
Overview

Focus on regression problem

Which variables ought to be used in a regression, particularly

when the number of potential predictors p is large (data mining).

Reproduce criteria

Model selection via AIC, BIC, RIC, eBIC are equivalent to

choosing the model which offers the greatest compression

according to a specific two-part code. Selection criteria differ in

how they encode the parameters.

Composition of prefix

Prefix must indicate two features:

1. Coefficient estimates

2. Which variables are being used

Similar to location problem

Again will encode parameters as integer z-scores, adding enough

information to associate estimates with variables.
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Regression Model

True Model

Rather than assume E Y = Xβ, mean is unspecified:

Y = η + ε, E ε = 0, Var ε = σ2In,

Working Model

View Xβ as the projection of η into the space defined by the

available set of predictors,

Y = Xβ + ε where Xβ = (X(X ′X)−1X) η ,

and treat ε ∼ N(0, σ2).

Subset/selection coefficients

Let γ = (γ1, . . . , γp) denote a sequence of p 0’s and 1s. Denote a

subset of β by (miss APL notation!)

βγ defined by βj 6= 0 ⇐⇒ γj = 1

Simplifying assumptions

• p ≤ n possible orthogonal regressors Xj , with X ′jXj = n.

• σ2 is known.

• Receiver knows n and X, so needn’t send either.
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Coding Regression

Model prefix

Prefix encodes γ and associated estimates:

1. Code for γ = (1, 0, 0, . . . , γj , . . . , 1), the selection indicator

2. Code for fitted β̂γ estimates

3. Compressed data

Goal and protection

The goal remains to construct the shortest message. Note the

automatic penalty for over-fitting: the more variables used, the

longer the prefix since more estimates must be added.

Estimates

bj = βj +
X ′jε

X ′jXj
= βj +

σ√
n
Z, Z ∼ N(0, 1)

so that SE(bj) = σ/
√
n

Rounding coefficients

Round coefficient estimates bj to a standard error scale, as in

the location problem,

β̂j =
σ〈zj〉√
n

, zj =
√
n bj
σ

.
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Variable Selection via Coding

Trade-off

Add additional variable Xj if

(Gain in data compression) > (Increase in prefix length).

Gain in data compression

Log-likelihood based on q predictors is (ignoring constants)

log
1

P (Y |bγq )
=
∑n
i=1(Yi − Ŷi(q))2

σ22 ln 2
=
RSS(q)
σ22 ln 2

.

If add another predictor, say Xj , then

4RSS = RSS(q)−RSS(q + 1) = n b2j ,

so the gain in data compression is

4RSS
σ22 ln 2

=
nb2j

σ2 2 ln 2
=

z2
j

2 ln 2
fewer bits.

Parameter cost differs

Least squares, AIC, BIC, RIC, and eBIC code the parameters

γ, β̂

differently, and so reach different compromises of data

compression and model complexity.
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Least Squares Coding

Fixed format code

Fixed format with reserved, fixed-length fields for each predictor:

1. p bits for the indicator γ,

2. k
2 logn for each parameter (2|βj | < kσ/

√
n), and

3. tag on the fully compressed data.

Parameters of code

γ1, . . . , γp︸ ︷︷ ︸
p bits

‖ 〈z1〉︸︷︷︸
(k/2) log n bits

· · · 〈zp〉︸︷︷︸
(k/2) log n bits︸ ︷︷ ︸

all p

Data

Encode data using the associated rounded parameter estimates.

This requires about

log
1

P (Y1, . . . , Yn|b1, . . . , bp)
+ nQ︸︷︷︸

quantized

bits

Resulting selection

With fixed-length fields, regardless of selected variables, one

obtains the shortest message by encoding all of the parameters.
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BIC/SIC Code

Partly-fixed format code

Simple modification of the OLS code, with a fixed format for

each chosen predictor rather than all predictors:

1. p bits for the indicator γ,

2. k
2 logn for each chosen parameter, and

3. tag on the fully compressed data.

Parameters of code Assuming |γ| =
∑
j γj = q,

γ1, . . . , γp︸ ︷︷ ︸
p bits

‖ 〈zj1〉︸︷︷︸
k/2 logn bits

· · · 〈zjq 〉︸︷︷︸
k/2 logn bits︸ ︷︷ ︸

q chosen

Resulting selection

Add Xj if

z2
j

2 ln 2︸ ︷︷ ︸
Increased compression

>
k

2
logn︸ ︷︷ ︸

Increased parm bits

,

implying that one selects Xj if (with k = 1)

|zj | >
√

logn ,

as when using BIC.
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Interpreting the BIC/SIC Code

Code

Assuming |γ| =
∑
j γj = q,

γ1, . . . , γp︸ ︷︷ ︸
p bits

| 〈zj1〉︸︷︷︸
k/2 logn bits

· · · 〈zjq 〉︸︷︷︸
k/2 logn bits︸ ︷︷ ︸

q chosen

Spike and slab for each slope

When Xj is

Excluded: 1 bit to denote zero (in the code for γj).

