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Abstract

Common approximations for the minimum description length (MDL) criterion im-

ply that the cost of adding a parameter to a model fit to n observations is about

(1/2) log n bits. While effective for parameters which are large on a standardized scale,

this approximation overstates the parameter cost near zero. A uniform approximation

and local asymptotic argument show that the addition of a small parameter which is

about two standard errors away from zero produces a model whose description length

is shorter than that of the comparable model which sets this parameter to zero. This

result implies that the decision rule for adding a model parameter is comparable to

a traditional statistical hypothesis test. Encoding the parameter produces a shorter

description length when the corresponding estimator is about two standard errors away

from zero, unlike a model selection criterion like BIC whose threshold increases loga-

rithmically in n.
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1 Introduction

The description length of a sequence of n random variables Y1, Y2, . . . , Yn based on a

model with k parameters θ1, . . . , θk is defined as (Rissanen 1983)

Ln,k(Y, θ) = log∗
(
C(k) ‖ θ ‖k

)
+ log

1
P (Y |θ) , (1)

where P (Y |θ) is the likelihood function, C(k) is the volume of the k dimensional unit

ball, the parameter norm is

‖θ‖2 = θ′Hθ, H =
−∂2 logP (Y |θ)

∂θ2
,

and log∗ denotes the iterated logarithm

log∗ x = log x+ log log x+ · · · , (2)

where the sum extends only over positive terms. All logs are base 2. The description

length approximates the number of bits required to encode both the parameters of

the model and the associated compressed data. In order to select the best parametric

model from among several of possibly varying dimension k, Rissanen proposes that one

choose the model which obtains the minimum description length (MDL).

As a model selection criterion, MDL presents an explicit trade-off of model com-

plexity and goodness of fit to the data. The two summands which define the description

length (1) can be associated with the lengths of the two components of a two-part code

for Y : a preamble which indicates the value of the parameter θ used to encode the data

Y in the second part of the code. This balance guards against overfitting. A complex

model with many parameters might obtain high data compression (the second part of

the code being rather short), but its complexity would necessitate a long preamble.

The need to encode the model parameters as part of the two-part code thus avoids the

tendency to overfit.

Our results focus on a set of parameter values which are within logn/
√
n of the

origin. Although this set is not studied in the usual asymptotic analysis of MDL,

we show that the decision of whether or not to code a parameter is made on this

set. A particularly important approximation (Rissanen 1989) shows that the minimum

description length of a parametric model is

Ln,k(Y, θ) ≈
k

2
logn+ log

1
P (Y |θ) , (3)
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for all θ in a compact subset of Rk, with the exception of a small set of vanishing

measure. In the one-dimensional case, we show that the cost of coding a nonzero

parameter from the exceptional set near zero is considerably less than (1/2) log n.

Thus, adding such a parameter is “easier” than the approximation (3) would suggest.

The disagreement follows from a lack of uniform convergence in the asymptotics which

produce (3).

The example in the next section gives the explicit correspondence between the de-

scription length and two-part codes for Gaussian data with an unknown mean. This

generic context provides the setting for a detailed look at the code length and so offers

the opportunity to see the origin of the components that make up the MDL crite-

rion (1). We have included in §2 several coding methods whose lengths approximate

log∗. Using codebooks, we demonstrate in §3 that the minimization of the description

length produces a fixed threshold at ±c/
√
n. We conclude in §4 with a brief summary

discussion.

2 Example: Coding a normal mean

Suppose that the data are normally distributed Yi
iid∼ N(µ0, σ

2) with unknown mean

µ0 and σ2 = 1. These data are to be compressed into a two-part code, whose first part

indicates the value for µ used to encode the data which make up the second part of the

code. Ignoring the issue of quantizing the data to some finite precision, the number of

bits required to encode the Yi in the second part of the code using parameter µ is

log
1

P (Y |µ)
=

n

2
log(2π) +

log e
2

∑
i

(Yi − µ)2

= log
1

P (Y |Y )
+Rn(µ− Y ) , (4)

where the ‘regret’ for not using the maximum likelihood estimator Y =
∑
Yi/n is

Rn(δ) =
n δ2 log e

2
. (5)

Here and elsewhere we ignore fractional bits in the calculations.

For those familiar with the often asserted connection between MDL and the BIC

criterion, the estimator for µ which minimizes the description length is unexpected.
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Figure 1: The estimator which minimizes the description length (1) is shown as a function

of the mean of the input data, on a standardized scale. This estimator offers no shrinkage

at the origin.

