Information Theory and Model Selection

Dean Foster & Robert Stine Dept of Statistics, Univ of Pennsylvania

May 11, 1998

- Data compression and coding
- Duality of code lengths and probabilities
- Model selection via coding: testing $H_0: \mu = 0$
 - Local asymptotic coding
- Coding interpretation of selection criteria in regression:
 - Mallows' C_p , Akaike information criterion (AIC)
 - Bayesian information criterion (BIC, SIC)
 - Risk inflation, thresholding (*RIC*)
 - Empirical Bayes criterion, multiple testing (*eBIC*)
- Discussion, extensions

Overview

Ultimate problem for today

Which variables ought to be used in a regression, particularly when the number of potential predictors p is large (data mining).

Model selection = data compression

Model selection via popular criteria

AIC, BIC, RIC, eBIC

is equivalent to choosing the model which offers the greatest compression of the data.

Two-part codes

The compressed data are represented by a two-part code

 $\underline{\text{Model Parameters}} \parallel \text{Compressed Data}$ Selection criteria differ in how they encode the parameters.

Information/coding theory

Coding view of selection as data compression offers

- Consistent, alternative perspective for the various criteria.
- Tangible comparison of criteria.
- Suggests new criteria, customized to specific problems.

Representative problem

Test the null hypothesis $\mu_0 = 0$.

So many choices — is any one right?

Context: orthogonal regression with n observations and p predictors. Threshold: choose X_j if $|z_j| > \tau$, criterion's threshold.

$\tau = 0$	OLS, max R^2	Gauss
$\tau = 1$	$\max \overline{R}^2, \min s^2$	Theil 1961
$\sqrt{2}$	Unbiased est of	out-of-sample error
	C_p	Mallows 1964,1973
	AIC	Akaike 1973
	Cross-valid	Stone 1974
$\sqrt{\log n}$	Model averaging	
	BIC, SIC	Bayes (Schwarz 1978)
	``MDL"	Inf. thry. (Rissanen 1978)
$\sqrt{2\log p}$	Minimax risk (E	Bonferroni)
	RIC	Foster & George 1994
	Wavethresh	Donoho & Johnstone 1994
$\sqrt{2\log p/q}$	Adaptive selection	
	eBIC	Foster & George 1996
	Mult tests	Benjamini & Hochberg 1996

Data Compression

File compression

Disk compression utilities: WinZip, Stacker, Stuffit, compress.

How do they work?

How to compress a file of characters into a sequence of bits (0's and 1's) without losing information (lossless compression)?

Sample problem

File (message) composed of 4 characters: a, b, c, d.

What would you need to know in order to compress a file of these characters?

Question rephrased

View file as a sequence Y_1, Y_2, \ldots, Y_n of *iid* discrete r.v.'s,

$$Y_1, Y_2, \ldots, Y_n \stackrel{\text{iid}}{\sim} p(y)$$
.

Let $\ell(y)$ denote code length for y. What is the smallest compressed file length (on average),

$$\min_{\ell} E \sum_{i=1}^{n} \ell(Y_i) = n \min_{\ell} E \ell(Y_1) ,$$

and what code achieves this limit?

Alternative Coding Methods

Two codes

- Code I: a fixed-length code (like ASCII, but with 2 bits each)
- Code II: a variable-length code, matching length to exponent

Symbol y	p(y)	Code I	Code II
a	$1/2 = 1/2^1$	00	0
b	$1/4 = 1/2^2$	01	10
С	$1/8 = 1/2^3$	10	110
d	$1/8 = 1/2^3$	11	111

Examples

String	P(String)	Code I	Code II
baa	$\frac{1}{4}\frac{1}{2}^2 = \frac{1}{2^4}$	010000	1000
dad	$\frac{1}{8}\frac{1}{2}\frac{1}{8} = \frac{1}{2^7}$	110011	1110111

Prefix codes and delimiters

- Unlike Morse codes, neither code requires a delimiter.
- Code II is a "prefix code"; the code for no symbol is a prefix to any other. Despite varying length, such codes are 'instantaneous'.

Optimal Code?

