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This article develops and estimates a dynamic arbitrage-free model of the current
forward curve as the sum of (i) an unconditional component, (ii) a maturity-specific
component and (iii) a date-specific component. The model combines features of the
Preferred Habitat model, the Expectations Hypothesis (ET) and affine yield curve
models; it permits a class of low-parameter, multiple state variable dynamic models
for the forward curve. We show how to construct alternative parametric examples of
the three components from a sum of exponential functions, verify that the resulting
forward curves satisfy the Heath-Jarrow-Morton (HJM) conditions, and derive the
risk-neutral dynamics for the purpose of pricing interest rate derivatives. We select
a model from alternative affine examples that are fitted to the Fama-Bliss Treasury
data over an initial training period and use it to generate out-of-sample forecasts for
forward rates and yields. For forecast horizons of 6 months or longer, the forecasts
of this model significantly outperform those from common benchmark models. (JEL
C53, E43, E47)

The structure of forward rates for fixed maturity loans to begin at various
dates in the future can be inferred from the prices of Treasury securities
or directly observed from the extremely active Eurodollar Futures market.
The constellation of these rates (or of the related yields) plays a central role
in the allocation of capital. The random behavior of this “‘yield curve”” —or
the relationship between the yields and the term to maturity—is a subject
of considerable theoretical and empirical study.
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Yield curves have traditionally been modeled in one of two ways:
equilibrium models and no-arbitrage models. Equilibrium models such as
the Vasicek model (1977) and the Cox-Ingersoll-Ross model (1985) define
stochastic processes driven by a small number of forcing factors. Once
these processes are defined, the forward curve and its evolution can be
derived either under various assumptions for the risk premia or from a
more fundamental model that begins with preferences and imposes market
clearing conditions. Empirically, however, these models do not fit the
observed forward curve well on any given day. In fact, the fit is often so
poor that the differences between the empirical and theoretical values can
be construed as model mis-specification rather than random pricing errors.

In contrast, no-arbitrage models are calibrated to fit the observed
forward curve perfectly on a given day. This approach to modeling the
term-structure was pioneered by Ho and Lee (1986). Hull and White
(1990) also built a no-arbitrage model that extended the Vasicek model
to fit the initial term-structure. Other important contributors to the no-
arbitrage model literature include Black, Derman, and Toy (1990) and
Heath, Heath, Jarrow, and Morton (1992). HIM derived a framework for
the arbitrage-free evolution of the entire forward curve, starting from the
currently observed forward curve. The time-series dynamics of the forward
curve evolution are constrained by the current shape of the curve. Also,
these models are forced to fit measurement errors in the observed term-
structure thereby generating erroneous implications for the time-series
evolution. This has led some authors to argue that by forcibly calibrating
the entire curve to the observed rates, arbitrage-free principles could be
violated (See Backus, Foresi, and Zin (1998)).

There have been several new developments in term-structure modeling
in the form of market models and stochastic string models. Market
models seek to model observable quantities such as the London Interbank
Offered Rates (LIBOR) directly within the framework of HIM. Brace,
Gatarek, and Musiela (1997) and Miltersen, Sandmann, and Sondermann
(1997) proposed the BGM model that falls into this category. Because
these models can be calibrated using observed market rates instead of
proxies, they can be estimated accurately. Stochastic string models were
first developed by Kennedy (1994), who modeled the forward curve as
a Gaussian random field. Goldstein (2000), Santa-Clara and Sornette
(2001) and Collin-Dufresne and Goldstein (2003) later proposed similar
models that allow for strings of shocks to the forward rate curve that are
correlated with one another. In stochastic string models, instantaneous
forward rates of differing maturities are driven by their own shocks that
can be correlated with those of neighboring maturities. Stochastic string
models can fit any day’s cross-section of bond prices perfectly without any
need for measurement error. Thus when measurement errors are in fact
presents these models may over-fit the data.
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In this article, we propose an easily interpretable and arbitrage-free
general model of forward rates that appeals to economic intuition, and
show that a specific form of the model that is (exponentially) affine in the
state variables generates superior out-of-sample forecasts of forward rates
and yield curves. Here is a brief summary of the general model’s principal
features:

1. The current term structure of forward rates is modeled as the sum
of three components:

(a) an unconditional curve that represents the steady-state
forward curve;

(b) a maturity-specific curve consisting of current deviations
from the unconditional curve that can be driven by one or
more state variables and embeds the influence of supply and
demand from agents who have needs for loans of specific
terms. To justify this curve we would appeal to investors’
preferences, or to a preferred habitat model (see Modigliani
and Sutch (1966)); and

(c) adate-specific curve that can be driven by one or more state
variables and embeds the current influence of expectations
about spot rates to prevail at specific future dates. The date-
specific component is intended to summarize the influence
of fundamental nominal and real factors on future expected
interest rates.

2. The evolution of the maturity- and date-specific component curves
is autoregressive in sensible ways described further in Section 1;

3. The dynamics of the sum of the three component curves (under
certain conditions, for chosen parametric forms that are affine in
the state variables) produce a model of the forward curve that is
arbitrage free and meets the conditions imposed by Heath, Jarrow,
and Morton (1992); and finally

4. A selected parametric model, when taken to the data, generates
out-of-sample forecasts that are superior to those from available
benchmark models.

An important feature of this model is that it recognizes, in reduced
form, the influence of both maturity-specific effects from investors’ choices
and date-specific effects driven by economy-wide events. The framework
outlined above permits one to build alternative dynamic models of the
forward curve; indeed, the analysis permits nonlinear and nonaffine forms,
and can be applied to model the dynamics of forward curves for market
prices of commodities as well. We choose a specific version of the model
from a menu of alternative models using Fama-Bliss US Treasury data
over a preliminary training period, before testing its forecasting power
over the remaining out-of-sample period.
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There are several measures that can be used to compare competing
interest rate models. These include comparing the implied parametric
density to the nonparametric estimates (see Ait-Sahalia (1996b)),
comparing the goodness-of-fit to the empirically observed data, and
comparing the accuracy of out-of-sample forecasts. The latter two
measures are more commonly used. However, we consider superior out-
of-sample forecasting performance to be more important than superior
in-sample fits. In-sample fits in many models (including ours) can always
be improved by increasing the complexity of the model. However, as
noted by Diebold and Li (2006), it is not obvious that such over-fitting
leads to improved out-of-sample forecasting performance. Out-of-sample
forecasting performance is therefore a more objective measure of model
performance. Despite the sizable literature on the theory and estimation
of term-structure models, few authors have produced forecasts that are
significantly better than even the most elementary benchmark, the Random
Walk (see Duffee (2002) for a survey of poor forecasts generated by the
most common models). One exception is Diebold and Li (2006), who fit
autoregressive models to parameter estimates of the Nelson—Siegel model
(1987). They reported significantly better forecasts than the Random
Walk model when forecasting yields of maturities less than 5 years at the
12-month ahead horizon.

The remainder of the article is organized as follows: Section 1 introduces
the components of our model and provides the intuition and economic
origins behind them. Section 2 shows how to construct, using examples,
a class of models that can be developed from this economic intuition;
it also shows that they conform to the HIM specification for arbitrage-
free dynamics. The pricing of bonds and derivative securities under this
framework are also explained here. Section 3 explains how the model can
be implemented by using a Kalman filter and also chooses a particular
model for implementation. Section 4 then applies the chosen model to
Fama-Bliss Treasury data and shows that the forecasts generated by
that model are significantly better than the forecasts generated by the
benchmark models: the Random-Walk (RW) model, the Expectations
Hypothesis (EH) model and the EH with Term-Premium model. We also
compare our results to those in the recent literature, namely Diebold and
Li (2006) and Duffee (2002). Section 5 concludes.

. Qualitative Description and Economic Intuition of the Model

The current (date r) forward curve is written f(t;¢) and represents the
curve of forward rates for instantaneous loans to begin at future dates
t + t,t > 0. The proposed model of the forward curve is the sum of three
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component curves:l

f;n=U@E)+M(t; 1)+ D(z;1) (1)

where

1. U(r) is the unconditional or steady-state forward curve;
2. M(z;t) is the component curve of maturity-specific deviations; and
3. D(t;t) is the component curve of date-specific deviations.

The first argument t in parentheses refers to the time to maturity; where
there is a second argument it refers to the calendar date for that component
curve. Thus, M (t; t) refers to the maturity-specific deviation embedded in
the forward curve at date ¢ for the future date r + <.

1.1 The unconditional forward curve

U (t) represents the steady state or the unconditional forward curve; if
we were to forecast the forward curve at a time in the distant future, all
presently available information would be of little use. This unconditional
curve can be written as

Ur) = liTm E[f(t;9)] 2

It is time invariant and may be estimated by taking an average of all
available historical curves.

1.2 The curve of maturity-specific deviations

The curve of maturity-specific deviations recognizes that a part of the
deviation of the current forward curve from the unconditional forward
curve at some maturities has no implication for future spot rates. Rather,
this abnormal component may be local to those particular maturities of
the forward curve. The concept of a maturity-specific deviation originates
from the Market Segmentation Hypothesis and the Preferred Habitat
Theory (Modigliani and Sutch (1966)). These models postulate that some
market participants are primarily concerned with their natural maturity
habitat, with little regard for the implication of the forward rates on future
spot rates. The actions of these participants affect only those maturities
(and nearby maturities) of the forward curve at each date, instead of having
effects that move progressively towards shorter maturities and eventually
affect the spot rates.?

We assume that the forward curve on any given date is observed with random measurement error. Thus,
to recover the fitted forward curve on any given date, we do not fit the observed curve exactly. Instead, we
use smooth functions to obtain the fitted curve, and assume that the residuals are random measurement
eITorS.

For instance, a decrease in medium-term liquidity in the loanable funds market may drive forward rates
in the 5-year maturity higher, and such a change would be captured as maturity-specific deviation, all else
equal.
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Therefore, M(t;t), the maturity-specific component curve at date ¢,
captures abnormal activity that affects the forward curve at specific
maturities 7. The entire maturity-specific deviation curve may be modeled
as a point-wise mean-reverting process that reverts to zero, so that

E[M(t:T)] = e KnT=Dpp(1; 1) >0, 3)

where K, > 0 is a parameter indicating the speed of reversion to zero.
The overall maturity-specific deviation can be comprised of two (or more)
different maturity-specific deviations; so that, for example,

M(z;1) = Mi(T; 1) + My(z; 1)

where Mi(t;t) and M,(t;t) are both mean-reverting to zero at different
rates. So for each component of the overall maturity-specific deviation we
require that

E; [Mj(r; T)] = e_K’”-/(T_t)M_,(r; 1) t>0,j=1,2.... 4)
The arbitrage-free formulation of the overall curve of maturity-specific
deviations (described further in Section 2) has the property that M (oco; t) =
0 for all . Note that instantaneous or spot rates are relevant to zero
maturity loans, and we assume M (0;¢) = 0 for all¢ to allow the date-
specific deviations to capture the dynamics of present and future spot
rates. Figure 1 illustrates the forecasted behavior of maturity-specific
deviations: anchored at zero at extreme maturity values, the entire curve
decays (in expectation) point-wise towards zero as time passes, satisfying
relation (3).

