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Abstract

Modern data streams routinely combine text with the familiar numerical data used

in regression analysis. For example, listings for real estate that show the price of a

property typically include a verbal description. Some descriptions include numerical

data, such as the number of rooms or the size of the home. Many others, however, only

verbally describe the property, often using an idiosyncratic vernacular. For modeling

such data, we describe several methods that that convert such text into numerical

features suitable for regression analysis. The proposed featurizing techniques create

regressors directly from text, requiring minimal user input. The techniques range

naive to subtle. One can simply use raw counts of words, obtain principal components

from these counts, or build regressors from counts of adjacent words. Our example

that models real estate prices illustrates the surprising success of these methods. To

partially explain this success, we offer a motivating probabilistic model. Because the

derived regressors are difficult to interpret, we further show how the presence of partial

quantitative features extracted from text can elucidate the structure of a model.
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1 Introduction

Modern data streams routinely combine text with numerical data suitable for in regres-

sion analysis. For example, patient medical records combine lab measurements with

physician comments and online product ratings such as those at Amazon or Netflix

blend explicit characteristics with verbal commentary. As a specific example, we build

a regression model to predict the price of real estate from its listing. The listings we

use are verbal rather than numerical data obtained by filling out a spreadsheet-like

form. Here are four such listings for Chicago, IL, extracted (with permission) from

trulia.com on June 12, 2013:

$399000 Stunning skyline views like something from a postcard are yours

with this large 2 bed, 2 bath loft in Dearborn Tower! Detailed

hrdwd floors throughout the unit compliment an open kitchen and

spacious living-room and dining-room /w walk-in closet, steam

shower and marble entry. Parking available.

$13000 4 bedroom, 2 bath 2 story frame home. Property features a

large kitchen, living-room and a full basement. This is a Fannie Mae

Homepath property.

$65000 Great short sale opportunity... Brick 2 flat with 3 bdrm

each unit. 4 or more cars parking. Easy to show.

$29900 This 3 flat with all 3 bed units is truly a great

investment!! This property also comes with a full attic that has

the potential of a build-out-thats a possible 4 unit building in a

great area!! Blocks from lake and transportation. Looking for a

deal in todays market - here is the one!!!

The only numerical data common to the listings is the price that appears at the head of

each listing. Some listings include further numerical data, such as the number of rooms

or occasionally the size of the property (number of square feet). Many listings, however,



Featurizing Text (DRAFT, October 18, 2013) 3

provide only a verbal description, often written in an idiosyncratic vernacular familiar

only to those who are house hunting. Some authors write in sentences, others not,

and a variety of abbreviations appear. The style of punctuation varies from spartan

to effusive (particularly exclamation marks), and the length of the listing runs from

several words to a long paragraph.

An obvious approach to building regressors from text data relies on a substantive

analysis of the text. For example, sentiment analysis constructs a domain-specific

lexicon of positive and negative words. In the context of real estate, words such as

‘modern’ and ‘spacious’ might be flagged as positive indicators (and so be associated

with more expensive properties), whereas ‘Fannie Mae’ and ‘fixer-upper’ would be

marked as negative indicators. The development of such lexicons has been an active

area of research in sentiment analysis over the past decade (Taboada, Brooke, Tofiloski,

Voli and Stede, 2011). The development of a lexicon require substantial knowledge of

the context and the results are known to be domain specific. Each new problem requires

a new lexicon. The lexicon for pricing homes would be quite different from the lexicon

for diagnosing patient health. Our approach is also domain specific, but requires little

user input and so can be highly automated.

In contrast to substantively oriented modeling, we propose a version of supervised

sentiment analysis that converts text into conventional explanatory variables. We con-

vert the text into conventional numerical regressors (featurize) by exploiting methods

from computational linguistics that are familiar to statisticians. These so-called vector

space models (Turney and Pantel, 2010), such as latent semantic analysis (LSA), make

use of singular value decompositions of the bag-of-words and bigram representations of

text. (This connection leads to methods being described as a ‘spectral algorithm for’.)

These representations map words into points in a vector space defined by counts. This

approach is highly automated with little need for human intervention, though it makes

it easy to exploit such investments when available. The derived regressors can be used

alone or in combination with traditional variables, such as those obtained from a lexi-

con or other semantic model. We use the example of real estate listings to illustrate the

impact of various choices on the predictive accuracy. For example, a regression using

the automated features produced by this analysis explains over two-thirds of the vari-

ation in listed prices for real estate in Chicago. The addition of several substantively



Featurizing Text (DRAFT, October 18, 2013) 4

derived variables adds little. Though we do not emphasize its use here, variable selec-

tion can be employed to reduce the ensemble of regressors without sacrificing predictive

accuracy.

Our emphasis on predictive accuracy does not necessarily produce an interpretable

model, and one can use other data to create such structure. Our explanatory variable

resemble those from principal components analysis and share their anonymity. To pro-

vide more interpretable regressors, the presence of partial quantitative information in

real estate listings (e.g., some listings include the number of square feet) provides what

we call lighthouse variables that can be used to derive more interpretable variables.

In our sample, few listings (about 6%) indicate the number of square feet. With so

much missing data, this manually derived predictor is not very useful as an explanatory

variable in a regression. This partially observed variable can then be used to define

a weighted sum of the anonymous text-derived features, producing a regressor that is

both complete (no missing cases) and interpretable. One could similarly use features

from a lexicon to provide more interpretable features.

The remainder of this paper develops as follows. The following section provides a

concise summary of our technique. The method is remarkably simple to describe. Sec-

tion 3 demonstrates the technique using about 7,500 real estate listings from Chicago.

Though simple to describe, it is more subtle to appreciate why it works. Our explana-

tion appears in Section 4 which shows how this technique discovers the latent effects in

a topic model for text. We return to models for real estate in Section 5 with a discus-

sion of the use of variable selection methods ands use cross-validation to measure the

success of methods and to compare several models. Variable selection is particularly

relevant if one chooses to search for nonlinear behavior. Section 6 considers the use

of partial semantic information for producing more interpretable models. We close

in Section 7 with a discussion and collection of future projects. Our aim is to show

how easily one can convert text into familiar regressors for regression. As such, we

leave to others the task of attempting to explain why such simple representations as

the co-occurrence of words in documents might capture the deeper meaning (Deer-

wester, Dumais, Furnas, Landauer and Harshman, 1990; Landauer and Dumais, 1997;

Bullinaria and Levy, 2007; Turney and Pantel, 2010).
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2 An Algorithm for Featurizing Text

Our technique for featurizing text has 3 main steps. These steps are remarkably simple:

1. Convert the source text into lists of word types. A word type is a unique sequence

of non-blank characters. Word types are not distinguished by meaning or use.

That is, this analysis does not distinguish homographs.