Symbol y	p(y)	Code I	Code II
a	$1/2 = 1/2^1$	00	0
b	$1/4 = 1/2^2$	01	10
С	$1/8 = 1/2^3$	10	110
d	$1/8 = 1/2^3$	11	111

Expected lengths

For $Y \in \{a, b, c, d\}$, the length for Code I is fixed, $E \ell_1(Y) = 2$, whereas for Code II,

$$E \ \ell_2(Y) = 1(\frac{1}{2}) + 2(\frac{1}{4}) + 3(\frac{1}{8}) + 3(\frac{1}{8}) = 1.75 < E \ \ell_1(Y)$$

Big question

Can you do any better?

Specifically, retaining the assumptions of *i.i.d.* data,

- independence and
- identical distribution (strong stationarity),

is there a code with shorter average length than Code II?

Kraft Inequality

Code length implies sub-probability

For any instantaneous binary code over discrete symbols y, assigning length $\ell(y)$ to the symbol y,

$$\sum_{y} 2^{-\ell(y)} \le 1 \; .$$

Tree-based interpretation for Code II

- Associate probability 2^{-depth} with each leaf node.
- Code for a symbol determined by the sequence of left branches (0) and right branches (1) followed to the node.
- Inequality since you need not use all branches.

Optimal Codes

Entropy determines minimum bit length

The minimum expected number of bits needed to encode a discrete r.v. $Y \sim p(y)$ is

$$H(Y) \le E\,\ell(Y) < H(Y) + 1\;,$$

where the entropy H(Y) is defined (all logs are base 2)

$$H(Y) = E \underbrace{\log 1/p(Y)}_{\text{opt len}} = \sum_{y} \left(\log \frac{1}{p(y)} \right) p(y)$$

Relative entropy (*aka*, Kullback-Leibler divergence)

A 'distance' between two probability distributions p(y) and q(y),

$$D(\underbrace{p}_{\text{truth}} \| \underbrace{q}_{\text{fit}}) = \sum_{y} \left(\log \frac{p(y)}{q(y)} \right) \ p(y) \ge 0$$

with the inequality following from Jensen's inequality.

Interpretation of relative entropy

Suppose the true distribution is p(y) but we use a code based on the wrong model q(y). Then the expected cost in excess bits is the relative entropy,

$$\sum_{y} \left(\log \frac{1}{q(y)} - \log \frac{1}{p(y)} \right) p(y) = \sum_{y} \left(\log \frac{p(y)}{q(y)} \right) p(y) = D(p || q)$$

Derivations

Why does entropy give the limit?

The entropy bound

 $H(Y) \le E\,\ell(Y) < H(Y) + 1\;,$

is a consequence of:

- Kraft inequality: $\sum_{y} 2^{-\ell(y)} \leq 1$
- Relative entropy: $D(p||q) \ge 0$

Proof outline

For any code with lengths $\ell(y)$ associate the sub-probability $q(y) = 2^{-\ell(y)}$ and define $c \ge 1$ such that $\sum_y c q(y) = 1$.

Then for the lower bound,

$$E \ \ell(Y) - H(Y) = \sum_{y} (\ell(y) + \log p(y)) \ p(y)$$

=
$$\sum_{y} (\log 1/q(y) + \log p(y)) \ p(y)$$

=
$$\sum_{y} (\log 1/(c \ q(y)) + \log p(y)) \ p(y) + \log c$$

=
$$D(p \| c \ q) + \log c \ge 0$$

The upper bound follows by using a code with length $\ell(y) = \lceil \log 1/p(y) \rceil < 1 + \log 1/p(y)$. Such a code may be obtained by Huffman coding or arithmetic coding.

Arithmetic Coding

Goal

Generate a prefix code for a discrete random variable,

$$Y \sim p(y)$$
, $y = 0, 1, ...$ $P(y) = \sum_{j \le y} p(j)$

Assume probabilities are monotone, $p(y) \ge p(y+1)$.

Approach Rissanen & Langdon

Partition unit interval [0, 1] according to P(y). How many bits does it take to uniquely identify the interval associated with y?

Key step

Recursively refine a binary partition, until "fractional" binary value uniquely indicates the interval associated with y.

Issues

Unless $p(y) = 2^j$

- Not typically Kraft tight.
- Not always monotone (ie, p(y) > p(x) but $\ell(y) > \ell(x)$).

Example

On next page...

