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• Data compression and coding

• Duality of code lengths and probabilities

• Model selection via coding: testing H0 : µ = 0

– Local asymptotic coding

• Coding interpretation of selection criteria in regression:

– Mallows’ Cp, Akaike information criterion (AIC)

– Bayesian information criterion (BIC, SIC)

– Risk inflation, thresholding (RIC)

– Empirical Bayes criterion, multiple testing (eBIC)

• Discussion, extensions
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Overview

Ultimate problem for today

Which variables ought to be used in a regression, particularly

when the number of potential predictors p is large (data mining).

Model selection = data compression

Model selection via popular criteria

AIC, BIC, RIC, eBIC

is equivalent to choosing the model which offers the greatest

compression of the data.

Two-part codes

The compressed data are represented by a two-part code

Model Parameters ‖ Compressed Data

Selection criteria differ in how they encode the parameters.

Information/coding theory

Coding view of selection as data compression offers

• Consistent, alternative perspective for the various criteria.

• Tangible comparison of criteria.

• Suggests new criteria, customized to specific problems.

Representative problem

Test the null hypothesis µ0 = 0.
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So many choices — is any one right?

Context: orthogonal regression with n observations and p predictors.

Threshold: choose Xj if |zj | > τ , criterion’s threshold.

τ = 0 OLS, max R2 Gauss

τ = 1 max R
2
, min s2 Theil 1961

√
2 Unbiased est of out-of-sample error

Cp Mallows 1964,1973

AIC Akaike 1973

Cross-valid Stone 1974
√

log n Model averaging

BIC,SIC Bayes (Schwarz 1978)

“MDL” Inf. thry. (Rissanen 1978)
√

2 log p Minimax risk (Bonferroni)

RIC Foster & George 1994

Wavethresh Donoho & Johnstone 1994√
2 log p/q Adaptive selection

eBIC Foster & George 1996

Mult tests Benjamini & Hochberg 1996
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Data Compression

File compression

Disk compression utilities: WinZip, Stacker, Stuffit, compress.

How do they work?

How to compress a file of characters into a sequence of bits (0’s

and 1’s) without losing information (lossless compression)?

Sample problem

File (message) composed of 4 characters: a, b, c, d.

What would you need to know in order to compress a file of

these characters?

Question rephrased

View file as a sequence Y1, Y2, . . . , Yn of iid discrete r.v.’s,

Y1, Y2, . . . , Yn
iid∼ p(y) .

Let `(y) denote code length for y. What is the smallest

compressed file length (on average),

min
`

E

n∑
i=1

`(Yi) = n min
`

E `(Y1) ,

and what code achieves this limit?
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Alternative Coding Methods

Two codes

• Code I: a fixed-length code (like ASCII, but with 2 bits each)

• Code II: a variable-length code, matching length to exponent

Symbol y p(y) Code I Code II

a 1/2 = 1/21 00 0

b 1/4 = 1/22 01 10

c 1/8 = 1/23 10 110

d 1/8 = 1/23 11 111

Examples

String P(String) Code I Code II

baa 1
4

1
2

2 = 1
24 010000 1000

dad 1
8

1
2

1
8 = 1

27 110011 1110111

Prefix codes and delimiters

• Unlike Morse codes, neither code requires a delimiter.

• Code II is a “prefix code”; the code for no symbol is a prefix

to any other. Despite varying length, such codes are

‘instantaneous’.
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Optimal Code?

Symbol y p(y) Code I Code II

a 1/2 = 1/21 00 0

b 1/4 = 1/22 01 10

c 1/8 = 1/23 10 110

d 1/8 = 1/23 11 111

Expected lengths

For Y ∈ {a, b, c, d}, the length for Code I is fixed, E `1(Y ) = 2,

whereas for Code II,

E `2(Y ) = 1(
1
2
) + 2(

1
4
) + 3(

1
8
) + 3(

1
8
) = 1.75 < E `1(Y )

Big question

Can you do any better?

Specifically, retaining the assumptions of i.i.d. data,

• independence and

• identical distribution (strong stationarity),

is there a code with shorter average length than Code II?
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Kraft Inequality

Code length implies sub-probability

For any instantaneous binary code over discrete symbols y,

assigning length `(y) to the symbol y,∑
y

2−`(y) ≤ 1 .

Tree-based interpretation for Code II

• Associate probability 2−depth with each leaf node.

• Code for a symbol determined by the sequence of left

branches (0) and right branches (1) followed to the node.