2. Compute matrices that (a) count the number of times that word types appear

within each document (such as a real estate listing) and (b) count the number of

times that word types are found adjacent to each other.

3. Compute truncated singular value decompositions (SVD) of the resulting matrices

of counts. The leading singular vectors of these decompositions are our regressors.

The simplicity of this approach means that this algorithm runs quickly. The following

analysis of 7,384 real-estate listings generates 1,000 features from raw text in a few

seconds on a laptop. The following paragraphs define our notation and detail what

happens within each step.

The process of converting the source text into word tokens, known as tokenization,

is an easily overlooked, but critical step in the analysis. A word token is an instance

of a word type, which is roughly a unique sequence of characters delimited by white

space. We adopt a fairly standard, simple approach to converting text into tokens.

We convert all text to lower case, separate punctuation, and replace rare words by an

invariant ”unknown” token. To illustrate some of the issues in converting text into

tokens, the following string is a portion of the description of a property in Chicago:

Brick flat, 2 bdrm. With two-car garage.

Separated into tokens, this text becomes a list of 10 tokens representing 9 word types:

{brick, flat, <,>, 2, bdrm, <.>, with, two-car, garage,<.>}

Once tokenized, all characters are lower case. Punctuation symbols, such as commas

and periods, are “words” in this sense. We leave embedded hyphens in place. Since

little is known about rare words that are observed in only one or two documents,

we represent their occurrence by the symbol ‘<UNK>’. The end of each document is

marked by a unique type. We make no attempt to correct spelling errors and typos nor
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to expand abbreviations. References such as the books Manning and Schütz (1999)

and Jurafsky and Martin (2009) describe further processing, such as stemming and

annotation that can be done prior to statistical modeling. Turney and Pantel (2010)

gives a concise overview.

Once the source text has been tokenized, we form two matrices of counts. The

SVD of each of these defines a set of explanatory variables. The matrices, W and B,

differ in how they measure the similarity of words. Words are judged to be similar if

they appear in the same context. For the document/word matrix W , the context is a

document – a real estate listing. This matrix holds counts of which words appear in the

same document, ignoring the order in which the words appear. This approach treats

each document (or listing) as a bag of words, a multiset that does not distinguish the

placement of the words. The second matrix adopts a very different perspective that

relies entirely upon ordering; it defines the context by adjacency. The bigram matrix

B counts how often words appear adjacent to each other. The document/word and

bigram matrices thus represent two extremes of a common approach: Associate words

that co-occur within some context. W uses the wide window provided by a document,

whereas B uses the most narrow window possible. The wider window afforded by a

document hints that W emphasizes semantic similarity, whereas the narrow window of

adjacency that defines B suggests more emphasis on local syntax. Curiously, we find

either approach effective and make use of both.

Associating words that co-occur in a document is more familiar to statisticians,

and so we begin there. Let V denote a vocabulary consisting of M unique word types.

The vector wi holds the counts of these word types for the ith document; wim is the

number of times word type m appears within the ith document. (All vectors in our

notation are column vectors.) Let n denote the number of documents; these documents

are the observational units in our analysis. Fro models of real estate, a document is

the description found in a listing. We collect the word counts for documents as rows

within the n×M matrix W ,

W =


w′1

w′2
...

w′n





Featurizing Text (DRAFT, October 18, 2013) 7

(Note that within computational linguistics it is common to find the transpose of this

matrix.) The matrix W is quite sparse: most documents use a small portion of the

vocabulary. Let mi =
∑

mwim denote the number of word tokens that appear in the

description of the ith property. It is common within linguistics to transform these

counts prior to additional modeling. For example, the counts might be normalized

by document, or transformed to emphasize relatively rare events. Turney and Pantel

(2010) summarizes several approaches, such as the popular TF-IDF (term frequency-

inverse document frequency) and entropy-based transformations.

The bigram matrix counts how often word types occur adjacent to each other. Let

B define the M ×M matrix produced from the sequence of tokens for all documents

combined (the corpus). Bij counts how often word-type i precedes work-type j within

the corpus. Whereas W ignores word placement (sequencing) within a document, B

combines counts over all documents and relies on the sequence of word tokens.

We obtain regression features from the SVD of W and B. The regressors are

immediate from the SVD of W . Let

W = ŨW D̃W Ṽ
′
W (1)

denote the SVD of W . We typically use only a subset of this decomposition, and so we

define UW to be the n × kW matrix defined by the leading kW singular vectors of W

(i.e., the first kW columns of ŨW that are associated with the largest singular values).

The collection UW defines a collection of regressors. (The resulting computation that

isolates only these leading singular vectors is sometimes called a truncated SVD.) This

representation of text is known as latent semantic analysis (or latent semantic index-

ing) within computational linguistics; statisticians will recognize this as a principal

components analysis (PCA) of W . The choice of the number of singular vectors to

retain, kW , is a user-controlled tuning parameter of this technique. We will provide

some advice on unsupervised methods for picking kW in the following section within

the example that analyzes real estate listings in Chicago.

A second application of the SVD produces regressors from the bigram matrix B.

Let

B = ŨBD̃BṼ
′
B (2)
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define the SVD of B, and again use matrices without ∼ to denote components of the

truncated SVD: UB and VB denote the first kB columns of ŨB and ṼB, respectively.

As in the decomposition of W , the number of singular vector to retain is a user-defined

choice. We generally keep kW = kB. Because B is M×M , these singular vectors define

points in RM and are sometimes referred to as “eigenwords” because of the way in which

they form directions in word space {ras: cite}. The ith row of UB locates the word

type wi within RkB (all of the following applies to VB as well). To build regressors,

we locate each document at a point within this same space. We can think of this

location in two, nearly equivalent ways that emphasize either the rows or columns of

UB. The two methods differ in a sum is normalized. The row-oriented motivation

is particularly simple: a document is positioned at the average of the positions of

its words. For example, the ith document is located at w′iUB/mi. Alternatively,

emphasizing columns, we can compute the correlation between the columns of UB with

the bag-of-words representations of the documents. Because the columns of UB and

VB are orthonormal, these correlations are given by

C = [ClCr] = diag(‖wi‖−1)W [UB VB] , where ‖x‖2 =
∑

x2i . (3)

The ith row of of the n× 2kB matrix C is the vector of correlations between the bag-

of-words representation wi and the singular vectors of B. In our models for real-estate

listings, the columns of C form the second bundle of regressors.

It is worthwhile to take note of two properties of these calculations that are im-

portant in practice. First, one needs to take advantage of sparsity in the matrices W

and B to reduce memory usage and to increase the speed of computing matrix prod-

ucts. Second, the computation of the SVD of a large matrix can be quite slow. For

example, computing the SVD of B is of order O(M3) and one can easily have vocabu-

lary of M =10,000 or more word types. To speed this calculation, we exploit random

projection algorithms defined and analyzed in Halko, Martinsson and Tropp (2010).

