Information Theory and Model Selection

Dean Foster \& Robert Stine Dept of Statistics, Univ of Pennsylvania

May 11, 1998

- Data compression and coding
- Duality of code lengths and probabilities
- Model selection via coding: testing $H_{0}: \mu=0$
- Local asymptotic coding
- Coding interpretation of selection criteria in regression:
- Mallows' C_{p}, Akaike information criterion (AIC)
- Bayesian information criterion (BIC, SIC)
- Risk inflation, thresholding (RIC)
- Empirical Bayes criterion, multiple testing (eBIC)
- Discussion, extensions

Overview

Ultimate problem for today

Which variables ought to be used in a regression, particularly when the number of potential predictors p is large (data mining).

Model selection = data compression

Model selection via popular criteria

$$
A I C, B I C, R I C, e B I C
$$

is equivalent to choosing the model which offers the greatest compression of the data.

Two-part codes

The compressed data are represented by a two-part code Model Parameters || Compressed Data
Selection criteria differ in how they encode the parameters.

Information/coding theory

Coding view of selection as data compression offers

- Consistent, alternative perspective for the various criteria.
- Tangible comparison of criteria.
- Suggests new criteria, customized to specific problems.

Representative problem

Test the null hypothesis $\mu_{0}=0$.

So many choices - is any one right?

Context: orthogonal regression with n observations and p predictors. Threshold: choose X_{j} if $\left|z_{j}\right|>\tau$, criterion's threshold.

$$
\begin{array}{ccl}
\tau=0 & \text { OLS, } \max R^{2} & \text { Gauss } \\
\tau=1 & \max \bar{R}^{2}, \min s^{2} & \text { Theil 1961 } \\
\hline \sqrt{2} & \text { Unbiased est of out-of-sample error } \\
& C_{p} & \text { Mallows 1964,1973 } \\
& \text { AIC } & \text { Akaike } 1973
\end{array}
$$

Cross-valid Stone 1974
$\sqrt{\log n} \quad$ Model averaging

$B I C, S I C$	Bayes (Schwarz 1978)
$" M D L "$	Inf. thry. (Rissanen 1978)

$\sqrt{2 \log p} \quad$ Minimax risk (Bonferroni)
RIC Foster \& George 1994
Wavethresh Donoho \& Johnstone 1994
$\sqrt{2 \log p / q} \quad$ Adaptive selection
$e B I C \quad$ Foster \& George 1996
Mult tests Benjamini \& Hochberg 1996

Data Compression

File compression

Disk compression utilities: WinZip, Stacker, Stuffit, compress.

How do they work?

How to compress a file of characters into a sequence of bits (0 's and 1's) without losing information (lossless compression)?

Sample problem

File (message) composed of 4 characters: a, b, c, d.
What would you need to know in order to compress a file of these characters?

Question rephrased

View file as a sequence $Y_{1}, Y_{2}, \ldots, Y_{n}$ of $i i d$ discrete r.v.'s,

$$
Y_{1}, Y_{2}, \ldots, Y_{n} \stackrel{\mathrm{iid}}{\sim} p(y) .
$$

Let $\ell(y)$ denote code length for y. What is the smallest compressed file length (on average),

$$
\min _{\ell} E \sum_{i=1}^{n} \ell\left(Y_{i}\right)=n \min _{\ell} E \ell\left(Y_{1}\right),
$$

and what code achieves this limit?

Alternative Coding Methods

Two codes

- Code I: a fixed-length code (like ASCII, but with 2 bits each)
- Code II: a variable-length code, matching length to exponent

Symbol y	$p(y)$	Code I	Code II
a	$1 / 2=1 / 2^{1}$	00	0
b	$1 / 4=1 / 2^{2}$	01	10
c	$1 / 8=1 / 2^{3}$	10	110
d	$1 / 8=1 / 2^{3}$	11	111

Examples

String	$\mathrm{P}($ String $)$	Code I	Code II
$b a a$	$\frac{1}{4} \frac{1}{2}^{2}=\frac{1}{2^{4}}$	010000	1000
dad	$\frac{1}{8} \frac{1}{2} \frac{1}{8}=\frac{1}{2^{7}}$	110011	1110111

Prefix codes and delimiters

- Unlike Morse codes, neither code requires a delimiter.
- Code II is a "prefix code"; the code for no symbol is a prefix to any other. Despite varying length, such codes are 'instantaneous'.

Optimal Code?

