.
- Millions of accounts, thousands of defaults.

 Synergies
- Linear models find little.  Interactions work.
- Too many combinations seem plausible.

 Wide data: possibly more features than cases
- Interactions, transformations, categories, missing data…
- Too many to find the best at each stage.
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Data sets keep getting widerData sets keep getting wider

Number of Raw
Features

Number of CasesApplication

3503,000,000Bankruptcy

1,40010,000Faces

10,0001,000Genetics

∞500CiteSeer
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Common ObjectiveCommon Objective

 Regardless of the context
- Anticipating default on loan
- Identifying those at risk of disease
- Deciding whether there’s a face in the image

 Pragmatic goal remains prediction.

 Best model generates highest revenue
- Asymmetry of costs, presence of rare events

 Many schemes for building a predictive model
- Various algorithms, features, and criteria such as…
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Background: Predicting BRBackground: Predicting BR

 Asymmetry of the costs
- False positive (annoying a good customer): many but cheap
- False negative (missing a bankruptcy): few but expensive

 A “slightly modified” version of stepwise regression
predicts incidence of bankruptcy better than modern
classification tree.

 Test results
- Five-fold cross validation, with 600,000 cases in each fold.
- Regression generate better decisions than using C4.5, with

or without boosting.
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Regression Minimizes CostsRegression Minimizes Costs
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Simple Simple Mods Mods to Regression to Regression 

 To work well in data mining, regression needs help.

 Modified the statistics
- Estimate standard errors using the fit computed before

adding a predictor rather than after.
- Bound p-values based on Bennett’s inequality to control for

very rare, high leverage points, then use Bonferroni.
- Calibrate the final fit so that if the model predicts a 5%

chance of BR, then we observe a 5% rate.

 Modified the computing by rearranging sweep order.

 Modified the search to consider all interactions.
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How many predictors?How many predictors?

 Began with 350 predictors
- These include categorical factors, such as region.
- Missing data indicators

 Add all possible interactions

 Use forward stepwise regression to search the
collection of
350 base predictors
+ 350 squares of predictors
+ 350*349/2 = 66,430 interactions
= 67,610 features
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Impressive lift resultsImpressive lift results
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Successful, but Successful, but ……

 Almost all predictors are interactions
- Not surprising: more than 98% of the features considered in

the search are interactions.

 Time consuming
- “Breadth-first” search for next predictor

 Adding substantive features
- Interactions represent but a few of the possible collection of

features that one might want to explore.
- If you were to talk to an expert, they could offer ideas.
- How could you use this knowledge to find better models?
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Not just one expert eitherNot just one expert either……

Every domain has experts…

Which offer
good advice?
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How toHow to  use an expertuse an expert’’s help?s help?

Manual
Pick model “by hand”

  Advantages
- Leverage domain knowledge
- Can “interpret” model

 Disadvantages
- Did we miss something?
- Time consuming to

• Construct
• Maintain

Automatic
Computer search

 Advantages
- Scans entire data warehouse
- Hands-off, fast

• Construction
• Maintenance

 Disadvantages
- Lost domain expertise
- Hard to explain or interpret
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Keep the good, remove the badKeep the good, remove the bad

Substantive
Pick model “by hand”

  Advantages
- Leverage domain knowledge
- Can “explain” model

 Disadvantages
- Did we miss something?
- Time consuming to

• Construct
• Maintain

Automatic
Computer search

 Advantages
- Scans entire data warehouse
- Hands-off

• Construction
• Maintenance

 Disadvantages
- Lost domain expertise
- Hard to explain or interpret



Wharton
 Statistics Department

SAS Data Mining 2004 15

Best of BothBest of Both
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Auction = Experts + ModelAuction = Experts + Model

Predictive
Model

Feature
Auction

Domain
Expert

Domain
Expert

Domain
Expert

Domain
Expert
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AwktionAwktion  ModelingModeling
 Experts recommend features based on context.

 Auction identifies feature with highest bid.

 Statistical model tests this feature.
- Bid determines p-value threshold
- Accepts significant predictors, rejects others

 Auction passes results back to experts.
- Winning bids earn wealth for expert.
- Losing bids reduce wealth.

 Information flows both ways.

M

E2

A

E3E1
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ExpertsExperts

 Experts recommend predictive features

 Substantive experts order features
- Domain knowledge of specific area
- Offer a list of features to consider
- Scheme/strategy to generate “next” predictors

 Automatic experts
- Interactions based on other experts
- Transformations

• Segments, nearest-neighbor, principal components
• Nonlinearity
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Auction is sequentialAuction is sequential

 Each expert offers a predictor to the auction.
- Each expert has wealth as allowed Type 1 error rate.
- Experts offer a bid with each predictor.
- The bid is a p-to-enter threshold.