3 Predicting Prices of Real Estate

This section demonstrates the use of regressors defined from text using the featurizing

techniques defined in the prior section. The data are n =7,384 property listings for

Chicago, IL in June, 2013. (Note that at the time, trulia.com showed 30,322 listings for
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Figure 1: The distribution of prices for real estate in Chicago is highly skewed, but a log

transformation produces data that are nearly normal. The presence of a long lower tail might

indicate that the data mix typical home sales with special, subsided properties or perhaps

vacant lots that sell for an unusually low price.
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Chicago, but most of these were foreclosures that are excluded in our analysis.) The

response in our models is the log of the listed price. The prices for properties listed

in Chicago is quite skewed, so we transformed the response to a log scale as shown

in the histogram of Figure 1. This display uses the base 10 log of the prices for easy

interpretation; subsequent models use natural logs throughout. The log transformation

produces a roughly Gaussian distribution, with a hint of fat tails most prominently for

cheaper properties with prices near $25,000.

3.1 Tokenization and Parsing

The 7,384 property listings in Chicago contain 543,869 word tokens that define 15,228

word types. More than half of these tokens appear only once or twice, providing little

exposure to how the word is used. We clustered these rare types into one category

(<UNK>), resulting in a reduced vocabulary of M = 5, 708 word types. The most

common word types are “not words” but rather punctuation: ‘.’ occurs 40,227 times

and ‘,’ 33,746 times. Following these come the collection of seldom seen words (OOV,

11,478), ‘and’ (frequency 11,032), ‘!’ (7,894) and ‘in’ (7,418). As usual in text, “most

types are common but most words are rare.” That is, the most common types occur
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Figure 2: The log of the frequency of word types in the listings for properties in Chicago

is roughly linear in the log of the rank of the words, a Zipf distribution. The shown line

log freq = 10.9− 0.93 log rank was fit to words with ranks 1 through 500.
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frequently whereas most words appear infrequently. Figure 2 shows a scatterplot of

the log of the frequency of these word types versus the log of their ranks. It is common

in text to find a linear trend with slope near 1 in this graph, a Zipf distribution (Zipf,

1935; Baayen, 2002). Even though this text is not standard English, one expects to

find counts resembling those produced by a power law (Clauset, Shalizi and Newman,

2009). For this text, the shown line (with log-log slope -0.927) holds only for more

common word types. For less common words (here, outside the most common 500

words), the frequencies drop off more rapidly. (This change in slope is also seen for

words in Wikipedia.)

The average description has about 73 word tokens, but the distribution of the

lengths mi is right skewed. The boxplot in Figure 3 shows the lengths. The shortest

description has 2 tokens, whereas the longest description has 568 tokens. This variation

in the lengths of the descriptions suggests that modeling the prices from this text will

require a weighted regression. We simply do not know so much about properties with

short descriptions.

Before we use the decomposition rules to construct regressions, we construct several

by extracting explicit values from the descriptions. For example when processing ads for

real estate, one might conjecture that an agent has a lot more to say in when describing
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Figure 3: The distribution of the lengths mi of the property descriptions is right-skewed,

with some listing running hundreds of words compared to a median length of 74 words.

0 100 200 300 400 500
Lengths of Descriptions

the features of an expensive property than a property in need of repair, implying that

the length of the ad for a property would mi may be predictive of the price. In addition,

one can use a regular expression to extract the number of bedrooms when it appears in

the listing. We wrote regular expressions to extract numerical data from advertisements

when present. Constructing these is a labor-intensive process that must be done on a

case-by-case basis. For example, a regular expression would parse the value 2 for the

number of bedrooms and bathrooms from the first listing shown in the introduction.

The patterns used in these regular expressions allow common abbreviations, such as

“bth”, “bath” and “bthrm” for bathrooms. Another regular expression that we used

extracts the number of square feet from the listing. Most listings, however, omit these

characteristics. For Chicago, our regular expressions found that 6% of the listings

indicate the number of square feet, 26% indicate the number of bathrooms, and 42%

give the number of bedrooms. More complex regular expressions would likely find more

matches, but the gains are likely to be few. One also faces a Type I/Type II trade-

off. Simple regular expressions omit some matches, but more aggressive expressions

match inadvertently. To accommodate the large amount of missing data, we used the

simple procedure of adding indicator variables that distinguish observed cases for these

variables, and we then filled the missing values with means.

The four scatterplots in Figure 4 summarize the marginal association between the

log of prices and these parsed predictors, including the number of words in descriptions.

Missing values produce the columns of gray points located at the mean of the variable
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Figure 4: The parsed characteristics have slight positive association with the log of the

prices. Gray points in the figures identify cases that were missing the explanatory variable;

the shown correlation uses the complete, filled-in data.
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on the x axis. None of these features is highly correlated with the log of price; the

highest correlations are with the length of the description (r = 0.40) and the number

of bathrooms (r = 0.19). One explanation for the low association is the abundance

of missing data. For example, corr(log price, log sq ft) = 0.00 overall, but is larger

(0.26) among the few properties that report this characteristic. These plots also show

several anomalies. For example, the first scatterplot of the log of price on the number

of words shows a cluster of 25 listings, all with exactly 265 words. All of these different

properties were listed in a common format by a government agency. The scatterplot of

the log of prices on the log of the square footage also shows a clear outlier; this outlier

is a consequence of aggressive parsing. A typo in a description (“has 1sfam”) led to

the regular expression finding a property with 1 square foot.

Table 1 summarizes the fit of the regression of the log of price on these four extracted

variables and the missing indicators. In this first example, the regressors are not highly

correlated, and the importance of these variables in the multiple regression generally

echoes the marginal correlations shown in Figure 4. Among the seven explanatory
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Table 1: OLS multiple regression of log prices on the parsed explanatory variables and

indicators of observed values.

Estimate Std. Error t value Pr(>|t|)

Intercept 4.8858 0.4944 9.88 0.0000

logm 0.8211 0.0239 34.31 0.0000

log Sq Ft 0.3680 0.0592 6.21 0.0000

Sq Ft Obs 0.6108 0.0607 10.06 0.0000

Bedrooms -0.0095 0.0169 -0.56 0.5734

Bedroom Obs 0.0023 0.0306 0.08 0.9400

Bathrooms 0.4153 0.0307 13.53 0.0000

Bathroom Obs 0.0038 0.0344 0.11 0.9127

se = 1.084 with R2 = 0.193, R
2

= 0.192

variables, the length of the descriptions is most predictive, followed by the number of

bathrooms. Unlike the marginal associations, however, both the log of the number

of square feet (when observed) and its missing indicator are significant. The missing

indicators for bedrooms and bathrooms are not predictive. The model obtains adjusted

R-squaredR
2

= 0.192, with residual standard deviation se = 1.08. Because we compare

regression models with varying numbers of explanatory variables, R
2

is more useful than

without adjusting for degrees of freedom. Since we are not doing variable selection at

this point, but rather fitting full ensembles of pre-selected variables, adjusted R-squared

is an unbiased summary of each model’s performance out of sample. (Section 5 reports

cross-validation results for these models.)

