

FEATURE SELECTION IN MODELS FOR DATA MINING

Robert Stine Statistics Department The Wharton School, Univ of Pennsylvania January, 2005 www-stat.wharton.upenn.edu/~stine

Questions Asked by Data Miners

- Anticipate bankruptcy
 - Which borrowers are most likely to default?
- Adverse effects
 - Are patients at risk of adverse side effects from medication?
- Facial recognition
 - How can we train computers to find faces in images?
- Other domains...
 - Employee evaluation: Who should we hire?
 - Genomics: Which genes indicate risk of a disease?
 - Document classification: Which papers resemble this one?

Common Answer is Prediction

Statistics Department

• Regardless of the context

- Anticipating default on loan
- Identifying presence of unexpected side effect
- Deciding if there's a face in an image

• Want the model with the best predictions

- Best prediction = smallest costs
- Desire for accuracy motivates numerous methods
 - Equations: regression, logistic regression
 - Combined equations: graphical models, neural networks
 - Trees
 - Clustering, nearest neighbor

Similar Issues to Overcome

Rare events

- Few cases frequently dominate costs
- Lots of images, but few faces most of the time
- Numerous credit cards, few that will default
- Wide data sets: more features than cases
 - Cheaper to get measurements than cases
 - Categorical data, networks, missing data...
- Synergies add further possibilities
 - Long lists of database features, none predictive
 - Combinations are predictive, but so many.

arton

Statistics Department

Data's getting obese!

Application	Number of	Number of Raw
	Cases	Features
Bankruptcy	3,000,000	350
Faces	10,000	1,400
Genetics	1,000	10,000
CiteSeer	500	\sim

Key Challenge for Modeling

Which features belong in the model?

- Regardless of the modeling technology, how do you decide which features to add to the model.
- Add the right features, and you get better predictions.
- Add the wrong features, and you think you've done well but only fooled yourself.

Example

- Predict the direction of the stock market
 - Use data from 2004 to predict market returns in 2005.
- Data
 - Daily returns (percentage changes) on the S&P 500 index during the last 3 months of 2004.
- Predictors
 - 12 technical trading rules
 - These are known for January 2005 ahead of time and so can be used to predict future returns.
- Next slides show plots, then the model...

Last 3 Months of 2004

Wharton Statistics Department

TCNJ January, 2005 8

Predictions from a Model

Wharton Statistics Department

TCNJ January, 2005 9

Model Summary

• Data

- -n = 85 trading days in October through December, 2004
- Search selects 28 predictors constructed from 12 trading rules.
- Statistical attributes
 - $-R^2 = 84.8\%$ variation explained (adjusted $R^2 = 77.2\%$)
 - Overall F-ratio = 11.2 (p < 0.001)
- Individual coefficients
 - Almost all have p-value < 0.0001
- Model passes the usual statistical diagnostic tests with flying colors, even passing Bonferroni rules.

Parameter Estimates Look Great

Wharton Statistics Department

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	0.323	0.078	4.14	0.0001
X4	0.172	0.040	4.34	<.0001
(X1)*(X1)	-0.202	0.039	-5.16	<.0001
(X4)*(X4)	0.126	0.036	3.52	0.0009
(X1)*(X5)	0.256	0.048	5.34	<.0001
(X2)*(X6)	0.289	0.044	6.59	<.0001
(X4)*(X6)	-0.222	0.050	-4.43	<.0001
(X4)*(X7)	-0.213	0.047	-4.54	<.0001
(X6)*(X8)	-0.243	0.048	-5.02	<.0001
(X5)*(X9)	-0.192	0.044	-4.35	<.0001
(X7)*(X9)	0.249	0.046	5.37	<.0001

TCNJ January, 2005 11

Prediction Errors, In Sample

Wharton Statistics Department

Out-of-Sample Errors Larger

Wharton Statistics Department

TCNJ January, 2005 13

So, how'd you lose the house?

- How can a model look so good (summary statistics, in-sample fit), but predict the future so poorly?
- Overfitting

"Optimization capitalizes on chance." (Tukey)

- Overfitting describes a model that captures random patterns in the observed data as if these patterns can be extrapolated to other data.
- All those significant coefficients... these cannot be random, not with these statistics! Can they?

