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Statistics in the News
Hot topics

Big Data
Business Analytics
Data Science

Are the authors talking about statistics?
Or about … 
! ! information systems?
! ! database technology?
! ! visualization, eye candy?
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Even Farming...
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Big Data
Recent modeling projects
Credit scoring

75,000 cases
15,000+ possible explanatory variables

Spatial time series
3,000 locations
100 time points
20+ features at each location and time

Text
Real estate listings
6,000 prices, millions of possible descriptions

Tagging
1.2 million words, 60,000+ ‘explanatory variables’
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Notation
n = # rows of X

p = #columns of X
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Is Big Data Really So Big?
Not always so large as they may seem

Repeated measurement ≠ more degrees of freedom
What is the relevant source of variation?

Transfer learning problem
Machine learning
Build model for structure of text on corpus such 
as the New York Times
What transfers from that model to 
! Washington Post?
! Richmond Times-Dispatch?

Implications for estimates of standard error
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Example of Dependence
Predict returns on mutual funds

Do funds that do well in one year anticipate 
doing well (or poorly) the next year?
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t=7.75

t=-11.8

t=-12.8

t=10.3

t=-11.6

What’s 
happening?
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Does Big Data Imply Big Models?
Perhaps all one needs is a very simple analysis

Google
Massive hardware
Extensive data

Text modeling
Hard problem: predict next word in sentence
! ! I took a walk ____
Tabulation of all 5-grams (5 word sequence)
Replace modeling with frequency table

Web page design
Continuous experimentation
Randomized, two-sample t-test
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Simple Models Can Be Better 
Association rules

Low tech… 
Build tables
Identify association
Low-tech ≠ low impact…
grab low-hanging fruit

Predictive modeling via support vector 
machine

High tech… 
Locate separating hyperplanes in kernel space
Identify predictive features
High-tech ≠ high impact…
Complexity vs communication

9
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Simple might be right!
Recent WSJ story on reproducibility and 
proliferation of research...

10XKCD
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Attractive Misconceptions*
Thinking the true predictor is in my data 
rather than running an experiment

Reject inference and white cars
Training: we give students the data 

Outliers don’t matter with millions of cases
Central limit theorem
Corollary: estimators are normally distributed.

Methods are black boxes
Lasso is popular, so it’s best for my application.

Cross-validation keeps me out of trouble
As long as the model validates well out-of-
sample, the predictions are reliable.

11*ie, Lessons I have learned the hard way.
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Plan
Familiar context

Fit LS regression of continuous Y to large 
collection of possible explanatory variables

Two themes
Reducing dimensions
Columns: Random projections
Row: Subsampling

Streaming
Sequential from rows
Sequential from columns

Mixtures of the two (VIF regression)

Comments
Regularization (shrinkage) can be added
Where are the Bayesian models?

12
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Reducing Columns
Context

PCA, common column scales
Huge p >> n 

Random projection 
Methods based on random projection have 
revived interest in PCA

Idea
Use random projections to reduce the data 
matrix to a size amenable to calculation.
Explanatory variables in n × p matrix X
Pick d << p
Multiply X by a p × d matrix of random 
numbers Ω so that resulting dimension is n × d.

14
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Arcene Example
Automation

Automated data collection produces extensive 
measurements, here p=10,000 features
Only n=200 cases

Arcene example from UCI
Mass spectrometer measurements
Origin: Separate normal cells 
from cancerous cells 
Make into a regression problem
Use continuous response, not the 0/1 indicator in respository

Complications galore…
Collinear: sampling smooth function
Too many ‘perfect’ solutions
Hard to test out-of-sample because 
so few cases

15UCI = Univ of Ca Irving ML databases, http://archive.ics.uci.edu
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Marginal Analysis
Marginal correlations (Xi,Y) show signal

Deviate from distribution of random noise (red)

But: weakly spread over many coordinates
Multiple regression finds weak effects
R2 = 0.19 is larger than might expect 
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PCA Analysis
Compute singular value decomposition
! ! ! ! ! ! ! X = U D V’

Columns of U, V are orthonormal
D is a diagonal matrix of singular values 
(spectrum of X)

Doable in R if X is 200×10,000 matrix
Regression finds clear, strong effect in U5
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Random Projection
Project down to smaller size

Example with d=100
Compare random projections to exact from R

Procedure
P0 = X Ω, Ω is 10,000×d random matrix
P1 = XX’ P0    is one step of power method
Take first few columns of U from SVD of Pj

Compare to fit with exact SVD

18

Random Projection Exact
one iteration
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Comparison of Fits
Reconstruction

Random projection preserves subspace holding 
range of matrix, but not necessarily in the same 
coordinates.
Eg: different components appear in regression

Comparison of fits shows same subspace
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A really big X matrix?
Arcene example is ‘small’: we can do do the 
exact SVD quickly in R.
Suppose X had more columns, say 
! ! ! ! 10,0002 = 100,000,000
such as from the interaction space of X.
Linear models often approximate non-linear 
structure…

20

Okay, 
half that

R2=0.23

first 10 
PCs of X
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Random Projection 
Random projection with 50,000,000 
explanatory variables (Xj Xk)

Cannot compare to the exact solution for this one
Runs ‘quickly’: about 5 minutes on laptop!