Before building models using singular vectors, we begin by regressing the response

on indicators for the words. That is, we simply regress y on the word counts in W . This

model provides a baseline for comparison with the fits produced by regressions using

singular vectors. Table 2 summarizes the fit using the most common 2,000 words.

Overall, this model produces R
2

= 0.681. Residual plots show fat tails (consistent

with that in the prices, Figure 1) but no clear evidence of heteroscedasticity that

might be anticipated due to the differences in the document lengths (Figure 3). The

most significant word is “vacant” with t = −8.5; not surprisinging, the presence of
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this word in a listing indicates a property with lower than usual value. In contrast,

out-of-vocabulary words denoted “OOV” have higher than average prices (t = 6.3).

Figure 5 summarizes the distribution of all t-statistics in this model. Twenty-two

words are not used due to singularities among these counts, leaving 1,978 estimated

coefficients. The dashed line in the scatterplot of |tj | on j in the left panel of Figure 5

is the Bonferroni threshold Φ−1(1− 0.025/1978) ≈ 4.21. Only 14 estimates exceed this

threshold for statistical significance. The nearly flat red line in the figure is a lowess

smooth of the |tj |. The half-normal plot in the right panel of Figure 5 confirms the

diffuse signal in this model: the distribution of the fitted t-statistics is not far from the

null distribution. The gray line in the half-normal plot is the diagonal; the red line is

the fitted regression of the smallest 200 |t|-statistics on the corresponding quantiles.

For a sample from a standard normal distribution, the slope of a line fit to the t values

should be 1. The slope of the fitted line for these estimates is significantly larger, but

clearly the signal is widely spread over these estimates. A regression on counts for

14 words whose estimates exceed the Bonferroni bound (Table 2) obtains R
2

= 0.191.

Thus, this estimation problem differs from the so-called “nearly black” models often

studied in research on variable selection. In those models, a few estimates stand out

from a noisy background. In this application, much of the signal lies embedded in that

background.

The next model uses regressors created from the SVD of the document/word count

matrix W defined in equation (1). We retained kW = 100, 200, . . . , 500 singular vec-

tors of W . Our analysis suggests each of these collections of singular vectors both

retains too many insignificant features while at the same time omits others that are

predictive. Broadly speaking, the leading singular vectors (those with larger singular

values) are more predictive than subsequent singular vectors. That said, not all of the

leading vectors are statistically significant nor do all of the later singular vectors have

coefficients near zero. As a result, variable selection from a yet larger collection of

singular vectors may provide a better fit, a task we defer to Section 5.

Each collection of singular vectors explains more variation than the simple model

derived from several parsed words, but none find all of the signal captured by the larger

collection of 2,000 word indicators. A regression of log prices on the 100 leading singu-

lar vectors attains R
2

= 0.49, more than twice that of the model with parsed variables.
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Table 2: Multiple regression of log prices on counts from the document/word matrix W for

the most common 2,000 words. The table shows the 14 estimates that exceed the Bonferroni

threshold for statistical significance.

Estimate Std. Error t Pr(> |t|)

vacant -0.5518 0.0652 -8.46 0.0000

deed -1.3155 0.1557 -8.45 0.0000

OOV 0.0373 0.0059 6.33 0.0000

units 0.1929 0.0342 5.64 0.0000

discount -1.4959 0.2992 -5.00 0.0000

investment -0.2334 0.0497 -4.70 0.0000

most 0.3350 0.0736 4.55 0.0000

bucktown 0.3570 0.0790 4.52 0.0000

sf 0.3305 0.0741 4.46 0.0000

pullman -0.6244 0.1423 -4.39 0.0000

bedroom -0.0978 0.0227 -4.31 0.0000

terraces 0.7074 0.1650 4.29 0.0000

fenced -0.2466 0.0578 -4.27 0.0000

scb -5.5914 1.3244 -4.22 0.0000

se = 0.682 with R2 = 0.766, R
2

= 0.681
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Figure 5: Distribution of the t-statistics for the regression of log prices on 2,000 word

indicators (columns of W ).
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Adding more singular vectors produces statistically significant, though diminishing im-

provements. The collection of 500 singular vectors of W produces R
2

= 0.61, which is

less than the R
2

= 0.68 derived from individual word counts. Table 3 shows several

of the estimated coefficients and summarizes the overall fits of these models. As of-

ten seen in principal components regression, the statistical significance of the singular

vectors is not monotonic in the order of the singular vectors. That said, the leading

singular vectors tend to be more relevant than those that follow. Figure 6 summarizes

the significance of the estimated coefficients in the same fashion as Figure 5 with a plot

of the absolute t-statistics and a half-normal plot. Most of the main leading singular

vectors are significant, with an increasing proportion of insignificant variables as the

position in the decomposition increases. In comparison to the significance for the coeffi-

cients of the word indicators, these singular vectors by-and-large are more consistently

predictive with less noise. The slope of the fit in the half-normal plot (using the least

significant 200 estimates) is 2.9. Residual analysis again finds fat tails with only a hint

of heteroscedasticity.

Not only can one continue to add further singular vectors, one can also consider

nonlinearities in the form of interactions among these singular vectors. The addition of

interactions improves the fit of this model immensely by taking advantage of nonlinear-
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ities (i.e., synergies among the eigenword structure). For example, a regression using

just the first 20 singular vectors of W obtains R
2

= 0.31. Adding interactions among

these (an additional 190 explanatory variables since no powers are added) improves

the fit significantly to R
2

= 0.41. Fitting models with interactions drawn from a larger

collection of features more generally requires some form of selection or regularization.

We pursue this further in Section 5.

The third regression uses features derived from the SVD of the bigram matrix B

defined in (2). For this analysis, we retained kB = 100, 200, . . . , 500 left and right

singular vectors (kB columns in each of UB and VB) and for each computed the asso-

ciated matrix of correlations C. With 2 kB = 1, 000 left and right singular vectors, the

largest R
2

= 0.66, slightly more than the 0.61 obtained using the 500 singular vectors

defined from W . Table 4 summarizes these fits. Using correlations from either the left

or right singular vectors alone (derived from either UB or VB) explains significantly

less variation; for example, a regression on 500 correlation vectors derived from UB

alone produces R
2

= 0.61 (about the same as obtained from the 500 singular vectors

of W ). The use of the left and right singular vectors produces collinearity among the

explanatory variables. A consequence of this collinearity is a large number of insignif-

icant regressors in the fitted model. Figure 6(b) shows the p-values generated by the

500 singular vectors of correlations. Compared to the singular vectors derived from

W shown in Figure 6(a), these regressors have more diffuse signal. The slope in the

half-normal plot (again, derived from the least significant 200 estimates) is 2 (com-

pared to 2.9 for the regressors derived from W ). Also, the trend in the half-normal

plot is concave rather than convex; the most significant variables are less significant

than anticipated by the signal in the smaller estimates.

