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Abstract

We develop and illustrate a methodology for fitting models to large, complex data

sets. The methodology uses standard regression techniques that make few assumptions

about the structure of the data. We accomplish this with three small modifications to

stepwise regression: (1) We add interactions to capture non-linearities and indicator

functions to capture missing values; (2) We exploit modern decision theoretic variable

selection criteria; and (3) We estimate standard error using a conservative approach

that works for heteroscedastic data. Omitting any one of these modifications leads to

poor performance.

We illustrate our methodology by predicting the onset of personal bankruptcy

among users of credit cards. This application presents many challenges, ranging from

the rare frequency of bankruptcy to the size of the available database. Only 2,244

bankruptcy events appear among some 3 million months of customer activity. To pre-

dict these, we begin with 255 features to which we add missing value indicators and

pairwise interactions that expand to a set of over 67,000 potential predictors. From
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these, our method selects a model with 39 predictors chosen by sequentially comparing

estimates of their significance to a sequence of thresholds. The resulting model not

only avoids over-fitting the data, it also predicts well out of sample. To find half of the

1800 bankruptcies hidden in a validation sample of 2.3 million observations, one need

only search the 8500 cases having the largest model predictions.

Key Phrases: AIC, Cp, risk inflation criterion RIC, hard thresholding, stepwise re-

gression, Bonferroni, step-up testing.
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1 Introduction

Large data sets and inexpensive computing are symbols of our time. The modelers

of the data-mining community have enthusiastically embraced this combination. This

pragmatic, energetic community eagerly adopts and customizes computational meth-

ods like neural nets to suit the problem at hand, aiming for predictive tools rather than

asymptotic theorems (see Breiman’s discussion of ?). Statisticians have been more cau-

tious, stressing the importance of domain knowledge and careful data analysis while

warning of parameter bias and other consequences of over-fitting (e.g. ?). Many in-

teresting problems, particularly classification problems such as diagnosing a disease to

identifying profitable customers in a mailing list or at a web site, have become the

province of “data mining” rather than applications of statistics (e.g., see ? and the

November, 1999, issue of Communications of the ACM (Volume 42, Number 11) which

offers several articles on knowledge discovery and machine learning).

Our purpose here is to show that a combination of statistical methods routinely

handles “data-mining” problems quite well. Our key tool is familiar to all statisticians

who model data: stepwise regression. What distinguishes our use of this familiar,

often maligned tool is the expansive way that we use it. For our illustration, we fit

a stepwise regression beginning with over 67,000 candidate predictors. To show that

it works, we use the chosen model to predict a large validation sample. Like the data

miners, our goal is out-of-sample predictive accuracy rather than the interpretation of

specific model parameters.

Our use of stepwise regression succeeds because it finds real signal while protecting

against over-fitting. Stepwise regression is well-known to have problems when fitting

models with many parameters, claiming a better fit than it actually obtains (e.g. ??).

To address these real concerns, the last decade in decision theory produced several im-

portant techniques that avoid over-fitting. These cannot, however, be routinely used

in data analysis. All evaluate the merit of a predictor through a measure of its sta-

tistical significance derived from, essentially, a t-statistic, the ratio of the estimate to

its standard error. These theoretical results presume accurate standard errors which

abound in the theoretical world where one can assume knowledge (or very good esti-

mates) of key features like the noise variance σ2. For example, simulations illustrating
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implementations of these results most often consider orthogonal regression, typically a

wavelet regression whose “small” coefficients define an estimate of σ2. In data analy-

sis, however, a small degree of over-fitting produces biased standard errors. The biases

may be small, such as a 10% change in the t-statistic from 2.0 to 2.2 or 4.0 to 4.4.

Because the theory relies on the thin tail of the normal distribution, such bias with

67,000 estimates can lead to many false positives and produce yet more bias and a

spiral of over-fitting.

To illustrate this methodology, we build a model to predict the onset of personal

bankruptcy. The credit industry makes extensive use of statistical modeling (?), and

decision automation systems incorporating statistical models have saved creditors mil-

lions of dollars (?). Though well-publicized, personal bankruptcy remains relatively

rare in the US. Nonetheless, bankruptcy events are expensive to creditors and it would

be valuable to anticipate them. The underlying data base for our study holds longitudi-

nal data for 244,000 active credit-card accounts, as described further in Section 2. For

the 12 month period considered in this analysis, only 2,244 bankruptcies are scattered

among the almost 3,000,000 months of account activity. Though certain aspects of our

application are specific to this problem of predicting a rare, discrete event, we believe

that the approach has wider applicability. In seeking to demonstrate this generality,

we structured the bankruptcy data in a way suited to regression modeling. The lon-

gitudinal nature of the data suggests a variety of relatively esoteric models, such as

time-to-event or proportional hazards models. Though more specialized models may

be more capable of predicting bankruptcy, the simplicity and familiarity of regression

makes it more suited as a test case for describing our methodology. In the end, its

predictions appear impressive as well.

While our modeling procedure would surely benefit from more expertise in the

choice of predictors, the approach taken here is fully automatic. Beginning from a

rectangular array of data, the algorithm expands the set predictors, searches these in a

familiar stepwise manner, and chooses the predictors expected to generate significant

predictive benefit. Put bluntly, we build a stepwise regression from a very large set of

predictors expanded to include all pairwise interactions, here a set of 67,160 predictors.

The presence of the interactions allows the linear model to capture local curvature and

subset behavior, features often associated with more specialized methods (e.g., neural
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nets and CART). The novelty in our approach lies in how we avoid selection bias –

choosing predictors that look good in-sample but predict new data poorly – without

assuming the existence of a large hold-out sample. It is well-known that naive variable

selection methods are typically overwhelmed by selection bias. For example, in an

orthogonal regression, the AIC or Cp criterion chooses predictors whose absolute t-

statistic exceeds
√

2. If we imagine a simplified problem in which none of the predictors

is useful (all of “true” slopes are zero and the predictors are uncorrelated), then AIC

would choose about 16% of them for the model even though none of them represents

a useful predictor (e.g., see ?).

In comparison to rules such as AIC that use a fixed threshold, our variable selection

procedure employs a changing threshold. As such, the criterion adapts to problems

such as our prediction of bankruptcy with few useful predictors (low “signal to noise”

ratio) as well as other problems in which many predictors are valuable (high signal to

noise ratio). One need not pretend to know a priori whether few or many predictors

are useful. The criterion instead adapts to the problem at hand. Deferring the details

to Section 3, the procedure yields a set of predictors whose out-of-sample mean squared

error is about as good as might be achieved if one knew which variables were the “true”

predictors. Our rule selects predictors whose t-statistic exceeds a threshold, much as

described for AIC above. The difference from AIC is that the rule first compares the

largest coefficients to a very large threshold and then gradually reduces the threshold

to accommodate more predictors as significant effects become apparent.

Because of its central role, the standard error of the estimated coefficients must

be accurately determined, lest a greedy stepwise procedure such as ours cascade into

a spiral of worse and worse models: once the selection procedure incorrectly picks a

useless predictor, it becomes easier for it to choose more and more. With an excess of

possible predictors, our selection procedure uses conservative estimates of the standard

error of the coefficient estimates. In addition to adjusting for sampling weights and

natural sources of heteroscedasticity in this problem, a conservative variation on a

standard econometric estimator is not only easier to compute in a stepwise setting but

also avoids pitfalls introduced by the sparse nature of the response. (See equation (22)

for the precise estimator.)

Adaptive variable selection consequently reduces the need to reserve data for val-
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idation. Validation or hold-back samples can serve one of two purposes: selecting

variables or assessing the accuracy of the fitted model. In the first case, one adds pre-

dictors until the out-of-sample error estimated from the validation data set increases.

Whereas the in-sample prediction error, for example, inevitably decreases as predictors

are added during the optimization of the fitted model, given enough data, the out-of-

sample squared error tends to increase once spurious predictors enter the model. One

can thus use the validation sample to decide when to halt the selection process. When

modeling a rare event such as bankruptcy, however, such a hold-back sample represents

a major loss of information that could otherwise be used to find an improved model

(see, e.g., Miller’s discussion of ?). Nonetheless, to convey the predictive ability of our

model, we reserved a substantial validation sample, 80% of the available data.

