Nonlinear Models... Fitting Curves

ROADMAP

Linear relation: effect on y of changes in x is the same at every value of x.
Nonlinear relation: effect on y of changes in x depends on the value of x.
We can expect nonlinearities in many business applications
Diminishing marginal effect (eg, promotion response, manufacturing)
Relationships with constant elasticity (eg, price and demand)
Examples
Diamond prices diamonds.jmp, more_diamonds.jmp
Track times track.jmp
Retail sales display.jmp
Auto mileage cars.jmp

Linear Models

Meaning of linearity
Equal changes in X associated with equal changes in Y (on average)
Example: diamond prices

Linear Fit			
Price $=15.199987+2697.2532^{*}$ Weight (carats)			
- Summary of Fit			
RSquare	0.508585		
RSquare Adj	0.503184		
Root Mean Square Error	144.8662		
Mean of Response	1119.624		
Observations (or Sum Wgts)	93		
- Lack Of Fit			
- Analysis of Variance			
- Parameter Estimates			
Term Estimate	Std Error	t Ratio	Prob> \mid t \mid
Intercept 15.199987	114.7912	0.13	0.8949
Weight (carats) 2697.2532	277.9354	9.70	<.0001*

Interpretation:
Model parameters, assumptions
Substantively: Does this model make sense?

Add more data, namely larger diamonds

Does a linear model still make sense?
How do these data violate conditions implied by the SRM?
Could we have anticipated these problems earlier?
What to do about these problems?

Nonlinear Models... Curves

Question: What sort of curve captures the pattern in the prior plot?
Finding the right transformation...
(a) Graphically from scatterplot of Y on X
(b) Residual plots
(c) Substantively (what would make sense)

Logs and percentages

Change on a log scale: think percentages

$$
\begin{aligned}
\log _{e}(x)-\log _{e}(y) & =\log _{e}(x / y) \\
& =\log _{e}((y+x-y) / y) \\
& =\log _{e}(1+(x-y) / y) \\
& \approx(x-y) / y \quad \text { if } x-y \text { is small compared to } y^{1}
\end{aligned}
$$

Modeling prices: How are diamond prices related to the price of diamonds?

[^0]On log scales, the fit appears linear... ${ }^{2}$

Transformed Fit Log to Log					
$\log ($ Price $)=8.5540316+1.972383 * \log$ (Carat)					
- Summary of Fit					
RSquare		0.945			
RSquare Adj		0.945			
Root Mean Square Error		0.387	741		
Mean of Response		8.398			
Observations (or Sum Wgts)			568		
- Lack Of Fit					
- Analysis of Variance					
- Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob> $>$ \|t	
Intercept	8.5540316	0.004477	1910.5	<.0001*	
Log(Carat)	1.972383	0.00543	363.27	<.0001*	

Interpretation of slope: elasticity of price with respect to size in carats.
1% increase in weight associated with 2% (1.97) increase in price, on avg

[^1]Fit on original scale...

"Linear regression"...
The fitted model always has a "linear" equation, but the variables X and Y may involve transformations of the original measurements.

$$
\begin{gathered}
\text { Estimated }\left(\log _{\mathrm{e}} \text { Price }\right)=8.554+1.972\left(\log _{\mathrm{e}} \text { Carat }\right) \\
\mathrm{X}
\end{gathered}
$$

Value of Residual Plots

Nonlinear patterns are not always visible in the scatterplot itself, and only become apparent in the detail offered by the residual plot. Consider the following men's records in track events

Linear Fit				
Time (seconds) $=-57.1417+0.1742686 *$ Distance (m)				
- Summary of Fit				
RSquare		0.99935		
RSquare Adj		0.999		
Root Mean Sq	uare Error	46.9412		
Mean of Resp	onse	1195.2		
Observations	(or Sum Wgts)		4	
Analysis of Variance				
\checkmark Parameter Estimates				
Term	Estimate	Std Error	t Ratio	Prob> \mid \| \mid
Intercept	-57.1417	15.55293	-3.67	0.0032*
Distance (m)	0.1742686	0.001279	136.24	<.0001*

With R^{2} so large, can there possibly be a problem with this model?