Example of Arithmetic Coding

y	p(y)	P(y)	$\log p(y)$
0	0.55	0.55	0.9
1	0.25	0.80	2
2	0.15	0.95	2.7
3	0.05	1.00	4.3

Summary of Relevant Coding Theory

Entropy

Entropy determines min expected message length (discrete),

$$\min_{\ell} E \sum_{i=1}^{n} \ell(Y_i) = nH(Y), \quad H(Y) = \sum_{y} \left(\log \frac{1}{p(y)}\right) p(y)$$

Optimal obtained (within one bit) using a code with lengths

$$\ell(y) = \log \frac{1}{p(y)}$$

Implications

- High compression requires short codes for likely symbols.
- Kraft-tight codes are synonymous with pdfs,

$$p(y) = 2^{-\ell(y)}$$

Relative entropy

Cost for coding using wrong model is nD(p||q) bits, where

$$D(p||q) = E_p(\log p / \log q) = \sum_{y} \underbrace{\left(\log \frac{p(y)}{q(y)}\right)}_{\log \text{ L.R.}} p(y) \ge 0$$

Achievable?

Yes, within one bit on average, via arithmetic coding.

Coding Bernoulli Random Variables

Bernoulli observations

Suppose data consists of n Bernoulli r.v.'s,

$$Y_1, \ldots, Y_n \sim B(p), \quad k = \sum_i Y_i, \quad \hat{p} = k/n$$

How can you compress a Boolean?

Since each Y_i is just a bit, how can you compress anything? Code $Y = (Y_1, \ldots, Y_n)$ as a *block*, using joint density

$$p_n(Y) = \prod_i p(Y_i) = p^k (1-p)^{n-k}$$

Coding efficiency

Optimal code compresses n bits down to $n H(\hat{p})$

- n H(1/2) = n
- $n H(1/8) \approx n/2$
- $n H(1/n) \approx \log n \quad \Leftarrow \text{ give its index}$

Log-likelihood

Log-likelihood determines the compressed length

$$n H(\hat{p}) = n \left(\hat{p} \log \frac{1}{\hat{p}} + (1 - \hat{p}) \log \frac{1}{1 - \hat{p}} \right)$$
$$= k \log \frac{1}{\hat{p}} + (n - k) \log \frac{1}{1 - \hat{p}} = \log \frac{1}{P(Y|\hat{p})}$$

Coding Continuous Random Variables

Continuous data?

Solution is to 'quantize', rounding to a discrete grid.

Relative entropy for quantizing

Continuous r.v. Y rounded to precision 2^{-Q} requires

H(Y) + Q bits, on average.

Net effect: add a constant number of bits for each obs.

Normal data compression

 $Y_1, \ldots, Y_n \sim N(\mu, 1)$ with mean $\overline{Y} = \sum_i Y_i/n$.

$$\begin{array}{l} \text{Minimum bits} = \underbrace{\log 1/P(Y|\overline{Y})}_{\text{log-like at MLE}} + \underbrace{n\,Q}_{\text{quantized}} \end{array}$$

Relative entropy and testing

Additional bits if we code with m as the mean rather than the MLE, (known as the 'regret')

$$R_n(m - \overline{Y}) = \log \frac{P(Y|Y)}{P(Y|m)}$$
$$= \frac{n(m - \overline{Y})^2}{2\ln 2} = \frac{z_m^2}{2\ln 2}$$

where $z_m = \sqrt{n}(\overline{Y} - m)$ is the test statistic for $H_0: \mu = m$.

Normal Location Problem

Task

Transmit $Y_1, \ldots, Y_n \sim N(\mu, 1)$ to a receiver using as few bits as possible. Receiver knows $Y_i \sim N(\cdot, 1)$ and n, but nothing else.

Complication

If we encode the data using the optimal code defined by $P(Y|\overline{Y})$, the receiver will need \overline{Y} in order to decode the message.

Solution via a two-part code

- Add \overline{Y} as a prefix to the message, then
- Compress data into $\log 1/P(Y|\overline{Y})$ bits (ignore quantization).

Total message length = $\underbrace{\text{Parameter Prefix}}_{?} + \underbrace{\text{Compressed Data}}_{\log 1/P(Y|\overline{Y})}$

How to represent $\overline{\mathbf{Y}}$ in the prefix?

Quantizing suggests rounding \overline{Y} to some precision. Rissanen shows that rounding \overline{Y} to SE scale is optimal,

$$\hat{\mu} = \frac{\langle \sqrt{n} \, \overline{Y} \rangle}{\sqrt{n}} = \frac{\langle z_0 \rangle}{\sqrt{n}} ,$$

adding less than one bit to data since $R_n(\hat{\mu} - \overline{Y}) < 1$.