We can concentrate more of the regression signal into the leading components by

using canonical correlation analysis. Figure 7 shows the canonical correlations between

Cl and Cr. The correlations remain close to 1 for about the first 100 or so canonical

variables. Rather than use the columns of Cl as regressors, we can use the canon-

ical variables from this analysis. Figure 8 summarizes the estimates using the 500

predictors. The regression signal is now much more concentrated in the leading canon-

ical variables, resembling the structure found by LSA (Figure ??). The overall fit, of

course, matches that obtained by using Cl since the canonical vectors are linear trans-
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Table 3: Multiple regression of log prices on singular vectors of the document/word count

matrix W . The first table shows estimated coefficients for first 10 and last 3 singular vectors

with kw = 500.

Estimate Std. Error t value Pr(>|t|)

D1 -62.0847 2.4891 -24.94 0.0000

D2 -7.6494 0.9373 -8.16 0.0000

D3 -12.5468 0.7558 -16.60 0.0000

D4 10.4948 0.8262 12.70 0.0000

D5 -0.8683 0.7645 -1.14 0.2561

D6 7.6848 0.8036 9.56 0.0000

D7 -17.8753 0.7547 -23.69 0.0000

D8 18.8346 0.7577 24.86 0.0000

D9 3.9515 0.7540 5.24 0.0000

D10 4.0974 0.7521 5.45 0.0000
...

D498 1.2327 0.7516 1.64 0.1010

D499 1.3265 0.7516 1.76 0.0776

D500 2.5296 0.7516 3.37 0.0008

kw Residual SD F R2 R
2

100 0.863 72.1 0.496 0.489

200 0.810 45.9 0.561 0.549

300 0.778 35.5 0.601 0.584

400 0.765 28.5 0.620 0.598

500 0.752 24.3 0.638 0.612
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Figure 6: T-statistics of the singular value regressors for (a) the singular vectors of W and

(b) the left and right singular vectors of B.
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Table 4: Multiple regression of log prices on regressors derived from the bigram matrix B.

Each regression uses correlations derived from kB left and kB right singular vectors.

2 kB Residual SD F R2 R
2

200 0.842 40.0 0.527 0.514

400 0.779 26.8 0.605 0.583

600 0.750 20.6 0.645 0.614

800 0.724 17.4 0.679 0.640

1000 0.704 15.3 0.705 0.660

Figure 7: Canonical correlations between the 500 columns of Cl and Cr.
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formations of Cl. We conjecture that CCA has this effect because, under the simple

topic model introduced in Section 4 that follows, the left and right singular vectors of

B measure essentially the same thing and aligning these via CCA produces a better

measure of that common structure. This alignment, however, removes the distinction

due to word order that the bigram matrix reveals. It may be the case that in this

relatively small example (i.e., relatively few documents) we lack enough text to exploit

asymmetry in the use of words.

How well does combining both sets of variables perform? To find out, we start

with the variables from the LSA, the singular vectors of W . The regression on the

500 singular vectors in UW explains R
2

= 0.612 of the variation in log prices. Adding

the information from 500 more columns in Cl boosts the total to R
2

= 0.679. Adding

the remaining variation from Cr raises the total slightly (albeit significantly) to R
2

=

0.703. Interestingly, the original parsed variables (Table 1) offer ever so slightly more

predictive power. The improvement only adds 0.003 to R
2
, but this is highly significant

(F=12.1).
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Figure 8: Canonical variables from the analysis of the dependence between Cl and Cr

concentrate more signal into the leading regressors.
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4 Motivating Probability Models

To provide some explanation for the evident success of this direct approach to building

regressors from text, we offer a hypothetical data generating process for text and study

the implications of this DGP for regression modeling. The DGP is essentially that used

in topic modeling (Blei, 2012). In machine learning, topic modeling is an unsupervised

technique that clusters documents based on the presence of shared, underlying “topics”

revealed by a hierarchical Bayesian model. Our method of featurizing text is also

unsupervised, but we seek to predict an explicit response rather than uncover latent

clusters. Nonetheless, we can study how our procedure would perform were there an

underlying topic model.

4.1 Topic Models

We begin with the simplifying assumption that real estate properties possess varying

amounts of K unobserved traits that influence both the value of a property as well as

the language used to describe the property. For example, such traits might include the

quality of construction, presence of renovations, proximity to desirable conveniences

and so forth. In the context of topic models, these traits define the underlying top-

ics shared by an ensemble of documents. In what follows, the subscript i indexes

documents (i = 1, . . . , n), m denotes words (m = 1, . . . ,M), and k indexes traits
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(k = 1, . . . ,K). Recall that words are tokens identified in the preprocessing of the

text, not words in the usual sense. Let y = (y1, . . . , yn)′ denote the column vector that

holds the response that is to be modeled by regression analysis. In our application, y

is the vector of the log of prices of real estate. (All vectors are column vectors.)

Within this model, traits influence the response via a familiar regression equation.

The connection between traits and documents is given by an unobserved n×K matrix

of latent features ζ = [ζik]. Each row of ζ defines a mixture of traits that defines the

distribution of words that appear in each document. To avoid further notation, we use

subscripts to distinguish the rows and columns of ζ. The vector ζi∗ identifies the row

of ζ associated with document i, and ζ∗k identifies the column of ζ associated with

topic k:

ζ =


ζ ′1∗

ζ ′2∗
...

ζ ′n∗

 = (ζ∗1 ζ∗2 · · · ζ∗K) .

ζi∗ specifies the distribution of traits present in the ith real-estate property; 0 ≤ ζik ≤ 1

with
∑

k ζik = 1. We assume that the allocation of traits within each document is an

independent realization of a Dirichlet random variable,

ζi∗ ∼ Dir(K,αK) , (4)

where αm denotes the K-dimensional parameter vector of distribution. Given ζ, the

K traits influence the response through a linear equation of the familiar form

E yi = ζ ′i∗ β . (5)

The coefficients β determine how the traits influence the response.

These traits also determine the distribution of words that appear in documents.

This connection allows us to recover ζ — which is not observed — from the associated

text. Assume that a trait defines a probability distribution over the word types in the

vocabulary V . Let Pk denote the distribution of word-types used when describing trait

k; in particular, Pkm is the probability of using word type m when describing trait k.