1.3 The curve of date-specific deviations

A date-specific deviation is caused by information affecting expectations
of the spot interest rate on a specific calendar date in the future. The
concept of a date-specific deviation has its roots in the EH (Fisher (1896)).
It is intuitive that forward rates contain information regarding future spot
rates; therefore a high forward rate today should naturally point towards a
higher spot rate at the corresponding date in the future. However, the EH
fails in some basic ways, as shown in the literature. In the theoretical realm,
it has been shown that most versions of the EH admit arbitrage (Cox,
Ingersoll, and Ross (1981)).3 In empirical tests, forecasts of forward rates
generated by the EH model are generally considered to be inferior to even
the most basic benchmark, the Random Walk model. The model proposed

Some recent literature seems to vindicate theoretical aspects of the EH. McCulloch (1993) and Fisher
and Gilles (1998) present examples to show that some forms of the EH are consistent with no-arbitrage.
Longstaff (2000) shows that all traditional forms of the EH are consistent with no-arbitrage if markets are
incomplete.
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Figure 1

Illustration of maturity-specific deviation behavior

Starting with any given maturity-specific deviation (for illustrative purposes, we set the original maturity-
specific deviation to be M(t; 1) = 0.05¢~ 027 — 0.1e=047 4 0.05¢70-87), We expect the maturity-specific
deviation to decay exponentially to zero at rate K, (In this illustration, we set K;, = 0.4) as time passes
(from relation (3)): E¢[M(r; T)] = e~ Km T =D pp(z; 1),

here attributes only a part of the current forward curve as containing
information about future spot rates.

The date-specific deviation curve D(t;¢t) is influenced by abnormal
events or information that affects the portions of the forward curve
corresponding to specific maturity dates. In other words, this curve
captures the deviations of expected future spot rates from the unconditional
spot rate. For instance, suppose that on ¢ = January 1, 2002 it is learned
that the Treasury needs additional financing on (or around) s = January
2003; that will drive up interest rates during that period. On 1 January
2002, the 1-year forward rate would be elevated. As time passes, we expect
the elevated portion of the forward curve to move closer to the origin,
since in expectation the higher rates around 1 January 2003, would remain.
Thus, the date-specific deviation has the property:

E/[D(s—T;T)]=D(s—t;1) t<T<s. %)

The date-specific deviation at zero maturity is simply the difference
between the spot interest rate and the unconditional spot rate: D(0; t) =
f(0; 1) — U(0). At infinite maturity, the date-specific deviation must be
zero because it is not plausible that one can have any information about
the spot rate in the infinite future other than that contained in the
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unconditional spot rate, so D(oo;t) = 0 for all ¢. Figure 2 illustrates the
forecasted behavior of the date-specific deviation. Starting from a given
date-specific curve that is anchored at zero at the long end, the entire curve
shifts (in expectation) to the left as time passes, satisfying relation (5).

1.4 The dynamic behavior of the forward curve

The dynamic behavior of the forward curve in relation (1) depends only
on the dynamic behavior of the date-specific and the maturity-specific
deviations, as indicated in relations (3) and (5). Each of these, within a
specific model that we specify in Section 2, is affected by one or more state
variables representing the evolution of underlying economic factors.

The maturity-specific deviation is caused by abnormal pricing of
forward rates specific to certain maturities, driven by habitat and
preferences of individual and institutional investors. Changes in demand
or supply at a given maturity habitat can affect a range of surrounding
maturities—investors treat them as close substitutes—which allows us to
treat the maturity-specific deviation as a smooth curve. Since these are
deviations from the average, the average deviation should naturally be
zero. Without additional information to guide us on how these deviations
behave over time, a simple yet intuitive model for these deviations would
be that they decay towards zero at some rate. In Section 2, where we

0.01
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Figure 2

Illustration of Date-specific Deviation Behavior

Starting with any given date-specific deviation (for illustrative purposes, we set the original date-specific
deviation to be D(t; 1) = 0.04¢ =027 — 0.05¢=047 We expect the date-specific deviation curve to shift to
the left uniformly as time passes (from relation (5)): E;[D(t — (T —1t); T)] = D(z; 1).



A Dynamic Model for the Forward Curve

develop an arbitrage-free framework for our model, we assume that the
maturity-specific deviation decays at an exponential rate to satisfy the
HJM requirement for the model to be arbitrage free.

Our model (in the general form under discussion so far) does not a
priori preclude the possibility that there might be negative forward rates.
Given an observed term structure of forward rates that is positive at
all maturities, it is possible to find maturity- and date-specific deviations
that fit the current term structure but produce forecasts of negative
forward rates in the future. For example, an extremely large and positive
maturity-specific deviation coupled with an extremely large and negative
date-specific deviation can produce such negative forward rate forecasts.
However, in the explicit parameterized forms of the model described in
Section 2 we ensure that the model is arbitrage free by checking the HIM
restrictions.

In the implementations of explicit forms of our general model (described
in Section 2 and made clear in the estimation procedure in Section 3) we
employ sums of exponential basis functions for U(r) and similar basis
functions (that are scaled by Brownian motions) to specify the functional
forms for M(t;t), and D(z;t). The resulting function for forward rates
f(t; 1) is affine in the state variables and has a structure that lends itself
easily to estimation.

1.5 Closely related models

We now show that many well-known models of the term structure—the
EH and the Vasicek and CIR models—are closely related* to the model
that we are proposing here, in the sense that these models share one or
more of the three components described above.

1.5.1 Expectations hypotheses. As mentioned in Section 1 the date-
specific deviation has its roots in the EH. Two forms of EH can be
viewed as special cases of our class of models. The Pure EH—that forward
rates are predictors of future spot rates—can be written as:

EfO; ] = f(T —t;1),

where f(0; T) is the spot rate on date T and f(T — t; t) is the forward rate
quoted at date ¢ for an instantaneous loan to begin at date 7. This relation
is the same as relation (5): we can view the Pure EH as a special case of
our model, influenced by date-specific events but without an unconditional
curve or a maturity-specific deviation curve.

The EH with a Term Premium is different the from Pure EH in that
it assumes the existence of a (perhaps maturity dependent) time-invariant

4 We should emphasize here that the explicit forms of the model (described further in Section 2) that we
work with are more complex and will not have these models as stylized special cases.
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term premium (say A(tr) for maturity t), where the term premium is
defined as the excess of the quoted forward rate over the expected spot
rate. Denoting the term premium at maturity 7 — ¢ as A(T — t), the date ¢
predictor of the future spot rate for date T is

E[f(0; )] = f(T —t;t) = MT —1).

In the absence of a maturity-specific deviation, the date # predictor of the
future spot rate for date 7T is

E/Lf(0: T)] = E[U(0) + D(0; T)]
= U©0) + D(T — ;1)
=D(T —t;0)+ U(T —1) — (U(T — 1) — U(0)
= f(T —1:0) = [U(T — 1) = U(O)]. (6)

The EH with Term Premium is therefore a special case of our model
without any maturity-specific deviation, where the difference between the
unconditional rate at zero maturity and its value for a given maturity t
corresponds to the time-invariant term premium A(t) = U () — U(0).

1.5.2 Vasicek and Cox - Ingersoll - Ross models. Two well-known models
are those of Vasicek (1977) and Cox-Ingersoll-Ross (CIR) (1985). The
single factor versions of these two models specify a continuous-time
autoregressive process for the spot interest rate whose long-run mean is 6,
and derive a pricing formula for zero coupon bonds that is exponentially
affine in that spot rate:

Po(t; 1) = O8O,
where ¢ is the current date, P,.(t; t) is the price of the zero-coupon bond
of maturity t, r; is the spot interest rate at date 7, and A(r) and B(t) are
known expressions that involve other parameters including a market price
of risk. These models imply that the forward rate quoted on date 7 for an
instantaneous-maturity loan at date r + t is
P! (t;1)
()= -2 = —A(t) + B'(0)r:.

! D) f
The forward rate is an affine function of the spot interest rate, and because
affine functions of autoregressive processes are themselves autoregressive
it follows that the forward rates of the Vasicek and CIR models are
point-wise autoregressive processes. To draw the parallel between these
two models and our model, first note that in both these models

E (rr —0) =e T (r, — )

10
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where « is the speed-of-adjustment parameter common to both models.
Then the conditional expectation of the t-period forward rate at the future
date T given information at date 7 is

E[f(t; T)] = E[-A'(x) + B'(7)rr]
=E [(—A'(x) + B'()0) + B'(x)(rr — 0)]
={(=A' @)+ B @0} +[e " "B@)r —)]. (1)

As a result, the forward curve in the Vasicek and CIR models can be
decomposed into two components: {(—A’(t) + B'(t)0)} which is time-
invariant, and [B/(r)(r, — 9)] which is autoregressive and decays towards
zero. When comparing to our class of models, we simply omit the date-
specific deviation from our model, and recognize the first component as
analogous to the unconditional curve of our model;’ the second component
is analogous to the maturity-specific deviation of our model, obeying the
same dynamics as the maturity-specific deviation:

E B @@r—0)]=e*"""B'(x)(r, —0).

In the multi-factor versions of the Vasicek and CIR models, there
is one time-invariant component but there are multiple autoregressive
components decaying toward zero at different rates. Thus, the multi-factor
versions of the Vasicek and CIR models are analogous to our model with
an unconditional curve and multiple maturity-specific deviation curves but
without any date-specific deviation.

. Explicit Forms of the Forward Rate Model

The general model we presented in Section 1 involves relations (1), (3) and
(5). We rely on the guidance of other theoretical models and hypotheses
while discussing our general model, but it remains a reduced form model
whose three component curves need explicit forms before we can judge
its effectiveness. However, for each explicit form that we propose, we
would like to ensure that the dynamics for the resulting forward curve are
arbitrage free.