Using the validation sample, the lift chart in Figure 1 offers a graphical summary

of the predictive ability of the model found by our selection procedure. To motivate

this chart, consider the problem of a creditor who wants to target customers at risk of

bankruptcy. The creditor knows the bankruptcy status of the people in the estimation

sample, and now must predict those in the validation sample. Suppose this creditor

decides to contact those most a risk of bankruptcy, in hopes of changing their behavior.

Because of budget constraints, the creditor can afford to call, say, only 1000 of the 2.3

million customers in the validation sample. If the creditor selects customers to call

at random, a sample of 1000 customers has on average fewer than one bankruptcy.

Alternatively, suppose that the creditor sorts the customers in the validation sample

by their predicted scores from the fitted model, and then calls the first 1000 in this

new list. Table 1 shows the number of observations and bankruptcies in the validation

sample with predicted scores above several levels. When ordered by predicted scores,

the creditor will find 351 bankruptcies among the first 999 called, almost 20% of the

1786 bankruptcies found in the validation sample. Continuing in this fashion, the

creditor could reach about half of the bankruptcies hidden in the validation sample

by contacting 8500 customers. Resembling an ROC curve, the lift chart in Figure

1 graphically displays the results in Table 1, varying the level of the predicted score

continuously. The horizontal axis shows the proportion of the validation sample called,

and the vertical axis shows the proportion of bankruptcies found. The diagonal line in

the plot represents the expected performance of random selection. The concave curve
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Figure 1: Lift chart for the regression model that uses 39 predictors to predict the onset

of personal bankruptcy. The chart shows the percentage of bankrupt customers in the

validation data found when the validation observations are sorted by predicted scores. For

example, the largest 1% of the predictions holds 60% of the bankruptcies. The diagonal line

is the expected performance under a random sorting.

shows the performance when the validation sample is sorted by our fitted model. Its

lift chart rises swiftly; for example, calls to about 1% of the population as sorted by the

model find 60% of the bankruptcies. For the sake of comparison, we note that the R2

of the fitted model is only 9%. This traditional summary fails to convey the predictive

value of the model.

We have organized the rest of this paper as follows. Section 2 that follows describes

in more detail the bankruptcy data featured in our analysis. Section 3 describes our

approach to variable selection and Section 4 provides the details to finding the estimates

and standard errors needed for this type of modeling. Section 5 gives further details

of the fitted model, and the concluding Section 6 offers some topics for discussion and

suggests directions for enhancing this type of modeling.

2 Data Processing

This section describes how we constructed the “rectangular” data set used in our

regression modeling. As often seems the case in practice, the task of preparing the data

for analysis absorbed much of our time, more than the modeling itself. We obtained

the data as part of a research project studying bankruptcy at the Wharton Financial

Institutions Center, and we acknowledge their support.

The original data obtained from creditors present a longitudinal view of 280,000

credit-card accounts. The time frequency of the data vary; some measurements are

monthly (such as spending and payment history), whereas others are quarterly (e.g.,

credit bureau reports) or annual (internal performance measures). Yet others are fixed

demographic characteristics, such as place of residence, that are often gathered as part

of the initial credit application. We merged the data from various files using a variety

of Unix and lisp scripts into a single, unified data file. Because of changes in the
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Table 1: Counts of bankruptcies when observations in the validation sample are sorted by

predicted model score. In the validation sample, for example, 25 customers received scores

of 0.60 or larger; of these 18 (72%) declared bankruptcy.

Predicted Number above Level

Level Total Bankrupt % Bankrupt

1.00 4 3 75.00

0.90 4 3 75.00

0.80 4 3 75.00

0.70 10 7 70.00

0.60 25 18 72.00

0.50 45 30 66.67

0.40 99 58 58.59

0.30 205 99 48.29

0.20 545 222 40.73

0.15 999 351 35.14

0.10 2187 524 23.96

0.05 8432 855 10.14

0.00 852991 1678 0.20

-.05 2333087 1782 0.08
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scope of data collection, we focus on a 12 month period during 1996-1997 that permits

us to use a consistent set of predictors. For subsequent discussion, we number these

months t = 1, . . . , 12. To accommodate lagged predictors, the data set includes several

prior months of activity. At this stage of processing, we removed 35,906 accounts that

appeared inactive or closed and continued with the remaining 244,094 accounts.

We next align the data as though collected at a single point in time. Let Yit denote

the response for the ith account in month t, and let Xit denote the corresponding

collection of predictors. We model the data as though the conditional mean of the

response has finite memory

E(Yit|Xi,t−1,Xi,t−2, . . .) = E(Yit|Xi,t−1,Xi,t−2, . . . ,Xi,t−!)

= µit(Xi,t−1,Xi,t−2, . . . ,Xi,t−!) .

We limit our attention here to the prior " = 4 months of data because of a suspicion

that bankruptcy events are sudden rather than long term. (We explored other time

horizons and found similar results.) We further assume stationarity of the regression

and model the conditional mean as invariant over accounts and months during the

studied year,

µit(X) = µ(X), ∀i, 1 ≤ t ≤ 12 . (1)

The assumption of stationarity allows us to pool the bankruptcy events to esti-

mate the mean function. Rather than treat the responses for one normal account

Yi1, . . . , Yi12 as a dependent sequence to be modeled together, we treat these as 12

uncorrelated responses. Similarly, we align all bankruptcies to the same “point” in

time. Thus each non-bankrupt account contributes 12 observations to the final data

set, and each bankrupt account contributes at most 12. After alignment, the data set

of 244,094 accounts expands to 2,917,288 monthly responses Yit and the accompanying

lagged predictors. The former association of these observations as part of an original

longitudinal sequence is not used in the analysis. While this assumption simplifies the

presentation of our methodology, it does make it harder to predict bankruptcy. For

example, consider an account that declares bankruptcy in month 7. It is an error to

predict bankruptcy for any of the previous six observations even though these may

presage the event.

It may concern some readers that the data set contains multiple observations from
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most credit card accounts. We shared this concern and so performed an analysis

of a smaller data set constructed in the following manner. Each account showing

a bankruptcy was sampled, but we used only the month in which the bankruptcy

occurred. For example, if the bankruptcy occurred in month 3, then the only response

generated by this account is Yi3. We then sampled 25% of the remaining accounts,

picking one randomly chosen month as the single response for the account. We modeled

these data in the same fashion as that presented here, finding essentially similar results.

We were troubled, however, by the impact of subsampling and the required weighting

on the validation error calculations and hence chose to use all of the data instead.

Each observation at this stage consists of the 0/1 indicator for the occurrence of

bankruptcy and 255 predictors. To capture trends or seasonal variation in the rate

of bankruptcy, we retain the month index t as a possible predictor. We treat the

time trend as both a continuous predictor and as a collection of 12 seasonal dummy

variables. Other categorical predictors are handled in the usual fashion, converting

a k-level categorical variable into k dummy variables. We also merge some of the

indicators, such as the state of residence, to reduce the number of predictors. Since

our search procedure does not treat these indicators as a set, to keep or ignore as a

group, the categorical variables are converted into the over-determined set rather than

leaving out one category. Missing data in such categorical variables simply defines

another category. Handling missing data in continuous predictors is done in a different

manner described next.

The prevalence of missing data led us to adopt a simple approach to incomplete

cases. We treat any continuous variable with missing data as the interaction of an

unobserved, complete variable with a “missingness” indicator. This procedure is easy

to implement. A scan through the time-aligned data set flags any continuous predic-

tors with missing data; of the 255 raw predictors, 110 have missing data. In each

case, we fill the missing values with the mean Xj of the observed cases and add an

indicator, say Bj , to the data set. This augmentation of the set of predictors thus

adds 110 more dichotomous predictors, giving a total of 110 + 255 = 365 predictors.