Our DGP models these distributions over word types as another set of independent

Dirichlet random variables,

Pk ∼ Dir(M,αM ), (6)
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where αM is the M -dimensional parameter vector for the distribution. Collect these

discrete distributions in the K ×M matrix

P =


P ′1

P ′2
...

P ′K

 . (7)

The Dirichlet variables ζ and P together determine a distribution for the counts

of words that appear in each document (its bag-of-words). First, we assume that the

number of words in each document is another independent random variable, and for

our simulation we use a negative binomial, formed by mixing Poisson distributions with

parameters that have a Gamma distribution,

mi|λi ∼ Poisson(λi), λi ∼ Gamma(α), (8)

independently over documents. To ‘construct’ the ith document from this model, we

sample mi words from the underlying K topics by the following mechanism. Let wim

denote the mth word in the ith document. For this word, pick a topic at random

(and independently) from the topic distribution identified by ζi∗, say kim ∼ Multi(ζi∗).

Then choose wim from the multinomial distribution with these probabilities,

wim ∼ Mult(Pkim), i = 1, . . . ,mi . (9)

Hence, the vector of counts wi for the ith document has a multinomial distribution

whose parameters are determined by its mixture of traits:

w′i ∼ Multi(mi, ζ
′
iP ) (10)

implying that Ew′i|mi = mi ζ
′
iP .

Remark A. According to this DGP, the length of a document mi does not affect the

response; only the mixture of traits is relevant. Our results with real text summarized

in the regression (Table 1) provide contradictory evidence: Document length has a

significant impact on price.

Given that documents are generated by a topic model defined by equations (5)

– (10), the challenge for making regression features from text is to recover the K-

dimensional linear space spanned by ζ. The success of latent semantic analysis (LSA,
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principal components analysis of the word counts W ) is particularly easy to see. Intu-

itively, LSA is well-matched to this DGP because both treat a document as a bag-of-

words. Let Dm denote an n × n diagonal matrix with the word counts mi along the

diagonal. Then the expected value of the document/word matrix W is the sum of K

outer products:

EW = Dm ζ P = Dm

∑
k

ζ∗kP
′
k . (11)

The expectation factors as an outer product, just as an SVD represents a matrix.

That is, if we write X = UDV ′, then we can express the matrix product as the sum

X =
∑

j djjujv
′
j where uj and vj are the columns of U and V , respectively. For our

models of text, the left singular vectors UW from (1) are related to the allocation of

traits over documents held in ζ. Of course, there are many ways to factor a matrix,

and it is not apparent why the factorization provided by the SVD would be better

than others. Our rationale relies on convenience (and the evident success in modeling

real-estate prices), but one can argue that a decomposition that yields positive factors,

namely non-negative matrix factorization NMF, would be more appropriate. Because

both ζ and P are probability matrices, a constrained optimization that factors W into

matrices whose rows are discrete probability distributions would be ideal. We do not

explore these here.

Remark B. Expression (11) suggests that we should factor out Dm from W before doing

the singular value decomposition so that variation of the lengths mi does not contam-

inate the left singular vectors. This replacement of counts by proportions would then

be followed by weighted least squares to down weight the influence of short documents.

We explored several variations of this weighting, but none made a dramatic difference

in the goodness of fit or out-of-sample accuracy.

The connection of this DGP to bigrams is less obvious and relies more on stronger

assumptions. Bigrams count the frequency of the adjacent word types, a property we

associate with the sequence of words rather than co-occurrence within a document. To

see how the analysis of bigrams can nonetheless produce useful regressors, we need to

add either stronger assumptions to our DGP or incorporate some type of sequential

dependence. For example, we might assume that words associated with traits appear in
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phrases. As in the bag-of-words model, words within a phrase are drawn independently

from the distribution defined by a trait, but the generating process samples within

a trait for some length of time before transitioning to another trait (resembling an

HMM). If these phrases are relatively long, then we can approximate the expected

counts in the bigram matrix as a weighted outer product of the probability vectors

for the traits. We can obtain the same heuristic in our DGP by assuming that the

probability distributions Pk that define the traits have (nearly) singular support on

words. That is, most words are associated with a unique trait (implying P ′k1Pk2 ≈ 0).

In either case, the marginal probability of finding adjacent words types reveals the

underlying probability distribution.

For instance, suppose the traits have disjoint support on words and that documents

have common length mi ≡ m. Then the probability of finding word types wm1 and

wm2 from trait k adjacent to each other is

P (wm1 , wm2) =
∑
i

(
ζ2ik/n

)
Pkm1Pkm2 = hkPkm1Pkm2 . (12)

Let N =
∑
mi denote the total number of observed words. Using the expression (12),

the expected value of the bigram matrix factors as

1
NEB ≈

∑
hkPk P

′
k = P ′HP , H = diag(hk) , (13)

Again, a constrained factorization that produced probability vectors would be more

appropriate if one truly believed this model. In an ideal world, the singular values of

the SVD would capture the unobserved marginal probabilities hk. Expression (13) also

suggests why the left and right singular vectors of B should match, or at least define

a common subspace.

The factorization of B defines the coordinates of eigenwords (RM ). To obtain

coordinates in document space (Rn) for use in regression, we correlate the word counts

in W with the eigenwords. For the ith description, if we pretend that the factorization

of B is exact and approximate the word counts wi by their expectation, then the first

column of w′iUb is

w′iP1 ≈ miζ
′
iPP1 .

If the probability distributions of the traits are roughly singular as argued previously,

then

w′iPk ≈ miζi1P
′
1P1 .
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Hence, to this rough approximation, the correlation between wi and the first left sin-

gular vector of B is

corr(wi, UB1) =
ζi1

(ζ ′i∗ζi∗)
1/2

The L2 normalization is just right for canceling P1, but leaves a constant factor ‖ζi‖.

Of course, even in expectation, the factorization of the bigram B will not match

(13); the SVD only recovers a basis for the range of B. Thus, the singular vectors will

mix the probability vectors. We can then think about UB = P ′O for some orthonormal

matrix O. That is, ideally the singular vectors span the correct space, but in a different

basis so that we observe (again, in expectation)

w′iUb ≈ (miζ
′
iP )(P ′O) = miζidiag(P ′kPk)O

Hence, when computing the correlations between the observed counts wi and the sin-

gular vectors, the norm of the probability distributions cancel and we obtain a rotation

of ζi∗ vector. The rotation is the same, however, for all rows, and consequently our

collection of regressors spans the same space as the unrotated ζ.

Obtaining a the relevant ζ-coordinates for a new document is routine in this case.

One simply mimics the process used to identify/estimate ζ for the observed cases by

correlating the counts for the new description, say wnew, with the matrix defined by

the eigenwords.

