Data Mining with Regression

Teaching an old dog some new tricks

Bob Stine Department of Statistics The Wharton School of the Univ of Pennsylvania March 31, 2006

Wharton Statistics Department

Acknowledgments

Colleagues

- Dean Foster in Statistics
- @ Lyle Ungar in Computer Science

Overview

Familiar regression model, but...

- Adapt to the context of data mining
 - Scope: Borrow from machine learning
 - © Search: Heuristic sequential strategies
 - © Selection: Alpha-investing rules
 - @ Estimation: Adaptive "empirical Bayes"
 - Structure: Calibration

Does it work?

 Numerical comparisons to other methods using reference data sets

Vhartor

Data Mining Context

Statistics Departm

- Predictive modeling of wide data
 Modern data sets
 - ø n ... Thousands to millions of rows
 - m ... Hundreds to thousands of columns.
- No matter how large n becomes, can conceive of models with m > n
 - Ø Derived features (e.g., interactions)
- @ Consequence
 - ${\it @}$ Cannot fit "saturated" model to estimate σ^{z}
 - Cannot assume true model in fitted class

Wide Data

Application	Rows	Columns
Credit	3,000,000	350
Faces	10,000	1,400
Genetics	1,000	10,000
CiteSeer	500	ø

Lots of Data

Credit scoring

- Millions of credit card users
- Past use of credit, economics, transactions

@ Text

- Documents to be classified into categories
- Large corpus of marked documents, and even more that have not been marked

@ Images

- Millions of images from video surveillance
- All those pixel patterns become features

Wharton Statistics Department

Experience

- Model for bankruptcy
 - Stepwise regression selecting from more than 67,000 predictors

Successful

@ Better classifications than C4.5

@ But

- Fit dominated by interactions
 Linear terms hidden
- Know missed some things, even with 67,000
 Unable to exploit domain knowledge
- Not the fastest code to run

Vhartor

Why use regression?

Familiarity

- Reduce the chances for pilot error
- Well-defined classical inference
 - IF you know the predictors, inference easy
- Linear approximation good enough
 - Seven if the "right answer" is nonlinear
- Good diagnostics
- Residual analysis helpful, even with millions
 Framework for studying other methods

Key Challenge Which features to use in a model?

- Cannot use them all!
 - Too many
 - Over-fitting
- May need transformations
 Even if did use them all, may not find best
- Model averaging?
 - Too slow
 - Save for later... along with bagging.

Wharto Statistics Departme

Extending Regression

- Scope of feature space
 - Reproducing kernel Hilbert space (from SVMs)
- Search and selection methods
 - Auction
- Estimation
 - Adaptive shrinkage improves testimator
- @Structure of model
 - Calibration

Wharto Statistics Departme

Extending Regression

Scope of feature space
Reproducing kernel Hilbert space

Larger Scope

- Lesson from analysis of bankruptcy
 - @ Interactions can be very useful
 - But dominate if all predictors treated as monolithic group (m linear, m² second order)

Question

- How to incorporate useful quadratic interactions, other transformations?
- Particularly hard to answer in "genetic situations" with every wide data sets for which m >> n.

Reproducing Kernels

Some history

- @ Introduced in Stat by Parzen and Wahba
- Adopted by machine learning community for use in support vector machines.

Use in regression

- Find "interesting" directions in feature space
- Avoid explicit calculation of the points in the very high dimensional feature space.