In this section, we develop several explicit parametric forms of the
forward rate dynamics in our model and also show that these models are
arbitrage free under certain conditions. All the formulations of the forward
curve that we propose (and test in subsequent sections) use representations
of the maturity- and date-specific deviations that are continuous functions,
and they share the property that they are (exponentially) affine in the

The first component in relation (7) corresponds exactly to the unconditional forward curve of the Vasicek
and CIR models.

11



=N

The Review of Financial Studies | v 20 n 5 2007

driving state variables that themselves follow Ito processes. Therefore, we
need to establish the arbitrage-free property in this setting, and we do so
by verifying the conditions imposed by HIM (1992). We should add that
it is possible to develop explicit forms of our general model that are both
arbitrage-free and not exponentially affine in the driving state variables.
We include an example of a nonaffine parameterization of our model that
is consistent with HIM in Appendix A.3.

The HIM paper shows that if forward rates are processes, then the drift
wu(t, s) and diffusion o (¢, s) of the Stochastic Differential Equation (SDE)
for the forward rate fy (¢, s) quoted at ¢ for date s > ¢ (in our notation
this would be f(s — t; 1)), are related by:

wit,s) =o(t,s)! </Y o(t,v)dv — Et> (8)

for some vector i, that satisfies the equality:

T 1 T )
E[exp (/ kldB, — 5/ || dt)} =1 )
0 0

Equivalently, under the risk-neutral measure, the drift w*(¢,s) and
diffusion o (¢, s) terms of the forward rate SDE are necessarily related by:

wi(t, ) =o(t,s)" (/S o(t, v)dv) (10)

Note that the diffusion, but not the drift, of the forward rate under the
risk-neutral measure is identical to that under the real measure.

In developing the explicit forms of the model, it is useful to introduce
the notion of an Arbitrage-Free Unit (AFU). An AFU is an elementary
model of forward rates: each unit can be driven by one, two or more
Brownian motions. While an AFU is theoretically possible under the HIM
framework, it may offer too simple a structure to accurately represent real
world data. In order to get a more flexible and realistic model of forward
rates, these AFUs can be combined to form a composite arbitrage-free
description of forward rates, and we now turn to these tasks.

2.1 1-Brownian motion arbitrage-free unit

Consider first a simple dynamic model for the forward rate that is driven
by a single Brownian motion—we denote this fi(z;¢) with a subscript
indicating the number of Brownian motions,® so that the innovations
in both the maturity-specific and date-specific deviation are perfectly

The instantaneous forward rate on date ¢ for maturity on date s is really a function of
{t,s —t,m(t), and d(t)}. For simplicity, we will continue to write the forward rate as a function of
two variables: {t = s — 7, r}, writing fj (z; r) in place of f](z, s, m(¢), d(t)) and suppressing the dependence
on the two state variables.

12



A Dynamic Model for the Forward Curve

correlated. Later, we extend the AFU to embed two or more Brownian
motions so as to get a richer set of models.

The explicit parameterization is chosen as a linear combination of
exponential functions. The precise choice of exponential bases can affect
the arbitrage-free status of the model. As an example, we now choose a
particular basis set that we later show to conform to the HIM specification
in matching the drift and the diffusion of the resulting forward rate process.
The three components of the current forward curve fi(t; r) are as follows:

1. The time-invariant unconditional curve is now explicitly written as
Ui(7) = Cg — Cre 7, (11

where Cy, C; and K,, are positive constants. This form generates
a smooth upward-sloping unconditional curve that starts at
Ui(0) = Cy — C; at the origin and asymptotes to Cy at infinite
maturity.

2. The maturity-specific deviation is explicitly written as

Mi(t; 1) =m(t) [e_K’"T - e_ZK’"’] . (12)

By design, M;(0;7) =0Vt. Because lim; o, M(z;t) =0 the
deviation has a humped shape. The m(¢) is an Itd process whose
dynamics are induced by the Brownian motion, defined further
below; m(t) serves to scale the deviation which has a fixed shape
with a peak value at maturity t = %

3. The date-specific deviation is specified as

Dy(z: 1) = d(t) [e—z’fmf] . (13)

Here d(t) is an Itd process whose dynamics are related to
the Brownian motion, also defined below; it serves to scale an
exponential function which is either monotonically upward- or
downward-sloping. Note that the overall date-specific deviation
D1(0;¢) = d(¢t) at zero maturity, and it asymptotes to zero at
infinite maturity (Dj (co; t) = 0), reflecting the fact that there can be
no expectation about the spot rate in the distant future other than
the long-run mean.

One can also interpret this parameterization of the unconditional curve,
the maturity-specific deviation curve and the date-specific deviation curve
as polynomials in the log-maturity scale. For instance, if we let p(x) =
e~¥n*, then Uy(x) = Co — C1p(x)%, Mi(x;1) = m(t)(p(x) — p(x)*) and
Di(x;1) = d()p(x)*.

13
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Given this parameterization, we can use Itd’s lemma to derive the
following SDE for the evolution of the forward rate:

f fi f1

dfi(z; 1) = dd (1), (14)
indicating dependence on the driving Itd6 processes m(t) and d(¢); all
second-order terms are zero.

Recall that the model requires (see relation (3)) the maturity-specific
deviation to decay exponentially towards zero at rate K,,. Therefore we
require the SDE for the state variable m(¢) to have the drift —m(¢) K,,, and
specify its diffusion coefficient y, later, when we impose the arbitrage-free
condition:

dm(t) = —m@)K,dt + y,dB(t), (15)

where B(t) is a Brownian motion.

In the SDE for the Itd process d(¢z) we make its drift rate equal to
—2d(t)K,, so that we satisfy the relation (5) above; and we specify the
diffusion of the process for d(¢) to be identical to that of m(¢), which is
necessary to ensure that the drift and diffusion of the forward rate conform
to the HIM condition in relation (8)

dd(t) = —=2d(t)K,,dt + y,dB(). (16)

Note that the maturity-specific and the date-specific deviations are driven
by the same Brownian motion, so their innovations in the 1-Brownian
motion AFU are necessarily perfectly correlated.’

Relation (14), the SDE for the forward rate in this explicit 1-Brownian
motion setup, can now be rewritten as

dfi(e: 1) = {—Km(2C1 + m(z))e—ZKrn<f>} dt + {eFn®y Y dB(r). (17)

2.2 Checking the HJM restriction
We must now verify that the proposed dynamics in relation (17) is arbitrage
free. Denoting the diffusion of the forward rate SDE as

— Ky (s—1)

o(t,s)=e Y, T=5—1 (18)

we have

s 1 1
o(t,v)dv=——e KnG=0y 4+ o
/t Ky R

By choosing the overall forward curve as the sum of several AFUs driven by one or more Brownian
motions we avoid this extreme implication.

14
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For this version of the 1-Brownian motion AFU, we choose the market
price of risk «, as®

Vi
= 19
Kt K, (19)
Notice that the market price of risk is proportional to the diffusion term
of the state variable, just as in the CIR model. Then the HIM condition
says

s
1
o(t,s) (f o(t,v)dv — Kt> = ——yle2Kn(—D, (20)
' K

By specifying y? as
yi = (m(t) +2C)K,,

m’

e2))

relation (20) becomes
o(t,s) </ o(t, v)dv — K;) = —K,(2C| + m(t))e 2KmG=0
t

which is exactly the drift of d f1(s — ¢; t)(see relation (17)), thus satisfying
the HIM condition.

Within the Dai and Singleton (2000) classification scheme the 1-
Brownian motion AFU would be a special case of an A;(2) model since
there are 2 state variables, and the correlation structure of the diffusion
process is driven by a single state variable. Although the 1-Brownian
motion AFU can theoretically be viewed as a specific “model” of forward
rates, it is not designed to be a complete model. Rather, we take it to be
a basic building block that can be combined with other similar AFUs to
form a more comprehensive and complete model.

2.3 2-Brownian motion arbitrage-free unit

The 1-Brownian motion arbitrage-free system can be extended to a system
with two Brownian motions driving the forward rate, where the first
Brownian motion drives the maturity-specific deviation and a portion
of the date-specific deviation, and the second Brownian motion drives
the remaining date-specific deviation. This 2-Brownian motion AFU can
therefore permit less-than-perfect correlations between the two types of
deviations. The economic interpretation behind this system is that there are
two independent sets of shocks, the first set of shocks coming from changes
in market participants’ supply and demand for funds. This generates some

§ It is not necessary that k; = ?yn% If the market price of risk takes on another form, the model requires a
different specification for y, or U(s — 1) or both so that the system remains arbitrage-free.
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repercussions in terms of both the expected spot rate in the future (date-
specific deviation) and also portions of the forward curve that have no
effect on the expected spot rate (maturity-specific deviation). The second
set of shocks comes purely from changes in market-wide information
about expected spot rates in the future. For instance, if a specific event
(for example, a change in future budget deficits) is anticipated to affect the
spot rate at some future date, then the date-specific deviation curve shifts
to accommodate the change in expectation, while the maturity-specific
deviation is unaffected.

We again parameterize the three components of the forward rate curve,
f>(t; t), now recognizing the subscript to refer to the 2 Brownian motions.
However, each of these components now combines additional exponential
functions, thereby allowing for flexible responses to the two driving state
variables.

1. We parameterize
Us(t) = Cyp — Cy e 2KmT _ Cy e kot (22)

where K, and K,, are positive constants. U,(t) is again time-
invariant but it is more flexible than in the 1 Brownian motion
case; it starts at Cy — C1 — C; at zero maturity, it can be humped or
monotonic in maturity, but it asymptotes to Cy at infinite maturity.
Thus, whereas Cy has to be positive, C; and C, can be positive or
negative. As long as C; + C, > 0, the unconditional forward rate
curve is eventually upward-sloping.
2. The maturity-specific deviation is now parameterized as

Ms(z: 1) = m(1) {2e*’<mf — 2K _ e*Kﬂ} . (23)

The maturity-specific deviation is zero at zero maturity, and zero at
infinite maturity; it is driven by one state variable m(¢) that serves
to scale the exponential function in braces. Note that it is also
more flexible than the maturity-specific deviation in the 1 Brownian
motion case as it can now have either 1 or 2 humps, thus effectively
emphasizing the influence at two maturities.

3. The date-specific deviation is now parameterized as

Da(ri 1) = di(e 20T L dy(n)e K + dy(e . (24)

It is now a sum of three exponential functions driven by 3 state
variables: d;(t), j =1,2,3, which are all Itd processes whose
dynamics are defined below. It can take on a variety of shapes
in regions around any given maturity, but asymptotes to zero at
infinite maturity.