4.2 Examples: Simulated Data from Topic Models

To get a better handle on how the singular value decomposition works, consider a

simulated world in which a topic model generates text from a vocabulary of M = 2, 000

words types. Assume that words in n = 6, 000 documents are generated by mixture

of K = 10 topics, with each topic defined by one of K distributions P1, . . . , P10 over

the 2,000 word types. Hence, p1 lies in the M -dimensional simplex. Similarly, the

distribution of topics within the ith document is distributed as ζi∗ ∼ Dirichlet(K,αk =

0.1). The response for a document is a weighted sum of the mix of topics within

the document. We consider two situations, first the idealized case in which topic

distributions are essentially disjoint, and then with topic distributions share common

words.
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Figure 9: Probabilities assigned to words by two simulated topic distributions with (a) nearly

disjoint support and (b) with overlapping words.
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4.2.1 Nearly Disjoint Topic Distributions

For this example, we simulate Pk by independently drawing from a Dirichlet distribu-

tion with parameters M and αm = 0.05 for all m = 1, . . . ,M . Small values of αm lead

to ‘spiky’ distributions with little overlap. For example, Figure 9(a) graphs the prob-

abilities assigned by two of the 10 distributions for this first simulation. The defining

constants for this first example are:

M = 2000 word types, n = 4000 documents, K = 10 topics

with random variables defined by

mi ∼ Pois(λi), λi ∼ Gamma(30, 1) , i = i, . . . , n, (Negative Binomial)

Pk ∼ Dir(M,αm = 0.05), k = 1, . . . ,K,

ζi∗ ∼ Dir(K,αk = 0.10), i = 1, . . . , n,

kim ∼ Mult(ζi∗), m = 1, . . . ,mi,

wim|kim ∼ Mult(Pkim), i = 1, . . . , n ,

yi ∼ N(ζ ′β, 0.52), i = 1, . . . , n .

With these choices, R
2 ≈ 0.92 for the regression of y on ζ.

The distribution of words produced by this topic model loosely resembles the distri-

bution found in real estate ads. Compare Figure 10(a) to Figure 2 from the real estate

data. Though a good match for the less common words, the most common words are

not as common as one might want. The common words do not have a high enough

frequency (disjoint topics lack common words like ‘a’ and ‘the’ and punctuation as
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Figure 10: Distribution of word frequencies for simulated topic data, based on (a) disjoint

word distributions and (b) over-lapping distributions.
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Table 5: Fits to regression in simulated topic data using singular vectors of W and B for

two topic distributions.

Topic Structure Num Regressors Origin R
2

Disjoint 100 W 0.746

200 B 0.788

Overlapping 100 W 0.516

200 B 0.626

found in the real-estate listings shown in Figure 2), and the frequencies for rare words

drop off too quickly.

Table 5 summarizes the fits using kW = 100 singular vectors and kB = 100 left and

right singular vectors of B. The fits recover much, but certainly not all of the underlying

regression structure (for which R2 ≈ 0.92). The fitted models produce similar fitted

values, as shown in Figure 11. The two fits, however, deviate for documents with either

lower or higher values of y.

Because the topic distributions are nearly disjoint, one can identify the number of

topics K from the singular value decompositions. The value of K is most apparent

in a canonical correlation analysis of the singular vectors of B. Figure 12 graphs the

canonical correlations for the left and right singular vectors of the bigram matrix for

the simulated text. The clear break in the sequence of singular vectors confirms the
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Figure 11: Scatterplot of fitted values for the two regressions based on singular vectors of W

and B. The shown smooth curve is the lowess fit, and the correlation r ≈ 0.97.
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presence of K = 10 topics.

4.2.2 Overlapping Topic Distributions

The ability to recover the underlying regression structure is diminished in the presence

of overlapping topics. The simulation in this section is virtually identical to the previous

one, but for overlapping topics. The simulation again has a vocabulary of M = 2, 000

words, n = 6, 000 documents, and K = 10 topics. Rather than simulate the topics

distributions independently, however, we introduce a common structure. The topic

distributions share 150 “common words” that follow with probabilities from a Dirichlet

distribution. Let X ∼ Dir(150, 2) and let ξ denote the vector obtained by concatenating

M - 150 zeros onto X, ξ′ = (X, 0, . . . , 0). The distribution that defines the kth trait

is then Pk = ξ/2 + Z/2 with Z ∼ Dir(αm). Figure 9(b) plots the probabilities of

two distributions generated in this manner. The diagonal points show the substantial

overlap. The number of topics per document and the marginal distribution of words

per document are both similar to the prior simulation and are not materially influenced

by the introduction of this overlap.

The same cannot be said for the regressors produced from singular value decom-

positions. The lower portion of Table 5 summarizes these fits. The regression on 100

singular vectors from W now captures R
2

= 0.516 of the variation in the response,

and the regressors from the bigram obtain R
2

= 0.626. The correlation between fitted
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Figure 12: Canonical correlations for left and right singular vectors of the bigram matrix

B of simulated topic data. (a) The underlying topics are nearly disjoint in support. (b) The

underlying topics overlap.
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values falls to 0.86 (down from 0.97 when no overlap was introduced). Curiously, the

bigram is less influenced by the overlap. Canonical correlation of the singular vectors

of B also no longer reveals the number of topics (Figure 12(b)). The canonical correla-

tions between left and right singular vectors of B now provide no hint as to the choice

of K.

Figure 13 summarizes the statistical significance of the coefficient estimates in this

model. The distribution of significance is rather different from that seen in the real

estate models (Figure 6). For example, statistical significance decays in the real estate

model as one moves from the leading singular vectors of W down to smaller vectors.

The simulated results show no hint of greater significance in the leading singular vectors

and have a diffuse signal. Also, both half-normal plots are very nearly linear, with little

of the “superstar” character seen in the t-statistics from the regression models for real

estate. What is similar to the model for prices is that the signal is more diffuse in the

regression using correlation regressors derived from B. The slope of the line fitted to

the half-normal plot of the t-statistics for the singular vectors of W is 8.8, whereas that

for the regressors derived from B is 3.6.
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Figure 13: Distribution of statistical significance in the regression with simulated, overlap-

ping topic models. Results first for the regression on singular vectors from W , then those

derived from the bigram matrix B.
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5 Variable Selection and Cross Validation

The previous examples routinely estimate regression models with hundreds of explana-

tory variables. Though large by traditional standards, these models do not suffer from

the problems associated with over fitting because we have not used the data to pick

the model. We simply fit a large collection of regressors. Evaluating such models is

thus the province of classical statistical tests and criteria such as adjusted r-squared.

As evidence that these models are not over fit, we offer the following example. Con-

sider the LSA regression that uses 500 principal components of W . Adjusting for the

effects of estimating the 500 coefficients and the intercept anticipates the out-of-sample

mean squared error of prediction to be s2e(1 + (p + 1)/n). This simple approximation

averages over the regression design, ignoring leverage effects. Plugging in the unbiased

estimate s2e = 0.5649 gives 0.5649(1 + 501/7384) = 0.603. Because the values of the

regressors in the test data do not match those in the training data, this estimator is

typically smaller than the observed MSE by an amount depending on variation in the

regressors.

