Risk Inflation of Sequential Tests

Bob Stine and Dean Foster Dept of Statistics, Wharton School University of Pennsylvania

JSM, August 4, 2013

Manuscript and slides available at www-stat.wharton.upenn.edu/~stine

Wharton Department of Statistics Thank you, NSF! (#1106743)

Plan

- Example of sequential tests
 - Streaming feature selection
- Alpha investing
 - Test a possibly infinite sequence of hypotheses
 - Flexible control of expected false positives
- Risk analysis
 - Exact analysis via Bellman equations
 - Feasible set of possible risks
 - Comparison of procedures

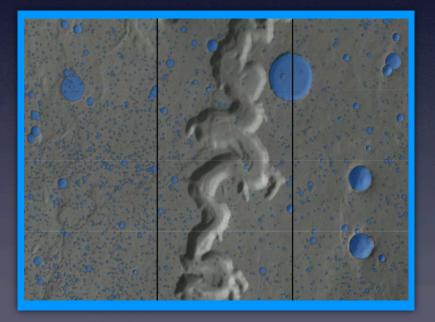
Streaming Feature Selection

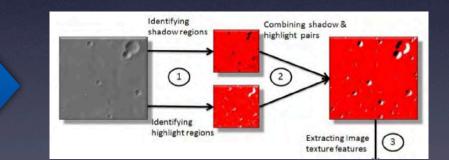
- Canonical problem
 - Pick predictors for regression
 - $\hat{y} = b_0 + b_1 x_1 + \dots ??? \dots + b_k x_k$
- Streaming selection
 - Have current model
 - External source offers new candidate z
 - Decide whether to add z to model
- Novelties
 - Choice of z may depend on prior outcomes Construction of interactions, transformations
 - Can be done very fast VIF regression
 - Does not require all possible x_j at start Image processing, database query. Collection may be infinite...

Example

Image processing

- Crater recognition WU et al (2013, IEEE Trans Pattern Analysis)
- Build features sequentially from image
- Too complex, slow to construct every feature





Question for Streaming

- How to control variable selection?
 - Full domain of predictors not available
- Cross-validation
 - Sacrifices data for fitting, estimation
 - Need repeated CV to reduce variation
- Alpha investing
 - Designed for sequential testing
 - Proven to control expected false discovery ratio
- What about risk?
 - Does control of mFDR at typical rates (e.g. 5%) produce estimates with small risk?

Bonferroni

mFDR

Alpha-Investing

- Test sequence of hypotheses $H_1, H_2, ...$
 - Rejecting H_j provides power for subsequent tests
 - Provable control of expected false discovery rate
- Alpha wealth
 - Initial allowance $W_0 = \omega$ for Type I error

some set $\omega = 0.05$

- Invest some wealth $0 \leq \alpha_i \leq W_{i\text{-}1}$ in test of H_i
- Compute p-value p_i of test of H_i
- Gain wealth for subsequent tests if reject

$$W_i = W_{i-1} - \alpha_i + \omega I\{p_i \le \alpha_i\}$$

earn ω if reject

Comments

- Investing: Spend α_i to test, but can gain ω
- Flexible:Variety of rules for picking α_i

Risk

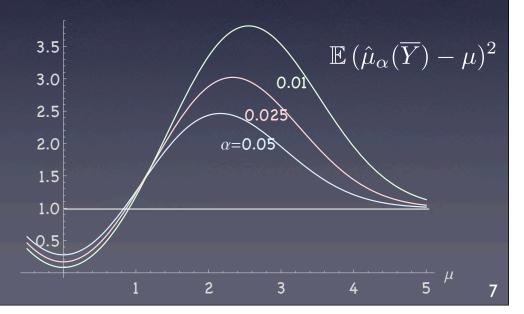
 $\hat{\mu}_{o}$

Idealized problem

- $H_j: \mu_j = 0 \text{ vs } \mu_j \neq 0$
- Observe means
- Independent
- Estimator
 - Testimator
 - Hard thresholding
- Risk of testimator
 - Well known in conventional testing
 - Unknown for sequential

