Text Mining
 Using Linear Models
 of Latent States

Bob Stine
Department of Statistics
The Wharton School, University of Pennsylvania www-stat.wharton.upenn.edu/~stine

Topics

Application
Statistical named entity recognition
Feature creation
Preprocessing
Converting text into numerical data
Exploiting the features
Estimators, standard errors
Auctions and experts

Collaborators
Dean Foster in Statistics
Lyle Ungar in CS

Application and Motivation

Wharton

Text Mining Applications

Cloze
What's the next word?
"...in the midst of modern life the greatest, __"
Data compression
Word disambiguation
Meaning of a word in context
Does "Washington" refer to a state, a person, a city or perhaps a baseball team? Or politics?
Speech tagging
Identifying parts of speech
Distinguishing among proper nouns
Grading papers, classification, ...

Named Entity Recognition

Annotate plain text in a way that identifies the words that refer to a
person (Obama)
place (France) organization (Google) or something else.
Wiki example
Jim bought 300 shares of Acme Corp in 2006.
person company year
Customized systems build on grammatical heuristics and statistical models.

Time consuming to build
Specific to training domain

Second Example

You get some text, a sequence of "words" bob went to the 7-11 <.> he was hungry <.> ...
Task is to tag proper nouns, distinguishing Washington? the person those associated with people, places and place organizations.
team
politics

No other information in the test set
Training data Marked up sequence that includes the tags that you'd ideally produce bob went to the 7-11 <.> he was hungry <.> ... person organization

Test data is just a sequence of "words"

Approaches

Numerous methods used for NER
Gazette
lists of proper words/businesses, places
Formal grammar, parse trees
off the shelf parsing of text into subject/verb
Stemming
such as noting prior word ends in -ing
Capitalization
Not using any of these...
Things like capitalization are not available in some formats, such as text from speech
Generalization: gazettes depend on context
Languages other than English
Could add these later!

Statistical Models for Text

Markov chains
Hidden Markov models have been successfully used in text mining, particularly speech tagging Hidden Markov model (HMM)

Transition probabilities for observed words $P\left(w_{+} \mid w_{t-1}, w_{+-2}, \ldots.\right)$ as in $P(c l e a r l i s, s k y$, the $)$
Instead specify model for underlying types

$$
P\left(T_{+} \mid T_{t-1}, T_{t-2}, \ldots\right) \text { as in } P(\text { adjlis,noun,article })
$$

with words generated by the state

Concentrate dependence in transitions among relatively few states

State-Based Model

Appealing heuristic of HMM
Meaning of text can be described by
transitions in a low-dimensional subspace determined by surrounding tex \dagger
Estimation of HMM hard and slow
Nonlinear
Iterative (dynamic programming)
Objective
Linear method for building features that represent underlying state of the text process.
Possible? Observable operator algebras for HMMs.
Features used by predictive model. Pick favorite.

Connections

Talks earlier today...

Probabilistic latent semantic analysis
Non-negative matrix factorization (NMF)
Clustering

Building the Features

Wharton

Summary of Method

Accumulate correlations between word occurrences in n -grams
Preprocessing, all n-grams on Internet
Trigrams in example; can use/combine with others
Perform a canonical correlation analysis (CCA) of these correlations
Singular value decomposition (SVD) of corr mat
Coordinates of words in the space of canonical variables define "attribute dictionary"

Predictive features are sequences of these coordinates determined by the order of the works in the text to be modeled

Canonical Correlation

CCA mixes linear regression and principal components analysis
Regression
Find linear combination of X_{1}, \ldots, X_{k} mos \dagger correlated with Y

$$
\max \operatorname{corr}\left(Y, \beta_{1} X_{1}+\beta_{2} X_{2}+\ldots+\beta_{k} X_{k}\right)
$$

Canonical correlation
Find linear combinations of $X^{\prime} s$ and Y 's that have maximal correlation $\max \operatorname{corr}\left(\alpha_{1} Y_{1}+\ldots+\alpha_{j} Y_{j}, \beta_{1} X_{1}+\ldots+\beta_{k} X_{k}\right)$
Solution is equivalent to PCA of

$$
\left(\Sigma_{X X}\right)^{-1 / 2} \Sigma_{X Y}\left(\Sigma_{Y Y}\right)^{-1 / 2}
$$