Included: 1 + 1
2 logn bits for γi and zj .

Prior on “complexity”

Since γ is always coded in p bits, as though iid coin tosses, this

code assigns equal probability to all 2p possible models.

Prior prob(q = 0) =
1
2p
, Prior prob(q = 1) =

p

2p

In general

Prior prob(q) =

(
p
q

)
2p

,

so that the most favored model (highest prior) is q = p/2.

⇒ We expect half of the variables to enter the model, albeit

with a high threshold, |zj | >
√

logn.
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AIC Regression Coding

Variable length code

Fixed p-bit prefix for γ with varying fields for each predictor:

• Prefix γ embedded in parameter codes,

• Concatenate universal codes Us(zj), j = 1, . . . , p for zj .

Parameters of code

Us(z1), Us(z2), . . . , Us(zp)︸ ︷︷ ︸
p univ codes

EG: p = 6 and simpler to read Cauchy codes,

0 1 0 + 0 1 1 1 0 - 0 0 ⇒ 0 1 0 -3 0 0

Leading bits of the universal codes are indicators γj .

Resulting selection

Add Xj if improved goodness of fit compensates for adding

Us(zj) bits for the additional parameter,

z2
j /(2 ln 2)︸ ︷︷ ︸

Increased compression

> Us(zj)− 1 ≈ 2 log 〈zj〉︸ ︷︷ ︸
Increased param bits

which implies that one codes once |zj | > 2.4 (approximately).

Resembles AIC

Threshold fixed on z scale, as with AIC or Cp.
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Interpreting the AIC Code

Associated prior on βj

The associated prior on coordinates is a “rectangular”

log-Cauchy distribution, and is not spherically symmetric.

Coefficients are not artificially constrained to some interval.

Natural prior?

Suggests many small coefficients, regardless of the sample size.

Prior on complexity

Though embedded into universal codes, γ still uses p bits for all

models, as in the BIC code; expect half of the variables to enter.

Local asymptotics

Motivated by local asymptotics in which one fixes z as n→∞
rather than letting the z score grow to infinity.
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Robustness of Universal Codes

What about the message lengths?

If in fact the z scores are large, won’t the AIC model codes be a

lot longer than the BIC model codes?

Oracle

Suppose that it is known that −Mσ ≤ βj ≤Mσ.

Data

Suppose further that the fitted coefficients for q variables attain

this upper limit, b1 = · · · = bq = Mσ so that zj =
√
nM .

Large value exceeds AIC and BIC thresholds.

Prefix length for BIC code Since the grid of z-scores has

2Mσ

σ/
√
n

= 2
√
nM positions,

uniform coding requires

q log 2
√
nM = q(log

√
nM + 1) bits.

Prefix length for AIC code

q log∗
√
nM ≈ q (log

√
nM + 2 log log

√
nM)

which shares the dominant term with the BIC code.
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MDL in Regression

Definition of minimum description length Rissanen (1983)

In its original asymptotic form, the MDL for a model with q

orthogonal predictors is

MDL(q) = log∗(V (k)‖θ̂‖q) + log
1

P (Y |θ̂)
≈ q

2
logn+

q

2
log
∑

θ̂2
i + log V (q) + log

1

P (Y |θ̂)
≈ q

2
logn+ log

1

P (Y |θ̂)
= BIC(q)

where V (k) = Vol(k-dim ball, radius one) and ‖θ‖2 = n
∑
θ2
j .

Implicit selection indicator

Since γ does not appear in this definition, its as though it is

coded with a fixed number of bits for all models.

Local coding interpretation

The prefix encodes an index for vector z = (z1, . . . , zq) using a

spiraling code:

MDL(q) ≈ log∗(V (q)‖θ̂‖q) + log 1/P (Y |θ̂)
= U(i(z)) + log 1/P (Y |θ̂)

where i(z) denotes index identifying the vector z score.
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Spiral MDL Index Path

• “Spiral” indexing using universal code on SE scale.

• Plots of index (below), bits for index (next).
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Implications of Spherical Prior/Code

Projection to subspace

Following plot: code lengths with subspaces show that threshold

for adding another variable increases with ‖z‖.

Example: Use one or two variables?

q = 2 gives shorter code than q = 1 when

z2
2

2 ln 2︸ ︷︷ ︸
Gain in compression

> U(i(z1, z2))− U(i(z1))︸ ︷︷ ︸
Increase parm bits

For large z1 >> z2 > 0,

U(i(z1, z2))− U(i(z1)) ≈ log∗ ‖z1, z2‖2 − log∗ ‖z1‖
≈ 2 log z1 − log z1

= log z1

Add X2 to model with just X1 when

z2
2

2 ln 2
> log z1

Maximum coefficient determines threshold

q large coefficients, z = (z, z, . . . , z), and one smaller coefficient,

z >> z̃ > 0 . Add z̃ if

z̃2

2 ln 2
> log z + 1

2 log q
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Spherical Length with Subspaces, k=2
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Examples

Add z̃?