For this univariate problem, the leading term in the MDL criterion simplifies since

C(1) = 1 and by using (4) we have

Ln,1(Y, µ) = log∗
( √

n µ
)

+Rn(µ− Y ) + log
1

P (Y |Y )
. (6)

To see the impact of this criterion on the choice of the best estimator, Figure 1 shows

a plot of

arg min
µ
Ln,1(Y, µ)

versus the input mean on a standardized scale defined by the standard error SE(Y ) =

1/
√
n. For MDL to produce a parsimonious model, in this case a model with mean

zero, the criterion needs to penalize non-zero values. As Figure 1 makes clear, this

formulation of the description length produces no shrinkage near the origin since the

penalty term log∗(x) = 0 for |x| < 1. Flat spots in the graph originate from jumps in

the log∗ function when an additional summand appears.

In the rest of this paper, we show that a carefully formulated version of the de-

scription length does indeed imply shrinkage at the origin, but of limited magnitude.
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The MDL estimator µ̂ defined in equation (15) of §3 below is shrunken to zero for
√
n |Y | < 2.4. In contrast, the BIC criterion produces an estimate of zero for data with

mean satisfying
√
n |Y | <

√
lnn. Our arguments require a very close accounting of the

message length obtained in a two-part code for the data, and we now turn to these

issues.

Although (4) implies that coding the data using µ = Y produces the most data

compression, we need to round the encoding parameter to finite precision in order to

form the preamble of the two-part code. It turns out that we get a shorter overall

message length by considerable rounding.

Without specific prior information that would imply a coding scheme, one is left

with a somewhat arbitrary choice of how to encode the parameter value. Rissanen

(1983) argues for the the use of an optimal universal representation of the integers,

building on the work of Elias (1975). Suppose that we encode the data using a rounded

parameter of the form µ̃ = j/nm. The total code length obtained in this way is then

Ln,1(Y, µ̃) = log
1

P (Y |µ̃)
+ L(j) , (7)

where L(j) denotes the length of the code for the integer j. Rissanen (1983) shows

that if this length is that of an optimal universal code as defined by Elias (1975), then

the overall code length is minimized by rounding the encoded parameter to terms of

order O(1/
√
n) — that is, with m = 1/2 and Y rounded to a grid with spacing on the

order of its standard error. The integer j defining µ̃ is, in effect, the z score used when

testing the null hypothesis H0 : µ = 0. The code length (7) thus reduces to

Ln,1(Y, µ) = log
1

P (Y |Y )
+ `n(Y , µ) (8)

where the length in excess of the minimum determined by the log likelihood evaluated

at the MLE is

`n(Y , µ) = Rn(µ− Y ) + L∗(〈
√
n µ 〉) , (9)

with 〈x 〉 equal to the integer closest to x and L∗ denoting the length of any such

optimal code. Before moving on, we remark that rounding to this precision alters the

length of the encoded data by much less than a single bit,

Rn(µ− 〈
√
nµ 〉/

√
n) <

log e
8
≈ 0.18 . (10)
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Thus, one can obtain a slightly shorter message by rounding to a more coarse grid.

Such details have been discussed elsewhere (e.g., Wallace and Freeman 1987), and for

our purposes any such grid with spacing to order O(1/
√
n) suffices.

Specific features of the universal representation determine which grid element pro-

vides the shortest code length. The need to encode the parameter does not imply

simply rounding Y to the nearest grid element. Rather, one must round the MLE

to minimize the excess length `n. Depending on the universal code being used, such

rounding occasionally shifts the estimator because of changes in the length of codes for

adjacent integers. Three universal codes for representing the parameter are illustrated

in Table 1; all three are optimal in the sense of Elias (1975) who proposed and named

the first two. Following the convention of Rissanen (1983), all of the codes assign the

one bit symbol “0” to represent zero and treat the remaining integers symmetrically

so that L(j) = L(−j). Our examples show the codes for |j|; a trailing bit would be

added for j 6= 0 to give its sign, adding one more bit to the descriptions in the table.

