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e Data compression and coding

e Duality of code lengths and probabilities

Model selection via coding: testing Hg: u =10

— Local asymptotic coding

Coding interpretation of selection criteria in regression:

— Mallows’ C),, Akaike information criterion (AIC)
— Bayesian information criterion (BIC, SIC)
— Risk inflation, thresholding (RIC)

— Empirical Bayes criterion, multiple testing (eBIC)

e Discussion, extensions




Overview

Ultimate problem for today
Which variables ought to be used in a regression, particularly

when the number of potential predictors p is large (data mining).

Model selection = data compression

Model selection via popular criteria

AIC, BIC, RIC, eBIC

is equivalent to choosing the model which offers the greatest

compression of the data.

Two-part codes
The compressed data are represented by a two-part code

Model Parameters || Compressed Data

Selection criteria differ in how they encode the parameters.

Information/coding theory

Coding view of selection as data compression offers
e Consistent, alternative perspective for the various criteria.
e Tangible comparison of criteria.

e Suggests new criteria, customized to specific problems.

Representative problem

Test the null hypothesis pg = 0.




So many choices — is any one right?

Context: orthogonal regression with n observations and p predictors.

Threshold: choose X if |z;| > 7, criterion’s threshold.

7T=0 OLS, max R?>  Gauss
7=1  maxR, mins? Theil 1961

V2 Unbiased est of out-of-sample error
C) Mallows 1964,1973
AIC Akaike 1973

Cross-valid Stone 1974

Vviogn Model averaging
BIC, SIC Bayes (Schwarz 1978)

“MDL" Inf. thry. (Rissanen 1978)
V2logp  Minimax risk (Bonferroni)
RIC Foster & George 1994

Wavethresh Donoho & Johnstone 1994

V2logp/q Adaptive selection

eBIC Foster & George 1996

Mult tests Benjamini & Hochberg 1996




Data Compression
File compression

Disk compression utilities: WinZip, Stacker, Stuffit, compress.

How do they work?
How to compress a file of characters into a sequence of bits (0’s

and 1’s) without losing information (lossless compression)?
Sample problem
File (message) composed of 4 characters: a, b, ¢, d.
What would you need to know in order to compress a file of
these characters?
Question rephrased

View file as a sequence Y7, Y, ....Y,, of #id discrete r.v.’s,

iid
Yl, YQ,...,Yn ~ p(y) .

Let ¢(y) denote code length for y. What is the smallest

compressed file length (on average),
in E Y;) = n min E4(Y;) |
min Z_Zlé( )=mn min (Y1)

and what code achieves this limit?




Alternative Coding Methods

Two codes

e Code I: a fixed-length code (like ASCII, but with 2 bits each)

e Code II: a variable-length code, matching length to exponent

Symbol p(y) Code I Code II
a 1/2=1/2" 00 0
b 1/4=1/2% 01 10
c 1/8=1/2% 10 110
d 1/8=1/23 11 111

Examples

String P(String) Codel Code II

baa 117 =L 010000 1000
dad  §55 =3 110011 1110111

Prefix codes and delimiters

e Unlike Morse codes, neither code requires a delimiter.

e Code II is a “prefix code”; the code for no symbol is a prefix
to any other. Despite varying length, such codes are

‘instantaneous’.




Optimal Code?

Symbol y p(y) Code I Code II
a 1/2=1/2" 00 0
b 1/4=1/22 01 10
c 1/8 =1/23 10 110
d 1/8=1/2% 11 111

Expected lengths
For Y € {a,b,c,d}, the length for Code I is fixed, F¢1(Y) = 2,

whereas for Code II,
1 1 1 1
E (YY) = 1(5) + 2(1) -+ 3(§) + 3(§) =175 < E11(Y)

Big question

Can you do any better?

Specifically, retaining the assumptions of i.7.d. data,

e independence and

e identical distribution (strong stationarity),

is there a code with shorter average length than Code II?




