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• Goals

– Small squared prediction error

– Small classification losses (asymmetric)

• Questions

– Which model and estimator? Stepwise regression!

– Which predictors to consider? Everything.

– Which predictors to use?

• Examples

– Smooth signal in presence of heteroscedasticity

– Rough signal

– Predicting bankruptcies
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Some Modern Prediction Problems

Credit modeling, scoring
Can you predict who will declare bankruptcy?

Risk factors for a disease
Which factors indicate risk for osteoporosis?

Direct mail advertising
Who should receive a solicitation for a donation?

Internet/e-commerce
If you bought this CD, which others might you buy?

Financial forecasting
Which factors predict movement in stock returns?

These great statistics problems, so...
Why not use the workhorse, regression?

• Calculations well-understood.

• Results are familiar.

• Diagnostics possible.
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An Application: Predicting Bankruptcy

Goal
Predictive model for personal bankruptcy...

Based on the recent history of an individual credit-card
holder, estimate the probability that the card holder will
declare bankruptcy during the next credit cycle.

Data

• Large data set: 250,000 bank card accounts

• About 350 “basic” predictors (aka, features)

– Short monthly time series for each account
– Credit limits, spend, payments, bureau info
– Demographic background
– Interactions are important (AC and cash adv.)

67,000 predictors???

Bankruptcy is rare
2,244 bankruptcies in

12× 250, 000 = 3 million account-months

Trade-off
Profitable customers look risky. Want to lose them?
“Borrow lots of money and pay it back slowly.”
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Modeling Questions

Structure – What type of model?
A linear regression with least squares estimates.

• p potential predictors, n observations

• q non-zero predictors with error variance σ2:

Y = β0 + β1X1 + · · ·+ βqXq + ε

Scope – Which Xj to consider?
Basically, everything...so p is very large.

• Demographics, time lags, seasonal effects

• Categorical factors, missing data indicators

• Nonlinear terms (quadratics)

• Interactions of any of these

Select – Which q < p of the Xj go into the model?
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Answering Modeling Questions

Structure – What type of model?
A linear regression with least squares estimates.

• p potential predictors, n observations

• q non-zero predictors with error variance σ2:

Y = β0 + β1X1 + · · ·+ βqXq + ε

Scope – Which Xj to consider?
Basically, everything...so p is very large.

• Demographics, time lags, seasonal effects

• Categorical factors, missing data indicators

• Nonlinear terms (quadratics)

• Interactions of any of these

Select – Which q < p of the Xj go into the model?

• Requires conservative, robust standard error
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Conservative, Robust Standard Error

Conservative
Problem: Selection biases SE downward.

Solution: Estimate SE of contemplated predictor Xk

using a model that does not include Xk. Use residuals
from prior step to compute the SE for Xk.

Robust
Problem: Heteroscedastic data lead to misleading SE’s.
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Example: Heteroscedasticity Can Fool You

Data
Do you see any “signal” in this data?
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Heteroscedasticity Example

Wavelet regression
Standard wavelet regression with hard thresholding finds
the following signal.
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Wavelet regression, with corrected variances
Applied to standardized data, then rescaled.
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Conservative, Robust Standard Error

Conservative
Problem: Selection biases SE downward.

Solution: Estimate SE of contemplated predictor Xk

using a model that does not include Xk. Use residuals
from prior step to compute the SE for Xk.

Robust
Problem: Heteroscedastic data lead to misleading SE’s.

Solution: Adjust the data if you know weights that
standardized the data (as the wavelet example or the BR
application)

or

Use a SE that is robust to heteroscedasticity. eg. White’s
estimator.
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Answering Modeling Questions

Structure – What type of model?
A linear regression with least squares estimates.

• p potential predictors, n observations

• q non-zero predictors with error variance σ2:

Y = β0 + β1X1 + · · ·+ βqXq + ε

Scope – Which Xj to consider?
Basically, everything...so p is very large.

• Demographics, time lags, seasonal effects

• Categorical factors, missing data indicators

• Nonlinear terms (quadratics)

• Interactions of any of these

Select – Which q < p of the Xj go into the model?

• Requires conservative, robust standard error

• Measure significance without presuming CLT.
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Example: Sparse Data Can Fool You

Null model
Lots of data: n = 10, 000

No signal: Yi ∈ {0, 1} with P(Yi = 1) = 1/1000

Highly leveraged points
Get isolated, large Xbig with Ybig = 1.

Estimated significance
Chance that Ybig = 1 is 1/1000.
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Regression gives β̂/SE(β̂) = 13.

Why so significant?
Leverage at outlier is hbig = .14.

Central limit theorem does not apply.
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Measuring Significance

Large samples?
Problem: Data set has many observations, but certain
combinations can be very sparse, giving the estimator a
Poisson rather than normal character.

Solution: Compute a conservative p-value using an
alternative bound on the distribution of the estimator.

Bennett’s bound for tail probability (1962)

• Independent summands Bi, sup |Bi| ≤ M .

• E Bi = 0,
∑

i Var(Bi) = 1.