16



A Dynamic Model for the Forward Curve

Given the above parameterization, we can use It0’s lemma to derive the
following SDE for the evolution of the forward rate:

0
dfs(r; 1) = % dr + fzt

9 L aph
e dm(t) + 12; dd; (1), (25)

od,; (1)

where all second-order terms are zero.

Note that the maturity-specific deviation again decays exponentially
towards zero at rate K,,. We specify the SDE for the state variable m(z)
(driven by the first Brownian motion Bi(¢)) with a drift —m(¢) K,,:

dm(t) = —m(t)K,,dr + v, ,dBi (1)

but with a diffusion term y , that is chosen to satisfy the HIM condition

> K,
Y1, = m@) + ZCI)T~

For the date-specific deviation to satisfy relation (5), the drift rates for
its state variables d; (¢), d»(¢t) and d3(¢t) must be —2d,(¢)K,,, —d»(t) K> and
ds(t) _TKZ respectively. To keep the system arbitrage free we need to specify
the diffusions of these three SDEs to be y; ,, ¥, and y, , respectively:

dd(t) = —2d\()K,,dt 4y ,dBy (1)
ddr(t) = —dr (1) K»dr + J/l,;dBl(f)

K
dds (1) = —d3(t)72dt +y,,dBy(0)

where it should be noted that the third state variable d3(¢) is driven by the
second Brownian motion, with its diffusion term defined as

» _ (CKy+m(1)(Ky — Kin))(K2)
yz,[ - 2 5

and Bi(t) and B(¢) are the two independent Brownian motions. The
maturity- and date-specific innovations can now exhibit a richer correlation
structure.

Finally, we specify the market price of risk to be

K = 4
/?z — |: 1,t i| — Kﬁ" 1,t (26)
K2t X Y2t
Note that this specification of the market price of risk makes it proportional

to the diffusion terms of the respective state variables, as in the case of
the 1-Brownian motion arbitrage-free unit. Appendix A.l contains the
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proof that the 2-Brownian motion model shown here is indeed arbitrage-
free. Within the Dai and Singleton (2000) classification scheme, the 2-BM
AFU would be a special case of an A;(4) model since there are four
state variables, and the correlation structure of the diffusion process is
driven by a single state variable. Once again, although the 2-BM AFU can
theoretically be viewed as a specific “model” of forward rates, it is not
designed to be a complete model and should not be studied in isolation.’

2.4 Combining multiple arbitrage-free units

The parameterization of a single AFU (whether it is driven by one or
more Brownian motions) is subject to the restriction that although its
date-specific deviations can have arbitrary economic influences that decay
separately at various rates, its maturity-specific deviation is permitted
only one shape that decays at a fixed rate. By combining multiple AFUs
it is possible to permit a wider set of effects for agents with different
habitats, and hence additional maturity-specific influences on the forward
curve. We show in this section that sums of independent AFUs are also
arbitrage-free, thus adding flexibility in this way.

Assume that the i-th AFU follows the SDE:

dfits —t;1) = 0;(t, s)dt + o (¢, s)TdB; (1)

where
oilt.s)! (f i (v, dv — K,-,,> = 0:(t. 5).
t

All the units are independent of each other. Denote the forward curve as
their sum:

fl—t0 =% fi(s —1;1)
and
0(t,s) = X;0;(t,s).

Further denote 5 (¢, s), k¥, and é, as column vectors where o; (¢, s), k; ; and
B;; respectively are stacked on one another in the same order. Then, it
follows that

df(s —t:1) = 0(t,s)dt + 5 (t, )T dB,

° The extension to n Brownian motions is available from the authors.
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and
a(t,s)T (/S & (f, v)dv — E,) =0(t,s)

We need to check that relation (9) holds in the combined system:
Elexp(f, #TdB, — %fOT |E|2dt)] = 1. This condition is easy to establish
because each individual «;, satisfies that equality and the «;s are
independent of each other:

T N 1 T )
E |:exp (/ Kl dB; — —/ || dt)]
0 2 Jo

T 17 2
= E |exp (/ TikidBi, — —/ Ei"‘lﬁ’ dt>i|
L 0 2 Jo
- T 1 T 2
= FE |[exp (E,- (/ kitdBi; — —/ |Ki,z| dt>>i|
0 2 Jo

Note also that the different AFUs need not have the same decay rate
for their maturity-specific deviations. In this way, a selected forward curve
can have several maturity-specific deviations that decay at different rates.
This allows us to produce a maturity-specific deviation curve that can
take on various shapes and follow a wider range of time-series dynamics.
We interpret an individual AFU as an economic variable that drives
the forward curve: these economic variables have effects on the forward
curve that last for varying amounts of time. For instance, a temporary
supply shock of 5-year loanable funds may be very short-lived, thereby
corresponding to an AFU with a high decay rate for its maturity-specific
deviation. On the other hand, a structural shift in the economy may
produce a longer lasting effect on the forward curve, corresponding to an
AFU with a low decay rate for its maturity-specific deviation.

2.5 Pricing zero-coupon bonds and interest rate derivatives

The price of a zero-coupon bond at date r maturing at a future date T,
P,.(t,T), can be derived from the instantaneous forward rates via the
formula:

T .
Po(t,T) = ¢~ i JOmtnds
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The zero-coupon yield is then

—In(P(1,T))

Ve, T) = T —¢
T
f(s —1t;t)ds
— ft—’ (27
T —1t
In the case of a 1-Brownian motionAFU, P,.(t, T) is
P ([ T) . e_/;T CO_CI6721(,”(.vfl)+m(t)(efkm(sft)_672Km(sft))_‘_d(t)efZKm(xft)ds
zZc\b» -
T
,—2Km (s—1) —Km(s—1) —2Km (s—t) —2Km (s—t)
_ e—[co(s)—cl‘ e (D) e —m (1) e +d (1) }
—2Km (T—t) _ —Km (T— —2Km (T— —2Km (T—t) _
R e e R
=€

Similarly, the zero-coupon yield can be expressed as

- ln(ch(t: T))

Veet, T) = T
1 (e—2Km(T—t) _ 1)
= — | Co(T —t Cl—————
T |: o( )+ Ci K, ]
1 28_Km(T_[) — e_ZKm(T_I) — 1
— t
T —1 [m( ) 2K,
(e—QK,,,(T—t) _ 1)
dt)y————
+d(1) K,

It is clear from this expression for y,.(¢, T') that the zero-coupon yields are
affine functions of the state variables. The prices of zero-coupon bonds
and zero-coupon yields for 2-Brownian motion units, n-Brownian motion
units and for multiple AFUs can be worked out in a similar fashion.
Our class of models is a special case of the Affine Term Structure models
studied by Duffie and Kan (1996) and the results for the general affine case
in their paper are also applicable to our model.

Pricing any interest rate derivative in the framework of this model is also
relatively simple. Given the diffusion term o (¢, s), relation (10) gives us the
drift under the risk-neutral measure, thereby specifying the risk-neutral
SDE completely. The distribution of forward rates under the risk-neutral
measure then follows from its risk-neutral SDE:

dfis—t;:0) =0, )T </S o(t, v)dv) dr +o(t, s)TdB,*
t

where B; is an n-dimensional Brownian motion under the risk-neutral
measure. The price of any derivative product is then obtained by taking
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the expectations of the payoff, given that the forward rates follow the risk-
neutral process specified above. The expectation of the payoff under the
risk-neutral process can either be solved for in closed form from the PDE
for the derivative security, or by performing Monte—Carlo simulations of
the risk-neutral process. Ait-Sahalia (1996a) and Hull and White (1990)
show how derivative prices can be calculated using these approaches.

3. Empirical Implementation

3.1 Data: Fama-Bliss treasury

For the period July 1964 to December 2004, we obtain monthly prices
of 16 zero-coupon bonds of various maturities ranging from 8 days to
approximately 5 years from the Center for Research in Security Prices
(CRSP). For maturities of less than 1 year, we use the Fama Treasury
Bill Term Structure File. For maturities of 1 year or more, we use the
Fama-Bliss Discount Bonds File. Both these files are in the Monthly CRSP
US Treasury Database.

The implied continuously-compounded forward rate for maturities
between any two adjacent bonds is computed and taken as the
instantaneous forward rate associated with a maturity that is at the
mid-point between the two bonds’ maturities.!” This procedure converts
each adjacent pair of zero-coupon bonds into an instantaneous forward
rate with an associated maturity. Thus, at each date we have 16 point
estimates of instantaneous forward rates (we introduced a new bond with
maturity zero and price $1 at each date to get a total of 17 bonds and 16
adjacent pairs). Although the 16 point estimates of instantaneous forward
rates do not have identical maturities across different dates, the maturities
are nevertheless stable. Summary statistics of the constructed forward
rates are displayed in Table 1.

10 For instance, if on date  we have 2 zero-coupon bonds with prices P; and P, maturing on dates 7j and

T, respectively, we set
(T ), ) 2 e = Iny
; 2 ! - T, —-T
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Table 1
Summary statistics of constructed monthly Fama-Bliss forward rates, July 1964 to December 2004

Mean maturity (years) ~ SD Maturity (years) ~ Mean forward rates ~ SD Forward rates

0.03590 0.01018 0.05708 0.02723
0.11351 0.01841 0.06011 0.02837
0.19689 0.01855 0.06263 0.02936
0.28021 0.01840 0.06281 0.02897
0.36354 0.01834 0.06451 0.02922
0.44688 0.01816 0.06489 0.02935
0.53022 0.01801 0.06468 0.02821
0.61357 0.01813 0.06642 0.02875
0.69693 0.01816 0.06703 0.02937
0.78028 0.01815 0.06574 0.02892
0.86360 0.01842 0.06630 0.02804
0.95262 0.01027 0.06827 0.02708
1.5 0 0.06893 0.02645
2.5 0 0.07204 0.02449
3.5 0 0.07409 0.02427
4.5 0 0.07402 0.02358

Fama-Bliss zero-coupon prices each month are converted into implied continuously compounded
forward rates by assuming a flat term-structure between any two adjacent bonds.

3.2 The statistical model
We explicitly model the three components of the forward curve as sums of
exponentials:!!

M0 =33 A Mym; () (28)
i=1 j=1
n nqg
D(‘L’;t) = ZzekﬂDijdj(t) (29)
i=1 j=1
U(t) = Zuiekif (30)
i=1

In Section 2 we show that restrictions (for the 1- and 2-Brownian motion
AFU examples given there) on k;, M;;, D;; and u; ensure that the model
is arbitrage free. The models we estimate in this article have the property
that

ki=ixKnmi=0,1,...,n—1 31)

for some free parameter K,, > 0 that is to be estimated from the data. For
a given model the coefficients of the matrices M and D are fully determined
by the arbitrage constraints. The coefficients u; of the unconditional curve
will be fitted to an average forward curve across all the data.

