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Questions Asked by Data MinersQuestions Asked by Data Miners
 Anticipate bankruptcy

- Which borrowers are most likely to default?

 Adverse effects
- Are patients at risk of adverse side effects from medication?

 Facial recognition
- How can we train computers to find faces in images?

 Other domains…
- Employee evaluation: Who should we hire?
- Genomics: Which genes indicate risk of a disease?
- Document classification: Which papers resemble this one?
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Common Answer is PredictionCommon Answer is Prediction

 Regardless of the context
- Anticipating default on loan
- Identifying presence of unexpected side effect
- Deciding if there’s a face in an image

 Want the model with the best predictions
- Best prediction = smallest costs

 Desire for accuracy motivates numerous methods
- Equations: regression, logistic regression
- Combined equations: graphical models, neural networks
- Trees
- Clustering, nearest neighbor
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Similar Issues to OvercomeSimilar Issues to Overcome

 Rare events
- Few cases frequently dominate costs
- Lots of images, but few faces most of the time
- Numerous credit cards, few that will default

 Wide data sets: more features than cases
- Cheaper to get measurements than cases
- Categorical data, networks, missing data…

 Synergies add further possibilities
- Long lists of database features, none predictive
- Combinations are predictive, but so many.
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DataData’’s getting obese!s getting obese!

Number of Raw
Features

Number of
Cases

Application

3503,000,000Bankruptcy

1,40010,000Faces

10,0001,000Genetics

∞500CiteSeer
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Key Challenge for ModelingKey Challenge for Modeling

Which features belong in the model?

 Regardless of the modeling technology, how do you
decide which features to add to the model.

 Add the right features, and you get better predictions.

 Add the wrong features, and you think you’ve done
well but only fooled yourself.
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ExampleExample

 Predict the direction of the stock market
- Use data from 2004 to predict market returns in 2005.

 Data
-  Daily returns (percentage changes) on the S&P 500 index

during the last 3 months of 2004.

 Predictors
- 12 technical trading rules
- These are known for January 2005 ahead of time and so can

be used to predict future returns.

 Next slides show plots, then the model…
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Last 3 Months of 2004Last 3 Months of 2004
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Predictions from a ModelPredictions from a Model
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Model SummaryModel Summary

 Data
- n = 85 trading days in October through December, 2004
- Search selects 28 predictors constructed from 12 trading rules.

 Statistical attributes
- R2 = 84.8% variation explained  (adjusted R2 = 77.2%)
- Overall F-ratio = 11.2 (p < 0.001)

 Individual coefficients
- Almost all have p-value < 0.0001

 Model passes the usual statistical diagnostic tests with
flying colors, even passing Bonferroni rules.
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Parameter Estimates LookParameter Estimates Look  GreatGreat

<.00015.370.0460.249(X7)*(X9)
<.0001-4.350.044-0.192(X5)*(X9)
<.0001-5.020.048-0.243(X6)*(X8)
<.0001-4.540.047-0.213(X4)*(X7)
<.0001-4.430.050-0.222(X4)*(X6)
<.00016.590.0440.289(X2)*(X6)
<.00015.340.0480.256(X1)*(X5)
0.00093.520.0360.126(X4)*(X4)
<.0001-5.160.039-0.202(X1)*(X1)
<.00014.340.0400.172X4
0.00014.140.0780.323Intercept

Prob>|t|t RatioStd ErrorEstimateTerm
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Prediction Errors, In SamplePrediction Errors, In Sample
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Out-of-Sample ErrorsOut-of-Sample Errors  LargerLarger
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So, howSo, how’’d you lose the house?d you lose the house?
 How can a model look so good (summary statistics,

in-sample fit), but predict the future so poorly?
 Overfitting

     “Optimization capitalizes on chance.” (Tukey)

- Overfitting describes a model that captures random patterns
in the observed data as if these patterns can be extrapolated
to other data.

 All those significant coefficients… these cannot be
random, not with these statistics!  Can they?
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What are those predictors?What are those predictors?

 Random noise
- Filled columns with a normal random number generator.