Symbol y	$p(y)$	Code I	Code II
a	$1 / 2=1 / 2^{1}$	00	0
b	$1 / 4=1 / 2^{2}$	01	10
c	$1 / 8=1 / 2^{3}$	10	110
d	$1 / 8=1 / 2^{3}$	11	111

Expected lengths

For $Y \in\{a, b, c, d\}$, the length for Code I is fixed, $E \ell_{1}(Y)=2$, whereas for Code II,

$$
E \ell_{2}(Y)=1\left(\frac{1}{2}\right)+2\left(\frac{1}{4}\right)+3\left(\frac{1}{8}\right)+3\left(\frac{1}{8}\right)=1.75<E \ell_{1}(Y)
$$

Big question

Can you do any better?

Specifically, retaining the assumptions of i.i.d. data,

- independence and
- identical distribution (strong stationarity),
is there a code with shorter average length than Code II?

Kraft Inequality

Code length implies sub-probability

For any instantaneous binary code over discrete symbols y, assigning length $\ell(y)$ to the symbol y,

$$
\sum_{y} 2^{-\ell(y)} \leq 1
$$

Tree-based interpretation for Code II

- Associate probability $2^{- \text {depth }}$ with each leaf node.
- Code for a symbol determined by the sequence of left branches (0) and right branches (1) followed to the node.
- Inequality since you need not use all branches.

Optimal Codes

Entropy determines minimum bit length
The minimum expected number of bits needed to encode a discrete r.v. $Y \sim p(y)$ is

$$
H(Y) \leq E \ell(Y)<H(Y)+1
$$

where the entropy $H(Y)$ is defined (all logs are base 2)

$$
H(Y)=E \underbrace{\log 1 / p(Y)}_{\text {opt len }}=\sum_{y}\left(\log \frac{1}{p(y)}\right) p(y)
$$

Relative entropy (aka, Kullback-Leibler divergence)
A 'distance' between two probability distributions $p(y)$ and $q(y)$,

$$
D(\underbrace{p}_{\text {truth }} \| \underbrace{q}_{\text {fit }})=\sum_{y}\left(\log \frac{p(y)}{q(y)}\right) p(y) \geq 0
$$

with the inequality following from Jensen's inequality.

Interpretation of relative entropy

Suppose the true distribution is $p(y)$ but we use a code based on the wrong model $q(y)$. Then the expected cost in excess bits is the relative entropy,

$$
\sum_{y}\left(\log \frac{1}{q(y)}-\log \frac{1}{p(y)}\right) p(y)=\sum_{y}\left(\log \frac{p(y)}{q(y)}\right) p(y)=D(p \| q)
$$

Derivations

Why does entropy give the limit?

The entropy bound

$$
H(Y) \leq E \ell(Y)<H(Y)+1
$$

is a consequence of:

- Kraft inequality: $\sum_{y} 2^{-\ell(y)} \leq 1$
- Relative entropy: $D(p \| q) \geq 0$

Proof outline

For any code with lengths $\ell(y)$ associate the sub-probability $q(y)=2^{-\ell(y)}$ and define $c \geq 1$ such that $\sum_{y} c q(y)=1$.

Then for the lower bound,

$$
\begin{aligned}
E \ell(Y)-H(Y) & =\sum_{y}(\ell(y)+\log p(y)) p(y) \\
& =\sum_{y}(\log 1 / q(y)+\log p(y)) p(y) \\
& =\sum_{y}(\log 1 /(c q(y))+\log p(y)) p(y)+\log c \\
& =D(p \| c q)+\log c \geq 0
\end{aligned}
$$

The upper bound follows by using a code with length $\ell(y)=\lceil\log 1 / p(y)\rceil<1+\log 1 / p(y)$. Such a code may be obtained by Huffman coding or arithmetic coding.

Arithmetic Coding

Goal

Generate a prefix code for a discrete random variable,

$$
Y \sim p(y), \quad y=0,1, \ldots \quad P(y)=\sum_{j \leq y} p(j)
$$

Assume probabilities are monotone, $p(y) \geq p(y+1)$.
Approach Rissanen \& Langdon
Partition unit interval $[0,1]$ according to $P(y)$. How many bits does it take to uniquely identify the interval associated with y ?

Key step

Recursively refine a binary partition, until "fractional" binary value uniquely indicates the interval asociated with y.

Issues

Unless $p(y)=2^{j}$

- Not typically Kraft tight.
- Not always monotone (ie, $p(y)>p(x)$ but $\ell(y)>\ell(x)$).

Example

On next page...

