

AUCTIONING EXPERTS IN CREDIT MODELING

Robert Stine Statistics Department The Wharton School, Univ of Pennsylvania May, 2004 www-stat.wharton.upenn.edu/~stine

Opportunities

- Anticipate default
 - Who are most likely to default in the near future?
- Detect fraudulent applications
 - Which loan applications are made up?
- Segment corporate bond market
 - Which companies are most risky?
- Other domains...
 - Employee evaluation: Who should we hire?
 - Disease prognosis: Who are most at risk?
 - Document classification: Can you find one like this?

Similarities

Different contexts, but common characteristics...

Rare events

- Few cases dominate costs.
- Millions of accounts, thousands of defaults.
- Synergies
 - Linear models find little. Interactions work.
 - Many combinations seem plausible.
- Wide data: more features than cases
 - Interactions, transformations, categories, missing data...
 - Too many to find the best at each stage.

Common Objective

• Regardless of the context

- Credit default
- Detecting fraudulent loan applications
- Segmenting corporate bond market
- Pragmatic goal remains *prediction*.
- Best model generates highest revenue
 - Asymmetry of costs, presence of rare events
- Many schemes for building a predictive model
 Algorithms, features, criteria...

Which model to use?

Every domain has experts...

Automated Methods

- Expense of custom modeling hard to justify
- Automate process
 - Higher productivity
 - "Objective"
 - "Rigorous"
 - Convenient

But what about expert know-how?
Is the loss of their insight worthwhile?

Comparison

Wharton Statistics Department

Substantive

Pick model "by hand"

- Advantages
 - Leverage domain knowledge
 - Can "interpret" for regulator
- Disadvantages
 - Did we miss something?
 - Time consuming to
 - Construct
 - Maintain

Automatic

Computer search

- Advantages
 - Scans entire data warehouse
 - Hands-off, fast
 - Construction
 - Maintenance
- Disadvantages
 - Lost domain expertise
 - Hard to explain or interpret

Best of Both Approaches

Wharton Statistics Department

Substantive

Pick model "by hand"

- Advantages
 - Leverage domain knowledge
 - Can "explain" to regulator

• Disadvantages

- Did we miss something?
- Time consuming to
 - Construct
 - Maintair

<u>Automatic</u>

Computer search

- Advantages
 - Scans entire data warehouse
 - Hands-off
 - Construction
 - Maintenance
- Disadvantages
 - Lost domain expertise
 - Hard to explain or interpret

Best of Both

Auction = Experts + Model

Wharton Statistics Department

CRSM 2004 10

AWKTION Modeling

- *Experts* recommend features.
 - Bid reflects strength of "conviction" (Bayes prior)
- *Auction* identifies feature with highest bid.
- Statistical model tests feature.
 - Bid determines p-value threshold
 - Accepts significant predictors, rejects others
- Auction passes results back to experts.
 - Winning bids earn wealth for expert.
 - Losing bids reduce wealth.
- *Information* flows both ways.

Experts

- Experts recommend predictive features
- Substantive experts order features
 - Domain knowledge of specific area
 - Prior models in similar problems
- *Automatic* experts
 - Interactions based on other experts
 - Transformations
 - Segments, nearest-neighbor, principal components
 - Nonlinearity
 - Feedback adjustments for calibration

Underlying Theory

- Streaming feature selection
 - Sequential, not all at once
 - "Depth-first" rather than "breadth-first"
 - Overcomes width constraints
 - Ordering captures prior information
- Universal bidding strategies
- Multiple testing without overfitting
 - False discovery rate (FDR) for infinite sequence of tests.
- Calibration
 - Ensures predictions track reality.
 - Adaptive link function

Sequential vs. Batch Selection

Sequential

- Search features in order identified by domain expert
- Allows an infinite stream of features.
- Adapts search to successful domains.
- Reduces calculations to a sequence of simple fits.

Batch

- Search "all possible" features to find the best one.
- Needs all possible features before starts.
- Constrains search to those available at start.
- Requires onerous array manipulations.

Sequential works...

Wharton Statistics Department

CRSM 2004 15

Example

- Predicting default
 - Logistic regression model
 - 15,000 cases, 67,000 possible features (most interactions).
- Standard model finds linear predictor
 - Higher risk with lower line allowance.
 - Statistically significant

Example: Nonlinear pattern

CRSM 2004 17

Auction model

- Experts recommendations based on state of model.
- Look for combinations of extant predictors.
- Discovers nonlinear effect
 - Nonlinear effect for size of credit line
 - Statistically significant "bump" in risk

Example: Synergies

Feedback expert

- Builds interactions among predictors in current model.
- Limited search does not obscure simple predictors.

Feature	Found in Model
Behavioral score	Marginally linear
Missing data	Behavior score affects these differently
Non-linear	Larger for high scores
Synergies	Changes with payment

Summary

- Auction modeling combines
 - -Domain knowledge
 - -Automatic search procedures
- Offers
 - -Fast, guided search over complex domains
 - -Strategies for constructing features in parallel.
 - -Flexible statistical models
- More information...

www-stat.wharton.upenn.edu/~stine