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Outline
Introduction
Exploratory analysis

Trends and maps

Measuring spatial association
Nonparametric clustering using SVDs

Models
Spatial, temporal and spatio-temporal

Next steps

Collaborators
Sathyanarayan Anand
Chris Henderson and friends
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Key Points
Exploratory analysis

Finds spatial association in various types of 
default (mortgage, installment, revolving)

Analysis of spatial patterns
Correlation risk
Three spatio-temporal patterns
Nonstationarity motivates simple models.

Models
Models with broad correlations predict better 
than those more narrowly defined
Correlations in data impact claims of precision

3
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Featured Data
County-level 

Default rates from Trend Data (TransUnion)
National coverage
Default rates based on quarterly samples, 1993-2010

Economic characteristics (Census)
Spatial locations
Small: 3,000 counties x 80 quarters = 240,000

Multi-level inference
Individual -> Tract -> County -> State -> Nation

Gaps in data…
Lender proprietary data (eg, vintage)
Individual loan characteristics
Housing data is incomplete
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Featured Data
County-level data

County = political subdivision of state in US
3,000 counties within continental US
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Large blocks
in the West

Compact, irregular 
in the East
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National Trends
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Trends: Consumer Debt
August 2011 report from US Federal Reserve
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Trends: Loan Volumes
“Flight to quality”
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Trends: Default Balances
Balance primarily composed of mortgages.
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careful!
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Predict?
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Maps
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Revolving default rates

Smooth national series
Huge regional variation in US:
Near zero in some counties, 25% in others.
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2.5 7

Log Pop

Variation in Population
Some counties have a hundreds,
others have millions (lognormal)
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Analysis Subset
Default rates and demographics are 
unreliable in sparsely populated areas.
Limit analysis to counties with 50,000 people

Covers 85% of population, 900+ counties
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Heterogeneity Persists
Revolving default rates

Rates skewed, close to log normal
More reliable, fewer missing
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Spatial Patterns
Poverty rates

Wealth concentrates around urban cores

16

Circle area 
proportional to 

population

State background 
based on included 

counties.

-1.48 -0.415

Log Poverty 2010
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Spatial Correlations
Standard measure of spatial correlation
! ! ! ! ! ! ! !
! ! Moran’s I =

where wij identify ‘neighbors’.
Example

wij = 1 if within two 
layers of the target
county.

wij = 0 otherwise.

18

Σ wij (Xi-X)(Xj-X)
Σ wij   sx2

Broward

wij = 1 for
those in gold
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Spatial Correlations
Moran’s I shows surprising correlation for 
various types of default.
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Spatial Correlations
Moran’s I shows surprising correlation for 
various types of default.
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Spatial Patterns
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Correlation Risk
Spatial association suggests correlation risk.
Question

Pick a county c with neighbors N(c)
How much of the variation in default rates 
among neighbors of c can be described using a 
common trend?
! ! ! ! DN(c),t ≈ uc vt

 Principal components
First principal component of the covariance 
matrix S among the neighbors of a county
Largest eigenvalue indicates amount of variation 
represented by common trend 
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Correlation Risk
Neighborhoods

Consider all neighborhoods among the 900+ 
counties in the analysis
Compare the percentage of variation in the first 
component using quarters before 2001 to the 
percentage in quarters after 2003

Results
Mortgage default rates
Percentage of variation rises
basically everywhere
Median increases from 
0.4 up to 0.9.
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Patterns in Variation
Borrow technique from climatology

Empirical orthogonal functions
Segmentation: Find locations that covary in time

Singular value decomposition
Extend principal components
X holds default rates at 900 locations, 76 times 
Approximation 
! ! X = UDV’, or X = Σ ui (di vi’) 

U captures spatial patterns, V holds time

Orthogonal rotation
Rotate the orthogonal factors to clarify 
geographic clustering

23
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Low-Rank Approximation

24

X = dct

Matrix of 
default rates
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Low-Rank Approximation

24

X = uc1 vt1 + more

u11
u21
u31
:
:

un1

Spatial 
effects

v11  v21  v31 ...  vT1

Time trend

Decomposition ‘knows’ nothing of time or space… 
Are counties with common trends adjacent? 

dct  = 

Matrix of 
default rates
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Singular Value Decomposition
How many terms

Singular values suggest need three terms to represent 
variation in mortgage defaults.

Rotated components
Sacrifice orthogonality to improve interpretation
Each rotated component has ≈⅓ of variance 
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First Component
Long term problems...

26

-0.0735 0.0976

Rotated Log  Component 1

1992 2001 2011

SVD does not 
know geography!
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Eg: Long-term Problems
Defaults in the Northwest US 
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Second Component
Recent surge in defaults

28
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Eg: Recent Surge
Coastal problems: California, southern Florida
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Third Component
Counties that had been doing well.
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Eg: Were going well
Some in the South, some in New England
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Residual Analysis
Subtract retained components from data

Map shows SD for locations
Trend line shows SD over time

32

0.0268 0.28

Residual SD
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Increasing 
homogeneity

Isolated 
‘outliers’
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Covariates 
Covariate effects depend on region
Regional unemployment

Variability changes over time
Association with mortgage default changes

33
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Covariates 
Covariate effects depend on region
Regional unemployment

Variability changes over time
Association with mortgage default changes
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Discussion: Spatial Patterns
General trends

Rising defaults
Increased spatial concentration

Timing of mortgage defaults
Some have struggled for a long time.
Bubble exploded in California, Florida.
Less discussed…
Surge around 2000 in less talked-about 
locations: Deep South, New England

Aside
SVDs are great for 
finding outliers!
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Exploratory Models
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Transition
Switch type of debt
! ! ! from mortgage to cards

Revolving default rates
Data cover most of the US
Less political upheaval

But similar problems remain:
Substantial flight to quality in later years
Demographic shifts remain relevant
Heterogenity in size and characteristics

36
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Local Models
Consider a reduced-form, economic model

Response Ycq = log(default rate)
Lags of default rate
Economics (unemployment, income)
Credit data (utilization, other debt)

Issues
What variables to use in the models?
How to obtain an honest standard error?
Where’s the independence? 

