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Abstract

A normal quantile-quantile (QQ) plot is an important diagnostic for checking the as-

sumption of normality. Though useful, these plots confuse students in my introductory

statistics classes. A water-filling analogy, however, intuitively conveys the underlying

concept. This analogy characterizes a QQ plot as a parametric plot of the water levels

in two gradually filling vases. Each vase takes its shape from a probability distribution

or sample. If the vases share a common shape, then the water levels match throughout

the filling, and the QQ plot traces a diagonal line. An R package qqvases provides an

interactive animation of this process and is suitable for classroom use.

Key words: Education, diagnostic, simulation.
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Figure 1: Though hard to judge from the histogram, the normal QQ plot shows that the

distribution of daily percentage changes in the value of Apple stock in 2014-2015 has thicker

tails than a normal distribution.

1 Introduction

Normal QQ plots are an important visual diagnostic, but one that can be hard to

explain. Students quickly learn that if the data in a normal QQ plot deviate from a

diagonal reference line, then the assumption of normality is questionable. For example,

Figure 1 illustrates the difficulty of judging normality from a histogram. The data are

daily percentage changes in the value of Apple stock in 2014-2015. The histogram is

bell-shaped, but the distribution has thicker tails than anticipated by normality. The

deviations from the diagonal line in the normal QQ plot imply that, in the extremes,

the data extend farther out than expected under normality. While they recognize its

importance, many of my students have treated this plot as a graphical “black box”: a

useful diagnostic that relies on a magical mechanism. In the spirit of Brown and Kass

(2009) and Cobb (2015), this paper offers a heuristic that makes these “fundamental

concepts accessible.”

2 Water-filling analogy

A normal QQ plot compares the shape of the empirical distribution of a sample to the

shape of a normal distribution. To set up the analogy, consider comparing the shape

of a continuous distribution to that of the normal. Quantile plots graph percentiles

of the distributions and therein lies the difficulty for students. Many of my students
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Figure 2: Different water levels in two vases reflect the different shapes of the underlying

distributions. The pair in the left frame are 10% full, then 50% full in the middle frame, and

finally 80% full on the right.

find a cumulative distribution confusing enough without considering its inverse. A sim-

ple analogy, however, makes quantile functions more approachable. Namely, quantile

functions are analogous to water levels as we fill transparent vases.

Figure 2 illustrates the idea. The “vase” on the left of each frame of Figure 2 is

formed by gluing a gamma density function with its mirror image. Similarly, the vase

on the right of each frame is a Gaussian vase. Both vases have the same “volume”

(really, area). To limit the heights of the vases, both are truncated at the 0.0005 and

0.9995 percentiles. (I call these containers vases because of their resemblance to vase

plots (Benjamini, 1988).) Now imagine simultaneously filling the two vases at equal

rates with water, as suggested by the sequence of plots in the figure. The left frame

shows the two vases, initially 10% full. The middle frame shows them filled to 50%,

and the right frame shows them 80% full. If two vases have the same shape, then the

water levels match throughout the filling. Otherwise, as in this example, one fills more

slowly than the other, and the levels differ. The level in the gamma vase grows slowly

at the start of the filling because it has a wide base. As the filling proceeds, the level

in the gamma vase eventually catches up with the level in the Gaussian vase because

both vases hold the same amount.

In this context, a normal QQ plot is the parametric plot of these water levels. The

level of the Gaussian vase determines the coordinate on the x-axis, and the level of

the other vase gives the coordinate for the y-axis. Figure 3 shows the normal quantile

plot for the two vases in Figure 2, as rendered by the accompanying application. To

make the linkage between this graph and the vases explicit, the figure displays halves

of the vases (the density functions) along the respective axes. The quantile plot adds
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Figure 3: This view of the open-source application shows the normal QQ plot for a gamma

distribution. Adjacent vases reinforce the water-filling analogy as the quantiles increase.

a diagonal line to make it easier to identify curvature.

Controls in the application shown in Figure 3 allow interactive modifications. The

percentile slider controls the water level; for example, moving the slider to the right

increases the water level and extends the curve in the plot. Other controls change the

distribution that defines the y-axis; choices include a normal distribution, the shown

gamma distribution (with shape parameter 3), a beta distribution, t-distributions (with

3 and 6 degrees of freedom), and a mixture of a normal and gamma.

3 Empirical QQ plots

Applying this analogy to the normal QQ plot of data requires more work and imagina-

tion for two reasons. First, it would not make sense to fill a “discrete vase” – the water

would leak out. Second, normal QQ plots of data should include bands that indicate

whether deviations from the diagonal are large enough to imply a significant departure

from normality.