 $\overline{Y}_1, \overline{Y}_2, \ldots \overline{Y}_p, \quad \overline{Y}_j \sim N(\mu_j, 1)$

$$I(\overline{Y}) = \begin{cases} \overline{Y} & z_{\alpha}^2 \leq \overline{Y}^2\\ 0 & \text{otherwise} \end{cases}$$



Cumulative Sequential Risk

• Cumulative risk

$$R(\hat{\boldsymbol{\mu}}_{\alpha}, \boldsymbol{\mu}) = \mathbb{E} \sum_{j=1}^{p} \left(\hat{\mu}_{\alpha}(\overline{Y}_{j}) - \mu_{j} \right)^{2}$$

• Recursion for risk

$$R(\hat{\mu}(\alpha(\cdot), W_0, \omega), \mu_{1:p}) = R(\hat{\mu}_{\alpha(W_0)}, \mu_1) + \mathbb{E} \sum_{j=2}^{p} R(\hat{\mu}_{\alpha(W_{j-1})}, \mu_j)$$

$$= R(\hat{\mu}_{\alpha_1}, \mu_1)$$

$$+ r_{\mu_1}(\alpha_1) R(\hat{\mu}(\alpha(\cdot), W_0 - \alpha_1 + \omega, \omega), \mu_{2:p})$$

$$+ (1 - r_{\mu_1}(\alpha_1)) R(\hat{\mu}(\alpha(\cdot), W_0 - \alpha_1, \omega), \mu_{2:p})$$

Worst case mean process

$$\mu_{1} = \arg \max_{m} \left\{ R(\hat{\mu}_{\alpha_{1}}, m) + r_{m}(\alpha_{1}) \max_{\mu_{2:p}} R(\hat{\mu}(\alpha, W_{0} - \alpha_{1} + \omega, \omega), \mu_{2:p}) + (1 - r_{m}(\alpha_{1})) \max_{\mu_{2:p}} R(\hat{\mu}(\alpha, W_{0} - \alpha_{1}, \omega), \mu_{2:p}) \right\}.$$

Wharton Department of Statistics initial wealth W_0

 ω

payout if reject

 $r_{\mu}(\alpha) = P(\text{reject}) = \Phi(\mu - z_{\alpha}) + \Phi(-\mu - z_{\alpha})$

Computation

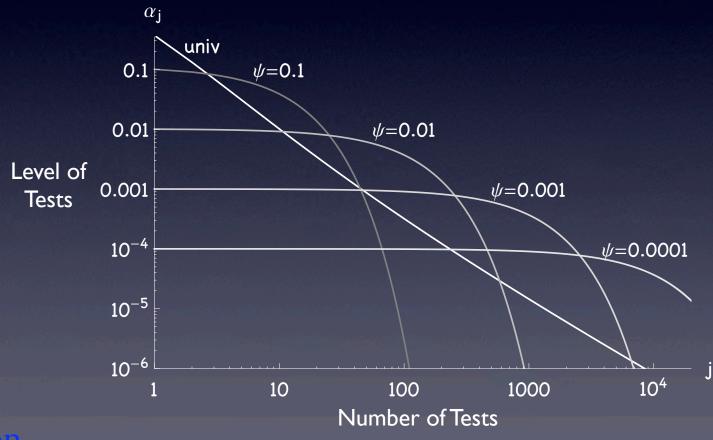
- Bellman equations
 - See paper (on-line)
- State dependent
 - Carry all characteristics of estimator
- Size of state space
 - Number tests × States of Est I × States of Est 2
- Implications
 - Oracles are nice (no state space)
 - Investing procedure depends only on wealth
 - Wealth tracked on discrete grid

Wealth Function

- Minimize state dependence
 - Necessary in Bellman recursions
- Write spending rule as function of wealth $\alpha_j(history) = \alpha(W_{j-1})$
 - Sacrifice rejection history
- Two examples
 - Geometric: Spend fraction of available wealth $lpha_g(w) = \psi \; w \qquad 0 < \psi < 1$
 - Universal Spend diminishing fraction of wealth $\alpha_u(w) = w - \frac{1}{\log_2(1+2^{1/w})}$

Universal Rule

 Spends almost as much as each geometric when that geometric rule is most powerful



Oracle

• Compare risk of realizable estimator to that obtained by an oracle.