An important by-product of filling in missing data in this way is the possible intro-

duction of heteroscedasticity. If indeed Xj is an important predictor of bankruptcy,

then filling missing values with the observed mean Xj introduces heteroscedasticity.
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Since we anticipated none of the predictors to have a large effect, this source of het-

eroscedasticity was not expected to be large. In any event, our estimation allows for

such heteroscedasticity.

The penultimate stage of preparing the data adds all of the second-order interactions

to the set of predictors. Because the resulting data set would be huge, this step is

implicit and our code computes interactions between predictors as needed in subsequent

calculations. With the set of predictors expanded in this way, the search procedure

is able to identify local quadratic nonlinearity and subset differences, at a cost of

a dramatic expansion in the number of candidate predictors. The addition of the

interactions expands the data set to 365 + 365(366)/2 = 67, 160 predictors. In our

analysis of this data, we treat interactions just like any other predictor, violating the

so-called principle of marginality. This principle requires, for example, that a model

containing the interaction Xj ∗Xk must also include both Xj and Xk. Our reasoning

is simple: if the model benefits from having the base linear terms, then these should be

found by the selection procedure. We also allow “overlapping” interactions of the form

Xj∗Xk1 and Xj∗Xk2 , unlike ?. In fact, our search for predictors of bankruptcy discovers

a number of such overlapping interactions, so many as to suggest a multiplicative model

(see Section 5 and remarks in the concluding discussion).

As the final stage of preparations, we randomly divide the time-aligned data set into

an estimation sample and a validation sample. This random split essentially defines

the population as the time-aligned data set and scrambles the dependence that may be

introduced by time alignment. We randomly sampled 20% of the account months from

the time-aligned data for estimation, obtaining a sample of 583,116 account months

with 458 bankruptcies. The remaining 80% of the data (2,334,172 account months

with 1,786 bankruptcies) constitute the validation sample. Our choice to reserve 80%

is perhaps arbitrary, but reflects our bias for an accurate assessment of the predictive

ability of the selected model. While expanding the proportion used for estimation

might lead to a better model, decreasing the size of the validation sample makes it

hard to recognize the benefit. Heuristically, our split implies that validation sums of

squared errors possess half the standard error of those computed from the estimation

sample. We did not shrink the estimation sample further since preliminary calculations

indicated that the model fitting would deteriorate with smaller estimation samples; the
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number of bankruptcy events becomes quite small relative to the number of potential

predictors.

3 Variable Selection

We use variable selection to identify features that predicts well when applied to new

observations. The object is to add those predictors whose improvement in the accuracy

of prediction overcomes the additional variation introduced by estimation, a classic

bias/variance trade-off. Adding more predictors reduces bias at a cost of more variance

in the predictions. Our criterion judges the accuracy of the predictions by their mean

squared error (MSE), combining bias and variance. Other metrics (such as classification

error or likelihoods) are sometimes chosen. ? offers further discussion and examples of

variable selection in regression.

Procedures for variable selection are simplest to describe in the context of an or-

thonormal least squares regression. For this section, let Y denote a vector with n

elements and let Xj , j = 1, . . . , p, denote p ≤ n orthogonal predictors, normalized so

that X ′
jXj = 1. We suppose that the data follow the familiar normal linear regression

model

Y = µ + σε, εi
iid∼ N(0, 1) , (2)

where the mean vector µ has the form

µ = β1X1 + · · · + βpXp . (3)

Some of the βj may be zero and σ2 is the known error variance. Let γ = {j1, . . . , jq}
denote a subset of q = |γ| integers in the range 1 to p, and define the associated fitted

values

Ŷ (γ) =
∑
j∈γ

β̂jXj ,

with β̂j estimated by least squares,

β̂j = X ′
jY .

The challenge for the variable selection criterion is to identify the set of predictors γ

that minimizes the mean squared error,

MSE(γ) = E ‖µ− Ŷ (γ)‖2 , (4)
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where for vectors x, ‖x‖2 =
∑

x2
i . Notice that minimizing MSE(γ) is equivalent to

minimizing the expected squared error when predicting an independent copy of the

response, Y ∗ = µ + ε∗. Models that estimate the mean µ well also predict well out-of-

sample.

Given the goal of minimizing the mean squared error, a logical place to begin is with

an unbiased estimate of MSE(γ̂). This is the path taken by the Akaike information

criterion AIC (?) and Mallow’s Cp (?). These criteria choose the set of predictors

that minimizes an unbiased estimate of MSE(γ). For an orthonormal regression, the

unbiased estimator is

mse(γ) = RSS(γ) + 2 q σ2 , q = |γ|, (5)

where RSS is the residual sum of squares,

RSS(γ) = ‖Y − Ŷ (γ)‖2 . (6)

The second summand 2qσ2 on the right-hand side of (5) acts as a penalty term, in-

creasing with the dimension of the model. To pick the best model, then, one computes

mse(γ) for various collections of predictors (search is another matter) and selects the

set, say γ̂, that obtains the smallest such estimate. The form of (5) also suggests how

AIC generalizes to other models and distributions. In the normal regression model,

the residual sum of squares is essentially the minimum of twice the negative of the log

of the likelihood,

RSS(γ) = min
βγ

−2 log L(Y1, . . . , Yn;βγ) + cn ,

where cn is an additive constant for all models. Consequently, AIC not only picks the

model that minimizes a sum of squares, it also selects the model that maximizes a

penalized likelihood.

The act of choosing the model with the smallest estimated mean squared error

leads to selection bias. The minimum of a collection of unbiased estimates is not

unbiased. This effect is small when AIC is used, for example, to select the order of an

autoregression. The problem becomes magnified, however, when one compares many

models of equal dimension, as in regression (see ?, for a discussion of this issue). This

selection bias produces a criterion that chooses too many variables when none are in
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fact useful. This effect is easily described for an orthonormal regression. Order the

predictors so that β̂2
j ≥ β̂2

j+1 and observe that the residual sum of squares drops by β̂2
j

when Xj is added to the model. Now, AIC implies that one should add Xq+1 to the

model with predictors X1, . . . , Xq if the residual sum of squares drops by enough to

compensate for increasing the penalty. In this setting this condition reduces to

add Xq+1 ⇐⇒ β̂2
q+1 > 2σ2 , (7)

or, equivalently, if the absolute z score for Xq+1, |zq = β̂q+1/σ| >
√

2. In the null

case with βj = 0 for all j, zq ∼ N(0, 1), AIC selects about 16% of the predictors even

though none actually reduces the mean squared error. In fact, each added superfluous

predictor increases the MSE. In a problem such as ours with 67,000 predictors, most

with little or no effect on the response, a procedure that selects 16% of the predictors

would lead to a rather poor model. The variation introduced by estimating so many

coefficients would outweigh any gains in prediction accuracy.

A simple way to reduce the number of predictors in the model is to use a larger

threshold – but how much larger? The literature contains a variety of alternatives

to the penalty 2qσ2 in (5) (as reviewed, for example, in ?). At the extreme, the

Bonferroni criterion selects only those predictors whose two-sided p-value is smaller

than α/p, where p is the number of possible predictors under consideration and α is

the type I error rate, generally α = 0.05. In contrast to AIC, the Bonferroni criterion

selects on average only a fraction of one predictor under the null model. Because the p-

values implied by the Bonferroni criterion can be so small (on the order of .05/67000 ≈
0.0000007 in our application), many view this method as hopelessly conservative.

Despite such reactions, the small p-values associated with Bonferroni in large prob-

lems such as ours are appropriate. In fact, recent results in statistical decision theory

show that variable selection by the Bonferroni criterion is optimal in a certain minimax

sense. These optimality properties are typically associated with a method called hard

thresholding (?) or the risk inflation criterion (?). These procedures, which we will

refer to as RIC, select predictors whose z-score is larger than the threshold
√

2 log p.

RIC is optimal in the sense of the following minimax problem. A statistician is com-

peting against nature, and nature knows which predictors have non-zero coefficients.