AnOther Nonlinear Regression

Common question: what is the optimal amount of promotion for a product?
Specific case: A chain of liquor stores needs to know how much shelf space in its stores to devote to showing a new wine to maximize its profit. Space devoted to other products brings in about $\$ 50$ of net revenue per linear foot.
The data Display.jmp has weekly sales (\$) and shelf-feet from 47 stores of the chain. Should we expect a linear relationship between promotion and sales, or should we expect diminishing marginal gains?

Visually, what do the data suggest for the optimal shelf space?

Determining the Optimal Amount

Key economic principle
Find the amount of space at which Marginal cost $=$ Marginal revenue
From the graph, imagine connecting the averages in each column of points with a line and inspect how sales changes.

Using a line to predict sales (y) for a given amount of promotion (x) seems silly. If sales constantly increased with amount of promotion, that would imply we should either (a) sell nothing but this product or (b) not sell any of this product.

Also, the LS regression line misses some of the different group means, particularly when little material is on display.

To get a feel for the shape of the relationship between sales and display feet, you could simply sketch a smooth curve that is closer to the center of each group.

The shape of this curve is similar to the shape of $y=\log _{\mathrm{e}} x$, and so we might consider fitting a curve of the form

$$
y=b_{0}+b_{1} \log _{\mathrm{e}} x
$$

This can be done in JMP using the Fit Y by X subcommand Fit Special and selecting Natural Logarithm for the X transformation.

This command fits the equation of a curve that bends as shown on the next page.

The fitted equation

$$
y=83.56+138.62 \log _{\mathrm{e}} x
$$

is still a "least squares fit" in the sense that of all functions $f(x)=b_{0}+b_{1} \log _{\mathrm{e}} x$, this one minimizes the sum of squared vertical deviations from the equation to the data.

Visually, the fitted equation does a reasonable job describing the relationship between average sales and display feet. In order to decide whether this equation makes sense, we need to interpret the equation in the context of the problem.

Optimal shelf space. Combine this equation with the fact that each shelf foot otherwise provides $\$ 50$ of net revenue. How much shelf space should be devoted to the new wine? Solution: Find the point where marginal cost = marginal revenue. That is, find the number of feet where the slope is $\$ 50$. Since the derivative of $f(x)$ is $f^{\prime}(x)=b_{1} / x$, the optimal amount is $x_{\text {opt }}=138.62 / 50 \approx 2.8$ feet 3.

Interpretation of slope and intercept. Recall that variation on the scale of natural logs is comparable to variation in percentages.

What is the interpretation of $b_{1}=138.62$?
If x were 1% larger, then y would be about $\$ 1.4$ higher. ${ }^{4}$
What is the interpretation of $b_{0}=83.56$?
$y=83.56$ when x is chosen so that $\log _{\mathrm{e}}(x)=0$ which is when $x=1$.
How could you add confidence intervals to these, particularly the optimal space?

[^2]
OTHER TRANSFORMATIONS

The previous choice of a transformation for the non-linear regressions was guided by the shape of the relationships and the sensibility of its interpretation. However, other choices might also be reasonable.

The subcommand Fit Special offers a variety of such choices for transforming y and/or x.

One typically chooses the best transformation by combining what you know about the data and application with an exploratory process. ${ }^{5}$

Logs are most common in business applications.

[^3]
Example of OTher Transformations

Relationship between fuel consumption and vehicle weight...


```
Linear Fit
Combined MPG = 43.299846-5.1857491*Weight (1000 lbs)
* Summary of Fit
\begin{tabular}{lr} 
RSquare & 0.702469 \\
RSquare Adj & 0.70148 \\
Root Mean Square Error & 2.946822 \\
Mean of Response & 21.66997 \\
Observations (or Sum Wgts) & 303
\end{tabular}
Observations (or Sum Wgts) -303
Lack Of Fit
Analysis of Variance
* Parameter Estimates
\begin{tabular}{lrrrr|} 
Term & Estimate & Std Error & t Ratio & Prob>|t| \\
Intercept & 43.299846 & 0.828852 & 52.24 & \(<.0001^{*}\) \\
Weight \((1000 \mathrm{lbs})\) & -5.185749 & 0.194528 & -26.66 & \(<.0001^{*}\)
\end{tabular}
```

It's an okay fit (the line captures the downward pattern), but does it make sense?
BTW, which vehicles are these?

