Linking Goodness of Fit to Economic Gains

What's the dollar benefit of more accurate predictions?

Bob Stine
Department of Statistics,Wharton

Common Class Project

Challenge students taking regression to build a model used to
predict sales
forecast demand ...
Success shown by
Student communicates business implications

Higher R ${ }^{2}$

How does fit convert to \$?

Students recognize that higher R^{2} means a "better fit", but what is the economic value?

No matter which is used, how to you convert improvements of the model into dollars?

For example
R^{2} of a model increases from 50\% to 70\%
Can you convert that to money?
Generic scenario?

News-vendor Problem

Context

Unknown demand
Perishable good
How much to make?
electronics
foods fashion
cars

Uncertainty in demand implies wasted opportunity

Make too much: leftover product
Make too little: unmet demand

Aside

Solution to News-vendor

Notation
Demand D is random variable
Cost to manufacture cost
Selling price price
How much to supply?
Expected marginal value of $\mathrm{m}^{\text {th }}$ item is price $P(D>m)$ - cost

Continue making so long as positive marginal value

$$
\begin{aligned}
\frac{\text { price-cost }}{\text { price }} & =P(D \leq m) \\
\pi=\% \text { profit } & =P(\text { demand met })
\end{aligned}
$$

Implication of Uncertainty

Add assumption

$$
D \sim N\left(10000, \sigma^{2}\right)
$$

Label target to make $\theta=\mu+\sigma z_{\pi}$
\%profit=0.75

$\sigma=2500$
$\theta \approx 11,700$

Implication of Uncertainty

Add assumption

$$
D \sim N\left(10000, \sigma^{2}\right)
$$

Label target to make $\theta=\mu+\sigma z_{\pi}$
reduced
\%profit=0.75

$\sigma=1000$
$\theta \approx 10,700$

Expected Profit

What's the expected profit?
Easy to find the optimal amount to produce Harder to find associated expected profit
'Modern' approach
Just do it: calculate the expected profit of each item Add them up

Expected
Value of Item

Expected Profit

What's the expected profit?
Discrete calculation is exact
Hard to see forest for all the trees!
Approximation is simple in normal case
Assume choose optimal production amount
Expression for profit is linear in σ
Maximum 'gain' for small σ if cost $=50 \%$ of price.

$$
\mathrm{E}(\text { profit }) \approx \mu(\text { price }-\operatorname{cost})-\sigma \text { price } \varphi\left(z_{\pi}\right)
$$

Penalty for Uncertainty

Explicit role for error variation

Effect of profit/price ratio
$\mathrm{E}($ profit $) \approx$ best $-\sigma$ price $\varphi\left(\mathrm{z}_{\pi}\right)$

Penalty for Uncertainty

If you really do like R^{2} over σ then...
Better fit means smaller penalty

$\underset{\text { Whememorton }}{\text { Whatice }} \quad \mathrm{E}$ (profit) \approx best $-\sigma \sqrt{ }\left(I-R^{2}\right)$ price $\varphi\left(\mathrm{z}_{\pi}\right)$

Details: Less Variance

Marginal
$\mu=10,000$ with $\sigma=2500$
Optimal production $\theta=11,686$ units
Expected profit $750,000-79,444 \approx \$ 671,000$
cost=\$25
profit=\$75

Regression

$$
\mathrm{R}^{2}=0.60
$$

$\mu=10,000$ with $\sigma=1000$
$\theta=10,675$ units
Expected profit $750,000-31778 \approx \$ 720,000$

What if mean changes too?

 Marginal mean ignores possible covariate information that affects mean responseSuppose mean grows as SD falls...
Better fitting models imply that expected response varies with covariate

$$
\begin{gathered}
\mu=13500 \\
\sigma=1000
\end{gathered}
$$

Example:Wrong Mean

Setup

Marginal: $\mu=10,000$ with $\sigma=2500$
Conditional: $\mu=13,500$ with $\sigma=1000$
cost=\$25
profit=\$75

Marginal results
Sets $\theta=11,686$ units, expecting $\$ 675,000$ profit
Expectation* is reall $\$ 875,000$. Great!
Regression
$\mu=13,500$ with $\sigma=1000$ implies $\theta=14,175$ Just left
Expected profit is $\$ 980,722$
$\$ 100,000$ on the table!

Closing Remarks

Opportunity to link to other classes
Supply chain, operations
Economics
Strategic management
Link to upper level classes
Random variables, quantiles
Where did that magic formula come from?
Advantage of calculus over discrete sums
The discrete calculation in Excel hides the elegant role of σ and cost/price ratio