The statistician chooses a data-driven variable selection rule, and nature then chooses
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the regression coefficients. The objective of the statistician is to minimize the ratio

of the mean squared error of his model to that obtained by nature who includes all

predictors for which βj ,= 0. In a regression with Gaussian errors and q non-zero βj

scattered among the p elements of β, ? show that the best possible ratio of mean

squared errors is about 2 log p,

min
β̂

max
β

E ‖Y −Xβ̂‖2
qσ2

= 2 log p− op(log p) . (8)

The minimum here is over all estimators of β and is asymptotic in the size of the model

p, holding q fixed. The model identified by RIC attains this competitive mean squared

error. That is, if one selects predictors by choosing only those whose absolute z-scores

exceed
√

2 log p, then the MSE of the resulting model is within a factor of 2 log p of that

obtained by estimating the true model, and this is the best asymptotic performance.

These same claims of optimality apply to the Bonferroni criterion because it implies

essentially the same threshold. To get a better sense of the similarity of the Bonferroni

criterion and RIC, consider again the simplifying situation of an orthonormal regression

with known error variance σ2. The Bonferroni criterion implies that one should select

those predictors whose absolute z-scores exceed a threshold τα defined by

α

2p
= 1− Φ(τα) . (9)

In this expression Φ(x) is the cumulative standard normal distribution,

Φ(x) =
∫ x

−∞
φ(t)dt, with φ(x) = e−x2/2/

√
2π .

To show that τα is close to the RIC threshold
√

2 log p for large p, we use the well-known

bounds for the cumulative normal (e.g. ?, page 175):

φ(x)
(1

x
− 1

x3

)
< 1− Φ(x) <

φ(x)
x

, x > 0 . (10)

Since our interest lies in large x, we can simplify these bounds to

3
4

φ(x)
x

< 1− Φ(x) < e−x2/2, x > 2 . (11)

At the Bonferroni threshold τα, equation (9) holds and the upper bound in (11) implies

τα <
√

2 log p + 2 log 2
α . (12)
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Figure 2: Thresholds implied by the risk inflation criterion
√

2 log p (short dashes, - - -), the

optimal threshold τ ∗ (long dashes, — —), and Bonferroni with α = 0.05, 0.20 (solid curves

in black and gray, respectively). The RIC threshold is a compromise between the Bonferroni

threshold τ0.05 and the optimal threshold τ ∗.

From the lower bound in (11), we have

e−τ2
α/2 < c

τα

p

with the constant c = 2α
√

2π/3. If we replace τα on the right-hand side of this

expression by the just-found upper bound (12), we eventually arrive at the lower bound

τα >

√
2 log p− log log p− log 2

α

log p
− c′ , (13)

where the constant c′ = 2 log c + log 2. Combining these bounds, we see that the Bon-

ferroni threshold is asymptotically sandwiched for large p between
√

2 log p− log log p

and
√

2 log p. To the accuracy of the theorems in ? or those in ?, these thresholds are

equivalent and both obtain the optimal minimax competitive ratio (8).

This asymptotic equivalence ignores, however, constants and terms that go to zero

for large p. A plot of these thresholds for varying values of p clarifies matters. Fig-

ure 2 plots several thresholds as functions of the size p of the problem. One is the

RIC threshold
√

2 log p. Two of the others are Bonferroni thresholds, τ0.05 and τ0.20.

The fourth is a bit different and requires some explanation. The underlying minimax

problem admits an optimal solution; that is, for any p we can find the threshold τ∗

that minimizes the maximum value of the competitive ratio E‖Y − Ŷ (γ̂)‖/qσ2. This

threshold is found by finding first that β that nature would choose to maximize the

ratio, and then finding the threshold best suited for this choice. ? describe the nec-

essary calculations. The figure shows that for 100 ≤ p ≤ 100, 000, the RIC threshold
√

2 log p roughly corresponds to a Bonferroni threshold with α ≈ 0.20. The optimal

threshold is smaller still. For a model with p = 67, 000 predictors, RIC is equivalent

to Bonferroni with α ≈ 0.16 whereas the optimal threshold for this p corresponds to

α = 0.475, as seen in Figure 3. The RIC threshold is seen to be a compromise, lying

between the “traditional” Bonferroni threshold at τ0.05 and the optimal threshold τ∗.
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Figure 3: α-level associated with the threshold τ ∗p that minimizes the maximum risk inflation.

Before leaving Figure 2, we make two remarks. First, Bonferroni thresholds are not

so large as one might expect, thanks to the thin tails of the normal distribution. A

common reaction to Bonferroni-type methods is to think that these make it virtually

impossible to find important predictors. Even with p = 67, 000 and α = 0.05, the

Bonferroni threshold is 4.95. Important predictors, those with z-scores larger than 10,

say, are still quite easy to detect. The second point is that RIC eventually becomes

much more conservative. The “small” values of p in Figure 2 obscure this property.

Eventually, for fixed α and growing p, the RIC threshold is larger than any τα. Rather

than admit a fixed fraction of the predictors in the null case, RIC admits on average

fewer and fewer as p grows. This property of RIC follows from the upper bound in (10)

which shows that the expected number of coefficients larger than the RIC threshold

goes to zero as p increases,

p(1− Φ(
√

2 log p)) <
p φ(

√
2 log p)

2 log p
<

1√
2 log p

.

Though RIC is optimal in the sense of (8), the size of the threshold makes it

impossible to find smaller, more subtle effects. Another look at the asymptotics of

? suggests that one can do better, at least in models with more effects. When the

number of non-zero coefficients q is near zero, the minimax result (8) implies one can

do little better than Bonferroni. Situations with more non-zero terms, however, offer

room for some improvement. In particular, a small change in the proof of (8) leads to

the following revised claim:

min
β̂

max
β

E ‖Y −Xβ̂‖2
qσ2

= 2 log p/q − op(log p) , (14)

so long as the proportion of non-zero coefficients diminishes asymptotically, q/p → 0

as p → ∞. When q is a substantial fraction of p, say 10%, the bound is considerably

smaller than what Bonferroni obtains. Modifications of the arguments in ? show that

a variation on the following approach, however, provably obtains the better bounds.

The idea is simple and intuitively appealing. Rather than compare all of the estimated

coefficients β̂j to the Bonferroni threshold or
√

2 log p, reduce the threshold as more

significant features are found. The resulting procedure can also be motivated by ideas
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in empirical Bayes estimation (?), multiple hypothesis testing or step-up testing (?),

and information theory (?).

Adaptive variable selection automatically adjusts the threshold to accommodate

problems in which more predictors appear useful. Instead of using the same thresh-

old for all of the coefficients, only the largest z-score is compared to the Bonferroni

threshold. Order the z-scores as

z2
(1) ≥ z2

(2) ≥ · · · ≥ z2
(p) .

To identify the model, first compare z2
(1) to the RIC threshold 2 log p (or, alternatively,

compare its p-value to α
2p). If z(1) exceeds its threshold, then add the associated

predictor, Xj1 say, to the model. Otherwise no predictors are utilized and we are left

with the null model. Assuming the largest z-score passes this test, then consider the

second largest. Rather than compare z2
(2) to 2 log p, however, compare it to the reduced

threshold 2 log p/2. The selection process stops if z(2) fails this test; otherwise, add Xj2

to the model and continue on to examine the third predictor. In general, the process

adds the qth most significant predictor if

z2
(q) > 2 log p

q .

In terms of p-values (as done in step-up testing) the approximately equivalent procedure

compares the p-value of z(q) to 1−Φ( q
p

α
2 ). The covariance inflation criterion (?) works

similarly in orthogonal problems, though with a larger leading constant 4 rather than

2.