Fitted model on 5 elements of the random 
projection of the quadratic X’s

21
R2=0.23 → R2=0.46 → R2=0.57 

One power 
iteration
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Postscript...
What’s the response in that regression?

What Y variable lives in the quadratic space?

Short answer: Kernel trick
Compute the quadratic kernel of the data
Find the SVD
Let Y be one of the singular vectors

Story for another day ...

22
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Reducing Rows
Context

Very large n >> moderate p
Again, less interested in selecting specific Xs

Common sense
Don’t need to fit a model more precisely than 
needed for statistical precision/selection.
However…
More data reveals a more interesting model, 
one with subtle effects

Speed of OLS
b = (X’X)-1X’Y
Slow part if n >> p is computing X’X 

23

O(np2)
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Case Sampling
Exploit familiar property of regression

Precision of slope is maximized by finding cases 
with large variation in Xs
Task becomes finding cases with high leverage

Machine learning has developed methods to 
seek high-leverage points

Hard to find sequentially

Simple improvement
Sample m << n cases to estimate X’X
Use all n cases to estimate X’Y

Leverage points however may not be your 
friends in modeling large data sets...

24

b=(X’X)-1X’Y

Not sampling on 
the response!
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Outliers in Big Data
Sparse data

n=10,000
X ≈ 0
      Y=0 for 9,990, Y=1 for 10
X ≈ 1
      Y=1 for one case

What’s the appropriate p-value?
Classical OLS

Use residual after fit slope, as if right model
t ≈ 10, pick your level of significance!

Common sense
p = 1/1000 more sensible p-value

25
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Streaming Methods

Cases
Variables
Combined
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Streaming Cases
Context

Huge number of cases, more than memory holds

Idea
Compute estimates as read in data so do not 
have to store all data
Calculations can be split over network

Different take on OLS
OLS estimate for n-1 cases 
! ! !    bn-1 =(X’X)-1X’Y 
The estimate for n cases is
! ! ! ! bn!= bn-1 + (X’X)-1xn(yn-xn’bn-1)/(1+hn)
! ! ! ! ! = bn-1 + [(1+hn)(X’X)]-1 xn e
where the leverage hn=xn’(X’X)-1xn.

27

slow step
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Stochastic Gradient
Build up normal equations and solutions by 
randomly sampling cases 
Stochastic gradient

Robbins & Monro
To minimize (yi-xi’b)2 w.r.t. b, step in the direction 
of the negative gradient, 
! ! ! ! ! ! xi(yi-xi’b) = xi ei

Full least squares solution uses X’X
! ! ! bn!= bn-1 + [(1+hn)(X’X)]-1 xn e
Pretend X’X is diagonal, and life moves faster
! ! ! b*n! = b*n-1 + δn D-1 xn e*
with D = diagonal (X’X) and δn is a learning rate.

28
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How fast is it?
Goal in stochastic gradient is to run 
as fast as you can read data!
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How good are estimates?
Graph plots estimated coefficients from one-
pass of stochastic gradient versus exact OLS
Deviation from OLS below standard error

Small error relative to variation in estimates

30

At least 
when there 
is not much 
collinearity!

p=1000



Wharton
  Department of Statistics
Wharton
  Department of Statistics

Statistical Significance?
Don’t have X’X so don’t have usual SE

How to evaluate modeling?

Cross-validation
Less sensitive to modeling assumptions
Split data
Training data: Fit model on part of the data
Test data: Reserved data
Compare fit in two datasets

Three way split becoming necessary
Training data
Tuning data…
Set tuning parameters, such as level of shrinkage

Testing data
31
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Population Drift
Cross-validation is an optimistic assessment

One of few places when have random sample

Credit scoring
Predict performance of applicants
Cross-validation shows model spot on

Data collection is a long process
Gather data over 1-2 years
Takes 1-2 more years to find the response

The world changed!
Booming economy during data collection
Collapsing recession when implemented
No way CV could see this problem

32
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More issues ...
Variation?

How to allocate?
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Streaming Variables
Context

Huge number of variables
Want to preserve scales

Idea
Stepwise search pays a large cost for searching
! Bonferroni p-value threshold 0.05/millions
Streaming: Examine features one at a time
Resembles forward stepwise, but 
without sorting/ordering based on p-values

Exploit context
“Scientist” orders variables, defines search strategy
Adaptive:Build interactions as features added

33
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Feature Auction

34

Auction

Expert1

Expert2 ...