Kraft Inequality

Code length implies sub-probability
For any instantaneous binary code over discrete symbols v,

assigning length /(y) to the symbol y,
ZQ—K(y) <1.
y

Tree-based interpretation for Code II

e Associate probability 279¢P*h with each leaf node.

e Code for a symbol determined by the sequence of left
branches (0) and right branches (1) followed to the node.

e Inequality since you need not use all branches.




Optimal Codes

Entropy determines minimum bit length
The minimum expected number of bits needed to encode a

discrete r.v. Y ~ p(y) is
HY)<FE!{(Y)<HY)+1,

where the entropy H(Y) is defined (all logs are base 2)

p(y)

HY) = B log1/p(Y) = 3 (loz ) o)

opt len

Relative entropy (aka, Kullback-Leibler divergence)
A ‘distance’ between two probability distributions p(y) and ¢(y),

Dl )= (1os 2 ) ) = 0

~— - q(y)
truth fit

with the inequality following from Jensen’s inequality.

Interpretation of relative entropy
Suppose the true distribution is p(y) but we use a code based on
the wrong model ¢(y). Then the expected cost in excess bits is
the relative entropy,

> (log —_log L) py) =) (log ]Ly)) p(y) = D(plla)

- q(y) p(y) - q(y)




Derivations

Why does entropy give the limit?
The entropy bound

HY)<EUY)<HY)+1,

is a consequence of:
e Kraft inequality: > 2ty <1

e Relative entropy: D(p|lq) > 0

Proof outline
For any code with lengths ¢(y) associate the sub-probability
q(y) = 2t and define ¢ > 1 such that Zy cq(y) = 1.

Then for the lower bound,

ELY)-HY) = > (ly)+logp(y)) p(y)

Y

= > (log1/q(y) +logp(y)) p(y)

Y

= ) (log1/(cq(y)) +logp(y)) p(y) +loge

y
= D(pllcq) +1ogc =0

The upper bound follows by using a code with length

(y) = [log1/p(y)] < 1+logl/p(y). Such a code may be

obtained by Huffman coding or arithmetic coding.




Arithmetic Coding

Goal

Generate a prefix code for a discrete random variable,
Iy

Assume probabilities are monotone, p(y) > p(y + 1).

Approach Rissanen & Langdon
Partition unit interval [0, 1] according to P(y). How many bits

does it take to uniquely identify the interval associated with y?

Key step
Recursively refine a binary partition, until “fractional” binary

value uniquely indicates the interval asociated with y.

Issues

Unless p(y) = 27

e Not typically Kraft tight.

e Not always monotone (ie, p(y) > p(x) but £(y) > ¢(x)).

Example

On next page...
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Example of Arithmetic Coding

y »ply) Ply) logp(y)
0 055 055 0.9

1 025 080 2

2 015 095 2.7

3 005 100 4.3
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Summary of Relevant Coding Theory

Entropy

Entropy determines min expected message length (discrete),

meinEZE(Yi) =nH(Y), H(Y)= Z (log L) p(y)

- p(y)

Optimal obtained (within one bit) using a code with lengths

Implications

e High compression requires short codes for likely symbols.

e Kraft-tight codes are synonymous with pdfs,

ply) =2~

Relative entropy

Cost for coding using wrong model is nD(p||q) bits, where

D(pllq) = Ey(logp/logq) = ) (log @) p(y) =0

RSOV
log L.R.

Achievable?

Yes, within one bit on average, via arithmetic coding.
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Coding Bernoulli Random Variables

Bernoulli observations

Suppose data consists of n Bernoulli r.v.’s,

Yi,....,Yo~B(p), k=>Y:, p=k/n

How can you compress a Boolean?

Since each Y; is just a bit, how can you compress anything?

Code Y = (Y1,...,Y,,) as a block, using joint density
pa(Y) =]]p(Y:) =p*(1—p)" .

Coding efficiency

Optimal code compresses n bits down to n H(p)
e nH(1/2)=n
e n H(1/8) =~ n/2
e nH(1/n) ~logn < give its index

Log-likelihood
Log-likelihood determines the compressed length

1 1
n Hp) = n(ﬁlog7+ 1—p)log A)
() g+ -Dher)
= klog—-+ (n—k) log - = log ~
p TR s 8 b
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Entropy

025 0.7 0.85

0.4

Bernoulli Entropy Function

H(p) = plogp+ (1 —p) log(l—p)
~ 1=3(p—3)
0.5
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Coding Continuous Random Variables

Continuous data?