It is useful to consider the structure of several universal codes. The doubly com-

pound code combines a prefix code of about 2 log log j bits for the length of the binary

representation for |j|, followed by the binary representation itself. This notion of a

code which combines the binary representation together with a prefix representation

for log j is typical of optimal representations, and the doubly compound is perhaps the

simplest of these and serves as an accessible example. Odd bits in the first portion of

the representation shown in Table 1 indicate the number of bits in the binary represen-

tation of |j|. (Spaces in the table are useful for the human reader, but are not needed

by the decoder.) The length of this code is then (with one added for the sign bit)

L∗c(j) = 4 + b log |j| c+ 2 b log(1 + b log |j| c) c j 6= 0 . (11)

Elias (1975) offers some enhancements of this code which save several bits. The penul-

timate code offers a shorter representation for large integers. Each block in the penul-

timate code beginning with a 1 gives the binary representation for one plus the length

of the following block, with the last block giving the bits for j + 1 (except in the case

of the code for 0). A single zero bit denotes the end of the code, indicating that the

previous block gives the sought value. The length of this code for j 6= 0 is (again,
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adding one for the sign bit)

L∗p(j−1) = 2+(1+b log |j| c)+(1+b log(2) |j| c)+· · ·+(1+b log(k) |j| c) , log(k) |j| ≥ 1,

(12)

where terms are included in the sum so long as the k-fold iterated log (e.g., log(2) x =

log log x) is at least one. Thus, L∗p resembles a discretized version of log∗. However,

L∗p(j) is not a uniform approximation because it jumps by several bits at integers of

the form j = 22··· − 1, with the jump equal to the number of logarithmic summands in

(12). Table 1 shows these jumps in comparing L∗p(2) to L∗p(3) and L∗p(14) to L∗p(15).

The final universal representation in Table 1 is similar to the penultimate code,

but uses arithmetic coding to avoid sudden changes in code length. Arithmetic coding

systematically determines an optimal code for a given probability distribution. (e.g.

Cover and Thomas 1991, Chapter 5). Since (Rissanen 1983)

∞∑
j=1

2− log∗ j = c ≈ 2.865 ,

we can associate a discrete probability measure with log∗, Rissanen’s (1983) univer-

sal prior for the integers. Defined for zero and treating negative and positive values

symmetrically, the universal prior assigns probabilities as

Q∗(j) =

 1/2, j = 0,
2− log∗ |j|

4c j 6= 0 .
(13)

Table 1 shows the codes produced by an arithmetic coder for this distribution. This

implementation simply aligns the underlying encoded intervals on dyadic rationals so

that the associated output code lengths are monotone. The properties of arithmetic

coding guarantee that the length of the code L∗a is within a bit of that implied by the

underlying probabilities,

sup
j∈Z
| log 1/Q∗(j)− L∗a(j)| < 1 , (14)

avoiding the jumps in the lengths L∗p of the penultimate code.
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Table 1: Examples of three optimal universal codes for nonnegative integers. Spaces are

for the reader and are not needed in the actual codes. A sign bit would be appended for

j 6= 0. The doubly compound and penultimate codes are from Elias (1975); the third is an

arithmetic coder for the probabilities Q∗(|j|) = Q∗(j) +Q∗(−j), j 6= 0.

Doubly Penultimate Arithmetic

j log 1/Q∗(|j|) Compound Code Code for Q∗

0 1.0 0 0 0

1 2.5 10 1 10 0 100

2 3.5 1100 10 11 0 1010

3 4.8 1100 11 10 100 0 10110

4 5.5 1110 100 10 101 0 101110

5 6.3 1110 101 10 110 0 1011110

6 6.9 1110 110 10 111 0 1011111

7 7.4 1110 111 11 1000 0 11000000

8 7.8 110100 1000 11 1001 0 11000001

14 9.2 110100 1110 11 1111 0 1100010001

15 9.4 110100 1111 10 100 10000 0 1100010010

· · ·

256 15.8 17 bits 16 bits 16 bits

1024 18.4 19 bits 18 bits 19 bits

65534 25.5 26 bits 23 bits 26 bits

65535 25.5 26 bits 28 bits 26 bits
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3 Model selection via MDL

The best two-part code for the data and the MDL estimator for µ are together deter-

mined by minimizing the excess bit length `n. The MDL estimator is thus

µ̂ = arg min
µ∈Z/

√
n
`n(Y , µ) , (15)

where the minimization is over discrete parameter values in the set Z/
√
n = {j/

√
n :

j ∈ Z}. We find that this minimization and the associated rounding is most easily

understood graphically. Each quadratic shown in Figures 2 and 3 indicates the excess

bit length `n(Y , j/
√
n) obtained when data with mean Y = z/

√
n are coded with

parameter µ = j/
√
n. In Figure 2, the height of the base of each quadratic is displaced

by L∗p(j), reflecting the code lengths of the penultimate code. Were it the case that

Y = j/
√
n and the data coded with µ = j/

√
n, then L∗(j) bits would be needed to

encode this parameter value. Figure 3 presumes that µ is coded using the arithmetic

code with length L∗a. For example, suppose z = Y = 0. Then the minimum excess

length in both cases is one bit and µ̂ = 0. If the mean is Y = 1/
√
n, one standard error

above zero (z=1) , coding with µ = 0 inflates the message length by about 1.6 bits, one

bit for coding zero and 0.6 bits due to the relative entropy. However, the excess length

obtained by coding µ = 1/
√
n is longer, `n(1/

√
n, 1/

√
n) = L∗p(1) = 4, even though the

latter codes using the “true” parameter value so that the relative entropy component

of `n is zero. For z = 2, the minimum code length is again obtained by coding µ = 0.