 Model built predictors from 12 columns of random
noise, plus

Squares of the columns
Cross-products of the columns

 Total of 12 + 12 + 66 = 90 predictors considered
- Random patterns in these predictors match patterns in the

S&P so well that it fools the standard diagnostics.
- More predictors to consider than observations
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Moral of the StoryMoral of the Story

 Shouldn’t leverage the house,

    but if you do,

 Only trust a model if you understand the process used
to choose the form of the model.
- Automated modeling procedures have to be carefully

monitored, or the results are likely to be spurious.

 In this example, it’s easy to avoid the problem.
- Cross-validation is not so appealing.
- Bonferroni can control the process.
- Ensure that the model never adds noise.
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Stepwise RegressionStepwise Regression

 Where’d that model come from?
- Ran stepwise regression in “forward selection mode” to

select predictors from the list of 90 features.
- “Promiscuous” threshold for adding variables kept the

default p-to-enter = 0.25 criterion.
- Ran backward elimination to clean up the model so the final

structure looks impressive.

 Process generates a biased estimate of noise variation
and a cascade of noisy predictors in the model.

 Better way to run software avoids the problem
- Set the p-to-enter to 0.05/90 at the start.
- Nothing added to the model, the right choice.
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DonDon’’t blame stepwise regression!t blame stepwise regression!

 Predicting personal bankruptcy
- Lots of good customers that you don’t want to harass.
- Few who won’t pay you back that you’d like to find.

 Regression model predicts incidence of bankruptcy
with lower costs than modern classification tree.

 Test results
- Five-fold cross validation, with 600,000 cases in each fold.
- Regression generates better decisions than C4.5, with or

without boosting.
- Huge lift (next slide)

 To be successful, regression needs a little help.
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Impressive lift resultsImpressive lift results
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Helping Regression Helping Regression 

 Lessons from regression applicable to any model and
fitting process

 Expand the scope of features to find structure
- Don’t pretend the right features are the ones in the database.
- Recognize there’s not a true model.
- Consider the possibility of higher-order interactions, subsets,

and nonlinearity.

 Evaluate features to avoid overfitting
- Estimate standard errors using the fit computed before

adding a predictor rather than after.
- Construct p-values to allow for rare, high leverage points.
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Expanding the ScopeExpanding the Scope

 Began bankruptcy modeling with 350 predictors
- These include categorical factors, such as region.
- Missing data indicators

 Add all possible interactions

 Use forward stepwise to search the collection of
350 base predictors

+ 350 squares of predictors
+ 350*349/2 = 66,430 interactions

= 67,610 features
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Evaluating the FeaturesEvaluating the Features

 Selection from a large collection of features requires
a different method for deciding what it means to be
“statistically significant”
- Proliferation of features overwhelms standard method.
- Large n ≠ normal sampling distribution  (no CLT)

 Approaches
- Cross-validation: Save some data to test the model to help

you decide if you’ve really done better.
- Thresholding: Use an in-sample test to avoid the sacrifice of

data and the time to compute.
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Example of the ProblemExample of the Problem

 P(Y=1) = 0.001, ind of X
 p-value ought to be?
 Usual summary

- n = 10000, t = 14
- p-value < 0.000001

 Interactions can concentrate
leverage in rare combination

 Need a different sampling
model, or a better p-value.

 Bennett’s inequality does well
(Foster & Stine, 2004)
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Regression Can Succeed, butRegression Can Succeed, but

 Fits as well as modern classifier, but…

 “Rigid and clumsy” search of interactions
- Begins with the list of all features to consider.
- If X1 and X2 are in model, why not try their interaction? No!

 Slow
- “Breadth-first” search for next predictor

 Omits substantive features, domain knowledge
- If you were to talk to an expert, they could offer ideas.

• Genomics, credit modeling, database structure
- Can you use this knowledge to find better models?
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Each domain has many expertsEach domain has many experts

Who offers the
best advice?
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ExpertsExperts  ⇔⇔  Auction Auction ⇔⇔ Model Model

Any
Predictive
Model

Feature
Auction

Domain
Expert

Domain
Expert

Domain
Expert

Domain
Expert
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Different Modeling ProcessDifferent Modeling Process
 Experts recommend features based on context.

 Auction takes feature with highest bid.

 Model tests this feature.
- Bid determines p-value threshold
- Accepts significant predictors, rejects others

 Auction passes results back to experts.
- Winning bids earn wealth for expert.
- Losing bids reduce wealth.

 Information flows both ways.