Solution is to ‘quantize’, rounding to a discrete grid.

Relative entropy for quantizing

Continuous r.v. Y rounded to precision 2~ requires

HY)+Q bits, on average.

Net effect: add a constant number of bits for each obs.

Normal data compression

Yi,..., Y, ~ N(u, 1) with mean Y = >, Y;/n.

Minimum bits = log1/P(Y|Y) + nQ
—_— ——
log-like at MLE quantized

Relative entropy and testing
Additional bits if we code with m as the mean rather than the

MLE, (known as the ‘regret’)

- P(Y]Y)
B n(m—?)2 B zfn
B 2In2  2In2

where z,, = v/n(Y —m) is the test statistic for Hy : u = m.
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Normal Location Problem

Task
Transmit Y7,...,Y, ~ N(u, 1) to a receiver using as few bits as

possible. Receiver knows Y; ~ N(-,1) and n, but nothing else.

Complication
If we encode the data using the optimal code defined by P(Y|Y),

the receiver will need Y in order to decode the message.

Solution via a two-part code
e Add Y as a prefix to the message, then
e Compress data into log 1/P(Y|Y) bits (ignore quantization).

Total message length = Parameter Prefix + Compressed Data

~"~

?

"~

log 1/P(Y|Y)

How to represent Y in the prefix?
Quantizing suggests rounding Y to some precision. Rissanen

shows that rounding Y to SE scale is optimal,

(VnY) _ ()

/l: \/ﬁ _\/ﬁ7

adding less than one bit to data since R, (i —Y) < 1.

e How to represent the integer z-score, (29) = (y/nY)?

e Can you be clever if Y is near zero?

16




Bayesian Perspective

How to represent the rounded z-score?

How to encode rounded zy from i = (z9)/v/n.

Bayesian view

Code choice for zy implies a prior probability,

Total length = Parameter Prefix + Compressed Data
= log1/P(u)+log 1/P(Y|p)
= P(Y,n) = Plu)x P(Y|n)

= Prior for p xLikelihood

N~

?

Universal prior Elias 1975, Rissanen 1983

e Code “as well as” true distribution, assuming monotonicity

e Robust, proper prior roughly comparable to a log-Cauchy

How to represent Y in the prefix?

e Find the integer z score that produces the shortest message,
maximizing the joint probability.
e Total message length is

z — 1
lUs(2)] + Ry, <% — Y) —Hogm

\ 4
~~

arg min z
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Universal Priors

Simple example

Interleave continuation bits with binary form,
5=101, = 110110

Length is roughly 2log 2, implying p(z) ~ 1/22, or Cauchy-like

tails.

Recursive log

Send a sequence of blocks,each giving length of next. Define
log* x = log z + log log z + logloglog  + - - -

where sum includes only positive terms. Series is summable,

Zz—log*ﬂ' ~ 2.8 =210 « 0

j=1
Probabilities
Define p*(0) = 1/2 and for j =1,2,3,...,
.. 1 1 1
p*(]) _ 2—(10g Jj+2.5) _ ex | =] x e — X e
9 logg loglogj

Very, very thick tails

log™ () ~ log x + 2loglog x = log Cauchy

18




Universal Codes

j | Cauchy | U(j) LU@)]

00 0 1 bit
1110 100 3
2 | 1100 1010 4

3 | 1110 10110
4 | 110100 | 101110
5 | 110110 | 1011110

= BTN B

6 | 111100 | 1011111

100 | 14 bits | 14 bits
1000 | 20 19
10000 | 28 23

e Length of Cauchy code is 2log j

o Length ([U(x)] = c+ log () + loglog (z) + logloglog (z) + - - -

with rounding embedded, U(x) = U({(z)).

e Signed universal appends sign bit, Us(7) = U(j) || (+/-)

Y
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Optimal Parameter Code

Optimal estimate
fo=z/v/n, argminl[Us(z)] + Rp(z/vV/n—7Y)
Table on SE grid

Y |z2=0 1 2 3 4

0 1.0 47 79 125 185
1/yn| 1.7 40 57 89 135
2/yn| 3.9 47 50 67 99
3/yn| 75 69 57 60 7.7

4/yn | 125 105 79 6.7 7.0

Note

e Code a non-zero parameter once |z| > 2.4.
e Decision rule resembles familiar normal test.

e Shrinkage stops once |z| = /n Y > 5.

