Data Visualization Model Visualization

Bob Stine Department of Statistics, Wharton

What concepts do you find hard to teach?

What concepts do they find hard to learn?

Question

- What concepts do you find hard to teach?
 - Normal quantile plots
 - Anything to do with hypothesis testing
 - Categorical variables in regression
 - Interactions in regression
- What concepts do they find hard to learn? Normal quantile plots Anything to do with hypothesis testing Categorical variables in regression Interactions in regression

Question

What concepts do you find hard to teach?

- Normal quantile plots
- Anything to do with hypothesis testing
- Categorical variables in regression
- Interactions in regression

What concepts do they find hard to learn?

- Normal quantile plots
- Anything to do with hypothesis testing
- Categorical variables in regression
- Interactions in regression

Curve Filling

Normal Quantile Plots

Why bother with these?

Just look at histograms, boxplots

Need to go further

Asking a lot to make 'judgement'.

Statistics has enough heuristics already.

QQ plots

introduce diagnostic plots preview hypothesis testing

Hard to Teach

- Conceptual black box
 - Early in the course, around histograms
 - Normal score is complex formula
 - Computer does the work by magic

First Example Remedy

Visuals that appeal to tangible things

Computer animates rather than conceals

Department of Statistics

Non-normal?

Further examples look at distributions with common deviations from normality

Static version in book, but not nearly as powerful.

Model Profiling

Regression Models

Simple regression is fun

- Look at the picture
- Lots of intuitive examples

Interpretation

Multiple regression Which picture Collinearity is not so intuitive

Worse when add categorical variables

Too many nuanced, subtle tasks in complex situation

Example

What's this model tell us?

Est Value = -35 + 9 Avg Num Rooms

Boston housing data

Example

What's this model tell us?

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	52.439	13.090	4.01	<.0001*
Rooms	5.644	0.358	15.78	<.0001*
(Rooms-6.28463)*(Rooms-6.28463)	2.526	0.237	10.65	<.0001*
Charles River[Away]	-5.697	0.984	-5.79	<.0001*
NOx	-70.826	10.682	-6.63	<.0001*
Tax Rate	0.064	0.011	5.76	<.0001*
Pupil/Teacher	-2.600	0.6		141.21.2.2.5
(NOx-0.5547)*Charles River[Away]	55.986	10.9		
es River[Away]	-0.073	0.0		ASA
Charles River[Away]	1.751	0.6	6 A	

Need a better presentation...

Profile of Model

W narton Department of Statistics

Closing Remarks

Static presentation is less compelling

At what point does the course become too oriented toward using software?

Thanks!