M

E2

A

E3E1
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Experts recommend featuresExperts recommend features
 Substantive experts order features

- Offer a sorted list of features to consider, or
- Propose a strategy to generate “next” predictors

 Automatic experts
- Interactions piggy-back on success of others

• Allows search to consider high-order interactions
- Principal components
- Feature bundles that combine several variables to

include as one
• Allows search to include parameter shrinkage

- Nearest neighbor predictors
• Singular value decompositions
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Auction is sequentialAuction is sequential
 Each expert offers a predictor to the auction given the

history and state of the model.
- Each expert has wealth as allowed Type 1 error rate.
- Experts bid on predictors.
- Each bid is a p-to-enter threshold.

 Auction takes the predictor with the highest total bid.
- It collects the bids on this feature from the experts.

 Auction passes the chosen predictor to model.
- Model assigns p-value to feature.
- If p-value < bid, add the feature and “pay” bidders.

 Continue
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Theory: Sequential SelectionTheory: Sequential Selection
 Sequential tests:

Evaluate next feature rather than best of all features.
- Essential when the choice of the next feature depends on

what has worked so far, as in CiteSeer application.

 Fast, even when experts are dumb.

 SDR: the sequential discovery rate
- Resembles an alpha-spending rule as used in clinical trials
- Works like FDR, but allows an infinite sequence of tests.

 More theory…
- Ordering captures prior information on size of effects
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Sequential vs. Batch SelectionSequential vs. Batch Selection

 Search features in order
identified by domain expert

 Allows an infinite stream of
features.

 Adapts search to successful
domains.

 Reduces calculations to a
sequence of simple fits.

 Search “all possible”
features to find the best one.

 Needs all possible features
before starts.

 Constrains search to those
available at start.

 Requires onerous array
manipulations.

BatchSequential
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Sequential worksSequential works……

Sequential

Batch
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Theory: Bidding StrategyTheory: Bidding Strategy

 Auction prevents “strategic betting”
- Experts offer honest estimate of value of the predictor.

 Multiple bidders represent each expert
- Geometric bidder: Spend λ% of current wealth on next bid.
- Use mixture of bidders with varying  λ.

 Auction adaptively discovers smart experts
- Auction rewards the bidder/expert with the right rate
- Wipes out the others.

 Universal bidding strategies (universal Bayes prior)
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Calibration and ModelsCalibration and Models

 Calibration
- First-order calibration
- Predictor is “right on average”
- Examples

• Doctors?
• Weather predictions?

 Automatic
- Improve predictor with no knowledge by calibrating.
- Simple scatterplot smoothing.
- Incorporate as part of the modeling process.

! 

E Y ˆ Y ( ) = ˆ Y 
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Calibration plotCalibration plot
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Auction: Some ResultsAuction: Some Results

 Rare events data
 Five-fold “reversed” cross-validation

- 100,000 cases per fold
- Fit on one fold, predict other 4 folds

 Methods
- C 4.5 with boosting
- Auction with calibrated logistic regression and multiple

experts using SDR to spend alpha rate.

 Goal: Minimize costs of classification errors in the
validation data.
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Cross-validation ComparisonCross-validation Comparison

 At higher cost ratios,
auction produces much
lower costs.

 If the two errors have equal
cost, either method does
well.

 For each fold, use one
logistic regression for all
cost ratios.

 C4.5 uses a new tree for
each fold and for each cost
ratio within a fold.
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Comments on ComputingComments on Computing

 Prior code
- Monolithic C program

 Auction
- Written in C++, using objects and standard libraries
- Modular design

• Templates (e.g., can swap in different type of model)
• Runs as a unix command-line task
• Separate commands for data processing, modeling, and

validation
• Adopt C4.5 data file format



Wharton
 Statistics Department

TCNJ January, 2005 39

Closing CommentsClosing Comments
 Key problem of data mining

Find the right features without over-fitting
 Can learn from study of what it takes to adapt

familiar methods like regression to data mining
- Thresholding allows you to avoid extra cross-validation.
- p-values are powerful way to communicate effect size.

 Auction modeling offers a framework that
- Exploits domain knowledge if it exists
- Combines various automated methods of feature creation
- Runs quickly with any type of underlying model

 More information…www-stat.wharton.upenn.edu/~stine