• Inequality since you need not use all branches.
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Optimal Codes

Entropy determines minimum bit length

The minimum expected number of bits needed to encode a

discrete r.v. Y ∼ p(y) is

H(Y ) ≤ E `(Y ) < H(Y ) + 1 ,

where the entropy H(Y ) is defined (all logs are base 2)

H(Y ) = E log 1/p(Y )︸ ︷︷ ︸
opt len

=
∑

y

(
log

1
p(y)

)
p(y)

Relative entropy (aka, Kullback-Leibler divergence)

A ‘distance’ between two probability distributions p(y) and q(y),

D( p︸︷︷︸
truth

‖ q︸︷︷︸
fit

) =
∑

y

(
log

p(y)
q(y)

)
p(y) ≥ 0

with the inequality following from Jensen’s inequality.

Interpretation of relative entropy

Suppose the true distribution is p(y) but we use a code based on

the wrong model q(y). Then the expected cost in excess bits is

the relative entropy,∑
y

(
log

1
q(y)

− log
1

p(y)

)
p(y) =

∑
y

(
log

p(y)
q(y)

)
p(y) = D(p‖q)
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Derivations

Why does entropy give the limit?

The entropy bound

H(Y ) ≤ E `(Y ) < H(Y ) + 1 ,

is a consequence of:

• Kraft inequality:
∑

y 2−`(y) ≤ 1

• Relative entropy: D(p‖q) ≥ 0

Proof outline

For any code with lengths `(y) associate the sub-probability

q(y) = 2−`(y) and define c ≥ 1 such that
∑

y c q(y) = 1.

Then for the lower bound,

E `(Y )−H(Y ) =
∑

y

(`(y) + log p(y)) p(y)

=
∑

y

(log 1/q(y) + log p(y)) p(y)

=
∑

y

(log 1/(c q(y)) + log p(y)) p(y) + log c

= D(p‖c q) + log c ≥ 0

The upper bound follows by using a code with length

`(y) = dlog 1/p(y)e < 1 + log 1/p(y). Such a code may be

obtained by Huffman coding or arithmetic coding.
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Arithmetic Coding

Goal

Generate a prefix code for a discrete random variable,

Y ∼ p(y) , y = 0, 1, . . . P (y) =
∑
j≤y

p(j)

Assume probabilities are monotone, p(y) ≥ p(y + 1).

Approach Rissanen & Langdon

Partition unit interval [0, 1] according to P (y). How many bits

does it take to uniquely identify the interval associated with y?

Key step

Recursively refine a binary partition, until “fractional” binary

value uniquely indicates the interval asociated with y.

Issues

Unless p(y) = 2j

• Not typically Kraft tight.

• Not always monotone (ie, p(y) > p(x) but `(y) > `(x)).

Example

On next page...
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Example of Arithmetic Coding

y p(y) P (y) log p(y)

0 0.55 0.55 0.9

1 0.25 0.80 2

2 0.15 0.95 2.7

3 0.05 1.00 4.3
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Summary of Relevant Coding Theory

Entropy

Entropy determines min expected message length (discrete),

min
`

E
n∑

i=1

`(Yi) = nH(Y ), H(Y ) =
∑

y

(
log

1
p(y)

)
p(y)

Optimal obtained (within one bit) using a code with lengths

`(y) = log
1

p(y)

Implications

• High compression requires short codes for likely symbols.

• Kraft-tight codes are synonymous with pdfs,

p(y) = 2−`(y)

Relative entropy

Cost for coding using wrong model is nD(p‖q) bits, where

D(p‖q) = Ep(log p/ log q) =
∑

y

(
log

p(y)
q(y)

)
︸ ︷︷ ︸

log L.R.

p(y) ≥ 0

Achievable?

Yes, within one bit on average, via arithmetic coding.
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Coding Bernoulli Random Variables

Bernoulli observations

Suppose data consists of n Bernoulli r.v.’s,

Y1, . . . , Yn ∼ B(p), k =
∑

i

Yi, p̂ = k/n

How can you compress a Boolean?

Since each Yi is just a bit, how can you compress anything?

Code Y = (Y1, . . . , Yn) as a block, using joint density

pn(Y ) =
∏

i

p(Yi) = pk(1− p)n−k .

Coding efficiency

Optimal code compresses n bits down to n H(p̂)

• n H(1/2) = n

• n H(1/8) ≈ n/2

• n H(1/n) ≈ log n ⇐ give its index

Log-likelihood

Log-likelihood determines the compressed length

n H(p̂) = n

(
p̂ log

1
p̂

+ (1− p̂) log
1

1− p̂

)
= k log

1
p̂

+ (n− k) log
1

1− p̂
= log

1
P (Y |p̂)
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0 10.5
p

Bernoulli Entropy Function

H(p) = p log p + (1− p) log(1− p)

≈ 1− 3(p− 1
2 )2
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Coding Continuous Random Variables

Continuous data?