To address the first problem, statistics offers a variety of smooth density estimates,

but these estimates are unfamiliar to students taking introductory statistics. For ex-

ample, a kernel density provides a continuous density estimate, and these have been

used to enhance boxplots (Hintze and Nelson, 1998). A kernel density estimate, how-

ever, diverts attention from the QQ plot to itself. Rather than take that route, then,

the accompanying software shows a histogram of data. (The statistics package JMP
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adopts a similar presentation.) Because observations in a tall histogram bin are rel-

atively closely packed, the heights of the bins in the histogram inversely convey the

average rate of water-filling within an interval.

For the second problem, there are simple approximations that quantify the size of

a departure from the reference line. Students recognize that there is a problem when

they see deviations like those in Figure 1, but the decision of whether a deviation is

“large enough” (statistically significant) is a tough call for a student who is new to

QQ plots. Bands remove this subjectivity by indicating how much departure from the

reference line can be produced by sampling variation. A student doesn’t have to guess

whether the data drift far from the reference line; they can see whether points fall

outside the bands.

For setting the bounds in the normal quantile plot, a variety of elaborate methods

are available. Aldor-Noiman, Brown, Buja, Rolke, and Stine (2013) review several

powerful proposals, but the accompanying animation requires limits that can be com-

puted quickly. With that in mind, bounds for the deviation from normality first tabled

in Lilliefors (1967) work nicely. These tables adjust for the use of estimated parameters

in the normal distribution. The tables give the value cα such that

lim
n
P (sup

x
|Fn(x)− Φ̂(x)| ≤ cα/

√
n) ≈ 1− α , (1)

where Fn denotes the empirical distribution of the data and Φ̂ denotes the cumulative

normal distribution with estimated parameters X and s2. The asymptotic critical value

for supx |Fn(x)− Φ̂(x)| ≈ 0.89/
√
n if α = 0.05.

For example, Figure 4 shows an example of an normal QQ plot of a sample of 200

observations from a gamma density, filled to the 75th percentile. Selecting the “Sample

distribution?” checkbox in the application dialog produces an empirical QQ plot. A

histogram replaces the distribution on the y-axis. Points in this sample drift outside

the limits, indicating a statistically significant departure from normality. (These are

highlighted in red in the figure.)

4 Discussion

I must admit that you do not need a computer animation to teach quantile plots this

way. The water-filling analogy alone seems to take the mystery out of QQ plots. I
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Figure 4: This animation shows the normal QQ plot of a sample of 200 observations from a

gamma distribution.

sketch two vases side-by-side on a blackboard, say that each vase holds a liter, and

gradually “fill” the vases by coloring in the levels with chalk or a marker. Students are

quick to recognize that the levels – the quantiles – remain equal only if the vases have

the same shape. In that case, a graph of the level of one vase versus the level of the

other falls along a diagonal line. I then sketch a blackboard version of Figure 2 and

ask the students to tell me how the graph of the levels will look. This discussion is also

a nice opportunity to convey what is meant by the shape of a distribution.

For those who want to use software, the animation can be run either on-line or in-

stalled locally. Those with less interest in R can run the application remotely by point-

ing their browser to http://gosset.wharton.upenn.edu:3838/stine/qqvases/.

Readers familiar with R can download the package qqvases from the CRAN repository

or from links on my web page www-stat.wharton.upenn.edu/∼stine/. The software

exploits shiny, a library for R used here to render plots with interactive controls in

a browser window (Chang, Cheng, Allaire, Xie, and McPherson, 2015). Running the

command qq vase plot locally allows the user to customize the application, such as

adding more distributions and generating QQ plots of data.

In addition to explaining QQ plots, the software can be used to illustrate other

fundamental concepts, such as Type I errors (the quantile plot of a sample from a

normal distribution has data outside the bands) and power (the bands in an QQ plot

become tighter as the sample size grows). It can be surprising to see how hard it is to

recognize that small samples from a gamma distribution differ significantly from the
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normal. Some students do ask about the origin of the confidence bands. I don’t have

a simple analogy explaining those, so I use the question as an opportunity to advertise

more advanced courses.

It is not unusual to see quantile plots explained with the help of showing dis-

tributions along the axes (e.g., the cover and Figure 3.4 of Verzani, 2005), but to my

knowledge authors have not exploited the water-filling analogy and resulting animation.

This analogy is used to explain normal quantile plots in a textbook citepstinefoster14,

but I find that it works better when animated.
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