For both z = 1 and z = 2, the number of bits required to encode a non-zero parameter

in the preamble is greater than the corresponding gain in data compression because

L∗(0) = 1 is so much less than the lengths L∗(1) = 4. Thus, the MDL estimate remains

µ̂ = 0 for |z| < 2, the region in the figures for which the quadratic centered at zero

attains the minimum.

Now consider the implications for model selection. One approach is to consider how

the universal code lengths penalize non-zero estimates and shrink toward the origin, as

discussed in §2. Figure 4 shows the plot of µ̂ when the integer z score for the parameter

is encoded using the arithmetic version of the universal code. It is useful to contrast

this figure with Figure 1 defined from (1). The MDL estimator µ̂ = 0 over the region

shown in Figure 3 where the quadratic center at the origin provides the minimum code
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length. That is,

µ̂ = 0 ⇐⇒ L∗a(0) +Rn(z) < L∗a(2) +Rn(z − 2) ,

or where |z| < 1 + 2/ log e ≈ 2.4. The remaining stairstep features of the estimator are

due to the discrete rounding needed for coding the estimator. For data with a mean

just exceeding this value, we would code with µ̂ = 2, in effect rejecting H0 : µ0 = 0.

This procedure resembles the decision rule of the usual statistical test which rejects H0

when |z| > 1.96. Thus a strict code-length interpretation of the MDL principle implies

that the parameter penalty is fixed on the z-score scale and does not grow with the

sample size n.

An alternative approach (Rissanen 1983) is to compare Ln,1 to the description

length of the null model which forces µ = 0. Since the null model does not require

encoding of a parameter, its length function is simply

Ln,0(Y ) = log
1

P (Y |Y )
+Rn(Y ) .

Thus, a one-parameter model obtains a shorter code length than the null model,

Ln,1(Y, µ) < Ln,0(Y ), when

`n(Y , µ̂) < Rn(Y ) ,

or, in terms of the z score and arithmetic code, whenever

|z| = |
√
n Y | > 1 +

2.5
log e

≈ 2.7 . (16)

This cutoff differs slightly from that implied by shrinkage since the comparison of

Ln,0 to Ln,1 avoids the single bit needed for coding zero. In general, one obtains a

slightly different cutoff value depending upon the specifics of the implementation of

the universal code. In each case, however, the cutoff is fixed on the standard error

scale.

Remark. Since the quadratics associated with coding µ̂ = ±1/
√
n,±3/

√
n in the

penultimate code never attain the lower boundary in Figure 2, the corresponding codes

(j = ±1,±3) would never be used. Thus, the coding procedure just described will be

somewhat inefficient in that it would not use some of the available symbols. The code

can be improved by using a more coarse coding grid, as noted previously. Such a
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change might alter the critical value in the decision rule (16), most likely increasing

the threshold slightly.

Universal length functions like L∗p or L∗a are rather unwieldy to manipulate, and

this complexity suggests other approximations. As shown in Rissanen (1983, Theorem

2), the length function for any optimal universal code for the integers is bounded as

log j < L∗(j) < log j + r(j) (17)

where r(j)/ log j → 0 as |j| → ∞. In this sense, the lengths of all of the optimal

universal codes are logarithmic. This property, together with the ease of manipulating

log rather than log∗, has led to the most common approximation to the code length

Ln,k. It is this approximation, rather than an intrinsic property of the MDL principle

itself, that leads to a logarithmic parameter penalty.