Wharto Statistics Departme

Example of RKHS

Bulls-eye pattern

Non-linear boundary between cases in the two groups

Example of RKHS

- Linearize boundary
 - ${\it @}$ Add $X_{1}{}^{2}$ and $X_{2}{}^{2}$ to basis
 - Does not generalize easily (too many)

Alternative using RKHS

- Ø Define new feature space X→φ(X)
 Ø Possibly much higher dimension than m
- Inner product between points x₁ and x₂ in new space is <φ(x₁),φ(x₂)>
- Reproducing kernel K evaluates inner product without forming φ(x) explicitly K(x₁,x₂) = <φ(x₁),φ(x₂)>

Vhartor

tistics Departme

Example of RKHS

Industry inventing kernel functions
 Gaussian kernel (aka, radial basis)
 K(x₁,x₂) = c exp(-||x₁-x₂||²)

- Generate several new features
 - Compute Gram matrix in feature space φ indirectly using kernel K
 G = [K(x_i,x_j)]_{n×n}
 - Find leading singular vectors of G, as in a principal component analysis
 - These become directions in the model

Extending Regression

- Scope of feature space
 - Expand with components from RKHS
- Search and selection methods
 - Sector Sector

Auction-Based Search

- Lesson from analysis of bankruptcy
 - @ Interactions help, but all interactions?
 - Must we consider every interaction, or just those among predictors in the model?

Further motivation

- @ Substantive experts reveal missing features.
- In some applications, the scope of the search depends on the state of the model
 Examples: citations in CiteSeer, genetics
- Streaming features

Wharton

Statistics Departm

Feature Auction

Statistics Departm

"Expert"

Strategy that recommends a candidate feature to add to the model

Sexamples

- PCA of original data
- RKHS using various kernels
- Interactions
- Parasitic experts
- Substantive transformations
- Second Experts bid for opportunity to recommend a feature (or bundle)

Feature Auction

Second Second

- Second Experts have "wealth"
- @ If recommended feature is accepted in the model, expert earns ω additional wealth
- @ If recommended feature is refused, expert loses bid
- As auction proceeds, it...
 - Rewards experts that offer useful features, allowing these to recommend more X's
 - @ Eliminates experts whose features are not accepted.

Statistics Departmer

Alpha-Investing

- Wealth = Type I error
- nominal level to spend, say $W_0 = 0.05$
- - Assume this is the largest bid
 - Model assigns p-value p to X
 - If p≤α: add X
 set W_j = W_{j-1} + (ω-p)
 - @ If p>α: don't add X set $W_j = W_{j-1} \alpha_j$

Statistics Departm

Discussion of Alpha-Investing

- Similar to alpha-spending rules that are used in clinical trials
 - But allows good experts to continue suggesting features
 - Infinitely many tests
- Can imitate various tests of multiple null hypotheses
 - Bonferroni
 - Step-down testing

Discussion of Alpha-Investing Sonferroni test of $H_0(1), \dots, H_0(m)$

- \odot Set W₀ = α and reward ω = 0
- \odot Bid $\alpha_i = \alpha/m$
- Step-down test
 - \oslash Set $W_0 = \alpha$ and reward $\omega = \alpha$
 - \odot Test all m at level α/m
 - If none are significant, done
 - \odot If one is significant, earn α back
 - 𝔅 Test remaining m−1 conditional on $p_i > \alpha/m$

Discussion of Alpha-Investing

Can test an infinite sequence of hypotheses

- Step-down testing allows only finite collection: must begin with ordered p-values
- Alpha investing is sequential
- If expert has "good science", then bids heavily on the hypotheses assumed to be most useful

$\alpha_j \propto \frac{W_0}{j^2}$

Wharto

Over-fitting?

If expert receives α back in the feature auction, then what's to stop model from over-fitting?

Excess Discovery Count

Number of correct rejections in excess of, say, 95% of total rejections

Terminology

 $S_{\theta}(m) = \#$ correct rejections in m tests R(m) = # rejections in m tests

Excess discovery count

$$EDC_{\alpha,\gamma}(m) = \alpha + E_{\theta} \left(S_{\theta}(m) - \gamma R(m) \right)$$

@ Procedure

"controls EDC" \Leftrightarrow EDC_{α,γ}(m) ≥ 0

Wharton

Excess Discovery Count

tatistics Depart

Alpha-Investing Controls EDC

- Theorem: An alpha-investing rule with initial wealth $W_0 \le \alpha$ and payoff $\omega \le (1-\gamma)$ controls EDC.
- For sequence of "honest" tests of the sequence H₀(1),...,H₀(m),...and any stopping time M