Solution is to ‘quantize’, rounding to a discrete grid.

Relative entropy for quantizing

Continuous r.v. Y rounded to precision 2−Q requires

H(Y ) + Q bits, on average.

Net effect: add a constant number of bits for each obs.

Normal data compression

Y1, . . . , Yn ∼ N(µ, 1) with mean Y =
∑

i Yi/n.

Minimum bits = log 1/P (Y |Y )︸ ︷︷ ︸
log-like at MLE

+ n Q︸︷︷︸
quantized

Relative entropy and testing

Additional bits if we code with m as the mean rather than the

MLE, (known as the ‘regret’)

Rn(m− Y ) = log
P (Y |Y )
P (Y |m)

=
n(m− Y )2

2 ln 2
=

z2
m

2 ln 2

where zm =
√

n(Y −m) is the test statistic for H0 : µ = m.
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Normal Location Problem

Task

Transmit Y1, . . . , Yn ∼ N(µ, 1) to a receiver using as few bits as

possible. Receiver knows Yi ∼ N(·, 1) and n, but nothing else.

Complication

If we encode the data using the optimal code defined by P (Y |Y ),

the receiver will need Y in order to decode the message.

Solution via a two-part code

• Add Y as a prefix to the message, then

• Compress data into log 1/P (Y |Y ) bits (ignore quantization).

Total message length = Parameter Prefix︸ ︷︷ ︸
?

+ Compressed Data︸ ︷︷ ︸
log 1/P (Y |Y )

How to represent Y in the prefix?

Quantizing suggests rounding Y to some precision. Rissanen

shows that rounding Y to SE scale is optimal,

µ̂ =
〈
√

n Y 〉√
n

=
〈z0〉√

n
,

adding less than one bit to data since Rn(µ̂− Y ) < 1.

• How to represent the integer z-score, 〈z0〉 = 〈
√

n Y 〉?

• Can you be clever if Y is near zero?

16



Bayesian Perspective

How to represent the rounded z-score?

How to encode rounded z0 from µ̂ = 〈z0〉/
√

n.

Bayesian view

Code choice for z0 implies a prior probability,

Total length = Parameter Prefix + Compressed Data

= log 1/P (µ) + log 1/P (Y |µ)

⇒ P (Y, µ) = P (µ)× P (Y |µ)

= Prior for µ︸ ︷︷ ︸
?

×Likelihood

Universal prior Elias 1975, Rissanen 1983

• Code “as well as” true distribution, assuming monotonicity

• Robust, proper prior roughly comparable to a log-Cauchy

How to represent Y in the prefix?

• Find the integer z score that produces the shortest message,

maximizing the joint probability.

• Total message length is

`[Us(z)] + Rn

(
z√
n
− Y

)
︸ ︷︷ ︸

arg min z

+ log
1

P (Y |Y )
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Universal Priors

Simple example

Interleave continuation bits with binary form,

5 = 1012 ⇒ 11 01 10

Length is roughly 2 log z, implying p(z) ≈ 1/z2, or Cauchy-like

tails.

Recursive log

Send a sequence of blocks,each giving length of next. Define

log∗ x = log x + log log x + log log log x + · · ·

where sum includes only positive terms. Series is summable,

∞∑
j=1

2− log∗ j ≈ 2.8 = 21.5 <∞

Probabilities

Define p∗(0) = 1/2 and for j = 1, 2, 3, . . . ,

p∗(j) = 2−(log∗ j+2.5) = c×
(

1
j

)
× 1

log j
× 1

log log j
× · · ·

Very, very thick tails

log∗(x) ≈ log x + 2 log log x⇒ log Cauchy
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Universal Codes

j Cauchy U(j) `[U(j)]

0 0 0 1 bit

1 10 100 3

2 1100 1010 4

3 1110 10110 5

4 110100 101110 6

5 110110 1011110 7

6 111100 1011111 7

· · ·

100 14 bits 14 bits

1000 20 19

10000 28 23

• Length of Cauchy code is 2 log j

• Length `[U(x)] = c + log 〈x〉+ log log 〈x〉+ log log log 〈x〉+ · · ·,
with rounding embedded, U(x) = U(〈x〉).

