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Nonlinear Models… Fitting Curves 
 
ROADMAP 

Linear relation: effect on y of changes in x is the same at every value of x. 
 
Nonlinear relation: effect on y of changes in x depends on the value of x. 
 
We can expect nonlinearities in many business applications 
 Diminishing marginal effect (eg, promotion response, manufacturing) 
 Relationships with constant elasticity (eg, price and demand) 
 
Examples 
 Diamond prices diamonds.jmp, more_diamonds.jmp 

Track times  track.jmp 
Retail sales  display.jmp 
Auto mileage  cars.jmp 
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LINEAR MODELS 

Meaning of linearity 
 Equal changes in X associated with equal changes in Y (on average) 
 
Example: diamond prices 
 

  
 
Interpretation: 
  Model parameters, assumptions 
 
Substantively:  Does this model make sense? 
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Add more data, namely larger diamonds 
 

    
 
Does a linear model still make sense? 
 

How do these data violate conditions implied by the SRM? 
 

Could we have anticipated these problems earlier? 
 
What to do about these problems? 
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NONLINEAR MODELS… CURVES 

Question:  What sort of curve captures the pattern in the prior plot? 
 
Finding the right transformation… 

 
(a) Graphically from scatterplot of Y on X 
 
(b) Residual plots 
 
(c) Substantively (what would make sense) 

 
Logs and percentages 
 
  Change on a log scale:  think percentages 
 
      loge (x) – loge (y) = loge (x/y)  
      = loge ( (y + x-y)/y )  
      = loge (1 + (x-y)/y) 
      ≈ (x-y)/y    if x-y is small compared to y1 

Modeling prices: How are diamond prices related to the price of diamonds? 
                                                
1 This only works in such a nice way with natural logs.  Base 10 logs (or others) require some messy constants. 
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On log scales, the fit appears linear…2 
 

  
 
Interpretation of slope: elasticity of price with respect to size in carats. 
 
  1% increase in weight associated with 2% (1.97) increase in price, on avg 
 
  

                                                
2 Do this in JMP by double clicking on each axis in the scatterplot and picking the “log” option in the dialog.  To get the fitted model using logs, select the Fit 
special item from the Fit Y by X dialog.  An example of this dialog appears later. 
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Fit on original scale… 
 

 
 

 “Linear regression”…  
The fitted model always has a “linear” equation, but the variables X and Y may 
involve transformations of the original measurements. 

 
   Estimated (loge Price) = 8.554 + 1.972 (loge Carat) 
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VALUE OF RESIDUAL PLOTS 

Nonlinear patterns are not always visible in the scatterplot itself, and only become 
apparent in the detail offered by the residual plot.  Consider the following men’s records 
in track events 
 

 
 
 
With R2 so large, can there possibly be a problem with this model? 
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ANOTHER NONLINEAR REGRESSION 

Common question: what is the optimal amount of promotion for a product? 
Specific case: A chain of liquor stores needs to know how much shelf space in its stores 
to devote to showing a new wine to maximize its profit. Space devoted to other products 
brings in about $50 of net revenue per linear foot. 
The data Display.jmp has weekly sales ($) and shelf-feet from 47 stores of the chain. 
Should we expect a linear relationship between promotion and sales, or should we expect 
diminishing marginal gains? 

 
Visually, what do the data suggest for the optimal shelf space? 
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DETERMINING THE OPTIMAL AMOUNT 

Key economic principle 
 

Find the amount of space at which Marginal cost = Marginal revenue 
 
From the graph, imagine connecting the averages in each column of points with a line 
and inspect how sales changes. 
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Using a line to predict sales (y) for a given amount of promotion (x) seems silly. If sales 
constantly increased with amount of promotion, that would imply we should either (a) 
sell nothing but this product or (b) not sell any of this product. 

 
Also, the LS regression line misses some of the different group means, particularly when 
little material is on display. 
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To get a feel for the shape of the relationship between sales and display feet, you could 
simply sketch a smooth curve that is closer to the center of each group. 
 
The shape of this curve is similar to the shape of y = loge x, and so we might consider 
fitting a curve of the form 

y = b0 + b1loge x 
 

This can be done in JMP using the Fit Y by X subcommand Fit Special and selecting 
Natural Logarithm for the X transformation. 