- How to represent the *integer* z-score, $\langle z_0 \rangle = \langle \sqrt{n} \overline{Y} \rangle$?
- Can you be clever if \overline{Y} is near zero?

Bayesian Perspective

How to represent the rounded z-score?

How to encode rounded z_0 from $\hat{\mu} = \langle z_0 \rangle / \sqrt{n}$.

Bayesian view

Code choice for z_0 implies a prior probability,

Total length = Parameter Prefix + Compressed Data
=
$$\log 1/P(\mu) + \log 1/P(Y|\mu)$$

 $\Rightarrow P(Y,\mu) = P(\mu) \times P(Y|\mu)$
= $\underbrace{\text{Prior for } \mu}_{?} \times \text{Likelihood}$

Universal prior Elias 1975, Rissanen 1983

- Code "as well as" true distribution, assuming monotonicity
- Robust, proper prior roughly comparable to a *log-Cauchy*

How to represent $\overline{\mathbf{Y}}$ in the prefix?

- Find the integer z score that produces the shortest message, maximizing the joint probability.
- Total message length is

$$\underbrace{\ell[U_s(z)] + R_n\left(\frac{z}{\sqrt{n}} - \overline{Y}\right)}_{\cdot} + \log\frac{1}{P(Y|\overline{Y})}$$

 $\arg\min z$

Universal Priors

Simple example

Interleave continuation bits with binary form,

 $5 = 101_2 \quad \Rightarrow \quad 11 \ 01 \ 10$

Length is roughly $2\log z$, implying $p(z) \approx 1/z^2$, or Cauchy-like tails.

Recursive log

Send a sequence of blocks, each giving length of next. Define

 $\log^* x = \log x + \log \log x + \log \log \log x + \cdots$

where sum includes only positive terms. Series is summable,

$$\sum_{j=1}^{\infty} 2^{-\log^* j} \approx 2.8 = 2^{1.5} < \infty$$

Probabilities

Define $p^*(0) = 1/2$ and for j = 1, 2, 3, ...,

$$p^*(j) = 2^{-(\log^* j + 2.5)} = c \times \left(\frac{1}{j}\right) \times \frac{1}{\log j} \times \frac{1}{\log \log j} \times \cdots$$

Very, very thick tails

 $\log^*(x) \approx \log x + 2 \log \log x \Rightarrow \log \text{ Cauchy}$

Universal Codes

	1	1	
j	Cauchy	U(j)	$\ell[U(j)]$
0	0	0	1 bit
1	10	100	3
2	1100	1010	4
3	1110	10110	5
4	110100	101110	6
5	110110	1011110	7
6	111100	1011111	7
•••			
100	14 bits	14 bits	
1000	20	19	
10000	28	23	

- Length of Cauchy code is $2\log j$
- Length $\ell[U(x)] = c + \log \langle x \rangle + \log \log \langle x \rangle + \log \log \log \langle x \rangle + \cdots$, with rounding embedded, $U(x) = U(\langle x \rangle)$.
- Signed universal appends sign bit, $U_s(j) = U(j) \parallel (+/-)$

Optimal Parameter Code

Optimal estimate

$$\hat{\mu} = z/\sqrt{n}, \quad \arg\min_{z} \ell[U_s(z)] + R_n(z/\sqrt{n} - \overline{Y})$$

Table on SE grid

\overline{Y}	z = 0	1	2	3	4
0	1.0	4.7	7.9	12.5	18.5
$1/\sqrt{n}$	1.7	4.0	5.7	8.9	13.5
$2/\sqrt{n}$	3.9	4.7	5.0	6.7	9.9
$3/\sqrt{n}$	7.5	6.9	5.7	6.0	7.7
$4/\sqrt{n}$	12.5	10.5	7.9	6.7	7.0

Note

- Code a non-zero parameter once |z| > 2.4.
- Decision rule resembles familiar normal test.
- Shrinkage stops once $|z| = \sqrt{n} \overline{Y} > 5$.

Reference

"Local asymptotics and the minimum description length" http: www-stat.wharton.upenn.edu/ $\sim {\rm bob}$

Graph of Codebook

Vertical Axis: Bits are the excess $\ell[U_s(z_\mu)] + R_n(\overline{Y} - \hat{\mu})$ over minimum determined by the log likelihood at \overline{Y} .