ExpertN

α1 α2

αN

Collection of experts 
bid for the 

opportunity to 
recommend feature

Auction collects 
winning bid α2

Expert supplies values of 
recommended feature Xw

Xw

pw

Expert receives payoff ω 
if pw ≤ α2

Experts only learn if the bid was accepted, not 
the value of b or the p-value.

Y

model
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Experts
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Experts
Expert
Strategy for creating list of features. Experts 
embody domain knowledge, science of application.
Source experts

A collection of measurements (eg, synonyms, clusters)
Components of a subspace basis  (PCA, RKHS)
Lags of a time series

Scavenger experts
Interactions 
- among features accepted into model
- among features rejected by model
- between those accepted with those rejected
Transformations
- segmenting, as in scatterplot smoothing
- polynomial transformations

36
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Winning Experts
Expert is rewarded if correct

Experts have alpha-wealth
If recommended feature is accepted in the model, 
expert earns ω additional wealth
If recommended feature is refused, expert loses bid

As auction proceeds, it...
Rewards experts that offer useful features. 
Eliminates experts whose features are not accepted.
Taxes fund scavenger experts
Ensure that continue to control overall FDR

Critical
Adjust for multiplicity
p-values determine useful features

37
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Robust Standard Errors
p-values are critical, but...

Error structure often heteroscedastic
Observations frequently dependent

Dependence
“Observations”
Spatial time series at multiple locations
Documents from various news feeds

Transfer learning problem

Examples
Use sandwich-type estimate of standard error

38

heteroscedasticity
var(b) = (X’X)-1X’E(ee’)X(X’X)-1
        = (X’X)-1 X’D2X (X’X)-1 

dependence
var(b) = (X’X)-1X’E(ee’)X(X’X)-1
        = σ2(X’X)-1 X’BX (X’X)-1 
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Flashback...
Heteroscedastic error

Estimate standard error with outlier
Sandwich estimator allowing 
heteroscedastic error variances gives
a t-stat ≈ 1, not 10.

Dependent error
Even more important need for accurate SE
Netflix example
Bonferroni (or hard thresholding) overfits due to 
dependence in responses.
Spatial modeling
Everything seems significant unless incorporate 
dependence into the calculation of the SE

39
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Control for Over Fitting
Alpha investing

Test possibly infinite sequence of m hypotheses
! ! H1, H2, H3, … Hm … 
obtaining the p-values p1, p2, ...

Procedure
Start with an initial alpha wealth W0 
Invest wealth 0 ≤ αj ≤ Wj in the test of Hj
Change in wealth depends on test outcome
! If reject, wealth goes up by payout ω-αj

! If don’t reject, wealth goes down by  αj

Properties
Controls expected false discovery rate
Can reproduce Bonferroni or FDR methods

40
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Auction Run

41

First 4,000 rounds of auction modeling.
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Streaming Cases & Variables
Background

A variance inflation factor (VIF) is a diagnostic 
for collinearity in regression

VIF compares variances of slope estimates
Variance of bk were it uncorrelated with others
! ! ! ! var(bx) = s2/(xk’xk)
Actual variance is larger due to collinearity
  ! ! ! ! var(bk) ≈ VIFk s2/(xk’xk) 
where 1 ≤ VIFk = 1/(1-R2k|rest)

Handy interpretation
Is xk not significant because 
! ! ! ! ! It is not useful?
! !    ! ! ! Redundant?

42
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VIF Regression
Idea

Speed up the slow step in forward stepwise

Usual selection
Has variables X and residual
! ! e = (I - X(X’X)-1X’) y = (I - H) y
Partial t-statistic for testing another variable z 
with partial regression z*=(I-H)z
! ! t2 = (z*’e)2/(s2 z*’z*) 

Re-express t-statistic using VIF
! ! ! t2 = (z’e)2/(s2 z’z VIFk)

Conservatively estimate VIFk from subsample

43

O(np2) given (X’X)-1
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Performance
Faster than rivals

Plus smaller out-of-sample error

44
n=1000

seconds
n=1000, p=500
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Comment on L1
Success of lasso depends on 
nature of underlying model
Risk comparison

Compare the risk of the model
identified by subset selection to 
the model identified by 
lasso (L1).
Grey region in plot represent 
possible model datasets

Take-away
In models for which lasso 
identifies high penalty, 
L0 has better performance.
Why? It shrinks them all.

45
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Wrap-Up
Dimension reduction

Random projection
Subsampling

Streaming
VIF regression
Alpha investing, auction models

Issues
Importance of substantive insight
Prediction/association vs causation
Dependence, population drift
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