 

 
 

This command fits the equation of a curve that bends as shown on the next page. 
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The fitted equation 
y = 83.56 + 138.62 loge x 

 
is still a “least squares fit” in the sense that of all functions f(x) = b0 + b1loge x, this one 
minimizes the sum of squared vertical deviations from the equation to the data. 

 
Visually, the fitted equation does a reasonable job describing the relationship between 
average sales and display feet. In order to decide whether this equation makes sense, we 
need to interpret the equation in the context of the problem. 
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Optimal shelf space.  Combine this equation with the fact that each shelf foot otherwise 
provides $50 of net revenue. How much shelf space should be devoted to the new wine? 
Solution: Find the point where marginal cost = marginal revenue. That is, find the 
number of feet where the slope is $50. Since the derivative of f(x) is f’(x)=b1/x, the 
optimal amount is xopt = 138.62/50 ≈ 2.8 feet3. 
 
Interpretation of slope and intercept. Recall that variation on the scale of natural logs is 
comparable to variation in percentages. 
 
What is the interpretation of b1 =138.62?     

 
If x were 1% larger, then y would be about $1.4 higher.4 

 
What is the interpretation of b0  = 83.56?   
  

y = 83.56 when x is chosen so that loge(x) = 0 which is when x = 1. 
 
How could you add confidence intervals to these, particularly the optimal space? 

                                                
3 How precise do we need this estimate? What is the natural “granularity of the problem”? Ans.: the width of a bottle of wine. 

 
4 Use the fact that loge(1.01x) = loge(1.01) + loge x ≈ .01 + log x for log base e. To convince yourself of this approximation, use your 
calculator to compute loge(1.01). 
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OTHER TRANSFORMATIONS 

The previous choice of a transformation for the non-linear regressions was guided by the 
shape of the relationships and the sensibility of its interpretation. However, other choices 
might also be reasonable.   

 
The subcommand Fit Special offers a variety of such choices for transforming y and/or x. 

 

 
 

One typically chooses the best transformation by combining what you know about the 
data and application with an exploratory  process.5 
 
Logs are most common in business applications. 
                                                
5 Have a look at Figure 20.5 in SF (page 515) for hints on picking a useful transformation. Unless they fit poorly, we generally use 
logs, and occasionally reciprocals.  These produce interpretable equations. 
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EXAMPLE OF OTHER TRANSFORMATIONS 

Relationship between fuel consumption and vehicle weight… 
 

   
 
It’s an okay fit (the line captures the downward pattern), but does it make sense?   
 
BTW, which vehicles are these? 
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Residual plots make the problem easier to see. 
 

 
 

The fit (dotted blue line) tends to be too low (underpredicts) for light and heavy vehicles, 
and too high for medium weight vehicles. 
 
A variety of transformations produce a more sensible model.  For this example, the 
reciprocal produces an equation that is familiar (at least in Europe). 
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Transforming the response from MPG to 1/MPG captures the curvature and has a more 
natural extrapolation. 

    
Interpretation: 
 How does the reciprocal scale capture the effect of reducing the weight of a vehicle? 
 

Does reducing the weight of a big truck by 200 lbs have the same effect on the miles 
per gallon as reducing the weight of a small compact car? 
 

Going further: What problem happens with the reciprocal transformation?6 
  
                                                
6 To answer this, use a formula to compute the reciprocal of MPG and plot the reciprocal on the weight.  Do you see a problem? 
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LECTURE REVIEW 

A regression line offers a summary of the relationship between a predictor (called x) and 
a response (called y). 

 
Transformations of variables (most often logarithms) allow regression to 
capture nonlinear patterns as well. 
 
The interpretations of the slope and intercept depend on the specific transformation. 
Logs are associated with percentage changes. 
 
The slope in a log-log model gives the elasticity, associating constant percentage 
changes in x with constant percentage changes in y.  
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 APPENDIX: LOGS IN REGRESSION 

The interpretation in percentages assumes that these are base-e or natural logs. 
 

y on x  
 

Linear 
 

As x increases by 1, 
avg y increases by  

b1 
 

y on log(x) 
 

Diminishing returns 
 

As x increases by 1%, 
avg y increases by  

0.01 b1  

log(y) on x 
 

Exponential growth 
 

As x increases by 1,  
avg y increases by  

100 b1% 
 

log(y) on log(x) 
 

Demand curve 
 

As x increases by 1%, 
avg y increases by  

b1% 
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