Adaptive thresholds let more predictors enter the model, ideally without over-

fitting. Figure 4 plots the adaptive threshold
√

2 log p/q along with the corresponding

thresholds implied by step-up testing, again with α = 0.05, 0.20 and p = 67, 000. All

three thresholds drop off quickly. The adaptive threshold
√

2 log p/q closely corre-

sponds to a step-up procedure with α = 0.20 over the shown range of q; indeed, the

approximation holds for q < 1000. The adaptive threshold starts at 4.71 and drops to

4.56 if the first predictor passes the test. For q = 10, the adaptive threshold is 4.20,

and once q = 68, the adaptive threshold is a full standard error below the threshold

applied to the first predictor. The discovery of only 68 significant effects among 67,000,

about 1 in 1000, reduces the threshold from 4.71 down to 3.71. The data analysis in
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Figure 4: Adaptive thresholds given by the risk inflation criterion
√

2 log p/q (dashed, - - -)

and step-up comparisons with α = 0.05, 0.20 (solid black and gray, respectively). In each

case the number of potential predictors p = 67, 000.

the next section uses both RIC and the adaptive threshold. The model found with

RIC is more parsimonious, but does not attain as low an out-of-sample mean squared

error in the validation data. The additional predictors found by the adaptive method

do indeed improve the predictions.

Before turning to the application, we draw attention to an important assumption

that underlies thresholding methods: namely that one can convert β̂j into a z-score.

The error variance σ2 is crucial in this calculation. For tractability, most theoretical

analyses assume σ2 is known or can be estimated to high precision. Our application

falls in the latter case. While we cannot claim σ2 is known, we have more than enough

data to compute an accurate estimate of the error variance. This luxury need not be

the case, particularly when the number of coefficients q in the fitted model is large

relative to the sample size n . In such cases, the usual estimator of σ2 can become

biased during the fitting process. This bias is easy to describe in an orthonormal

regression. Suppose all of the coefficients βj = 0, the null model, and we have just as

many predictors as observations, p = n. Under these conditions, β̂j ∼ N(0, σ2) and∑
i Y

2
i =

∑
j β̂2

j . Notice that

s2
0 =

∑
i

Y 2
i /n

is an unbiased estimate of σ2. Now suppose that the predictors are ordered so that

β̂2
1 ≥ β̂2

2 ≥ · · · ≥ β̂2
n. If the most significant predictor X1 is added to the model, then

the estimator obtained from the residual sum of squares,

s2
1 =

∑
i(Yi − Ŷi(1))2

n− 1
=

∑n
j=2 β̂2

j

n− 1
,

is biased. For large n, the size of the bias is about

Es2
1 − σ2 =

σ2 − Eβ2
1

n− 1
≈ −2σ2 log n

n
.

Initially small, such bias rapidly accumulates as more predictors enter the model. Since

the bias reduces the estimate of σ2, once a predictor has been added to the model, it



Predicting Bankruptcy Nov, 2001 20

becomes easier to add the next and to produce more bias. Asymptotically, this bias

has a dramatic effect. Suppose for some small δ > 0 that we use the biased value

ν2 = σ2 − δ/2 for the variance in the standard error of the slope estimates in an

orthonormal regression. The lower bound in (10) shows that the expected number of

test statistics β̂j/ν that exceed the threshold
√

2 log p grows without bound,

lim
p→∞ p

(
1− Φ(

√
(2− δ) log p)

)
=∞.

Small bias in σ2 can overcome even the RIC threshold and similarly affects the per-

formance of the adaptive threshold. Though not an issue in the following bankruptcy

regression, we have encountered smaller data sets where such bias overwhelms Bon-

ferroni procedures (e.g., see the case “Using Stepwise Regression for Prediction” in

?).

4 Estimators and Standard Error

The theory of the previous section is clearly oriented toward variable selection in mod-

els that have orthogonal predictors, such as a wavelet regression or classical orthog-

onal analysis of variance. Given a sequence of any predictors, however, one can use

Gram-Schmidt to construct a sequence of orthogonal subspaces, converting the original

predictors into orthogonal predictors. That is the approach that we will take, with the

ordering defined by a greedy search. We treat the predictors as unstructured, using

of none of the features of their creation, such as the fact that one is the missing value

indicator of another or that one is a component of an interaction. This “anonymous”

treatment of the predictors is more in the spirit of data-mining tools like neural nets

that shun external side-information.

The task for variable selection then is two-fold. First, we must choose the sequence

of predictors. For this, we use stepwise regression, modified to accommodate the size of

the problem and heteroscedasticity. Consideration of 67,160 predictors breaks the most

implementations and 583,115 observations slows iterations. Second, we have to decide

when to stop adding predictors. For this, we use adaptive thresholding as defined

in Section 3, comparing the t-statistic of the next slope to the adaptive threshold√
2 log p/q. Our algorithm features a conservative estimator of the standard error of
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the slopes, sacrificing power to avoid over-fitting.

Our division of the data into estimation and validation subsets leaves 583,115 ac-

count months for estimation. Combined with 67,160 predictors, calculations of co-

variances are quite slow, needlessly so. Since the estimation data contains only 458

bankruptcies, we subsample the data, selecting all of the bankruptcies and 2.5% (on

average) of the rest. Doing so randomly generates a data file with 15,272 account

months. In the sense of a case-control study, we have about 40 controls for every

bankruptcy, much larger than the rules of thumb suggested in that literature (e.g. ?).

We denote the associated sampling weights as

wi =

 1 , if Yi = 1 (bankrupt case) ,

40 , if Yi = 0 .
(15)

Each bankrupt observation represents one case, whereas each non-bankrupt observation

represents 40.

Although the response variable indicating bankruptcy is dichotomous, we nonethe-

less fit a linear model via least squares. The choice is not merely one of convenience,

but instead is motivated by our measure of success (prediction) and nature of the data

(bankruptcy is rare). Obviously, stepwise linear regression is easier to program and

faster to run than stepwise logistic regression. Although this concern is non-trivial in

a problem with so many predictors, our preference for a linear regression runs deeper.

The logistic estimate for the probability of bankruptcy is bounded between 0 and 1 and

its intrinsic nonlinearity provides a smooth transition between these extremes. Because

bankruptcy is so rare in our data, however, it is hard to expect a statistical model to

offer probability predictions much larger than 0.25, with the preponderance essentially

at 0. A linear model that allows quadratic components is capable of approximating

the local curvature of the logistic fit in the tails. That said, our procedure generates a

set of predictors that do in fact suggest a multiplicative model (see Section 5). Since

logistic regression is multiplicative (for the probability), our automatic modeling leads

one to discover this structure rather than impose it from the start.

A second argument in favor of logistic regression lies in its efficiency of estimation.

Least squares is not efficient since it ignores the heteroscedasticity induced by the 0/1

response, so one is tempted to use weighted least squares (WLS). Let Ŷi denote the

fit for the ith response. A WLS search for efficient estimates of β minimizes the loss
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function

Lw(β̂) =
∑

i

(Yi − Ŷi)2

Ŷi(1− Ŷi)
.

Concern for efficiency of estimation, however, leads one to forget which observations

are important in the analysis. The weighted loss function Lw down-weights the most

interesting observations, those that have some probability of bankruptcy. By giving

high weight to the overwhelming preponderance of non-bankrupt data with Ŷi ≈ 0,

weighting for efficiency of estimation conceals the observations that would seem to

have most information about the factors that predict bankruptcy. In contrast, the

least squares loss function

L(β̂) =
∑

i

(Yi − Ŷi)2

weights all of the data equally. With so much data, efficiency in the estimation of β̂ for

a given set of predictors is much less important than finding useful predictors. Thus,

we have chosen to minimize L(β̂) rather than the weighted loss. Part of the appeal

of using a well-understood technique like regression lies in the flexibility of choosing

the loss function. While we eschew weighting in the loss function, we do allow for

heteroscedasticity when estimating the standard error of β̂, though we do not impose

the binomial form p(1 − p). This is a special structure, and our goal is an approach

that can be applied routinely without needing a model for the variance.