Reference
“Local asymptotics and the minimum description length”

http:www-stat.wharton.upenn.edu/~bob
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Graph of Codebook

Vertical Axis: Bits are the excess £[Us(z,)] + Rn(Y — fi) over
minimum determined by the log likelihood at Y.

Horizontal Axis: z = \/nY, the usual z-score.
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Alternative Asymptotic Analysis

Asymptotic code length Rissanen’s MDL (1983)
Asymptotic analysis of optimal code length, with n — oo and

pn= EY fixed so that z = /nY is large:

Code length = /([U,(v/nY)] + log BT +c

— 1
~ logv/nY +lo —
gvn 85y

— llogn+1lo — 1+ 0,(1
5 log 8 s p(1)

Implication for prefix length

To code any mean value requires % log n bits.

Model selection
Use a special one-bit code for zero. Code any non-zero

parameter using 1 + % log n bits:

Parameter Prefix

0 0

z#0 1 || 5 logn bits for 2

Penalized likelihood BIC
Reject Hy : 1 = 0 and code a non-zero mean only if

log P(Y]Y) —log P(Y | =0) > 1logn or |z| > yIogn.
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Spike and Slab Prior

Code = Probability
Recall that the choice of coding method implies a probability
model. This applies to the parameter codes as well.

= Very Bayesian point of view.

Implicit assumption
If we knew that |u| < 3, then to grid this interval to precision
1/+/n requires log\/n = % logn bits. The larger the range
allowed for u, the larger the number of bits.

Associated prior on p

e If we do not code a mean, then we represent © = 0 with just
1 bit, implying a probability of 1/2.
e If we do code a mean, then we represent p using 1+ 1/2logn

bits, corresponding to a uniform distribution on |u| < 3.

Natural prior?
Parameter is either ezxactly zero, or anywhere in allowed range.

Asymptotics essentially force large z score for any p # 0.

Impact of prior
Priors are much more important in model selection than

elsewhere.
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Graph of BIC Codebook

Vertical Axis: Bits are the excess 5 logn + R, (Y — i) over
minimum determined by the log likelihood at Y, with n = 1024 and
—16 < <16

Horizontal Axis: z = \/nY, the usual z-score.
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Comparison of Coding Decisions

Attributes
Local Asym Code Traditional
as n — oo @ — 0, z fixed z — 00, i fixed
code z # 0 if |z| > 2.4 |z| > +/logn
consistency irrelevant consistent
prior on z log-Cauchy spike-and-slab
Contradiction?

Traditional asymptotic analysis is not uniformly convergent, and
must exclude a set of parameters of vanishing size — precisely

those near the origin.
= limarg min CodeLength(z) # arg min lim CodeLength(z)
Model selection lives in the small set near O.

Philosophical
Sample sizes are chosen to detect certain features.
Gather large samples to find features undetected in small
samples.

= Still have small 2z scores, even though n is large.
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Review and Next Steps

So far
Information theory provides another view of modeling: good

models produce short codes.

Parameter coding
Method of coding rounded parameter corresponds to a prior on
the parameter space, with coding making the prior very explicit.

Different codes/priors lead to different modeling criteria:

e Local asymptotics suggest fixed threshold near 2.4.
e Large z arguments lead to BIC' with a threshold +/logn.

Regression

Same coding ideas, but now with multiple parameters.

Again, choose the model producing the shortest message

(parameters + data).

Additional feature in regression
Codes for regression must also identify the chosen predictors as

well as give the values of any parameter estimates.
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