Coincidence Matrices

 Pre-word Word Post-word$w_{1}, w_{2}, w_{3}, \ldots, w_{d} \quad w_{1}, w_{2}, w_{3}, \ldots, w_{d} \quad w_{1}, w_{2}, w_{3}, \ldots, w_{d}$

$\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}$			
$\mathrm{W}_{\dagger-1}, \mathrm{~W}_{+}, \mathrm{W}_{\dagger+1}$	010000000	000010000	000000010
billions of n-grams	B_{1}	B_{w}	B_{2}
W_{n-2}, W_{n-1}, W_{n}			
Wharton		$d=50,000$	d is the size of our dictionary 14

Using CCA

Which words, or groups of words, co-occur?
Linear
Find α_{1} in R^{d} and β_{1} in $R^{2 d}$ that together maximize $\operatorname{corr}\left(B_{w} \alpha,\left[B_{1}, B_{2}\right] \beta\right)$
(α_{1}, β_{1}) defines first pair of canonical variables
Subsequent pairs as in principle components
Find $\left(\alpha_{2}, \beta_{2}\right)$ which maximize $\operatorname{corr}\left(B_{w} \alpha,\left[B_{1}, B_{2}\right] \beta\right)$
while being orthogonal to (α_{1}, β_{1}).
We compute about $K=30$ to 100 of these canonical coordinates

Canonical Variables

SVD of correlations $C \approx B_{w}{ }^{\prime}\left[B_{1} B_{2}\right]$

$$
C=\underset{(50,000 \times 50)}{U} \underset{(50 \times 50)(50 \times 100,000)}{D} \underset{V^{\prime}}{V^{\prime}}=U\left[V_{1}^{\prime} V_{2}^{\prime}\right]
$$

Attribute dictionary

$\mathrm{K}=50$ columns in each bundle

Random Projections

Faster calculation of CCA/SVD
Computing canonical variables

$$
C=B_{w}{ }^{\prime}\left[\begin{array}{ll}
B_{1} & B_{2}
\end{array}\right]
$$

$50,000 \times 100,000$ is large
Random projection
Low rank approximations
Reference Halko, Martinsson, Tropp 2010
Two stage approach
(1) Project into "active" subspace
(2) Do usual operation

Algorithm for SVD

Want SVD of correlations (omit scaling)

$$
C=B_{w}{ }^{\prime}\left[B_{1} B_{2}\right]=U D V^{\prime}
$$

Find orthonormal Q with K+m columns for which

$$
\left\|C-Q Q^{\prime} C\right\|_{2} \text { is small }
$$

Random projection
Q~N(0,1) works very well!

Steps
Compute coefficients $H=Q^{\prime} C$
SVD of H is $U_{1} D V^{\prime}$
Compute $U=Q U_{1}$
To get rank K, need a few extra columns (m)

Plots of Attribute Dict

Isolate the coordinates in the attribute dictionary assigned to "interesting words"

Words were not picked out in advance or known while building the attribute dictionary

Several views
Grouped/colored by parts of speech
Names
Common US names, casual and formal
Bob and Robert
Numbers
Plots show projections of the coordinates in the attribute dictionary...

Parts of Speech

Projection from attribute dictionary

Closer Look at Features

Focus on a few names

PC 2

Closer Look at Features

Numbers as words and digits

Features

Sequence of words in the document determine the features in the predictive model.

Further processing, such as exponential smoothing of various lengths

Document Features from Attr Dictionary
W_{1} $U D\left[w_{1}\right] \quad V_{1}\left[w_{1}\right] \quad V_{2}\left[w_{1}\right]$
W_{2}
W3 $U D\left[w_{2}\right] \quad V_{1}\left[w_{2}\right] \quad V_{2}\left[w_{2}\right]$
$U D\left[w_{3}\right] \quad V_{1}\left[w_{3}\right] \quad V_{2}\left[w_{3}\right]$
$U D\left[w_{n}\right]$
$V_{1}\left[w_{n}\right] \quad V_{2}\left[w_{n}\right]$

Predictive Models

Wharton

Components

Multiple streaming variable selection
Depth-first, guided selection
Auction framework
Blend several strategies raw data, calibration, nonlinearity, interaction
Formalize external expert knowledge
Statistics: Estimates and standard errors
Sandwich estimator for robust SE
Shrinkage
Sequential testing
Alpha investing avoids need for tuning data Martingale control of expected false discoveries
Or your favorite method (e.g. R package glmnet)

Based on Regression

Familiar, interpretable, good diagnostics
Regression has worked well
Predicting rare events, such as bankruptcy
Competitive with random forest
Function estimation, using wavelets and variations on thresholding
Trick is getting the right explanatory variables
Extend to rich environments
Spatial-temporal data
Retail credit default
Linguistics, text mining
Word disambiguation, cloze
Avoid overfitting...