For notational simplicity, relations (28) to (30) assume that there are n,,, maturity-specific state variables
and n, date-specific state variables fitted to n bases.
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aDeﬁne the vector k = [k1, ..., k], and the vector of exponentials
e =[e", ..., e"]. Then we can simplify the specifications for the three
components to

M(z: 1) = (€)M (1) (32)
D(z; 1) = (7Y Dd (1) (33)
Ur) = ()i (34)

Putting these together we get
fx:0) = (Y (@ + M) +Dd() )

The vector-valued stochastic processes m (¢) and d (1) are modeled by the
following SDEs:

dm(t) = Vumdt + 3, (m)dB(1) (35)
dd(t) = Vaddt + S4(i)dB (1) (36)

The matrices V,, and V; and the matrix valued functions X,,(m) and
X 4(m) are determined by the model’s no-arbitrage conditions. Note that
the matrix valued function V,; depends on 7 and not on d to satisfy the
no-arbitrage condition.

Here is a simplified outline of our estimation procedure:

1. Ondate T, use all the data (across dates and maturities) available up
to date T to fit the unconditional forward curve with exponentials
(which are functions of K,,; see relations (34)and (31)) to obtain

U(Q).
2. Use a KAalman filter to estimate the stochastic process 7Z; =
fG=UQ).

3. Maximize a quasi-likelihood to estimate K,, and o*2, where o*2 is
the variance of the measurement errors, which we define later in

Section 3.4.

Each of these steps is more completely described in the remainder of this
section.

3.3 Fitting the unconditional curve

Because the basis functions for the unconditional curve are parameterized
as exponential functions of K,, we begin with an initial value for K,,. We
then create an “average” forward curve by taking the mean maturity and
mean forward rates for each of the 16 daily rates over the relevant sample
period. The unconditional curve is fitted to this “average” forward curve
using the basis functions. Given the fitted unconditional curve, we subtract
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the unconditional rates at corresponding maturities from each observed
forward rate in the sample, leaving a “deviations-only’ data vector, which
we define below as z, and feed into the Kalman filter as observations.

3.4 Fitting the Kalman filter
A standard Kalman filter can be used to estimate a system of unobserved
state variables in which the observed variables are linked to the unobserved
state variables via a measurement equation, and the transition equation
for the unobserved state variables is specified as a system of linear
equations with Gaussian innovations (see Hamilton (1994) Chapter 13
for a discussion of the Kalman filter’s implementation and estimation). If
the innovations in the unobserved state variables are not Gaussian (which
is the case for our model), estimates from the standard Kalman filter are,
in general, not conditionally unbiased estimators of the true state variables
(Chen and Scott (2002)). However, it is still possible to proceed with the
implementation of the Kalman filter by assuming that the innovations are
indeed Gaussian in order to obtain a quasi-log-likelihood from the Kalman
filter, and then optimize over that quasi-log-likelihood to obtain quasi-
maximum likelihood (QML) estimates for parameters of the model.'?> The
parameters in the model that we need to optimize over the quasi-log-
likelihood are K,,, the decay rate of the maturity-specific deviation, and
o*2, the variance of the measurement errors. Duffee and Stanton (2004)
show that the use of QML via the Kalman filter in term-structure model
estimation yields favorable results as compared to those from another
common estimator, the Efficient Method of Moments of Gallant and
Tauchen (1996). Duffee (2002) also highlights several other advantages of
using QML including the fact that there is a positive probability that the
fitted model could generate the empirically observed data, unlike method
of moments-type estimators.

By viewing m(¢) and c?(t) as latent state variables we are able to fit
our model directly into a Kalman filter framework. Stack a sequence of

maturities into a vector T = [ry, . . ., 7,]'. Next place m(¢) and d(t) into a
vector x;:

- m(t)

xt—|: 30 } 37)

At each date t, we can relate these to the observed data with the
measurement equation:

2[ = f(?, 1) — U(?) = A)_ét + gt (38)

Several authors (including Geyer and Pichler (1999), Chen and Scott (2002) and DeJong and Santa-Clara
(1999)) have also estimated term-structure models with nonGaussian innovations and made use of such a
QML estimator.
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where A is the measurement matrix for the state variables, and €, is the
vector of measurement errors. The j-th row of the matrix A is defined as

A= [(eiff)’M, (eE’-/)’D] . (39)

To allow for statistical estimation, we now simplify the model by adding
the assumption that the measurement errors are homoscedastic and both
cross-sectionally and serially uncorrelated:

Y. = Var(E,) = o**1. (40)

We estimate the noise variance o*> from the data when maximizing the
quasi-likelihood.

We can now derive the transition equation of the Kalman filter as the
discretized version of the stochastic process for ¥;. First let

[ Va O o[ Bwm)
V_|: 0 Vd}andZ(m)_[Zd(%)}.

The transition equation is therefore
X =WX_+&,, (41)
where W is a diagonal matrix with
Wi = eVii, (42)
where § is the step size, and we approximate Q, = Var,_;(§,) by
0, ~ §Z(m)X(m). 43)

Given this specification for the Kalman filter, we set the initial estimates
of the state vector at its unconditional mean, which is zero (xo = 0), and
set the initial covariance matrix at the unconditional variance Var(x;). We
can then run the Kalman filter to estimate the state variables by iterating
between the prediction equations and the updating equations as in DeJong
and Santa-Clara (1999), Geyer and Pichler (1999) and Babbs and Nowman
(1999).13 We provide a copy of the standard equations of the Kalman filter
in Appendix A.4.

Standard code for the Kalman filter generates a log-likelihood function
which we maximize to fit the parameters. The next section shows how to
use this likelihood to select a model.

The framework of the model places boundaries on the values of some of the state variables. The diffusion
terms, which are functions of the maturity-specific state variables, must be constrained to be nonnegative.
This in turn places constraints on those state variables. In the empirical implementation, a simple and
common way of enforcing this restriction is to replace the values of the state variables that do breach
the constraints with ones that just satisfy it. See Chen and Scott (2002) and Geyer and Pichler (1999) for
further examples of such restrictions in a Kalman filter.
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3.5 Picking a particular model

Sections 2.1 through 2.4 showed how AFUs can be constructed and
combined so that the resulting forward curve f(t;t) has arbitrage-free
dynamics. We now select a specific model combining AFUs that will
later be used in Section 4 for estimation, forecasting, and comparison to
benchmark models.

To select a model for empirical implementation, we evaluated seven
candidate models over a period of training data (July 1964 to June 1984)
that is prior to the period in which we examine out-of-sample forecasting
(July 1984 onwards). This is to ensure that the forecasts generated in later
sections are truly out-of-sample—both model selection and parameter
estimation are dependent only on the training data available up to the
date the forecast is made. We evaluate the model using both log-likelihood
and the Akaike Information Criterion (AIC, Akaike (1973)). The log-
likelihood function for each model is directly obtainable from the Kalman
filter that we implement and describe in Section 3.4. The AIC adjusts the
log-likelihood of a model by penalizing additional degrees of freedom. Our
latent state space approach does not lend itself to the usual application
of AIC for model selection; however, a correction for degrees of freedom
can still be implemented by adjusting the log-likelihood appropriately. We
present the log-likelihood, the number of state variables, the number of
free parameters, and the AIC for each of the seven models that we test
in Table 2. As that table shows, model 6 has the highest log-likelihood
as well as the lowest AIC value (the log-likelihood for model 6 is much
larger than the closest competitor; for reasonable penalty functions used
to adjust for the number of free parameters, the relative rank among the
competing models will not change). Model 6 is thus the model of our
choice (henceforth the Chua, Foster, Ramaswamy, Stine (CFRS) model).

. The CFRS Model—Structure and Forecasts

4.1 Description of the CFRS model

The CFRS model (model 6) combines two 2-Brownian motion AFUs and
fits the forward curve to three exponential functions {e=Km, ¢=2Kn  o=4Kn 1,
The parameterization of the forward curve (now written F(t;t) to
distinguish it from the explicit versions of AFUs in Section 2) is as
follows:

F(ri0) = (7Y (ﬁ M) + DJ(;)) Fe(r:n), (44)
where
1 0 0 00000
N —Knut
I 2 2 o100 0
@) =1 ke |[M=| H J|'D=1 5067101 |
e—4KnT 0 -1 00010
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Table 2

Log-likelihood and Akaike Information Criterion values (AIC) in model selection using monthly Fama-
Bliss forward rates from July 1964 to June 1984

State Free Log-

Model Composition dimensions parameters likelihood AIC
Model 1 AFU1 2 3{Cy,C1, Km} 12417 —24827
Model2  AFU2 3 3{Co.C1, Km} 12716 —25427
Model 3  AFU3 4 4{Cp,C1,Cy, Kim} 12904 —25800
Model4  AFUI + AFU2 5 3{Co,C1, Km} 12600 —25194
Model 5 AFUI + AFU3 6 4{Cp,Cy,Cy, K} 12872 —25736
Model 6  AFU2 + AFU3 7 4{Cp,Cy,Co, Kim} 13014 —26020
Model 7 AFUI + AFU2 + AFU3 9 4{Cy.C1,Cy, K} 12999 —25990

We use the Fama-Bliss training data to derive the log-likelihood and AIC values for seven competing
models. The model with the highest log-likelihood and lowest AIC value is our model of choice (CFRS
model). AIC is calculated via the formula —21n L + 2K, where L is the likelihood, and K is the number
of free parameters in the model. The models that we consider are made up of combinations of the
following three AFUs (where m; (r) refers to the maturity-specific state variable of the i-th AFU, and
d; k(1) refers to the k-th date-specific state variable of the j-th AFU):
1. AFULU(s — 1) +my (1) (e=Km =0 — o=2Km =0y 1 gy | (1)e=2Km (=0
2. AFU2:U(s — 1) +my(t)2e~Km©=0 _2e=2Km =0y 4 24y 1 (1)e=2Km =D dy 5 (1)e=Km (=D
3. AFUB3: U(s — 1) + m3(t) e~ Km =) _ =2Km(s—1) _ o=4Km (s=1))
+d3, (e 2Km =0 4 gy 5 (e 4Km6=0 1 gy (1) 2Km =0

m(t) = [

di (1)
dr(t)
ml(”},o?m: () | i =
) ds(0)
ds (1)