$\inf_{M} \inf_{\theta} E_{\theta} EDC_{\alpha,\gamma}(M) \ge 0$

Wharto Statistics Departme

Comparison to FDR

Notation

- \oslash R(m) = # rejected = S₀(m)+V₀(m)
- \odot V₀(m) = # false rejections (Type I errors)

 False discovery rate controls ratio of false positives to rejections

 $E_{\theta}\left(\frac{V_{\theta}(m)}{R(m)}|R(m)>0\right)P(R(m)>0)\leq FDR$

© Control of EDC implies that

 $\frac{E_{\theta}V_{\theta}(m)}{E_{\theta}R(m)} \le (1-\gamma) + \frac{\alpha}{E_{\theta}R(m)}$

Wharton Statistics Department

Extending Regression

Scope of feature space
Expand with components from RKHS
Search and selection methods
Experts recommend features to auction
Estimation
Adaptive shrinkage improves testimator

Vhartor

Adaptive Estimator

Wharton Statistics Department

- Polyshrink" adaptively shrinks estimator when fitting in higher dimensions
- About the same as a testimator when fitting one estimator
- In higher dimensions, shrinkage varies with the level of signal found
- Possesses type of optimality, in the sense of a robust prior.
- Resembles empirical Bayes estimators (e.g., Silverman & Johnstone)

Value in Modeling

- @ Evaluate one predictor at a time
 - No real gain over testimator
- @ Evaluate several predictors at once
 - Shrinkage has some teeth
- Several predictors at once?
 - Generally do one at a time, eschew "Principle of Marginality"
 - Bundles originate in RKHS: take top k components from feature space

Wharton Statistics Department

Extending Regression

• Scope of feature space

Expand with components from RKHS

- Search and selection methods
 - Experts recommend features to auction

Estimation

- Adaptive shrinkage improves testimator
- Structure of model
 - Stimate empirical link function

Wharton

Calibration

Model is calibrated if predictions are correct on average

$E(Y|\hat{Y}) = \hat{Y}$

Link function in generalized linear
 model has similar role
 $E(y) = g(x'\beta)$

Rather than assume a known link, estimate the link as part of the modeling

Extending Regression

- Scope of feature space
 - @ Expand with components from RKHS
- Search and selection methods
 - Sector Sector
- - Adaptive shrinkage improves testimator
- Structure of model
 - Stimate empirical link function

Wharton Statistics Department

Challenges

@ Problems

- Control proliferation of interactions
- Incorporate expert guidance
- Explore richer spaces of predictors
- ✓ Run faster

Computing

- Streaming selection is much faster than batch
- Have run 1,000,000+ features in applications

Wharton

Comparisons

NIPS data sets

- Competition among 100+ algorithms
- @ Goal to predict cases in a hold back sample
- Success based on area under ROC

Data sets

- Variety of contexts
- More wide than tall

Results: 2003 NIPS

Unlike BR: Very high signal rates...

Dataset	n	m	AUC	NIPS*
Arcene	200	10,000	0.93	0.96
Dexter	600	20,000	0.99+	0.992
Dorothea	1150	100,000	?	
Gisette	7000	5,000	0.995	0.999
Madelon	2600	500	0.94	0.95
	N. S.			What Statistics Dep

Results: Face Detection

- @10,000 images,
 - Ø 5,000 with faces and 5,000 without

◎ Type I error at 50% Type II

Method	Type I
AdaBoost	0.07
FFS	0.07
AsymBoost	0.07
Streaming	0.05

Statistics Departm

What Next?

More examples

- Ø Working on faster version of software
- Data formats are a big issue
- Implement subspace shrinkage
 - Current implementation uses hard thresholding
- @Improve expert strategy
 - Goal of machine learning is turn-key system
 - Prefer ability to build in expertise

/harton