• Signed universal appends sign bit, Us(j) = U(j) ‖ (+/−)
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Optimal Parameter Code

Optimal estimate

µ̂ = z/
√

n, arg min
z

`[Us(z)] + Rn(z/
√

n− Y )

Table on SE grid

Y z = 0 1 2 3 4

0 1.0 4.7 7.9 12.5 18.5

1/
√

n 1.7 4.0 5.7 8.9 13.5

2/
√

n 3.9 4.7 5.0 6.7 9.9

3/
√

n 7.5 6.9 5.7 6.0 7.7

4/
√

n 12.5 10.5 7.9 6.7 7.0

Note

• Code a non-zero parameter once |z| > 2.4.

• Decision rule resembles familiar normal test.

• Shrinkage stops once |z| =
√

n Y > 5.

Reference

“Local asymptotics and the minimum description length”

http:www-stat.wharton.upenn.edu/∼bob
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Graph of Codebook

Vertical Axis: Bits are the excess `[Us(zµ)] + Rn(Y − µ̂) over

minimum determined by the log likelihood at Y .

Horizontal Axis: z =
√

n Y , the usual z-score.
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Alternative Asymptotic Analysis

Asymptotic code length Rissanen’s MDL (1983)

Asymptotic analysis of optimal code length, with n→∞ and

µ = E Y fixed so that z =
√

n Y is large:

Code length = `[Us(
√

n Y )] + log
1

P (Y |Y )
+ c

≈ log
√

n Y + log
1

P (Y |Y )

= 1
2 log n + log

1
P (Y |Y )

+ Op(1)

Implication for prefix length

To code any mean value requires 1
2 log n bits.

Model selection

Use a special one-bit code for zero. Code any non-zero

parameter using 1 + 1
2 log n bits:

Parameter Prefix

0 0

z 6= 0 1 ‖ 1
2 log n bits for z

Penalized likelihood BIC

Reject H0 : µ = 0 and code a non-zero mean only if

log P (Y |Y )− log P (Y |µ = 0) > 1
2 log n or |z| >

√
log n.
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Spike and Slab Prior

Code = Probability

Recall that the choice of coding method implies a probability

model. This applies to the parameter codes as well.

⇒ Very Bayesian point of view.

Implicit assumption

If we knew that |µ| < 1
2 , then to grid this interval to precision

1/
√

n requires log
√

n = 1
2 log n bits. The larger the range

allowed for µ, the larger the number of bits.

Associated prior on µ

• If we do not code a mean, then we represent µ = 0 with just

1 bit, implying a probability of 1/2.

• If we do code a mean, then we represent µ using 1 + 1/2 log n

bits, corresponding to a uniform distribution on |µ| < 1
2 .

Natural prior?

Parameter is either exactly zero, or anywhere in allowed range.

Asymptotics essentially force large z score for any µ 6= 0.

Impact of prior

Priors are much more important in model selection than

elsewhere.
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Graph of BIC Codebook

Vertical Axis: Bits are the excess 1
2 log n + Rn(Y − µ̂) over

minimum determined by the log likelihood at Y , with n = 1024 and

−16 < µ ≤ 16

Horizontal Axis: z =
√

n Y , the usual z-score.
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Comparison of Coding Decisions

Attributes

Local Asym Code Traditional

as n→∞ µ→ 0, z fixed z →∞, µ fixed

code z 6= 0 if |z| > 2.4 |z| >
√

log n

consistency irrelevant consistent

prior on z log-Cauchy spike-and-slab

Contradiction?

Traditional asymptotic analysis is not uniformly convergent, and

must exclude a set of parameters of vanishing size — precisely

those near the origin.

⇒ lim
n

arg min
z

CodeLength(z) 6= arg min
z

lim
n

CodeLength(z)

Model selection lives in the small set near 0.

Philosophical

Sample sizes are chosen to detect certain features.

Gather large samples to find features undetected in small

samples.

⇒ Still have small z scores, even though n is large.
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Review and Next Steps

So far

Information theory provides another view of modeling: good

models produce short codes.

Parameter coding

Method of coding rounded parameter corresponds to a prior on

the parameter space, with coding making the prior very explicit.

Different codes/priors lead to different modeling criteria:

• Local asymptotics suggest fixed threshold near 2.4.

• Large z arguments lead to BIC with a threshold
√

log n.

Regression

Same coding ideas, but now with multiple parameters.

Again, choose the model producing the shortest message

(parameters + data).

Additional feature in regression

Codes for regression must also identify the chosen predictors as

well as give the values of any parameter estimates.
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