Co
0
_Cl
_C2

In this parameterization of the forward curve mi(¢), di(t) and d»(¢)
correspond to the maturity and date-specific deviations of the first 2-
Brownian motion AFU and m;(¢), d3(t), d4(t) and ds(¢) correspond to the
maturity and date-specific deviations of the second 2-Brownian motion
AFU, and these AFUs are independent. Therefore there are seven state
variables in this system: m (t), ma(t), di (1), da(t), d3(t), da(t) and ds(1).
The stochastic processes for vectors m(t) and d(t) are

where

\Z

dm(t) = V,mdt + 3,,(m)dB(t)
dd(t) = Vddt + $,(m)dB (1)

[ —K, O

k]

[ —2K, O 0 0 0
0 —K, 0 0 0
0 0 —2K, 0 0
0 0 0 —4K,, 0
0 0 0 0 —2K,,

(45)
(46)
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Vi 0 0 0
- 0 You 0 0
Sy =| Yo 00 0],2d(n‘1)= 0 0 yy, 0 |,
L0 0 v 0 0 0 ¥y 0
0 0 0y,
_dBl’[
_ de’[
dBt_ dB3,z ’
_dB4,t

using four independent Brownian motions, and

2 K?
)’%,z = <m1(t) + §C1> Tm

2 2 2
Vi = ml(f)‘i‘gcl K,

2 = (a0 + 2c Ko
y3,t_ my 3 1 4

Vi, = Gmay(t) +4C2) 2K

In Appendix A.2 we show that this model satisfies the HIM conditions.
As before, this requires us to specify a market price of risk, which is

2
Kl,l K_yl,t

~ K TV

fe=| 2= & (47)
K3, X, V31
Kar 2K, V4t

Within the Dai and Singleton (2000) classification scheme, the CFRS
model is a special case of an A,(7) model, because there are seven state
variables and the correlation structure of the diffusion process is driven
by two state variables: m(t) and mj(t). While estimation of a seven-
state variable model is typically intractable due to the large number of
parameters that need to be estimated, this is not the case with the CFRS
model. In the seven-state variable framework, the CFRS model already
has most of the parameters fixed relative to the maximally flexible member
of that class and only a few parameters need to be estimated. This makes
the seven-state variable CFRS model both simpler and easier to estimate
than even the maximal three-state variable model.

To implement the CFRS model within the Kalman filter framework we
set§ = 11—2 and follow the procedure described in Section 3.2.
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4.2 Fitting the CFRS model to the full sample

In this section, we fit the CFRS model to the full sample to demonstrate the
estimation procedure and illustrate its properties. It should be emphasized
that this is not an out-of-sample forecasting exercise; that is left to
Sections 4.3 to 4.5.

We first estimate the unconditional curve. Fitting the unconditional
curve on the original bases, {1, e 2Kn(=0_ ¢=4Kn(s=0} ' resylts in unstable
estimates of C; and C, due to the significant collinearity between e ~2Km (=0
and e 4Kn¢=0 S0, we fit the unconditional curve to two bases, {1,
e 2KmG=0} In other words, instead of using {1, e 2Kn(=0 = o=4Kn(s=0)}
as the bases for fitting Cy, C; and C5, we use {I, e=2Kn¢=0} as bases

for fitting Cy and C,. We then make the assumption that C; = 2C, and

Cp, = %61.14 Summary statistics for the unconditional curve of the CFRS

model are displayed in Table 3. The coefficients for Cy and C; are 0.08045
and 0.01911 respectively, implying an unconditional curve that starts at
6.134% and rises monotonically to 8.045% at infinite maturity.

Next, we construct the Kalman filter “observations’ by subtracting the
estimated unconditional rates from the forward rates. Using this data
and the Kalman filter equations specified in the previous section, we can
calculate the log-likelihood for any given set of parameters. We then
optimize over the parameter space to find the parameter values (K,,, o*?)
that maximize this quasi-log-likelihood.

Summary statistics for the fitted curves of the CFRS model are displayed
in Table 4 while Figure 3 displays the fitted unconditional curve, the
“average” curve and the average fitted curve of the CFRS model. The
half-life of the maturity-specific deviation is 4.30 years, corresponding to
the estimate of K,, of 0.1612. It is important to note that this number is
not comparable to the half-lives estimated in the CIR and Vasicek models,
because our model also simultaneously estimates a date-specific deviation
that, at zero maturity, dictates the level of the short term or spot rate. The
fitted spot rate on any date ¢ is F(0;7) = U(0) + D(0; t). Therefore, we
have

F(0;1) = U(0) + 2d1(t) + d2(2) + d3(t) + da(t) + ds(2) (48)

By looking at the slope of the estimated curve of date-specific deviations
at zero maturity we can then estimate the instantaneous drift of the spot

This particular split of C; into C; and C, permits maximal flexibility for the evolutionary dynamics of
my(1). Notice that the diffusion terms of the state variables, y ; , must be nonnegative. In particular, the

model restricts V%/ >0 and szn > 0. This translates to the following constraints: m» (1) > —%Cl and
my(t) > — ‘3—‘ Cy.To allow for maximal flexibility, it is ideal for both constrains to be binding simultaneously.
We therefore have C; = 2C,, which then leads to the proposed split of C| = %Cl and C) = %Cl .
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Table 3

Unconditional curve of CFRS model, Fama-Bliss treasury data, June 1964 to December
2004

Coefficient Fit Lower 95% CI Upper 95% CI

Co 0.08045 0.07726 0.08364

Cq 0.01911 0.01500 0.02322

The unconditional curve is of the form U(s — 1) = Cy — 616721{’" (=1 where Ky =
0.1612. An “average” forward curve is created by taking the mean maturity and mean
forward rates for each of the 16 daily rates across time. The values Cy and C are then
obtained through the least squares criterion. We report the fitted values and their 95%
confidence intervals.

Table 4

Estimated state variables of CFRS model, Fama-Bliss treasury data, June 1964
to December 2004

State Variable Mean SD

my(t) —0.00087 0.01145
dy (1) 0.00285 0.00736
dy (1) —0.03314 0.03069
my (1) 0.01212 0.01314
ds(1) 0.00082 0.01038
dy (1) —0.00209 0.00824
ds(t) 0.02828 0.04378

We choose a set of parameters that maximizes the quasi-log-likelihood of the
Kalman filter. This table provides the summary statistics of the state variables
generated by the Kalman filter using that set of optimal parameters.

rate at time ¢:
oD
O 4Kdi(6) — Knda(t) — 2Knds (1)
ot =0
—4Knds(1) — 2K nds (1), (49)

showing that the current values of the state variables in the CFRS
specification that drives the date-specific component also dictate the local
drift of the spot rate.

From Table 4, we also observe that the first AFU is dominated by one
state variable, d»(t) which has a strong negative mean and a relatively large
standard deviation. The second AFU is dominated by ds(¢), which has a
strong positive mean and an even larger standard deviation. The average
deviation is approximately zero, resulting in close agreement between the
average fitted curve and the unconditional curve, as observed in Figure 3.

Figure 4 displays the term-structure of the time-series standard
deviations of the maturity-specific deviation, the date-specific deviation
and the total deviation (sum of maturity- and date-specific deviations). This
figure shows that the standard deviation of the total deviation decreases as
maturity increases. At short maturities, the date-specific deviation accounts
for most of the variability; beyond maturities of 4 years, the variability of
the maturity-specific deviation exceeds that of the date-specific deviation.
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Figure 3

Unconditional curve, “Average” curve and average fitted curve of CFRS model, Fama-Bliss treasury data,
June 1964 to December 2004

An “average” forward curve is created by taking the mean maturity and mean forward rates for each
of the 16 daily rates across time. The data used to derive the “average” forward curve are reported in
columns 1 and 3 of Table 1. The unconditional curve is of the form U(s — 1) = Cy — éle’ZK’” (=1 where
K = 0.1612. The values C( and C| are then obtained through the least squares criterion, and are reported
in Table 3. The average fitted curve is obtained by creating an average deviations curve based on the

average state variables reported in Table 4, and adding that average deviations curve to the unconditional
curve.

4.3 Out-of-sample forward rate forecasts from the CFRS model

We evaluate the predictive power of the CFRS model by comparing its
out-of-sample forecasting accuracy to that of standard benchmarks such
as the RW model, the EH model and the Expectations Hypothesis with
Term-Premium model (EHTP). To ensure that our forecasts are truly
out-of-sample, all fits and parameter values are calibrated using only data
available on or before the date that any forecast is made. In making out-
of-sample forecasts, we use a rolling training interval with a fixed length of
20 years. The fitted curves and parameters based on the 20-year training
data are then used to forecast future forward curves 3-months, 6-months,
12-months and 24-months from the last date in the training data. The
training data is then rolled ahead by one month to estimate a new set of
parameters to be used in making forecasts from the last date in the new
training set.!?

For instance, data from July 1964 to June 1984 are used to calibrate the Kalman filter parameters via QML
and to get the estimated state variables for June 1984. These parameters, along with the estimated state
variables for June 1984, are then used to forecast the forward curve for September 1984, December 1984,
June 1985 and June 1986. Then, data from August 1964 to July 1984 are used to produce forecasts for
forward curves 3-months, 6-months, 12-months and 24-months from July 1984. This process is repeated
until the final forecast is for December 2004, which is the end of our sample.
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Figure 4

Standard deviation of Maturity-Specific deviation, Date-Specific deviation and total deviation of the CFRS
model, Fama-Bliss treasury data, June 1964 to December 2004

Using the full sample period from June 1964 to December 2004, we compute the monthly maturity-specific,
date-specific and total deviation based upon the monthly fitted state variables obtained from the Kalman
filter. We then report the time-series standard deviation of these quantities at each maturity up to 20 years.

Generating forecasts of future forward curves given the fitted parameters
and the state variables on the last day of the training data is
straightforward. We only need to generate forecasts of the state variables
at the future date, and then convert those forecasted state variables into the
implied forward curve. Assuming that the last date in the training period is
t, we generate the forecast for a future date 7 in the CFRS model by using

1 (T) = Elmi (T) |y (0] = iy (1)e Km0
di(T) = Eldy(T)|dy ()] = dy (r)e™ 2T
do(T) = Eldo(T)|d>(0)] = do(ye™ K T=0
ia(T) = Ema(T) iy (0)] = sy () Km0
ds(T) = E[d3(T)|ds ()] = dy(1)e>mT =0
dy(T) = E[ds(T)|ds()] = da(t)e=*Kn(T=D
ds(T) = E[ds(T)|ds(1)] = ds(t)e™KnT=0

With the forecasted future forward curves, we can calculate the forecast
errors as the differences between the forecasted forward rates and the
observed forward rates on the forecasted date. In reporting the forecast
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performance, we put our forecast errors into several maturity buckets: 0
to 1 year, 1 to 5 years and 0 to 5 years.