To compute the regression estimates, we implemented a variation of the standard

sweep operator. In order to describe our algorithm, it is helpful to review the sweep

algorithm and how it is used in a stepwise regression. Suppose that we use the n × q

matrix X of predictors in a regression model for the response Y . The standard sweep

algorithm (??) provides the least squares estimator

β̂ = (X ′X)−1X ′Y

and its estimated covariance matrix

var(β̂) = s2(X ′X)−1 , s2 =
e′e

n− q
,

where the residual vector is e = Y −Xβ̂. The sweep algorithm transforms the parti-

tioned cross-product matrix in place, mapping Y ′Y Y ′X

X ′Y X ′X

 ⇒
 e′e −β̂′

β̂′ (X ′X)−1

 .
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After “sweeping out” the q predictors in X, the resulting array holds the residual sum

of squares in its upper left corner and −β̂′ in the rest of the first row.

The value of the sweep operator in stepwise regression lies in extending the regres-

sion to more predictors. Suppose that p − q other predictors form the array Z and

denote the projection matrix H = X(X ′X)−1X ′. Sweeping out X from the expanded

cross-product matrix yields the following transformation,
Y ′Y Y ′X Y ′Z

X ′Y X ′X X ′Z

Z ′Y Z ′X Z ′Z

 ⇒


e′e −β̂′ e′(I −H)Z

β̂′ (X ′X)−1 X ′(I −H)Z

Z ′(I −H)e Z ′(I −H)X Z ′(I −H)Z

 .

This new array has all of the information needed to select the next predictor which

gives most improvement in the current fit. The quadratic form e′(I −H)Z in the first

row is n − q times the estimated partial covariance between Y and Zj given X, and

the diagonal of Z ′(I −H)Z is the corresponding sum needed for the partial variances

of Z. Combining these as the ratio

e′(I −H)Zj√
(e′e)(Z ′(I −H)Z)jj

gives the estimated partial correlation. The predictor Zj with the largest partial cor-

relation offers the largest improvement to the current fit and is the choice of standard

stepwise selection.

Our first modification to this algorithm handles the large number of predictors.

We cannot explicitly compute the entire cross-product matrix with 67,000 predictors.

Rather, we defer some of the calculations and only form those portions of the cross-

product matrix as needed for identifying the next predictor. In particular, when con-

sidering the omitted predictors that form Z, our implementation computes the full

sweep for the relatively small augmented matrix [Y ‖X], providing standard errors,

slopes, and residuals e. For evaluating the omitted predictors, the algorithm computes

the vector e′(I −H)Zj and only the diagonal of the large matrix Z ′(I −H)Z. Com-

bined with the base sweep of X, we have all of the information needed to find the next

predictor.

Our use of sampling weights leads to a second, more fundamental modification to

the basic calculations. In a linear regression, over-sampling biases β̂ and necessitates a
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weighted estimator. Let W denote an n×n diagonal matrix with the sampling weights

wi from (15) along its diagonal, Wii = wi > 0. For a model with the q predictors X,

the weighted estimator is

β̂W = (X ′WX)−1X ′WY ,

with variance

Var (β̂W ) = (X ′WX)−1X ′W ( Var Y )WX(X ′WX)−1 . (16)

One normally encounters weighted least squares when the weights are inversely pro-

portional to the variances of the observations,

Var (Y ) = σ2 W−1 . (17)

In this case, the variance of β̂W reduces to

Var (β̂W ) = σ2(X ′WX)−1 .

One can evaluate all of these expressions by applying the standard sweep algorithm

to the weighted cross-product matrix. With sampling weights, however, one must

augment the standard sweep in order to find appropriate standard errors. (We refrain

from calling this the “WLS estimator” since that name is most often used when using

variance weights, not sampling weights.)

Calculation of the standard errors of the estimated coefficients is critical for adaptive

thresholding. Without an accurate standard error, we cannot use the t-statistic to

judge which predictor to add to the model. The fact that both the response as well

as many predictors are dichotomous and sparse complicates this calculation. Under

homoscedasticity, the variance of β̂W simplifies to

Var (β̂W ) = σ2(X ′WX)−1(X ′W 2X)(X ′WX)−1 . (18)

Not only is this hard to compute (it’s not a convenient extension of the extant weighted

sweep calculations), but it is also wrong. If there is some signal in the data, then

those cases with higher risk of bankruptcy (say EYi ≈ 0.10) have higher variance

since Var(Yi) = (EYi)(1 − EYi). It is tempting to ignore this effect, arguing that the

differences among the E Yi are likely small. While that may be the case, the paucity

of bankruptcy events exacerbates the situation.
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To explain the issues that arise when calculating standard errors for the slope

estimates, we turn to the case of a simple regression of a dichotomous variable Y

on a single dichotomous predictor X. Many of our predictors are, like the response,

dichotomous. For example, recall that 110 of the 365 base predictors are indicators

of missing values and other predictors are indicators for geographic location, time

period, and credit history features. Further, many of the interactions are themselves

the product of dichotomous predictors, and some of these products are quite sparse.

The small, hypothetical table below gives the number of cases with each of the four

combinations of X and Y .

Y = 1 500 k

Y = 0 14,500 n1 − k

X=0 X=1

The counts used in this table are meant to resemble some that we encountered in a

preliminary analysis of this data, and so we assume that n1 0 15, 000 = n0 (with nj =

#{Xi = j}). For this illustration, we treat all of the observations as equally weighted;

weighting does not materially affect the implications though it would obfuscate some of

the expressions. For the data in this table, the least squares slope is the mean difference

in the sample proportions for X = 0 and X = 1. We denote these sample proportions

p̂0 and p̂1, the observed difference d̂ = p̂1 − p̂0, and the underlying parameters p0 and

p1. Thus, declaring a significant slope is equivalent to rejecting the null hypothesis

H0 : p0 = p1. A counting argument gives a simple test of H0. With so much data

at X = 0, estimate p̂0 = 1/30 and use this estimate to compute the probability of k

successes in the small number of trials where X = 1. With n1 = k = 2, (i.e., two

successes at X = 1) we find a “p-value” = 1/900 which we can associate with a z-

statistic z = 3.26. This test statistic would not exceed the RIC threshold
√

2 log p ≈
4.71 in the bankruptcy regression. (We focus on the case n1 = k = 2 for illustrations

because this is the specific situation that we encountered in our analysis.)

If we treat the data as homoscedastic, the standard error is inflated when the data

have the pattern suggested in our table. Modeling the data as having constant variance

in the bankruptcy regression via (18) is equivalent to forming a pooled estimate of the
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standard error when testing H0 : p0 = p1,

sepool(d̂) = se(p̂1 − p̂0) =

√
p̂(1− p̂)

( 1
n0

+
1
n1

)
, p̂ =

n0p̂0 + n1p̂1

n0 + n1
. (19)

In the special case with n1 = k = 2, d̂ = 29/30 and the pooled standard error sepool ≈
0.127 gives an inflated z = 7.60. Were we to use this estimate of standard error in the

bankruptcy regression, this predictor would now appear significant. This test statistic

is over twice the size of that obtained by the previous counting argument and implies

that we cannot use this approach to estimate the standard error of β̂W .

The literature contains a number of alternative variance estimates that are robust to

heteroscedasticity. While the Bernoulli expression p(1−p) seems an obvious choice, we

use a procedure that does not presume such knowledge of the variance. The expression

(16) for Var(β̂W ) suggests a very simple sandwich estimator. Rather than plug in an

assumed formula for Var(Y ), estimate it directly from the variance of the residuals.

Since the size of the fitted model varies in this discussion, we add an argument to our

notation that gives the size of the current model. For example, e(k) = Y −X(k)β̂W (k)

is the residual vector for a model fit to the k predictors in X(k) = [X1, . . . , Xk]. With

this notation, a sandwich estimator of the variance is

var (β̂W (k)) = ((X(k)′WX(k))−1X(k)′W diag(e(k)2) WX(k)(X(k)′WX(k))−1 .

(20)

Under mild conditions like those established by ?, this expression provides a consistent

estimator of the variance of β̂W (k). The estimator is biased, particularly for small

samples and with high-leverage points. ? review the motivation for (20) and offer

some recommendations for small-sample adjustments. ? show that the bias is O(1/n2)

and give an iterative scheme for reducing the bias. Such adjustments for differences in

leverage have little effect in our application.