Easier to compute since oracle has no wealth constraint

- Risk inflation oracle
 - Knows whether $\mu_j^2 < I$
 - Risk is min(μ_j^2 , I)

Either all bias for small means or all variance for large means

 $\tilde{\mu}(\overline{Y}) = \begin{cases} 0 & \mu^2 < 1 \\ \overline{Y} & \text{otherwise} \end{cases}$

Bounds for conventional estimation

 $2\log p - o(\log p) \le \sup_{\mu} \frac{1 + R(\hat{\boldsymbol{\mu}}_{\alpha}, \boldsymbol{\mu})}{1 + \inf_{\eta} R(\hat{\boldsymbol{\mu}}_{\eta}, \boldsymbol{\mu})} \le 2\log p + 1.$

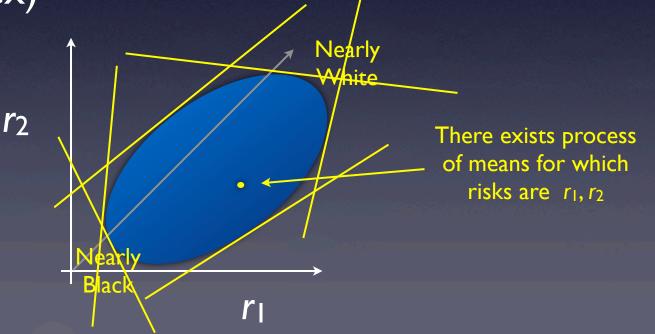
Feasible Risk Set

Definition

- Arbitrary stochastic process $\{\mu_1, \mu_2, \dots, \mu_n\}$
- Two "estimators"

 $\mathcal{R}_p(\hat{\boldsymbol{\mu}}_1, \hat{\boldsymbol{\mu}}_2) = \{ (r_1, r_2) : \exists \boldsymbol{\mu} \text{ s.t. } r_1 = \mathbb{E}_{\boldsymbol{\mu}} R(\hat{\boldsymbol{\mu}}_1, \boldsymbol{\mu}), r_2 = \mathbb{E}_{\boldsymbol{\mu}} R(\hat{\boldsymbol{\mu}}_2, \boldsymbol{\mu}) \}$

• Graph (convex)



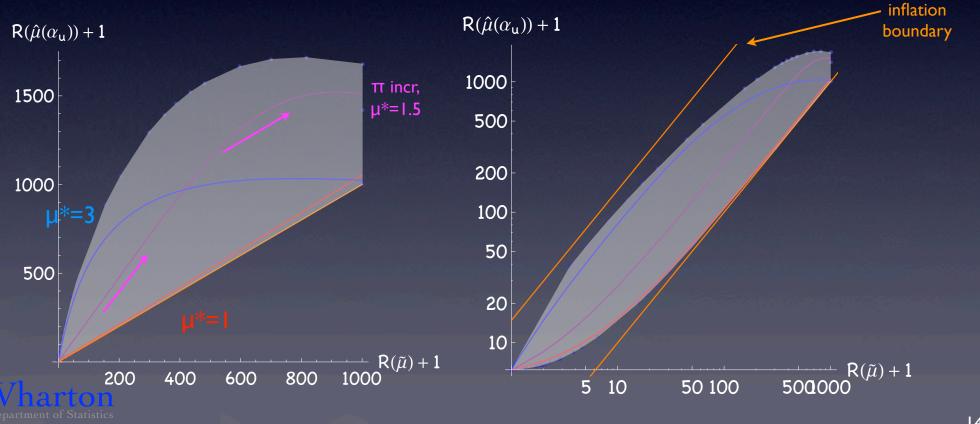
Feasible Risk Set

- Risks of universal and oracle, p=1000
- Paths associated with simple models $\mu_j = \begin{cases} \mu^* \\ 0 \end{cases}$