Residual plots make the problem easier to see.

Residual by X Plot

The fit (dotted blue line) tends to be too low (underpredicts) for light and heavy vehicles, and too high for medium weight vehicles.

A variety of transformations produce a more sensible model. For this example, the reciprocal produces an equation that is familiar (at least in Europe).

Transforming the response from MPG to 1/MPG captures the curvature and has a more natural extrapolation.

Transformed Fit Reciprocal					
$\begin{aligned} & \text { Recip(Combined MPG) }=-0.00112+0.0120418^{*} \text { Weight } \\ & (1000 \mathrm{lbs}) \end{aligned}$					
- Summary of Fit					
RSquare		713207			
RSquare Adj		712254			
Root Mean Square Error		006667			
Mean of Response		049106			
Observations (or Sum Wgts)		303			
- Lack Of Fit					
- Analysis of Variance					
- Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob> $>$ \|t	
Intercept	-0.00112	0.001875	-0.60	0.5507	
Weight (1000 lbs)	0.0120418	0.00044	27.36	<.0001*	

Interpretation:
How does the reciprocal scale capture the effect of reducing the weight of a vehicle?
Does reducing the weight of a big truck by 200 lbs have the same effect on the miles per gallon as reducing the weight of a small compact car?

Going further: What problem happens with the reciprocal transformation? ${ }^{6}$

[^4]
Lecture Review

A regression line offers a summary of the relationship between a predictor (called x) and a response (called y).

Transformations of variables (most often logarithms) allow regression to capture nonlinear patterns as well.

The interpretations of the slope and intercept depend on the specific transformation. Logs are associated with percentage changes.

The slope in a log-log model gives the elasticity, associating constant percentage changes in x with constant percentage changes in y.

APPENDIX: LOGS IN REGRESSION

The interpretation in percentages assumes that these are base-e or natural logs.

y on x	y on $\log (x)$
Linear	Diminishing returns
As x increases by 1 , avg y increases by b_{1}	As x increases by 1%, avg y increases by $0.01 b_{1}$
$\log (y)$ on x	$\log (y)$ on $\log (x)$
Exponential growth	Demand curve
As x increases by 1 , avg y increases by $100 b_{1} \%$	As x increases by 1%, avg y increases by $b_{1} \%$

Diminishing Returns

Demand Curve

[^0]: ${ }^{1}$ This only works in such a nice way with natural logs. Base 10 logs (or others) require some messy constants.

[^1]: ${ }^{2}$ Do this in JMP by double clicking on each axis in the scatterplot and picking the "log" option in the dialog. To get the fitted model using logs, select the Fit special item from the Fit Y by X dialog. An example of this dialog appears later.

[^2]: ${ }^{3}$ How precise do we need this estimate? What is the natural "granularity of the problem"? Ans.: the width of a bottle of wine.
 ${ }^{4}$ Use the fact that $\log _{\mathrm{e}}(1.01 \mathrm{x})=\log _{\mathrm{e}}(1.01)+\log _{\mathrm{e}} \mathrm{x} \approx .01+\log \mathrm{x}$ for \log base e . To convince yourself of this approximation, use your calculator to compute $\log _{\mathrm{e}}(1.01)$.

[^3]: ${ }^{5}$ Have a look at Figure 20.5 in SF (page 515) for hints on picking a useful transformation. Unless they fit poorly, we generally use logs, and occasionally reciprocals. These produce interpretable equations.

[^4]: ${ }^{6}$ To answer this, use a formula to compute the reciprocal of MPG and plot the reciprocal on the weight. Do you see a problem?