The standard implementation of the sandwich estimator fails in situations such as

ours with sparse, dichotomous data. In a preliminary analysis, we added a predictor

for which the homoscedastic t-statistic using (18) was computed to be 51. This value

seemed inflated to us, as suggested by the previous stylized binomial example. When

we computed a heteroscedastic t-statistic by replacing the standard error from (18)

by one from (20), however, the resulting t-statistic soared to 29,857. Clearly, the

heteroscedastic formula is even farther off the mark. We can explain what is happening
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in the regression for bankruptcy by returning to the comparison of proportions. Rather

than use a pooled estimate like (19) to form the standard error, the sandwich formula

(20) implies that we test H0 : p0 = p1 using a different standard error. Parallel to

Var(p̂1 − p̂0) =
p0(1− p0)

n0
+

p1(1− p1)
n1

,

the sandwich estimator of the standard error reduces to

sesand(d̂) =
p̂0(1− p̂0)

n0
+

p̂1(1− p̂1)
n1

(21)

for the binomial comparison. With n1 = k = 2, p̂1 = k/n1 = 1 and this expression leads

to an even smaller standard error and further inflated test statistic because the term

p̂1(1− p̂1)/n1 drops out of (21). Consequently the sandwich standard error essentially

ignores the substantial variation at X = 1, giving the estimate sesand ≈ 0.00147 ≈√
p̂0(1− p̂0/n0. The claimed z-statistic rises to d̂/sesand(d̂) ≈ 660.

A simple modification of the sandwich estimator, however, works nicely. In the

bankruptcy regression, we need a way to estimate Var(β̂W ) that handles heteroscedas-

ticity without presuming that the predictor affects the response. The sandwich formula

(21) achieves the first, but through its use of the residuals resulting from adding Xk

to the model, fails at the second. One can attribute the behavior of the sandwich esti-

mator in our example to the perfect fit at X = 1 that conceals the major component

of the variance of the slope estimate. In a sense, such calculation of the standard error

ignores the need to test H0 : p0 = p1 and proceeds as though H0 is false and p0 ,= p1.

With this bit of motivation, we offer the following conservative estimate of standard

error,

var (β̂W (k)) = (X(k)′WX(k))−1X(k)′W diag(e(k − 1)2) WX(k)(X(k)′WX(k))−1 .

(22)

That is, we simply replace the residuals computed with Xk added to the model by

the residuals from the previous iteration, one that assumes Xk has no effect. For

the stylized binomial test, the corresponding standard error in effect only uses the

n1 values at X = 1 and the pooled proportion p̂, p̂(1 − p̂)/n1. With n1 = k = 2, the

resulting standard error is about 1/
√

2, half the size of the simple counting test statistic.

Although conservative in this fashion, the estimator (22) allows us to identify useful

predictors without introducing spurious precision that distorts the selection procedure.
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To recap our modeling process, our search algorithm proceeds as a forward stepwise

regression. At each step, we compare the t-statistic based on the standard error from

(22) for each excluded predictor to the adaptive threshold
√

2 log p/q, where q denotes

the current size of the model, starting from q = 1 for the model with the initial constant

term. The search continues as long as a predictor is found that exceeds the threshold.

As there may be several that exceed the threshold, we employ the following sorting

strategy. For those predictors whose absolute t-statistic exceeds
√

2 log p/q, we sort

them based on their impact to the residual sum of squares. Of those judged significant,

we choose the predictor offering the most improvement in the fit, add it to the model,

and update the sweep calculations. This process continues until no further predictor

attains the adaptive threshold. At that point, the algorithm formally stops. To see

what would happen if the search continues past this cut off, we allowed the algorithm to

go further. When the search moves beyond the adaptive cut-off, the following version of

constraint relaxation obtains a “soft landing.” Rather than sort the predictors that do

not exceed the threshold by the change in the residual sum of squares, we sort them by

the attained level of significance, i.e. by t-statistics based on the conservative standard

error (22). This less-greedy approach avoids the steep rise in out-of-sample error often

associated with over-fitting, at least in our application. Indeed, this ordering of the

predictors produces out-of-sample mean squared errors that resemble those offered to

show that boosting does not over-fit (see, e.g., Figure 1 in ?).

5 Results

Figure 5 summarizes the step-by-step in-sample performance of our methodology. This

plot shows the residual sum of squares (RSS) as the modeling proceeds. Without a

validation sample, this plot, along with the accompanying parameter estimates, is all

that one has to determine the choice of model. To put the RSS in perspective, recall

that the estimation data set has 458 bankruptcies. The null model that predicts all as

0 (no bankruptcies) thus has a total residual sum of squares of 458. Each drop by one

in the RSS, in a loose sense, represents “finding” one more bankruptcy. Initially, the

RSS drops relatively quickly down to about 420 and then commences a steady, slow

decline as the model expands. Using the adaptive criterion applied the RSS and fitted
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Figure 5: Sums of squared residuals decline up to the selected model order at q = 39 (solid)

and continue to decline slowly (dashed) beyond this cutoff. To interpret the scales, note that

the estimation sample holds 458 bankrupt events.

Figure 6: Sums of squared validation errors decline up to the selected model order at q = 39

(solid). Beyond this limit, the validation error either grows slowly using the described “soft-

landing” procedure to choose additional predictors (dashed) or abruptly when a greedy

approach is used (triangles). To interpret the scales, note that the validation sample holds

1756 bankrupt events.

slopes, our procedure stops adding predictors at q = 39, represented by the vertical

line in the figure. We allowed the selection process to continue to generate this figure,

using the soft-landing procedure described at the end of the previous section to select

predictors that did not meet the selection criterion.

Figure 6 shows how well the selected models predict the held-back observations

in the validation sample. This plot is perhaps the best evidence that our procedure

works, at least in the sense of finding predictive effects without over-fitting. As with

the residual sum of squares, the validation sum of squares (VSS) drops rapidly as the

initial predictors join the model. Again, to interpret the scales, note that the validation

sample holds 1756 bankruptcies. The VSS drops down to a minimum at 1652, and

then, in contrast to the RSS, begins to increase. The vertical line in the figure again

highlights the model selected by the adaptive criterion. All of the predictors added by

this criterion either improve the predictive accuracy of the model or at least do not

cause appreciable damage. At a minimum, each predictor adds enough to the model

to “pay” for the cost of estimating an additional parameter. The selected model lies

in the midst of a collection of models that share comparable predictive accuracy. The

VSS is essentially constant for the models with 30 ≤ q ≤ 44. At both q = 30 and

q = 44, V SS = 1651.7, with the smallest value (1651.50) occurring for q = 31. As the

model expands by adding predictors that do not meet the adaptive criterion, the VSS

gradually rises.

The gradual increase in the VSS obtained through the soft-landing expansion be-

yond the selected model stands in sharp contrast to what happens if we take a more
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greedy approach to adding further predictors. Figure 6 includes the VSS when the

model is extended past the adaptive threshold by adding the predictor that minimizes

the observed residual sum of squares. When insignificant predictors are sorted by their

change in the RSS (rather than by their measured significance), the VSS rises rapidly

when the model is grown past the adaptive cutoff. The VSS jumps from 1652 to 1748

if we add the 40th predictor to minimize the RSS rather than to maximize the conser-

vative t-statistic. The size of the jump is so large that it requires some explanation,

and we can again use the stylized simple regression used to motivate the conservative

standard error in Section 4. Basically, by choosing predictors based on the observed

change in residual sum of squares, the model over-fits, with the sparse nature of the

data compounding the effects of the spurious estimate. The predictor X7291 added at

step 40 that most improves the in-sample residual sum of squares is, not surprisingly,

another interaction. In this case, it is an interaction of an indicator with a continuous

predictor. In the sample of the estimation data used to fit the model, X7291 differs from

zero for only six observations, and all six of these happen to be bankruptcies. This

predictor is zero for all of the observations in the 2.5% sample of the non-bankrupt

cases. This is exactly the situation described in the stylized examples of Section 4,

only now X7291 is not dichotomous. While seeming a good predictor in-sample by this

criterion, it fares poorly out of sample because the pattern of bankruptcies for this

predictor differs markedly in the validation sample. Among the validation data, X7291

is nonzero for 299 cases, of which only 17 are bankruptcies. When these are predicted

using the spurious slope computed from the estimation sample, the validation error

increases dramatically.