* w.p. π otherwise

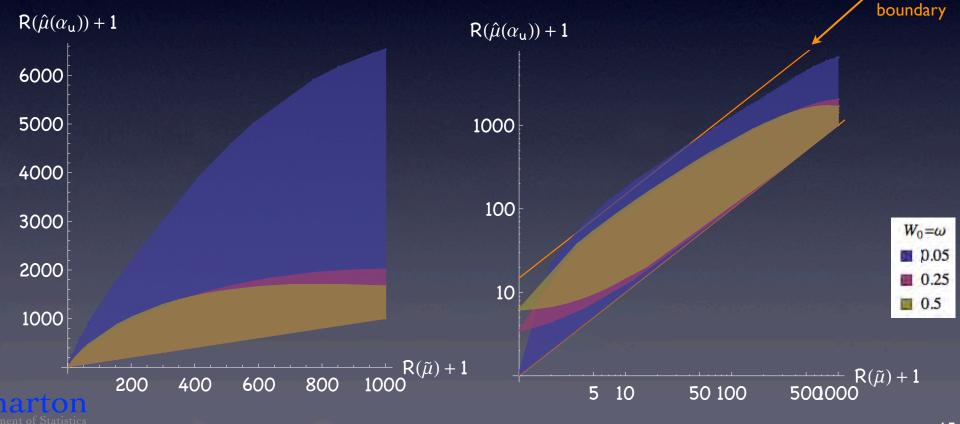
Classical risk

Logs emphasize nearly black models



Feasible Set, varying W₀

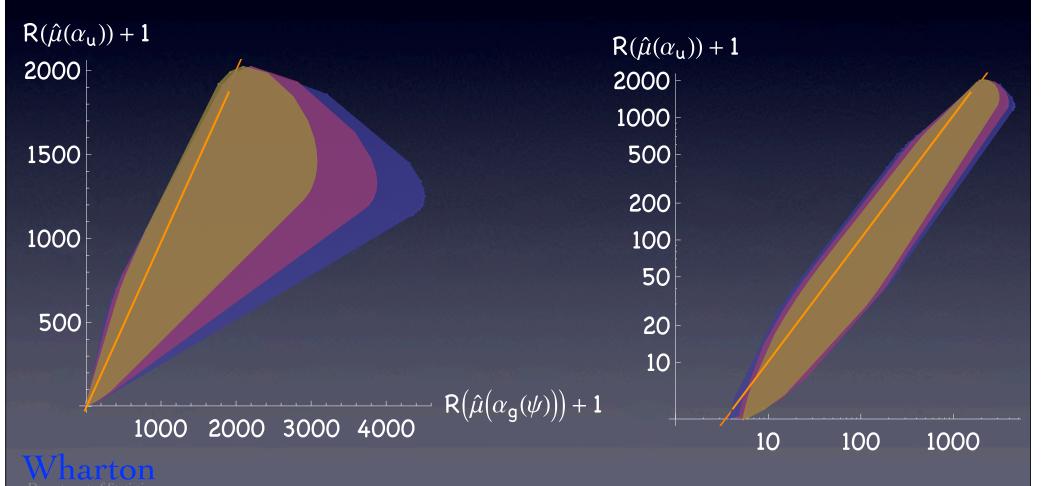
- Impact of higher wealth W_0 and payout ω
 - $W_0 = \omega$
 - Small W_0, ω great for nearly black process
 - Less useful if much signal (crosses RI threshold)



Classical risl

Universal vs Geometric

- Direct comparison favors universal
 - Only small geometric rates to be competitive
 - Geometric has higher worst case risk



ψ

0.001

0.005

Wrap-Up

- Streaming selection with alpha investing
 - Fast variable selection with provable control
- Universal spending rule
 - Competitive with best geometric rules
 - Better overall with larger than expected W_0
- Feasible set
 - Computational exact risk inflation
- Conjectures
 - Approximate boundaries using 2-point models
 - Shape of the feasible set at origin: non-analytic?
 - Proofs of the universality of investing rule

Thanks for coming!