Example of Arithmetic Coding

y	$p(y)$	$P(y)$	$\log p(y)$
0	0.55	0.55	0.9
1	0.25	0.80	2
2	0.15	0.95	2.7
3	0.05	1.00	4.3

Summary of Relevant Coding Theory

Entropy

Entropy determines min expected message length (discrete),

$$
\min _{\ell} E \sum_{i=1}^{n} \ell\left(Y_{i}\right)=n H(Y), \quad H(Y)=\sum_{y}\left(\log \frac{1}{p(y)}\right) p(y)
$$

Optimal obtained (within one bit) using a code with lengths

$$
\ell(y)=\log \frac{1}{p(y)}
$$

Implications

- High compression requires short codes for likely symbols.
- Kraft-tight codes are synonymous with pdfs,

$$
p(y)=2^{-\ell(y)}
$$

Relative entropy

Cost for coding using wrong model is $n D(p \| q)$ bits, where

$$
D(p \| q)=E_{p}(\log p / \log q)=\sum_{y} \underbrace{\left(\log \frac{p(y)}{q(y)}\right)}_{\log \text { L.R. }} p(y) \geq 0
$$

Achievable?

Yes, within one bit on average, via arithmetic coding.

Coding Bernoulli Random Variables

Bernoulli observations

Suppose data consists of n Bernoulli r.v.'s,

$$
Y_{1}, \ldots, Y_{n} \sim B(p), \quad k=\sum_{i} Y_{i}, \quad \hat{p}=k / n
$$

How can you compress a Boolean?

Since each Y_{i} is just a bit, how can you compress anything?
Code $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ as a block, using joint density

$$
p_{n}(Y)=\prod_{i} p\left(Y_{i}\right)=p^{k}(1-p)^{n-k}
$$

Coding efficiency

Optimal code compresses n bits down to $n H(\hat{p})$

- $n H(1 / 2)=n$
- $n H(1 / 8) \approx n / 2$
- $n H(1 / n) \approx \log n \quad \Leftarrow$ give its index

Log-likelihood

Log-likelihood determines the compressed length

$$
\begin{aligned}
n H(\hat{p}) & =n\left(\hat{p} \log \frac{1}{\hat{p}}+(1-\hat{p}) \log \frac{1}{1-\hat{p}}\right) \\
& =k \log \frac{1}{\hat{p}}+(n-k) \log \frac{1}{1-\hat{p}}=\log \frac{1}{P(Y \mid \hat{p})}
\end{aligned}
$$

Bernoulli Entropy Function

Coding Continuous Random Variables

Continuous data?

Solution is to 'quantize', rounding to a discrete grid.

Relative entropy for quantizing

Continuous r.v. Y rounded to precision 2^{-Q} requires

$$
H(Y)+Q \quad \text { bits, on average. }
$$

Net effect: add a constant number of bits for each obs.
Normal data compression

$$
Y_{1}, \ldots, Y_{n} \sim N(\mu, 1) \text { with mean } \bar{Y}=\sum_{i} Y_{i} / n
$$

$$
\text { Minimum bits }=\underbrace{\log 1 / P(Y \mid \bar{Y})}_{\text {log-like at MLE }}+\underbrace{n Q}_{\text {quantized }}
$$

Relative entropy and testing
Additional bits if we code with m as the mean rather than the MLE, (known as the 'regret')

$$
\begin{aligned}
R_{n}(m-\bar{Y}) & =\log \frac{P(Y \mid \bar{Y})}{P(Y \mid m)} \\
& =\frac{n(m-\bar{Y})^{2}}{2 \ln 2}=\frac{z_{m}^{2}}{2 \ln 2}
\end{aligned}
$$

where $z_{m}=\sqrt{n}(\bar{Y}-m)$ is the test statistic for $H_{0}: \mu=m$.

Normal Location Problem

Task

Transmit $Y_{1}, \ldots, Y_{n} \sim N(\mu, 1)$ to a receiver using as few bits as possible. Receiver knows $Y_{i} \sim N(\cdot, 1)$ and n, but nothing else.

Complication

If we encode the data using the optimal code defined by $P(Y \mid \bar{Y})$, the receiver will need \bar{Y} in order to decode the message.

Solution via a two-part code

- Add \bar{Y} as a prefix to the message, then
- Compress data into $\log 1 / P(Y \mid \bar{Y})$ bits (ignore quantization).

Total message length $=\underbrace{\text { Parameter Prefix }}_{?}+\underbrace{\text { Compressed Data }}_{\log 1 / P(Y \mid \bar{Y})}$

How to represent $\overline{\mathbf{Y}}$ in the prefix?

Quantizing suggests rounding \bar{Y} to some precision. Rissanen shows that rounding \bar{Y} to SE scale is optimal,

$$
\hat{\mu}=\frac{\langle\sqrt{n} \bar{Y}\rangle}{\sqrt{n}}=\frac{\left\langle z_{0}\right\rangle}{\sqrt{n}},
$$

adding less than one bit to data since $R_{n}(\hat{\mu}-\bar{Y})<1$.