4.4 Out-of-sample forward rate forecasts from other benchmark models
We use several benchmark models to act as comparisons to the forecasts
of our model: the RW model, the EH model and the EHTP model.

To generate forecasts from the RW model, we fit each date’s
observed Fama-Bliss forward rates to the following bases: {8;}=
(1,705 =1t =157} 16 where 1; is the maturity of the i-th forward
rate for that date, thereby generating a smooth fit for the date’s forward
rates. The forecast of the RW model for any future date is the same fitted
curve.!”

To generate forecasts from the EH model, we fit each date’s forward rates
to the bases {$;,}. On date ¢, let the estimated coefficients correspond-
ing to the basis functions {f,,} be {EH (1), EH>(t), EH3(t), EH4(1)}
respectively. The forecast of the EH model for date 7 in the future,
conditional on the fit on date ¢, would be based on the following coef-
ficients: (EH\(t), EH»(t)e="3 T EH;(t)e "7, EHy(t)e 15T},
This implies that if the fitted forward rates on date 7 are

f(s—t;1)=EH(t) + EHy(t)e "5
+ﬁ13(t)e—l(s—t) + ﬁl4(t)e—l.5(s—t)’

then the forecasted forward rate on some future date 7 for maturity on date
s would be the same as the forward rate on date ¢ for maturity on date s:

f(S —T;T)=E[f(s—T; T)|f(s 0] = f(s—1;1)
= E/'Hl(t) + ﬁ{z(t)e—o.ﬂs—t)
+E/"[\{3(t)efl(sft) + E/'ﬁ4(t)e71'5(x*t)_

To generate forecasts from the EHTP model, we first estimate an average
term-premium by calibrating the implied “steady state” curve to match as
closely as possible the “average” curve described in the previous section
via the least-squares criterion. We parameterize the “steady state’ curve as

fss(s —t) =SSy + Ssle—O.S(s—t)

We investigate alternative specifications of the bases for the benchmark models, including
{1,e=KmTi e 2Kmt; o~4Km7T; }, but these have much poorer out-of-sample forecasting accuracy than
the ones that we adopt.

An alternative method of generating forecasts for the RW model is simply to use the actual rates, as
opposed to fitted rates, as forecasts of future rates. We implemented this method and found that the
out-of-sample forecasting accuracy of this method is virtually identical to the one that we adopt.
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where a negative value for SS; indicates an upward-sloping “‘steady state”
curve, and therefore positive term-premiums. We assume that this term-
premium is time-invariant. Next, we subtract the steady state rates from all
the forward rates in the data, leaving us with the residuals. These residuals
are then assumed to conform to the EH. Again, we fit the residuals to
the bases: {8,,}. On date 7, let the estimated coefficients corresponding to
the basis functions {f.,} be {ﬁl (0, ﬁz(t), ﬁ3(t), ﬁ4(t)} respectively.
The forecast of these coefficients for date T in the future conditional on the
coefficients on date t would be {T P (t) , T P2(t)e "3T=0 T P(t)e1T—1
, TP4(t)e~"5T=D} To generate the forecasts of the forward rates, we need
to add back the term premiums:

f(s = T:T) =58+ 8817300 + TPy(1) + (TPy(1)e*>T)
Xefo.S(xfT) + (ﬁ?’(t)efl(Tft))efl(sft) + (ﬁ4(t)efLS(Tft))efl.S(Sft)

We compare the accuracy of the forecasts generated from our model, the
RW model, the EH model, and the EHTP model by looking at the forecast
errors generated by each model. We first compute the difference in RMSE
between two competing models. We then use the Newey—West estimator
(1987) to compute the variance estimate of the RMSE-difference series,
correcting for auto-correlation and heteroscedasticity!® in the series. The
z-score (N'W-stat) for the significance of differences between two compet-
ing forecasts can then be directly derived from the differences in means
and the computed variance.

The results are shown in Table 5. At the 3-month horizon, the forecasts
of the CFRS model mildly underperform relative to the RW model and
mildly outperform relative to the EH and the EHTP models (a negative
value of the NW-stat indicates that the CFRS model performs better than
the competing models). The CFRS model’s performance at the 3-month
horizon can be attributed to its less than perfect cross-sectional fits: the
CFRS model’s fits are more constrained due to stronger restrictions in its
parameterization. Short horizon forecasts are necessarily very similar to
the cross-sectional fit. Therefore, poor cross-sectional fits naturally result
in poor short horizon forecasts. Another explanation for the observed
forecast performance at short horizons is that the signal-to-noise ratio
here is extremely low so most of the innovations in the forward curve at
short horizons are noise, and are likely left unexplained by any model.
At horizons of 12 months or longer, a good predictive model should be
able to capture more signal relative to the random movements of the
forward curve. This explanation is supported by the fact that the relative
forecasting performance of the CFRS model improves dramatically when
we move from the 3-month to the 6-, 12- or 24-month horizons.

18 See Diebold and Mariano (1995) for another possible test of significance for auto-correlated series.
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At the 6-month horizon, the CFRS model significantly outperforms the
EH model. While the CFRS model also outperforms the RW and EHTP
models, the difference in RMSE is not statistically significant. At the
12-month and 24-month horizons, the CFRS model performs significantly
better than all benchmark models, at all maturities. The only exception
is the 12-month ahead forecast of short maturity forward rates where the
CFRS does not outperform the RW model significantly.

4.5 Out-of-sample yield forecasts

Forward rates are seldom directly forecasted: most authors including
Duffee (2002) and Diebold and Li (2006) use their models to forecast
bond yields. Thus, to compare the accuracy of forecasts of our model
with forecasts made by other models, we translate the forecasts of forward
rates from our model into forecasts of yields. Because the forward curve
in our model is parameterized as sums of exponential functions, yields are
analytically obtainable via relation (27). We also convert the forecasts of
forward rates from the RW model into the implied forecasts of yields. The
differences between these forecasts and the actual realized yields from the
Fama-Bliss zero-coupon bond data are taken to be the forecast errors. As
additional yield-based benchmarks, we replicate Diebold and Li’s (DL)
procedure as well as the various classes of completely affine and essentially
affine models studied in Duffee (2002).

Diebold and Li forecast the yield curve using US Treasury bonds of
fixed maturities from January 1985 to December 2000 by applying an
autoregressive model to the fitted coefficients from the Nelson—Siegel
model (1987). They use a 9-year training window from January 1985 to
January 1994. Thus, their out-of-sample test statistic is generated from
approximately 6 remaining years of out-of-sample forecasts.

Duffee forecasts government bond yields using data from January
1952 to December 1998. He studies several classes of completely affine
and essentially affine models. For each class of models, he employs
QML to estimate the parameters of the models and to generate out-of-
sample forecasts; he uses a 43-year training window from January 1952
to December 1994 to generate approximately 4 years of out-of-sample
forecasts (from January 1995 to December 1998).

For the purpose of this study, we repeat the forecasting techniques of
Diebold and Li, and Duffee. However, we apply their procedures on our
full data sample: June 1964 to December 2004. Similar to the forward rate
forecasts, we use a 20-year training window, generating approximately 20
years of out-of-sample forecasts.!® We compare the relative performance

Some authors have argued that the years of the “Fed Experiment” from 1979 to 1982 are an unusual
period for interest rates. To ensure the robustness of our results, we repeat the entire forecasting exercise
using only data from January 1983 through December 2004, with a 10-year training window. The results
are the same, albeit with lower statistical significance due to the shorter sample period.
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of the CFRS model, the RW model, the DL procedure (DL model) as well
as multiple classes of models from Duffee (2002). Specifically, in replicating
Duffee’s study, we compute out-of-sample forecasts for both completely
affine and essentially affine versions of maximal Ay(3), A;(3) and A;(3)
models using QML. Following Duffee, we use a set of 1000 random
admissible starting parameters, and all parameters that have ¢-statistics
less than one are set to zero.2 The forecasts from the maximal A;(3)
models are, in general, better than those from the A¢(3) and A,(3) models.
Therefore, we only report the forecasting performance of the maximal
completely affine A;(3) model (written as CA_A13) and the maximal
essentially affine A;(3) model (written as EA_A13).

We report the RMSE and NW-stats of the out-of-sample forecasts from
the various methods in Table 6. Here is a summary of the results:

1. At the 3-month ahead horizon, the CFRS model significantly
outperforms all competing forecasts for yields between 0 and 1
year to maturity. However, it underperforms the RW model for
yields between 1 and 5 years to maturity, although not significantly.
The CFRS model also outperforms the DL and EA_A13 models
significantly for maturities between 1 to 5 years.

2. At the 6-month ahead forecast horizon, the CFRS model
outperforms all competitors across all maturities. These differences
in performance are also statistically significant for maturities from
0 to 1 year (DL model, CA_A13 model and EA_A13 model) and
from 1 to 5 years (for DL model and EA_A13 model).

3. At the 12-month and 24-month ahead horizon, the forecasts from
the CFRS model are significantly better than all competing forecasts
across all maturities.

The remarks in the summary above indicate that the CFRS model has
more forecast power than all comparable methods, especially at longer
horizons and maturities.

5. Conclusion

We have introduced a class of models for forward rates that is arbitrage
free while retaining coherent and economically sensible dynamics. The
three components of this class of models, namely the unconditional
curve, the date-specific deviation and the maturity-specific deviation are
economically easily interpretable and are consistent with other models and
hypotheses relating to the term structure of interest rates.

20 However, instead of using simplex followed by NPSOL to execute the optimization, we use the fiminunc
function in Matlab to find the set of optimal parameters in any given iteration.
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A Dynamic Model for the Forward Curve

Our parameterization of these quantities also simplifies the conversion
of forward rates into bond prices and yields. The stochastic dynamics can
be conveniently expressed under the risk-neutral measure. This leads to
straightforward pricing of interest rate derivatives.

This class of models is empirically feasible to implement and can be used
to generate forecasts of future forward rate curves. The forecasts at 6-, 12-
and 24-month-ahead horizons generated by our particular specification
are significantly better than the benchmark RW model, EH model and
Expectations Hypothesis model with Term-Premium. Forecasts of future
yields also perform better than those in the current literature.

This particular arbitrage-free formulation of our model is by no means
the only possible formulation of the concept of maturity- and date-specific
deviations. Even though our simple class of models can generate good
forecasts, other more sophisticated formulations may produce even better
fits and forecasts.