Horizontal Axis: $z = \sqrt{n} \overline{Y}$, the usual z-score.

Alternative Asymptotic Analysis

Asymptotic code length Rissanen's *MDL* (1983)

Asymptotic analysis of optimal code length, with $n \to \infty$ and $\mu = E Y$ fixed so that $z = \sqrt{n} \overline{Y}$ is large:

Code length =
$$\ell[U_s(\sqrt{n}\,\overline{Y})] + \log \frac{1}{P(Y|\overline{Y})} + c$$

 $\approx \log \sqrt{n}\,\overline{Y} + \log \frac{1}{P(Y|\overline{Y})}$
 $= \frac{1}{2}\log n + \log \frac{1}{P(Y|\overline{Y})} + O_p(1)$

Implication for prefix length

To code any mean value requires $\frac{1}{2} \log n$ bits.

Model selection

Use a special one-bit code for zero. Code any non-zero parameter using $1 + \frac{1}{2} \log n$ bits:

Parameter	Prefix	
0	0	
$z \neq 0$	$1 \parallel \frac{1}{2} \log n$ bits for z	

Penalized likelihood BIC

Reject $H_0: \mu = 0$ and code a non-zero mean only if $\log P(Y|\overline{Y}) - \log P(Y|\mu = 0) > \frac{1}{2} \log n$ or $|z| > \sqrt{\log n}$.

Spike and Slab Prior

Code = Probability

Recall that the choice of coding method implies a probability

model. This applies to the parameter codes as well.

 \Rightarrow Very Bayesian point of view.

Implicit assumption

If we knew that $|\mu| < \frac{1}{2}$, then to grid this interval to precision $1/\sqrt{n}$ requires $\log \sqrt{n} = \frac{1}{2} \log n$ bits. The larger the range allowed for μ , the larger the number of bits.

Associated prior on μ

- If we do not code a mean, then we represent μ = 0 with just 1 bit, implying a probability of 1/2.
- If we do code a mean, then we represent μ using $1 + 1/2 \log n$ bits, corresponding to a uniform distribution on $|\mu| < \frac{1}{2}$.

Natural prior?

Parameter is either *exactly zero*, or anywhere in allowed range.

Asymptotics essentially force large z score for any $\mu \neq 0$.

Impact of prior

Priors are much more important in model selection than elsewhere.

Graph of BIC Codebook

Vertical Axis: Bits are the excess $\frac{1}{2}\log n + R_n(\overline{Y} - \hat{\mu})$ over minimum determined by the log likelihood at \overline{Y} , with n = 1024 and $-16 < \mu \le 16$

Horizontal Axis: $z = \sqrt{n} \overline{Y}$, the usual z-score.

Comparison of Coding Decisions

Attributes

	Local Asym Code	Traditional
as $n \to \infty$	$\mu \to 0, \ z \ \text{fixed}$	$z \to \infty, \ \mu \ \text{fixed}$
code $z \neq 0$ if	z > 2.4	$ z > \sqrt{\log n}$
consistency	irrelevant	consistent
prior on z	log-Cauchy	spike-and-slab

Contradiction?

Traditional asymptotic analysis is not uniformly convergent, and must exclude a set of parameters of vanishing size — precisely those near the origin.

 $\Rightarrow \lim_{n} \arg\min_{z} \operatorname{CodeLength}(z) \neq \arg\min_{z} \lim_{n} \operatorname{CodeLength}(z)$

Model selection lives in the small set near 0.

Philosophical

Sample sizes are chosen to detect certain features.

Gather large samples to find features undetected in small samples.

 \Rightarrow Still have small z scores, even though n is large.

Review and Next Steps

So far

Information theory provides another view of modeling: good models produce short codes.

Parameter coding

Method of coding *rounded* parameter corresponds to a prior on the parameter space, with coding making the prior very explicit. Different codes/priors lead to different modeling criteria:

- Local asymptotics suggest fixed threshold near 2.4.
- Large z arguments lead to *BIC* with a threshold $\sqrt{\log n}$.

Regression

Same coding ideas, but now with multiple parameters.

Again, choose the model producing the shortest message (parameters + data).

Additional feature in regression

Codes for regression must also identify the chosen predictors as well as give the values of any parameter estimates.