For comparison, we performed repeated 10-fold transductive cross validation.

Transductive cross-validation presumes that the full collection of regressors is available

for the training data, which in this case implies that we have all of the data available to

perform the principal components analysis. Only the values of the response are hidden

in each fold of the cross-validation; the collection of regressors is fixed. We repeated

the 10-fold cross-validation 20 times, each time randomly partitioning the cases into

10 folds. The observed average squared error was slightly higher than anticipated at

0.614± 0.007, but basically agreed with the estimate from the fitted model.

6 Lighthouse Variables and Interpretation

Though regression models are seldom causal, one is often tempted to interpret proper-

ties of the solution within the domain of application. Because the predictors computed

from the decompositions in the prior section describe subspaces rather than some spe-

cific property of words, interpretation is essentially non-existent.

To obtain features that are interpretable, we exploit the pre¡sence of characteris-

tics that are occasionally observable. For example, most home listings do not include
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the number of bathrooms. An explanatory variable obtained by parsing this count is

missing for 74% of the property listings. We can use this partially observed variable,

however, to construct a more interpretable variable from either the principal compo-

nents of W or the bigram variables.

Let z ∈ Rn denote the partially observed or perhaps noisy data that measures a

substantively interesting characteristic of the observations. For our example, z is the

partially observed count of the number of bathrooms. Rather than use z directly as

a predictor of y, we can use it to form an interpretable blend of, for instance, UW .

In particular, we simply regress z on these columns, finding the linear combination

of these basis vectors most correlated with the observed variable. This variable, call

it ẑ then becomes another regressor. Because such variables can be used to guide

the construction of interpretable combinations of the bases UW and C, we call these

lighthouse variables.

In our example, the correlation between the number of bathrooms and the price of

the listing is 0.42 for listings that show this characteristic. This correlation is much

smaller (0.19) if we fill the missing values with the mean number of bathrooms (Fig-

ure 4). If we form the projection ẑ given by regressing the observed counts on the

corresponding rows of UW , this new regressor has correlation 0.29 with the log of price.

7 Summary and Next Steps

Our analysis here shows that one can exploit well-known methods of multivariate anal-

ysis to create regressors from unstructured text. Compared to iterative methods based

on MCMC, the computations are essentially immediate. Surprisingly, the resulting

regressors are quite predictive in several examples we have explored. For example, we

used this same methodology to model ratings assigned to wines based on tasting notes.

The tasting notes themselves are typically shorter than these real estate listings (aver-

aging about 42 tokens compared to 72 for the listings), but we have a larger collection

of about 21,000. Using the methods demonstrated here, a regression using 250 princi-

pal components of W explains about 66% of the variation in ratings, we a remarkably

similar distribution of effect sizes as shown in Figure 14. Similarly, regression on the

250 left and 250 right regressors constructed from the bigram matrix explains about
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Figure 14: Regression t-statistics from a model that predicts wine ratings using 250 principal

components of W based on 21,000 wine tasting notes.

0 50 100 200

0
20

40
60

Wine Regr, LSA variables

|t|

0.0 1.0 2.0

0
20

40
60

Normal Quantile

S
or

te
d 

|t|

b = 6.5

68% of the variation. We plan to explore other applications in the near future.

The connection to topic models is an important aspect of these results. Topic

models define a DGP for which the regressors that we construct capture the underlying

data-generating mechanism. If one accepts topic models as a reasonable working model

of the semantics of text, then it is no accident that regressors constructed from text

are predictive.

Our work here merely introduces these methods, and we hope that this introduction

will encourage more statisticians to engage problems in modeling text. Our results here

also suggest several directions for further research:

n-grams. Our example uses bigrams to capture word associations captured by adja-

cent placement. Other reasonable choices define different measures of context,

such as trigrams (sequence of 3 words) or skipped bigrams (words separated by

some count of tokens). Some preliminary results show, for instance, that trigrams

offer modest gains, albeit at a nontrivial increase in computation.

Transfer learning. Transfer learning refers to learning what can be extrapolated

from one situation to another. In our context, it would be of interest to learn

how well models developed from data in June 2013 work when applied to data

from later time periods or different locations. It is evident that the models shown

here would not perform so well applied to the language of a different market, such

as in Miami or Los Angeles. Not only do the characteristics of valuable properties

change, but local conventions for phrasing listings are also likely to be different.

Having a methodology for distinguishing idiosyncratic local features from those
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that generalize in time or space would be valuable.

Alternative forms of tokenization. Would be interesting to explore the use of

stemming to reduce the number of word types and with a larger collection of

documents, to explore annotation (that would distinguish words by their part

of speech). Further parsing, lexical analysis. Some readers will be troubled by

the simplicity of the bag-of-words representation of a document. Our methods

understand neither the English language nor the rules of grammar and spelling.

They do not attempt to untangle multiple uses of the same word. Linguists

have debated the ability of such representations to reveal the meaning of lan-

guage, and it is clear that the bag of words representation loses information. Just

imagine cooking from“bag of words” recipe or following a “bag of words” driv-

ing directions. Nonetheless, this very direct representation produces very useful

explanatory variables within our application. We leave open the opportunity to

embellish this approach with more domain specific methods of parsing, such as

adding part-of-speech tags and lexical information.

Use of unsupervised data. Most words are used only once or twice, meaning that

we lack enough data to identify their connection to the response or indeed to

other words. As a partial remedy, it may be possible to build regressors that

represent such words from larger, more generic text such as the collection of n-

grams collected by Google. Using this supplemental unsupervised data requires

solving the problem of transfer learning, at least to some degree, but opens the

door to much more extensive examples.

Variable selection. The distribution of effects (such as shown by the |t| statistics

of the text-derived regressors) are poorly matched to the so-called ‘nearly black’

model commonly adopted in research on the theory of variable selection. Rather

than have most of the predictive power concentrated in a very small number of

regressors, these regressors spread the power of many.

It would also be interesting to explore these models for nonlinearity. Variable

selection is perhaps unnecessary for using the regressors derived from UW and C,

but essential if one hopes to detect and incorporate nonlinearity. In particular,

searching for nonlinearity – such as interactions – requires variable selection.

Even a very large corpus of documents looks small compared to the number



Featurizing Text (DRAFT, October 18, 2013) 36

of possible second-order interactions. Finally, the ordered presentation of the

|t| statistics suggests an opportunity for variable selection derived from alpha

investing (Foster and Stine, 2008). Alpha investing is a procedure for testing a

sequence of hypotheses that benefits from a priori ordering of the tests.
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