What are those predictors?

Random noise

- Filled columns with a normal random number generator.
- Model built predictors from 12 columns of random noise, plus
 Squares of the columns
 Cross-products of the columns
- Total of 12 + 12 + 66 = 90 predictors considered
 - Random patterns in these predictors match patterns in the S&P so well that it fools the standard diagnostics.
 - More predictors to consider than observations

Moral of the Story

• Shouldn't leverage the house,

- but if you do,
- Only trust a model if you understand the *process* used to choose the form of the model.
 - Automated modeling procedures have to be carefully monitored, or the results are likely to be spurious.
- In this example, it's easy to avoid the problem.
 - Cross-validation is not so appealing.
 - Bonferroni can control the process.
 - Ensure that the model never adds noise.

Stepwise Regression

• Where'd that model come from?

- Ran stepwise regression in "forward selection mode" to select predictors from the list of 90 features.
- "Promiscuous" threshold for adding variables kept the default p-to-enter = 0.25 criterion.
- Ran backward elimination to clean up the model so the final structure looks impressive.
- Process generates a biased estimate of noise variation and a cascade of noisy predictors in the model.
- Better way to run software avoids the problem
 - Set the p-to-enter to 0.05/90 at the start.
 - Nothing added to the model, the right choice.

Don't blame stepwise regression!

Predicting personal bankruptcy

- Lots of good customers that you don't want to harass.
- Few who won't pay you back that you'd like to find.
- Regression model predicts incidence of bankruptcy with lower costs than modern classification tree.

Test results

- Five-fold cross validation, with 600,000 cases in each fold.
- Regression generates better decisions than C4.5, with or without boosting.
- Huge lift (next slide)

• To be successful, regression needs a little help.

Impressive lift results

Helping Regression

- Lessons from regression applicable to any model and fitting process
- Expand the scope of features to find structure
 - Don't pretend the right features are the ones in the database.
 - Recognize there's not a true model.
 - Consider the possibility of higher-order interactions, subsets, and nonlinearity.
- Evaluate features to avoid overfitting
 - Estimate *standard errors* using the fit computed *before* adding a predictor rather than after.
 - Construct p-values to allow for rare, high leverage points.

Expanding the Scope

• Began bankruptcy modeling with 350 predictors

- These include categorical factors, such as region.
- Missing data indicators
- Add *all* possible interactions
- Use forward stepwise to search the collection of 350 base predictors
 - + 350 squares of predictors
 - + 350*349/2 = 66,430 interactions
 - = 67,610 features

Evaluating the Features

- Selection from a large collection of features requires a different method for deciding what it means to be "statistically significant"
 - Proliferation of features overwhelms standard method.
 - Large $n \neq$ normal sampling distribution (no CLT)
- Approaches
 - Cross-validation: Save some data to test the model to help you decide if you've really done better.
 - Thresholding: Use an in-sample test to avoid the sacrifice of data and the time to compute.

Example of the Problem

- P(Y=1) = 0.001, ind of X
- p-value ought to be?
- Usual summary
 - -n = 10000, t = 14
 - p-value < 0.000001
- Interactions can concentrate leverage in rare combination
- Need a different sampling model, or a better p-value.
- Bennett's inequality does well (Foster & Stine, 2004)

Regression Can Succeed, but

• Fits as well as modern classifier, but...

"Rigid and clumsy" search of interactions

- Begins with the list of *all* features to consider.
- If X1 and X2 are in model, why not try their interaction? No!
- Slow
 - "Breadth-first" search for next predictor

• Omits substantive features, domain knowledge

- If you were to talk to an expert, they could offer ideas.
 - Genomics, credit modeling, database structure
- Can you use this knowledge to find better models?

Each domain has many experts

Wharton Statistics Department

TCNJ January, 2005 25

Experts \Leftrightarrow Auction \Leftrightarrow Model

Wharton Statistics Department

Different Modeling Process

- Experts recommend features based on context.
- Auction takes feature with highest bid.
- *Model* tests this feature.
 - Bid determines p-value threshold
 - Accepts significant predictors, rejects others
- Auction passes results back to experts.
 - Winning bids earn wealth for expert.
 - Losing bids reduce wealth.
- *Information* flows both ways.