In various papers (e.g., 1983 §4, 1986, 1989), Rissanen approximates L∗(〈 z 〉) as

log 〈 z 〉, where again we denote z =
√
n Y . In the context of coding a mean, the excess

length is then about

`n(Y, µ) ≈ logµ+ (logn)/2 +Rn(µ− Y ) . (18)

If we fix µ and take the limit of the approximation as n → ∞, we obtain the BIC

penalty

min
µ∈Z/

√
n
`n(Y , µ) ≈ log |

√
n Y | = 1

2
logn+Op(1) . (19)

Under these conditions, z grows with n and one can exploit the relationship that

L∗(〈 z 〉) − log z = o(log z) implied by (17). Interpreted as a coding procedure, this

approximation is the code length that we would obtain were the parameter space

compact, say |µ| < M/2, and each parameter value on a grid over this space coded

with (1/2) log n + logM bits. That is, coding with a discrete uniform prior over a

grid with spacing 1/
√
n on the parameter space. This approximation thus leads to a

fixed code length for representing a parameter rather than the varying length implied

by L∗(〈 z 〉). It exacts a large penalty for any parameter, regardless of how close that

parameter lies to zero.

As a coding procedure, the use of a fixed-length logarithmic code has advantages.

In particular, one can show that the code length obtained by this representation (over

a compact parameter space) is about as short as possible. The logarithmic penalty
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provides a lower asymptotic bound for the excess length `n. For example in the mean

coding problem we have been discussing, let Ω denote a compact subset of R and let

An denote a set whose measure tends zero as n→∞. Then for all µ ∈ Ω−An and any

ε > 0, it follows from Rissanen (1989, Theorem 3.1) that there exists an n such that

En inf
µ
`n(Y , µ̂) ≥ 1− ε

2
logn , (20)

where the expectation En is with respect to the density of Y1, . . . , Yn. These are

powerful results; however, issues of model selection are only relevant for the set of

small z scores near the origin. Although the absolute size of this set diminishes with

increasing sample size (and so can be ignored in this theorem as the set An), its size

remains fixed on a standard error scale. The perspective of using asymptotics on a

fixed standard error scale (so that
√
nµ is constant as n→∞) is not novel and forms

the essential ingredient of so-called local asymptotics as advocated by LeCam (e.g.,

LeCam and Yang 1990) and Ibragimov and Hasminskii (1981).

Returning to model selection, the excess length of the null model, Rn(Y ), is shorter

than this approximation to `n unless (with M = 1)

z2 >
logn
log e

= lnn . (21)

In comparison to the decision rule generated by direct application of MDL, this approx-

imation tests H0 : µ = 0 by comparing the classical test statistic
√
n Y to an increasing

critical value. This type of logarithmic penalty is also found in the BIC criterion in-

troduced by Schwarz (1986). As suggested by the illustration of the previous section,

this approximation is not accurate for small z. In particular, the approximation (19)

is not uniform in µ and, almost surely,

lim
n→∞

`n(Y , 〈
√
nY 〉/

√
n)

logn
=

 1/2, µ 6= 0 ,

0, µ = 0 .
(22)

Thus, one cannot locate the MDL estimator µ̂ by minimizing this approximation to

the description length when µ is near zero.

4 Discussion and summary

The decision of whether to code the mean parameter µ is resolved within a vanishing

set of parameter values |µ| ≤ c/
√
n near the origin. Once the absolute z score

√
nY
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is about 2.4, the description length for the model is shorter when this parameter is

included than when it is forced to zero. The use of MDL for testing a single parameter

thus leads to a decision rule that resembles a traditional hypothesis test: there is a

fixed threshold lying about 2 standard errors from the origin rather than a threshold

which grows with the logarithm of the sample size.

This discrepancy from a logarithmic penalty arises because standard approxima-

tions for MDL overstate the model cost for parameters near the origin. For example,

consider a model whose parameter lies on the boundary suggested by the approxi-

mate description length Ln,1(Y ) ≈ (1/2) log n + log 1/P (Y |Y ), namely z =
√

logn.

The description length of such a model is considerably less than that implied by the

approximation,

Ln,1(Y ) = log∗ z + log
1

P (Y |Y )
+ ε

= (1/2) log log n+ log
1

P (Y |Y )
+ o(log log n) ,

for |ε| < 1. Since the contribution of the parameter to the description length at this

point is less than (1/2) log n, it raises the issue of where one should begin coding, which

is resolved in §3.
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Figure 2: The penultimate codebook. Quadratics indicate the excess message length above

log 1/P (Y |Y ) for estimates µ̂ = j/
√
n when the parameter is encoded using the penultimate

code.
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Figure 3: The arithmetic codebook. Quadratics indicate the excess message length above

log 1/P (Y |Y ) for estimates µ̂ = j/
√
n when the parameter is encoded using the arithmetic

code for Q∗.



Local Asymptotics and MDL 18

Figure 4: The estimator which minimizes the code length with penalty L∗a is shown as a

function of the mean of the input data, on a standardized scale. The estimator shrinks

values to zero when |z| < 1 + 2/ log e.