The predictions of this model take on greater economic significance because they are

well calibrated. By calibrated, we mean that the predictions satisfy E(Yi|Ŷi = p) = p.

Calibrated predictions imply that among those observations assigned a predicted score

of 0.10, for example, 10% declare bankruptcy. Calibrated predictions allow a decision

maker to optimize costs. Suppose the value of early detection of bankruptcy is, say,

$5000 and the cost of treating a good customer as though he might declare bankruptcy

is $50 (from loss of good will and annoyance perhaps). Given calibrated predictions of

bankruptcy, these dollar values imply that the creditor maximizes profits by contacting

all customers assigned a probability of 50/5050 ≈ 0.01 or larger. The calibration plot in
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Figure 7: Calibration chart for the out-of-sample predictions of the bankruptcy model applied

to the validation sample. Each point shows the proportion of bankrupt observations among

those having predicted scores in the ranges 0–0.05, 0.05–0.10,... The vertical error bars

indicate 95% pointwise confidence intervals.

Figure 7 shows the rate of bankruptcies among validation observations whose predicted

values fall into equal-width bins, with the bins located at [0, 0.05), [0.05, 0.10), . . .,

[0.95, 1.0]. The diagonal line in the figure is the goal. The vertical lines at each

point indicate a range of plus or minus two standard errors. The standard error bars

have different lengths predominantly because of the imbalance of the sample sizes

and become quite long for higher predicted scores where data is scarce. In general,

the proportion of actual bankruptcies in the validation data rises with the predicted

scores. The model does miss some curvature, in spite of the quadratic interactions and

unweighted loss function, mostly for predictions in the range 0.2 to 0.35. Here, the

model underestimates the proportion that declare bankruptcy.

For an application with, relatively speaking, so few useful predictors, one may sus-

pect that hard thresholding would do well. To investigate how well hard thresholding

performs, we also used this rule (i.e., comparing all predictors to
√

2 log p rather than to√
2 log p/q) to choose models for the bankruptcy data. The stepwise search using hard

thresholding ends after choosing 12 predictors. Up to that point, the two procedures

have found models with essentially the same predictive ability though different predic-

tors. The 12-predictor model identified by hard thresholding obtains a validation sum

of squares of 1664 whereas the 39-predictor model identified by adaptive thresholding

obtains a sum of 1652. Interpreting these sums as before, the adaptive procedure has

found about 11 more bankruptcies.

All 39 predictors in the adaptively chosen regression model are interactions. These

interactions overlap and involve only 37 underlying predictors. Given the effects of

selection bias on the estimated coefficients and the presence of obvious collinearity, we

do not offer an interpretation of the regression coefficients attached to these predictors.

Furthermore, a condition for using this data is that we would not describe the variables

with identifiable precision. Nonetheless it is interesting to note the types of predictors

that appear in multiple interactions. One predictor, a count of the number of credit
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lines, appears in 6 of the found 39 interactions. A missing data indicator appears

in 5 interactions, and interest rates and a history of past problems each appear in 4

interactions.

One explanation for the presence of interactions as the chosen predictors argues that

they are selected not because of their real value, but rather because of their number.

After all, we have 365 linear predictors compared to almost 67,000 interactions. To get

a sense of what is possible with just linear terms, we fit an alternative model as follows.

We first forced all 37 linear terms that make up the interactions in the selected model

into a regression. This model obtains a validation sum of squares of 1741, finding

45 bankruptcies in our heuristic sense. We then added interactions. Stepwise search

restores 14 of the interactions from the original model and adds 7 other interactions

not found in that model. The resulting model with 37+21=58 predictors obtains a

validation sum of squares of 1654 (finds 132 bankruptcies), essentially matching – but

not exceeding – the performance of the selected model with only interactions.

The presence of so many overlapping interactions suggests a multiplicative model.

One can view our collection of pairwise interactions as a low-order approximation

to a multiplicative regression function. We explored this notion by fitting a logistic

regression using the 37 base predictors that constitute the interactions found by the

stepwise search. When fit to the estimation sample, only 23 of these predictors obtain

a p-value smaller than 0.20. (We identified this subset sequentially, removing the least

significant predictor and then refitting the model.) With an eye toward prediction,

we removed the others. When used to predict the validation sample, the sum of

squared errors obtained by this trimmed-down logistic regression (using the estimated

probability of bankruptcy as the predictor) is 1685, compared to 1652 obtained by

the original stepwise model. The multiplicative structure of logistic regression does

not eliminate the need for interactions. When combined with the results of expanding

the linear predictors, these results suggest that interactions are inherently useful and

cannot be removed without a noticeable loss of predictive accuracy.
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6 Discussion and Next Steps

Several enhancements may improve the calibration of the model. While our use of

over 67,000 predictors may be considered outrageous, this number is in fact artificially

small, held down by a number of assumptions. As evident in Figure 7, the 39-predictor

model underpredicts the chance of bankruptcy for those assigned predicted scores in the

range 0.2–0.35. The use of higher-order interactions, say third-order interactions, offers

a potential solution by providing a fit with higher curvature – closer to a multiplicative

model. Similarly, we could expand the set of fitted models to include piecewise linear

fits by partitioning continuous predictors into discrete bins as done in MARS. Both of

these changes introduce so many new predictors that to make use of them requires us

to modify the both the method of search as well as the thresholding rule described in

Section 3. For example, a modified search procedure could recognize that with Xjk1

and Xjk2 chosen for the model that it should consider adding Xjk1k2 as well. The

appropriate threshold is not so easily described as that used here, and is perhaps most

well described as a coding procedure in the spirit of those in ?.

We hardly expect automated algorithms such as ours to replace the substantively

motivated modeling that now characterizes credit modeling. Rather, we expect such

automated searches to become a diagnostic tool, used to learn whether data contain

more predictors than careful search and science have missed. Given the expanse of

available information and the relative sparsity of bankruptcy cases, the a priori choice

of factors for the analysis is the ultimate determinant of the success of the fitted

models. While we have automated this choice via stepwise selection among a host

of predictors, such automation will inevitably miss certain predictors, such as say an

exponential smooth of some aspect of past payment history. It remains the role for

well-informed judgment to add such features to the domain of possible predictors. The

analyst often has a keen sense of which transformations and combinations of predictors

will be effective, and these should be added to the search space.

An evident weakness in our application is the absence of a standard for comparison.

How well can one predict this type of bankruptcy data? Though the validation exercise

demonstrates that we have indeed built a model that is predictive, this may not be

as good as is possible. Such standards are hard to find, however. Credit rating firms
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like Experian or Fair-Issacs have invested huge resources in the development of models

for credit risk. These models are proprietary, closely-held secrets and are typically

specialized to the problem at hand. Without being able to apply their methodology to

this data, it is hard to say that we have done well or done poorly. One further suspects

that in a real credit scoring model, one might use a time-to-event analysis and leverage

the longitudinal structure of this data. Such an analysis, while perhaps more suited

to commercial application, would distract from our emphasis on the power of adaptive

thresholding with stepwise regression.

There are domains that feature head-to-head comparisons of automatic tools for

modeling. These competitions remove the benefit of specialized domain knowledge

and afford a benchmark for comparison. We have tailor-made our procedure to be able

to compete in this domain. The methodology does not assume any structure on the

errors except independence. The methodology does not require complete data. The

methodology can run on massive data sets. One such competition has been set up

with a collection of data sets stored at UC Irvine (www.ics.uci.edu/∼mlearn). This

collection allows experts in the use of each tool to run their favored technology on the

same data. Since many of the systems we want to compete against require some degree

of hand tuning, the best way to run a competition is to have knowledgeable users for

each technique. We plan to test our methodology on all the data sets stored in this

collection and compare our out-of-sample performance to that obtained by existing

systems.
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