The models we present for the partitioning of the forward curve into
the three components is immediately and easily extended to forward
curves for commodity prices, such as crude oil: there the maturity-specific
components have similar and intuitive interpretations, while the date-
specific deviations are affected by weather forecasts and output predictions
affecting convenience yields. It is also possible to specify a nonlinear version
of the model but that poses formidable problems in testing because the
model is no longer affine. These topics are left for future research.

Appendix A:

A.1 Proof that the 2-Brownian motion AFU conforms to the HJM
specification

Reiterating relation (25), we have
df(s —t;0) = fidt + fuydm@®) + fo; yddi () + fayydda(t) + fuyndds () (A1)

where all second-order terms are zero.
Since

dm(t) = —m(@®)K,,dt + y, ,dBy,;
ddl(t) = _2d1(t)Kmdt + VleBl,I
ddyr(t) = —dr (1) Kodt + }’L;dBl,t

K
dds (1) = *ds(f)Tzdt +y,,dBy,
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A.2 Proof that the CFRS model conforms to the HJM specification

Relation (A1), the SDE for the forward rate, can be rewritten as

df(s—t;1) = [—Km QCy + m(r))e Km0 _ (CrKy 4+ m(t) (K2 — K,,,))e’KZ(””] dr

—Km(s—1) LS
+ [Ze ms y“] dBy,+|e 27 Vy,y, |dBy,.
Denote the diffusion of the forward rate SDE as

zefkm (S*t)yl .
o(r,s) = Ly

e Yo

2 Km(s— 2

s S T AR AWE S s
o(t,v)dv = ) 7%“7{) )

t —5° Yoot %572

From our earlier assumption that

2
I?x=|: K1y ]: g)’l,r
K2t K—2)/2,r

we have
T ! - 4 5 KmG-n 2 5 —Ky(s—1)
ol(t,s) o(t,v)dv — Kk, =g Ve A .
t m 2
Since
K2
Y1, =m0+ 200
and

2 (CKy+m()(Ky — Ki))(K2)
VZ,( - 2 B

relation (AS) becomes

o(t,s)T </ o (t, v)dv — ;2,) = =K,y (2C1 + m(r))e KmG=0

—(C2K2 + m(t)(Ky — Kyp))e K2070,

(A2)

(A3)

(A4)

(AS5)

The last expression exactly equals the drift of df(s — ¢;¢), and thus satisfies the HIM
condition specified in relation (8).

From It6’s lemma, we have the following SDE for the CFRS model:

40

df(s —t;1) = fidt + fin, (dmi (@) + fa; 0 dd1 () + fu,rdda(t)
+ finy(ydma(t) + fazydds(t) + fay0)dda(®) + fusdds (@)

where all second-order terms are zero.
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Since
dm(t) = —m (1)K, dt + 7y, ,dBy;
dmy(t) = —ma()Kudt + y3,dBs,
dd,(t) = —2d,(t)K,,dt + v, ,dBy
ddy(t) = —d2(t) Ky dt + y,,dBy,
dds(t) = —2d3()Kudt + y3,dB3,
ddy(t) = —4d4(t) Kyndt + y5,dB3,;

dds(t) = —2d5(t)Kmdt —+ V4,1dB4J

the SDE of the forward rate can thus be rewritten as

df(s—t;1) = —KnuQCy + 2my (1) + ma(t))e Km0 gy

—(4C2 Ky + 3ma (1) K, e HKmG=1dy

+2e7 Km0y, 1dBy, + [e Ky, 1By,

+[2€7Km (S7I)7/3,t]dB3.t + [6721(,"(;7;)}/4,

Denote the diffusion of the forward rate SDE as

2 Kntsoby,
e~ Km(s—t y
o(t,s)= 2e—KmGs—1),"

e—ZKm (s—t) Vau

2 —Km(s— 2
—We K’"EY tzyl,t + =71
s — 2L e Em s—t y + —V
— K, 2.t K, 2.t
f o(t,vydv = B O N i
' m Vi T g, V3

1 2Km(s—1) 1
2Km e Yar + 2Km Yar

From our earlier assumption that

K1 Klyl,t
R =] 2 | = K V21
3,0 Km V31
K K V4t

we have,

s ) 4 1 4
ot )T (/t o (t, v)dv ﬂcz) = <7K_my%,t - K_my%” X

L ) —4Km (s—
+ (=3, ) e HKmG=D,
( 2K, .

]dB4,t~

2,t> E—ZKm (s—1)

(A6)
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Since

2
my(t) + 3C1

b s 3a)
( 1(t)+2C.)K
| _(

K;,
ma () + Cl) T

3ma () +4C2) 2K2

relation (A6) becomes

s
ot,s)T (/ o(t,v)dv — ;2,) = —K,,(2C1 + 2m1 (1) + ma(t))e 2KmG=D
t
—(4C2 Ky + 3ma (1) Ky )e Km0,

Because the last expression exactly equals the drift term of d f (s — ¢; ¢), this model satisfies
the HJM condition specified in relation (8).

A.3 A nonaffine parameterization that conforms to the HJM specification
In this section, we present a simple 1-Brownian motion nonaffine model for the forward rate
that is consistent with HIM specifications. Extensions of this nonaffine parameterization to
2 Brownian motions as well as n Brownian motions can also be specified and are available
from the corresponding author.

Parameterize the forward curve f(s —#; ) as

fit—t)=UG—t)+M(s—t;t)+ D(s —t;1)
= Cy— Cre Kmb=D _ C,e=2Km(s—0
+m (1) (e~ KmE=1) — o=2Km (=)
+gm(n)? (e” Km0 — gm0

+d(t)e HKmb=0

where m () is the maturity-specific state variable and d(¢) is the date-specific state variable.
The parameter p is positive and generates the nonlinear relationship between forward rates
and the maturity-specific state variable, while ¢ is a scaling parameter on the nonlinear
component. An intuitive interpretation for such a model is that whenever a shock occurs
to the maturity-specific deviations, different types of agents cause the dissipation of such a
shock at different rates. For instance, suppose that there is a sudden surge in demand for
loanable funds at the 5-year maturity. The forward rate at around that maturity should
increase (reflected by an increase in the maturity-specific deviation around the 5-year forward
rate). There may be a small number of agents who are able to adjust their borrowing/lending
habits very quickly in response to that shock (by either borrowing at different maturities or
by shifting their lending to that maturity). However, the majority of agents may take a longer
time to respond to such shocks. The small set of fast-moving agents can be represented by
the nonlinear term gm(z)? where ¢ is smaller than 1 and p is larger than 1; the large set of
slower-moving agents is represented by the usual m(¢) term.

The following mathematical derivation explicitly defines the restrictions on the dynamics
of the model to ensure that the model conforms to the HIM specification.
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Let the stochastic processes for the maturity- and date-specific state variables be

dm(t) = —m(t)K,,dt + y,dB;
and
dd(t) = —d()2K,»)dt + (1 + pgm()P~)yy,dB,,

where B, is a standard Brownian motion.
‘We then have

1
df (s —t;1) = fidt + finydm (1) + fa@dd(r) + Efm(t)nl(r)dm(t)~dm(t)
= (=C1Kpe Km6=0 — 02K, )e Km0y ds

+(m)(Kpe Kme=D _ 2K, e~ 2Kmb=0yy4;
+(gm ()P (Kpe Kme=0 _ 2K, e~ 2Kmb6=Dyyq;
+d (1) 2K,y)e Km0 dy

+(e7Kmb=0 _ o=2Km =0y (1)K, dt + y,dBy)

+pgm ()P~ (e KmG=0 _ o=2KmG=Dy (1)K, dt + y,dB;)

+e 2KmG=D (_d(r) (2K »)dr + (1 4 pgm(1)’~ )y, dB,)

—1
+P(P2 )qm(t)pfz(eme(xft) _ e’ZK'"(S’”)ytzdz
rp—1D

= <_C|Km + (1 - P)qm(f)me + )

p(p—1)

<72C2Km —m(t)Ky + (p —2)gm(t)’ Ky, — 3

xe XKm=Ddqp Y (pgm(@)P~! + e Km6=0dp,.

Denote
o(t,s) =y, (pgm(®)"~" + 1e Km0,
Then
[ ot vv ey = PIOTTED ot | i OTIAD)
‘ K, X,

s 2 t p-1 1 2
a(t,s) (/ o(t,v)dv — Kt) - - plpam®” 4 e 2KmG=D
1 Ko

Vilpgm@?~ '+ 1)

+ ¥ (pgm®)" + 1) ( i

qm(t)p72y3> e~ KmG=04;

qm(t)"’zy?>

t

K[) E—Km (s—t) .
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To ensure that o (, s) (f o (t, v)dv — K, ) equals the drift of df; (s — #), we match coefficients.
Matching coefficients for e=>Km (=" we have

_yipgm@®" 1?7

—1
P 20Ky — m(®) K + (p — 2gm(t)? Ky — PP =D

5 ) gm()? 22,

Matching coefficients for e~ Xm =0 we have

-1
)/,(pqm(t)'FI +1) <%)p+l) _ Kz)

= —CiKp + (1= p)gm()’ Ky + 2

-1
%qm(t)”"zy,z.

Solving these equations for the values of y? and «,, we find

y2 = —2C K —m@) K + (p = Dgm )P K
=

(p=1 7 nP—141)2
ppz gm(t)r-2 — (pqm(Km )

and

o Yipgm@P ) —CiKy + (1= plgm®)’ Ky + 22D gm(1)P=2y?
! Kn vi(pgm@P=1 4+ 1) ‘

With these specifications for y, and «,, the model conforms to HIM and is arbitrage free.

A.4 Standard equations of the Kalman filter
First we need the prediction equations:

Xt|t—1 = Wﬁet—lp—l (A7)

where x;,_ is the time # — 1 prediction of x, and X,_j,—; is the time # — 1 estimate of x,_,
and W is as defined in relation (42) in Section 3.4.

Pt\t—l = Wﬁl—llt—lWl'i'Qt (AS)

where Py;_ is the time r — 1 prediction of P; and f’,,”,,. is the time ¢ — 1 estimate of P;_;
(P is the covariance matrix of the state vector x).

Updating equations:
R = Xej—1 + P A'F My, (A9)
By = Pi—t — Py AFT AP (A10)
where
v =2 — Axg—t (Al1)

are the prediction errors, A is as defined in Section 3.4 and
Fi = AP 1A' + 0% (A12)

is the conditional variance of the prediction errors
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