Engaging Students in the Time of Business Analytics

Bob Stine Department of Statistics The Wharton School University of Pennsylvania

Perspective

- Currently...
- Teaching required undergrad regression
 - "Analytical" regression
 - Focus on answering business questions
 - Emphasize motivation/interpretation/action rather than "theory"
 - Software such as JMP, Excel, StatCrunch
- 3 sections, each with 120 students I TA

Gateway or barrier to later courses...

Business Analytics

Everywhere

Particularly in business schools

Elsewhere "Data Science"

At Wharton

New joint Business Analytics concentrations Undergraduate MBA

Attractive STEM field

Facilitates VISA

Soaring enrollment for many courses

Modern data analytics R programming Probability... one section @ 30 has grown to 3 @ 65

Challenges to Engagement

Scale

Attention span

Phones

Behavioral changes

Freshmen, sophomores

Don't know business: e.g. CAPM, elasticity, ...

Business Analytics has expanded variation

Growing subset of AP students adds yet more

Placement: Statisticians' view of Business Analytics is not the same as recruiters' view

Bus Analytics ≠ Applied Stat

Talk to those hiring Business Analytics grads

- Data manipulation
- Programming, scripting
- Problem solving, willing to dive in
- And, yes, statistical sense for data analysis

Wharton concentration

Joint concentration with "Decision Science"

Probability course is not in the concentration!

Mixture: Data collection, Data analysis, Optimization

Lack Business Knowledge

Undergraduate business program

Revised undergrad curriculum

First year exploration

Second and third year skills

Senior year capstone

Capstone course

Limited size, group project

Blend knowledge from various courses

Application field project

Hard to find, harder to sustain over time...

Engagement at Scale

Compelling examples are key

Distract from those phones as well...

Compelling for MBA ≠ Compelling for Undergrad

Topical examples

Themselves

Contemporary issues

Software

Not teaching programming

At least not at the introductory level!

Jazzy animation

Examples that click

Student generated data

Number text messages, male vs female

Hard to manage (much less grade) at scale

Substantive examples

Contemporary: Election surveys, sports

Climate change

Crime rates

Wage discrimination

"Eye candy" examples Macroeconomic data

projects

Election Surveys

Topic

Data collection, survey design/execution

Sampling variation

Example

Department of Statistics

Surveys prior to recent election

Not just the data, but what you say about data.

Climate Change

Topic

Polynomial trends, time series

Example

Arctic ice extent (million km²)

Again how you frame data matters.

Crime Rates

Topic

Leveraged outliers

Example

Association between crime rates and housing values in communities in Philadelphia area

Where is that? Why is it so different?

Crime Rates

Topic

Leveraged outliers, nonlinear trends

Example

Association between crime rates and housing values in communities in Philadelphia area

Linear?

Wage Discrimination

Topic

Dummy variables in regression

Example

Adjusting for confounding effects in two-sample comparisons

male-female			
Assuming unequal variances			
Difference	4.67045	t Ratio	2.390108
Std Err Dif	1.95407	DF	122.4104
Upper CL Dif	8.53861	Prob > t	0.0184*
Lower CL Dif	0.80229	Prob > t	0.0092*
Confidence	0.95	Prob < t	0.9908

Wage Discrimination

Topic

Dummy variables in regression

Example

Adjusting for confounding effects in two-sample comparisons

Knowing how to use dummy variable is irrelevant if don't know when!

Department of Statistics

Macroeconomic Data

Macro data common in other courses

Why are there circular patterns in this plot? Monthly macroeconomic data Payrolls and capacity utilization

Macroeconomic Data

Macro data common in other courses

Why are there circular patterns in this plot? Monthly macroeconomic data Payrolls and capacity utilization

Macroeconomic Data

Macro data common in other courses

Why are there circular patterns in this plot? Monthly macroeconomic data Payrolls and capacity utilization

At some point to show that Stat actually leverages technology!

Discussion

Examples draw attention, curiosity

Need to be topical to students

Have to be fresh

Collaboration with other fields

More important in age of "data science" Reach outside B School: computer science

Other thoughts

Passion

Respect