Experts recommend features

- Substantive experts order features
 - Offer a sorted list of features to consider, or
 - Propose a strategy to generate "next" predictors
- Automatic experts
 - Interactions piggy-back on success of others
 - Allows search to consider high-order interactions
 - Principal components
 - Feature bundles that combine several variables to include as one
 - Allows search to include parameter shrinkage
 - Nearest neighbor predictors
 - Singular value decompositions

Auction is sequential

- Each expert offers a predictor to the auction given the history and state of the model.
 - Each expert has wealth as allowed Type 1 error rate.
 - Experts bid on predictors.
 - Each bid is a p-to-enter threshold.
- Auction takes the predictor with the highest total bid.
 It collects the bids on this feature from the experts.
- Auction passes the chosen predictor to model.
 - Model assigns p-value to feature.
 - If p-value < bid, add the feature and "pay" bidders.
- Continue

Theory: Sequential Selection

Sequential tests:

- Evaluate *next* feature rather than *best of all* features.
 - Essential when the choice of the next feature depends on what has worked so far, as in CiteSeer application.
- Fast, even when experts are dumb.
- SDR: the sequential discovery rate
 - Resembles an alpha-spending rule as used in clinical trials
 - Works like FDR, but allows an infinite sequence of tests.
- More theory...
 - Ordering captures prior information on size of effects

Sequential vs. Batch Selection

Sequential

- Search features in order identified by domain expert
- Allows an infinite stream of features.
- Adapts search to successful domains.
- Reduces calculations to a sequence of simple fits.

Batch

- Search "all possible" features to find the best one.
- Needs all possible features before starts.
- Constrains search to those available at start.
- Requires onerous array manipulations.

Sequential works...

Wharton Statistics Department

TCNJ January, 2005 32

Theory: Bidding Strategy

- Auction prevents "strategic betting"
 - Experts offer honest estimate of value of the predictor.
- Multiple bidders represent each expert
 - Geometric bidder: Spend $\lambda\%$ of current wealth on next bid.
 - Use mixture of bidders with varying λ .
- Auction adaptively discovers smart experts
 - Auction rewards the bidder/expert with the right rateWipes out the others.
- Universal bidding strategies (universal Bayes prior)

Calibration and Models

Wharton Statistics Department

Calibration

- First-order calibration
- Predictor is "right on average"
- Examples
 - Doctors?
 - Weather predictions?

Automatic

- Improve predictor with no knowledge by calibrating.
- Simple scatterplot smoothing.
- Incorporate as part of the modeling process.

$$E(Y|\hat{Y}) = \hat{Y}$$

Calibration plot

TCNJ January, 2005 35

Auction: Some Results

Rare events data

Five-fold "reversed" cross-validation

- -100,000 cases per fold
- Fit on one fold, predict other 4 folds
- Methods
 - C 4.5 with boosting
 - Auction with calibrated logistic regression and multiple experts using SDR to spend alpha rate.
- Goal: Minimize costs of classification errors in the validation data.

Cross-validation Comparison

Wharton Statistics Department

- At higher cost ratios, auction produces much lower costs.
- If the two errors have equal cost, either method does well.
- For each fold, use one logistic regression for all cost ratios.
- C4.5 uses a new tree for each fold and for each cost ratio within a fold.

Comments on Computing

- Prior code
 - Monolithic C program
- Auction
 - Written in C++, using objects and standard libraries
 - Modular design
 - Templates (e.g., can swap in different type of model)
 - Runs as a unix command-line task
 - Separate commands for data processing, modeling, and validation
 - Adopt C4.5 data file format

Closing Comments

- Key problem of data mining Find the right features without over-fitting
- Can learn from study of what it takes to adapt familiar methods like regression to data mining
 - Thresholding allows you to avoid extra cross-validation.
 - p-values are powerful way to communicate effect size.
- Auction modeling offers a framework that
 - Exploits domain knowledge if it exists
 - Combines various automated methods of feature creation
 - Runs quickly with any type of underlying model
- More information...www-stat.wharton.upenn.edu/~stine