Lessons from Prior Work

"Breadth-first" search
Slow, large memory space
Fixed set of features in search
Severe penalty on largest z-score, sqrt(2 $\log p$)
If most searched features are interactions, then most selected features are interactions $\mu \gg 0$ and $\beta_{1}, \beta_{2} \neq 0$, then $X_{1}{ }^{*} X_{2} \Rightarrow c+\beta_{1} X_{1}+\beta_{2} X_{2}$ Outliers cause problems even with large n

$$
\begin{aligned}
& \text { Real } p \text {-value } \approx 1 / 1000, \\
& \quad \text { but } \\
& \text { usual t-statistic } \approx 10
\end{aligned}
$$

Feature Auction

Collection of experts

Expert ${ }_{2}$

bid for the opportunity to recommend feature

Auction collects
winning bid α_{2}

Expert supplies
recommended feature X_{w}

Expert receives payoff ω
if $p_{w} \leq \alpha_{2}$

Experts learn if the bid was accepted, not the effect size or p_{w}.

Experts

Experts

Strategy for creating sequence of possible explanatory variables.
Embody domain knowledge, science of application.
Source experts
A collection of measurements (CCA features)
Subspace basis (PCA, RKHS)
Multiple smooths of context variables
Interactions between within/between groups

Scavengers

Interactions

- among features accepted/rejected by model

Transformations

- segmenting, as in scatterplot smoothing
- polynomial transformations

Calibration

Calibration

Simple way to capture global nonlinearity aka, nonparametric single-index model
Predictor is calibrated if

$$
E(\hat{Y})=Y
$$

Simple way to calibrate a model is to regression Y on \hat{Y}^{2} and \hat{Y}^{3} until linear.

Expert Wealth

Expert gains wealth if feature accepted Experts have alpha-wealth If recommended feature is accepted in the model, expert earns ω additional wealth
If recommended feature is refused, expert loses bid
As auction proceeds...
Reward experts that offer useful features. These then can afford later bids and recommend more X's Eliminate experts whose features are not useful.
Taxes fund parasites and scavengers Continue control overall FDR

Critical
control multiplicity in a sequence of hypotheses p-values determine useful features

Robust Standard Errors

p-values depend on many things

Error structure likely heteroscedastic
Observations frequently dependent
Dependence
Complex spatial dependence in default rates
Documents from various news feeds
Transfer learning
When train on observations from selected regions or document sources, what can you infer to others?

What are the right degrees of freedom?
Tukey story

Sandwich Estimator

Usual OLS estimate of variance
Assume your model is true

$$
\begin{aligned}
\operatorname{var}(b) & =\left(X^{\prime} X\right)^{-1} X^{\prime} E\left(e e^{\prime}\right) X\left(X^{\prime} X\right)^{-1} \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1}\left(X^{\prime} X\right)\left(X^{\prime} X\right)^{-1} \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1}
\end{aligned}
$$

Sandwich estimators
Robust to deviations from assumptions
heteroscedasticity

$$
\begin{aligned}
\operatorname{var}(b)= & \left(X^{\prime} X\right)^{-1} X^{\prime} E\left(e e^{\prime}\right) X\left(X^{\prime} X\right)^{-1} \\
= & \left(X^{\prime} X\right)^{-1} X^{\prime} D^{2} X\left(X^{\prime} X\right)^{-1} \\
& \text { diagonal }
\end{aligned}
$$

Flashback...

Heteroscedastic errors
Estimate standard error with outlier
Sandwich estimator allowing heteroscedastic error variances gives a t-stat ≈ 1, not 10 .