Add z̃ to model with q coefficients when

z̃2

2 ln 2︸ ︷︷ ︸
gain

> log z + 1
2 log q︸ ︷︷ ︸

penalty

Local coding = BIC in special case

If max z =
√
n, then penalty = 1

2 (logn+ log q) and threshold is

about
√

logn.

Explicit examples “Elephants and mice”

Model A Two small coefficients

z = (3, 4) ⇒ pick ⇒ (3, 4)

Model B Two small, plus one large

z = (3, 4, 10) ⇒ pick ⇒ (3, 4, 10)

z = (3, 4, 100) ⇒ pick ⇒ (4, 100)

z = (3, 4, 1000) ⇒ pick ⇒ (1000)

Model C Two small, plus many large

z = (3, 4, 100, . . . , 100) ⇒ pick ⇒ (4, 100, . . . , 100)
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Indexed Parameter Coding: RIC

Complexity prior

Suppose expect very few coefficients to enter model, |γ| ≈ 1.

Bernoulli compression

Compress Y1, . . . , Yn ∼ B(1/n) by giving indices for i s.t. Yi = 1,

n H(Y1) ≈ logn .

Encode γ as a sequence of indices rather than 0/1 indicators.

Parameters of code

q | (j1, Us(zj1))︸ ︷︷ ︸
log p+`(Us(zj1 ))

| · · · | (jq, Us(zjq ))

Resulting selection

Add Xj if (approximately)

z2
j /(2 ln 2)︸ ︷︷ ︸

Increased compression

> log p+ 2 log 〈zj〉︸ ︷︷ ︸
Increased parm bits

or roughly once zj exceeds the Bonferroni bound,

|zj | >
√

2 log p ≈ Φ−1(1− 1/p)
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Adaptive Coding: eBIC

Coding methods

Method Code for γ Expected Predictors

BIC p bit prefix p/2

AIC Embedded p bit prefix p/2

RIC Indexing 1

Why a priori assume the complexity — code adaptively.

Compress γ

Compress γ1, . . . , γp, treating as a Bernoulli sequence. In effect,

modify the AIC code by compressing the leading bits of the

sequence of universal codes.

Such a code will produce slightly longer messages than

• RIC code if indeed q = 1 is best

• AIC code if q = p/2 is best

but the added length in these cases is very small.

Two-part code

γ1, . . . , γp︸ ︷︷ ︸
p H(q/p)

| Us(zj1), . . . , Us(zjq )︸ ︷︷ ︸∑q

k=1
`(U(zjk−q))
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Adaptive Coding: eBIC

Adaptive selection criterion

Add Xj if (approximately)

z2
j

2 ln 2
> p(H(

q + 1
p

)−H(
q

p
)) + 2 log zj

or once |zj | exceeds the adaptive thresholding bound,

z2
j

2 ln 2
> log

p− q
q + 1

+ 2 log zj ⇒ |zj | >
√

2 log p/q

Comparable to

• Simes, Step-up/Step-down Testing: Compare max zj to

Bonferroni, second largest to next normal order stat, etc.

• Empirical Bayes prior for the number of parameters.

Further variations

Can compresses other bits in the z scores as well.

Big question

Is coding useful when used in this more extensive manner?

• Fine for offering another way to think about model selection

criteria.

• But, is it appropriate to use bit lengths to judge which is a

better selection criterion?
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Discussion

Model selection message formats

Criterion Threshold Parameter Complexity

BIC, SIC
√

logn Spike-slab half

AIC,Cp
√

2 Log-Cauchy half

RIC, hard
√

2 log p Log-Cauchy 1

eBIC
√

2 log p/q Log-Cauchy adaptive

Discussion

• Interplay of information theory and Bayesian ideas

Another way to think about priors, particularly in harder

problems (priors for continuous functions).

• Robustness of the priors

Universal priors are uncommon, but quite powerful.

• Spherical priors

Common, but appropriate in variable selection?

• Is coding a realistic criterion?

Seems fine as a way to characterize methods, but can it

suggest which are really better?
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Research Continues

Other types of models

Application to smoothing splines, piecewise models, or

regression trees?

Varying parameter effects on compression, and how to code?

Dependent processes

Context tree models are capable of capturing dependence in a

nonparametric way and have been used to develop, for example,

model-free bootstrap resampling methods.

Reducing assumptions: Collinearity, variance, normality

Collinearity Drop the assumption of orthogonal parameters.

Variance Drop the assumption of known variance.

Robustness CLT for coefficients, but what about compression

of the data via likelihood? Using wrong distribution makes a big

difference in data compression, implying z2/(2 ln 2) may not be

the right trade-off.

File compression vs model selection

Coding seeks big gains in compression, on the order of 10%.

Testing/parameter selection deals with several bits.

Can a method used to obtain 10% gains be applied to evaluate

changes of several bits?
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