Fit within “slice” of time or space
Time: 3,000 counties during a specific quarter
Space: Subset of counties over many years

37
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Slices in Time

38

Y11 Y1q Y1T

...

Yc1 Ycq YcT

...

Yn1 Ynq YnT

Ycq = log(default rate) in county c, quarter q

Time
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Local-time Models
Procedure

Fit over counties within a given quarter
Plot over time, “population drift”

Goodness-of-fit deteriorates in later years
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Local-time Models
Procedure

Fit over counties within a quarter
Plot coefficients over time, “population drift”

Nominal t-statistics identify only lag
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Slices in Space
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Local-space Models
Procedure

Fit regression model in cluster of counties
Measure residual dependence

42
Philadelphia, PA Ford County, KS

Urban, 
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Rural, 
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Urban Models
Models fit well, R2 ≈ 80% or more
Spatial correlations depend on 
proximity, political boundaries
No residual autocorrelation
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Rural Models
Models fit weakly
Small spatial correlation
No residual autocorrelation
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Lessons from Exploration
Over time...

Evolving, simple models describe much of the 
variation in default rates, leaving...
Errors that appear uncorrelated over time

Over space...
Complex spatial dependence

Explanatory variables
Subtle contribution from local explanatory variables 
such as income
Adjustments for spatial dependence needed to avoid 
over-fitting
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Confirmatory Models



Wharton
  Department of Statistics

Markov Random Fields
Idea
Describe spatial distribution by the 
collection of conditional distributions
Conditional independence
Default rate Yk in location k depends 
only on its neighbors N(k),
! ! ! { Yk | Ym, m≠k } = { Yk | YN(k) }
Gaussian MRF…   CAR model
Covariates model broad structure, with 
spatial correlations for errors
! ! {Yk | YN(k)} = N(µk + Σ Wkm (Ym-μm), 
σk2)

47
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Conditions for MRF
Not every set of conditional distributions 
specifies a valid joint distribution.
Gaussian MRF                           (Besag 1974)
! {Yk | YN(k)} = N(µk + Σ Wkm (Ym-µm), σk2)
implies that joint distribution is
! { Y } = N(µ, (I-W)-1S2) 
for S = diag(σk).

Implications
(I-W) must be positive definite
(I-W)-1S2 must be symmetric

Spatial pattern matrix           (Cressie et al 2005)
Obtain spatial correlation parameter γ by 
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Is CAR right?
What is the residual structure?

Likelihood ratio test between nested models
Equal correlation model is a CAR model 
with lots of neighbors, N(k) = all indices but k.

Use all 3,000 counties 
Logit response p/(1-p)
Var(logit) ≈ 1/(np(1-p)) determines σk

Covariates include local unemployment, poverty…

Compare error specifications
CAR with single layer neighborhood
Equal-correlation model

49
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Testing Procedure
Covariance structure

Cov(Yt) = (I-W)-1S2 = (I-γH)-1S2

Different CAR models specify different 
neighborhood structures in H

Local spatial neighborhood
Global equal correlation

Models are “overlapping” if γ=0

Two-part testing process   ! ! (Vuong 1989)

Test first whether γ=0

If reject, then test models using expected 

50
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Results of CAR Test
Recursive estimation

Use history from 1993 forward
Evaluate model at ‘current’ time

Test CAR vs equal corr
Equal correlation with 
smaller, broader corr
dominates
Hints at national latent
variable

51

1993

Ending  Year
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Prediction Results
Comparison of Prediction MSE

OLS
CAR (local neighborhood)
Equal correlation (global neighborhood)

Results
Only lags of default
as predictors
Equal correlation 
has smallest MSE
Model performance 
worse as time 
accumulates

52

CAR 
OLS
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Covariates
Less accurate with explanatory variables
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Key Points
Substantial spatial correlations

Don’t have 3,000 independent observations
Cannot claim 3,000 x 80 = 240,000 d.f. in models
Over-stated claims of significant inference

Time-specific, location-specific patterns
Population drift over sub-models
Complex models most likely overfit

Possible remedies?
Better economic modeling at consumer level
Portfolio view of individual consumer debt
Expensive to develop and maintain
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Directions in Modeling
Adaptive, data-driven strategies

Hierarchical Bayesian models
Dirichlet process priors via Markov chain MC
Scalable?  Have not been able to scale to US.

Large scale data mining using regression
Fast selection from 100,000’s of variables
Predictive, but not “explanatory”

Latent process models
High dimension hidden Markov models
SVD of massive matrices (50,000,000 cases)
Currently requires stable training set
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Comments
Epidemic models
Surface diffusion model
Multi-mode factor analysis (covariates)
Voxel correlation analysis
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Thanks for coming...

Papers will eventually appear at
   stat.wharton.upenn.edu/~stine