Dependent errors
Even more critical to obtain an accurate SE
Netflix example
Bonferroni (hard thresholding) overfits due to dependence in responses.
Credit default modeling
Everything seems significant unless incorporate dependence into the calculation of the SE

Estimators

Shrinkage

Two estimates of $\beta_{\mathrm{j}}: 0$ and b_{j}
Std error determines the amount of shrinkage

- Larger the t-statistic, the smaller the shinkage

Resembles Bayes estimator with Cauchy prior
"Smooth" version of hard thresholding

t-stat, LS estimate

Alpha Investing

Context
Test possibly infinite sequence of m hypotheses
$H_{1}, H_{2}, H_{3}, \ldots H_{m} \ldots$
obtaining p-values p_{1}, p_{2}, \ldots
Order of tests can depend prior outcomes
Procedure
Start with an initial alpha wealth $W_{0}=\alpha$
Invest wealth $0 \leq \alpha_{j} \leq W_{j}$ in the test of H_{j}
Change in wealth depends on test outcome
$\omega \leq \alpha$ denotes the payout earned by rejecting

$$
W_{j}-W_{j-1}= \begin{cases}\omega & \text { if } p_{j} \leq \alpha_{j} \\ -\alpha_{j} & \text { if } p_{j}>\alpha_{j}\end{cases}
$$

Martingale Control

Provides uniform control of the expected false discovery rate. At any stopping time during testing, martingale argument shows

$$
\sup _{\theta} \frac{E(\# \text { false rejects })}{E(\# \text { rejects })+1} \leq \alpha
$$

Flexibility in choice of how to invest alphawealth in test of each hypothesis

Invest more when just reject if suspect
that significant results cluster.
Universal investing strategies
Avoids computing all p-values in advance

Multiple Testing

Other methods are special cases
Note: alpha-investing does not require the full set of p-values or estimates at the start.
Bonferroni test of $\mathrm{H}_{1}, \ldots, \mathrm{H}_{\mathrm{m}}$
Set initial $W_{0}=\alpha$ and reward to $\omega=0.05$.
Bid $\alpha_{j}=\alpha / m$
Step-down test of Benjamini and Hochberg
Set initial $W_{0}=\alpha$ and reward to $\omega=0.05$.
Test $H_{1}, . . . H_{m}$ at fixed level α / m
If none reject $->$ finished.
If one rejects, earn $\alpha=0.05$ for next round
Test next round conditionally on $p_{j}>\alpha / m$
-> continue with remaining hypotheses.

Example... Back to text processing

Wharton

Named Entity Results

Model
Approximate max entropy classifier
Fancy name for multinomial logit
Other predictive models can be used
Data
Portion of the ConLLO3 data
Training and test subsets
Dictionary
d=50,000 words
Exponential smooths of content features
Interactions
Precision and recall about 0.85

Auction Run

First 2,000 rounds of auction modeling.

What are the predictors?

Interactions
Combinations of canonical variables
Principal components of factors
Combinations of skipped features
RKHS finds some nonlinear combinations
Calibration adjustments
Simple method to estimate single-index model

$$
\hat{y}=g\left(b_{0}+b_{1} x_{1}+\ldots+b_{k} X_{k}\right)
$$

Estimate g cheaply by building a nonlinear
regression of y on linear \hat{y}.

Closing Comments

Wharton

Next Steps

Tex \dagger

Incorporate features from other methods
Understanding the CCA
Other "neighborhood" features
Theory
Develop martingale that controls expected loss. Adapt theory from the "nearly black" world of modern statistics to "nearly white" world of text

Computing
Multi-threading is necessary to exploit trend toward vast number of cores in CPU
More specialized matrix code

Linguistics \approx Spatial TS

Text

Predict word in new documents, different authors

Latent structure associated with corpus

Neighborhoods:
nearby words, sentences
Vast possible corpus

Sparse

Credit default

Predict rates in same locations, but changing economic conditions

Latent temporal changes as economy evolves

Neighborhoods: nearby locations, time periods

70 quarters, 3000 counties.
Possible to drill lower.
May be sparse

References

Feature auction www-stat.wharton.upenn.edu/~stine
Alpha investing
" α-investing: a procedure for sequential control of expected false discoveries", JRSSB. 2008
Streaming variable selection
"VIF regression", JASA. 2011
Linear structure of HMM
"A spectral algorithm for learning hidden Markov models", Hsu, Kakade, Zhang, TTI. 2008
Random projections
"Finding structure with randomness", Halko,
Martinsson, and Tropp. 2010