- How to represent the integer z -score, $\left\langle z_{0}\right\rangle=\langle\sqrt{n} \bar{Y}\rangle$?
- Can you be clever if \bar{Y} is near zero?

Bayesian Perspective

How to represent the rounded z-score?
How to encode rounded z_{0} from $\hat{\mu}=\left\langle z_{0}\right\rangle / \sqrt{n}$.

Bayesian view

Code choice for z_{0} implies a prior probability,

$$
\begin{aligned}
\text { Total length } & =\text { Parameter Prefix }+ \text { Compressed Data } \\
& =\log 1 / P(\mu)+\log 1 / P(Y \mid \mu) \\
\Rightarrow P(Y, \mu) & =P(\mu) \times P(Y \mid \mu) \\
& =\underbrace{\text { Prior for } \mu}_{?} \times \text { Likelihood }
\end{aligned}
$$

Universal prior Elias 1975, Rissanen 1983

- Code "as well as" true distribution, assuming monotonicity
- Robust, proper prior roughly comparable to a log-Cauchy

How to represent $\overline{\mathbf{Y}}$ in the prefix?

- Find the integer z score that produces the shortest message, maximizing the joint probability.
- Total message length is

$$
\underbrace{\ell\left[U_{s}(z)\right]+R_{n}\left(\frac{z}{\sqrt{n}}-\bar{Y}\right)}_{\arg \min z}+\log \frac{1}{P(Y \mid \bar{Y})}
$$

Universal Priors

Simple example

Interleave continuation bits with binary form,

$$
5=101_{2} \quad \Rightarrow \quad 110110
$$

Length is roughly $2 \log z$, implying $p(z) \approx 1 / z^{2}$, or Cauchy-like tails.

Recursive log

Send a sequence of blocks,each giving length of next. Define

$$
\log ^{*} x=\log x+\log \log x+\log \log \log x+\cdots
$$

where sum includes only positive terms. Series is summable,

$$
\sum_{j=1}^{\infty} 2^{-\log ^{*} j} \approx 2.8=2^{1.5}<\infty
$$

Probabilities

Define $p^{*}(0)=1 / 2$ and for $j=1,2,3, \ldots$,

$$
p^{*}(j)=2^{-\left(\log ^{*} j+2.5\right)}=c \times\left(\frac{1}{j}\right) \times \frac{1}{\log j} \times \frac{1}{\log \log j} \times \cdots
$$

Very, very thick tails

$$
\log ^{*}(x) \approx \log x+2 \log \log x \Rightarrow \log \text { Cauchy }
$$

Universal Codes

j	Cauchy	$U(j)$	$\ell[U(j)]$
0	0	0	1 bit
1	10	100	3
2	1100	1010	4
3	1110	10110	5
4	110100	101110	6
5	110110	1011110	7
6	111100	1011111	7
\ldots			
100	14 bits	14 bits	
1000	20	19	
10000	28	23	

- Length of Cauchy code is $2 \log j$
- Length $\ell[U(x)]=c+\log \langle x\rangle+\log \log \langle x\rangle+\log \log \log \langle x\rangle+\cdots$, with rounding embedded, $U(x)=U(\langle x\rangle)$.
- Signed universal appends sign bit, $U_{s}(j)=U(j) \|(+/-)$

Optimal Parameter Code

Optimal estimate

$$
\hat{\mu}=z / \sqrt{n}, \quad \arg \min _{z} \ell\left[U_{s}(z)\right]+R_{n}(z / \sqrt{n}-\bar{Y})
$$

Table on SE grid

\bar{Y}	$z=0$	1	2	3	4
0	$\mathbf{1 . 0}$	4.7	7.9	12.5	18.5
$1 / \sqrt{n}$	$\mathbf{1 . 7}$	4.0	5.7	8.9	13.5
$2 / \sqrt{n}$	$\mathbf{3 . 9}$	4.7	5.0	6.7	9.9
$3 / \sqrt{n}$	7.5	6.9	$\mathbf{5 . 7}$	6.0	7.7
$4 / \sqrt{n}$	12.5	10.5	7.9	$\mathbf{6 . 7}$	7.0

Note

- Code a non-zero parameter once $|z|>2.4$.
- Decision rule resembles familiar normal test.
- Shrinkage stops once $|z|=\sqrt{n} \bar{Y}>5$.