P (
∑

Bi ≥ τ) ≤ exp
(

τ

M
−

(
τ

M
+

1
M2

)
log(1 + M τ)

)
• If maximum is small relative to dispersion (M τ small)

P (
∑

Bi ≥ τ) ≤ exp(−τ2/2)

Example
Write the z-score for slope as the sum

β̂

SE(β̂)
=

∑
(Xi −X)Yi

σ
√

SSx
=

∑
Bi

Bennett’s bound gives P (β̂/SE(β̂) ≥ 13) ≤ .011.

Too conservative?
Only small part of variation is “Poisson” and
we know which part this is.
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Answering Modeling Questions

Structure – What type of model?
A linear regression with least squares estimates.

• p potential predictors, n observations

• q non-zero predictors with error variance σ2:

Y = β0 + β1X1 + · · ·+ βqXq + ε

Scope – Which Xj to consider?
Basically, everything...so p is very large.

• Demographics, time lags, seasonal effects

• Categorical factors, missing data indicators

• Nonlinear terms (quadratics)

• Interactions of any of these

Select – Which q < p of the Xj go into the model?

• Requires conservative, robust standard error

• Measure significance without presuming CLT.

• Use an adaptive selection rule.
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Adaptive Variable Selection

Hard thresholding

• Which predictors minimize max ratio of MSEs?

min
q̂

max
β

E ‖Y − Ŷ (q̂)‖2

qσ2

• Answer: (Donoho&Johnstone, Foster&George 1994)

Pick Xj ⇔ |tj | >
√

2 log p

Almost Bonferroni! (
√

2 log p is a bit less strict)

Adaptive thresholding

• Which predictors minimize max ratio of MSE’s?

min
q̂

max
π

E ‖Y − Ŷ (q̂)‖2

E ‖Y − Ŷ (π)‖2 for β ∼ π

• Answer: (Foster & Stine 2002, in preparation)
Pick q such that for |t1| ≥ |t2| ≥ · · · ≥ |tp|,

|tq| ≥
√

2 log p/q but |tq+1| <
√

2 log p/(q + 1)

Other paths to similar criteria
Information theory (Foster & Stine)
Empirical Bayes (George & Foster)
Generalized degrees of freedom (Ye)
Simes method, step-up testing (Benjamini)

14



Example: Finding Subtle Signal

Signal is a Brownian bridge
Stylized version of financial volatility.

Yt = BBt + σ εt
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Example: Finding Subtle Signal

Wavelet transform has many coefficients
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Comparison of MSEs
Boxplots show MSE of reconstructions using

adaptive (top) vs. hard (bottom)
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Modeling Approach

Structure
A linear regression with least squares estimates.

• p potential predictors, n observations

• q non-zero predictors with error variance σ2:

Y = β0 + β1X1 + · · ·+ βqXq + ε

Scope
Basically, everything...so p is very large.

• Demographics, time lags, seasonal effects

• Categorical factors, missing data indicators

• Nonlinear terms (quadratics)

• Interactions of any of these

Select

• Requires conservative, robust standard error

• Measure significance without presuming CLT.

• Use an adaptive selection rule.
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Test Case Study: Predicting Bankruptcy

Goal
Identify customers at “high” risk of declaring bankruptcy.

Rare event
Bankruptcy is a rare event in our data:

2,244 events in 3,000,000 months of data

Possible predictors
Collection of more than 67,000 possible predictors include

• Demographics

• Credit scores

• Payment history

• Interactions

• Missing data

Need all three aspects of our approach

• Robust SE
Heteroscedastic because of 0/1 response variable.

• Bennett bound
Sparse response and predictors like interactions.

• Diffuse, weak signal
No one predictor will explain much variation alone.
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Split-Sample Comparison

Reversed 5-fold cross-validation

• 20% for estimation (n = 600, 000)
about 450 bankruptcy events

• 80% for validation (n = 2, 400, 000)
about 1,800 remaining bankruptcy events

Goal
Two ways to assess the models:

1. Predictive accuracy (squared error) and

2. Minimal costs, assigning differential costs to

• Missing a bankruptcy (expensive)
• Aggravating a customer (smaller cost)

Machine-learning competitor
Two classification algorithms developed in the
computer learning community (Quinlan):

C4.5 and C5.0 (with boosting)
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Stepwise Has Better Brier Scores

Plot shows the reduction in the MSE of prediction over the
null model for the five replications. Larger values are better.
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Boxes: Stepwise, with and without calibration

Triangles: C4.5, C5.0
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Stepwise Generates Larger Savings

Plot show the savings in accumulated losses over the null
model for the five replications. Larger values are better.
(Boxes–stepwise, Triangles–classifier).

Savings at a trade-off of 995 to 5.
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Savings at a trade-off of 980 to 20.
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Well, Not Always

This plot shows the savings in accumulated losses over the null
model for the five replications at a less extreme trade-off of
900 to 100.
(Boxes–stepwise, Triangles–classifier).
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Notice that the differences are not so large as those in prior
plots.

Calibration was not so helpful here as we expected.
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Discussion

Adaptive variable selection
Powerful technique, strong theoretical basis

• Crucial role of standard error estimates

• Avoids “patterns” introduced by sparse data

• Adaptive cut-off finds structure Bonferroni misses
Significant terms shown to help in validation

Implications for practice

• Automated search with good validation properties

– Use more to estimate

• Supplement to “manual” analysis

Next steps Better searching ...

• More efficient search strategies

• Use of “expert” information

• Open vs. closed view of space of predictors
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