 Auction takes the predictor with the highest total bid.
- It collects the bids on this feature from the experts.

 Auction passes the chosen predictor to model.
- Model assigns p-value to feature.
- If p-value < bid, add the feature and “pay” bidders.

 Continue
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AuctionAuction  addresses concernsaddresses concerns

 More types of features get used
- One expert recommends raw predictors.
- Second expert recommends interactions.
- Second expert has to spread wealth over more possibilities

 Each step of the search is fast
- “Depth-first” searching is fast. Just need p-value, not best.
- The only game in town if the list of features is endless.

  Experts capture knowledge
- Recommend features from substantive knowledge
- Recommend features from state of the current model
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Theory: Sequential selectionTheory: Sequential selection
 Evaluate each feature as offered rather than finding

the best feature available.
- Essential when the choice of the next feature depends on

what has worked so far, as in CiteSeer application.

 Fast, even when experts are dumb.

 SDR: the sequential discovery rate
- Resembles an alpha-spending rule as used in clinical trials
- Works like FDR, but allows an infinite sequence of tests.

 Variable selection
- Ordering captures prior information on size of effects
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Sequential vs. Batch SelectionSequential vs. Batch Selection

 Search features in order
identified by domain expert

 Allows an infinite stream of
features.

 Adapts search to successful
domains.

 Reduces calculations to a
sequence of simple fits.

 Search “all possible”
features to find the best one.

 Needs all possible features
before starts.

 Constrains search to those
available at start.

 Requires onerous array
manipulations.

BatchSequential
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Sequential worksSequential works……

Sequential

Batch
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Theory: Bidding strategyTheory: Bidding strategy

 Auction prevents “strategic betting”
- Experts offer honest estimate of value of the predictor.

 Multiple bidders represent each expert
- Geometric bidder: Spend λ% of current wealth on next bid.
- Use mixture of bidders with varying  λ.

 Auction adaptively discovers smart experts
- Auction rewards the bidder/expert with the right rate
- Wipes out the others.

 Universal bidding strategies (universal Bayes prior)
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Statistical ModelStatistical Model

 Calibrated logistic regression

 Logistic regression
- Well matched to classification
- Allows over-sampling on the response
- Simple calculations for scoring predictors

 Calibration
- First-order calibration
- Build a calibrator using a smoothing spline to avoid

predictors that only serve to calibrate the model.
! 

E Y ˆ Y ( ) = ˆ Y 



Wharton
 Statistics Department

SAS Data Mining 2004 26

Calibration plot, beforeCalibration plot, before
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Calibration plot, afterCalibration plot, after
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Stylized ExampleStylized Example
 Predicting default

- Logistic regression model
- 15,000 cases, 67,000 possible features (most interactions).

 Standard search finds linear predictor
- Higher risk with lower line allowance.
- Statistically significant

Risk

Line Allowance
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Discovers nonlinear patternDiscovers nonlinear pattern
 Auction model

- Experts recommendations based on state of model.
- Look for combinations of extant predictors.

 Discovers nonlinear effect
- Nonlinear effect for size of credit line
- Statistically significant  “bump” in risk

Risk

Line Allowance



Wharton
 Statistics Department

SAS Data Mining 2004 30

Cross-validation comparisonCross-validation comparison

 Rare events data
 Five-fold “reversed” cross-validation

- 100,000 cases per fold
- Fit on one fold, predict other 4 folds

 Methods
- C 4.5 with boosting
- Auction with calibrated logistic regression and multiple

geometric experts using SDR to spend alpha rate.

 Goal: Minimize costs of classification errors in the
validation data.
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Cross-validation comparisonCross-validation comparison

 At higher cost ratios,
auction produces much
lower error costs.

 If the two errors have equal
costs, either method does
well.

 For each fold, auction builds
one model for all cost ratios.

 C4.5 uses a new tree for
each fold and for each cost
ratio within a fold.
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Want to try?Want to try?

 Statistics should have (or use) a repository of test
data sets like those used in computer science.
- UC Irvine repository

 Can get this data from my web page.
- Sanitized version of the bankruptcy data used in our study

of data mining with regression.
- Hidden the variable names and standardized the columns.
- Reduced the data to 100,000 cases per fold.

 Only ask that you let us know how it turns out.
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Computing commentsComputing comments

 Prior code
- Monolithic C program

 Auction
- Written in C++, using objects and standard libraries
- Modular design

• Templates (e.g., can swap in different type of model)
• Runs as a unix command-line task
• Separate commands for data processing, modeling, and

validation
• Adopt C4.5 file layout convention
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SummarySummary
Auction modeling combines

-Domain knowledge
-Automatic search procedures

Offers
-Fast, guided search over complex domains
-Ability to handle very wide data sets
-Use of any model that can provide p-value

More information…
www-stat.wharton.upenn.edu/~stine