Reference

"Local asymptotics and the minimum description length" http:www-stat.wharton.upenn.edu/~bob

Graph of Codebook

Vertical Axis: Bits are the excess $\ell\left[U_{s}\left(z_{\mu}\right)\right]+R_{n}(\bar{Y}-\hat{\mu})$ over minimum determined by the log likelihood at \bar{Y}.

Horizontal Axis: $z=\sqrt{n} \bar{Y}$, the usual z-score.

Alternative Asymptotic Analysis

Asymptotic code length Rissanen's MDL (1983)
Asymptotic analysis of optimal code length, with $n \rightarrow \infty$ and $\mu=E Y$ fixed so that $z=\sqrt{n} \bar{Y}$ is large:

$$
\begin{aligned}
\text { Code length } & =\ell\left[U_{s}(\sqrt{n} \bar{Y})\right]+\log \frac{1}{P(Y \mid \bar{Y})}+c \\
& \approx \log \sqrt{n} \bar{Y}+\log \frac{1}{P(Y \mid \bar{Y})} \\
& =\frac{1}{2} \log n+\log \frac{1}{P(Y \mid \bar{Y})}+O_{p}(1)
\end{aligned}
$$

Implication for prefix length

To code any mean value requires $\frac{1}{2} \log n$ bits.

Model selection

Use a special one-bit code for zero. Code any non-zero parameter using $1+\frac{1}{2} \log n$ bits:

Parameter	Prefix	
0	0	
$z \neq 0$	$1 \\| \frac{1}{2} \log n$ bits for z	

Penalized likelihood BIC

Reject $H_{0}: \mu=0$ and code a non-zero mean only if $\log P(Y \mid \bar{Y})-\log P(Y \mid \mu=0)>\frac{1}{2} \log n \quad$ or $\quad|z|>\sqrt{\log n}$.

Spike and Slab Prior

Code $=$ Probability

Recall that the choice of coding method implies a probability model. This applies to the parameter codes as well.
\Rightarrow Very Bayesian point of view.

Implicit assumption

If we knew that $|\mu|<\frac{1}{2}$, then to grid this interval to precision $1 / \sqrt{n}$ requires $\log \sqrt{n}=\frac{1}{2} \log n$ bits. The larger the range allowed for μ, the larger the number of bits.

Associated prior on μ

- If we do not code a mean, then we represent $\mu=0$ with just 1 bit, implying a probability of $1 / 2$.
- If we do code a mean, then we represent μ using $1+1 / 2 \log n$ bits, corresponding to a uniform distribution on $|\mu|<\frac{1}{2}$.

Natural prior?

Parameter is either exactly zero, or anywhere in allowed range. Asymptotics essentially force large z score for any $\mu \neq 0$.

Impact of prior

Priors are much more important in model selection than elsewhere.

Graph of BIC Codebook

Vertical Axis: Bits are the excess $\frac{1}{2} \log n+R_{n}(\bar{Y}-\hat{\mu})$ over minimum determined by the \log likelihood at \bar{Y}, with $n=1024$ and $-16<\mu \leq 16$

Horizontal Axis: $z=\sqrt{n} \bar{Y}$, the usual z-score.

Comparison of Coding Decisions

Attributes

	Local Asym Code	Traditional
as $n \rightarrow \infty$	$\mu \rightarrow 0, z$ fixed	$z \rightarrow \infty, \mu$ fixed
code $z \neq 0$ if	$\|z\|>2.4$	$\|z\|>\sqrt{\log n}$
consistency	irrelevant	consistent
prior on z	log-Cauchy	spike-and-slab

Contradiction?

Traditional asymptotic analysis is not uniformly convergent, and must exclude a set of parameters of vanishing size - precisely those near the origin.
$\Rightarrow \quad \lim \arg \min _{z} \operatorname{CodeLength}(z) \neq \arg \min _{z} \lim _{n} \operatorname{CodeLength}(z)$
Model selection lives in the small set near 0 .

Philosophical

Sample sizes are chosen to detect certain features.
Gather large samples to find features undetected in small samples.
\Rightarrow Still have small z scores, even though n is large.

Review and Next Steps

So far

Information theory provides another view of modeling: good models produce short codes.

Parameter coding

Method of coding rounded parameter corresponds to a prior on the parameter space, with coding making the prior very explicit.

Different codes/priors lead to different modeling criteria:

- Local asymptotics suggest fixed threshold near 2.4.
- Large z arguments lead to $B I C$ with a threshold $\sqrt{\log n}$.

Regression

Same coding ideas, but now with multiple parameters.
Again, choose the model producing the shortest message (parameters + data).

Additional feature in regression

Codes for regression must also identify the chosen predictors as well as give the values of any parameter estimates.

