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Multiple Regression

Project Analysis for Today

First steps
Transforming the data into a form that lets you estimate the fixed and variable
costs of a lease using a regression model that meets the three key assumptions.

Review of Multiple Regression from Last Week

Object ive
Isolate the key factors that influence the response and separate their effects.

Model
“Y”   = β0 + β1  “X1” + ... + βk “X k”  + Error
Sales = β0 + β1 Adv$ + β2 Price + Error

with
- Independence
- Constant variance σ2 about regression line
- Normally distributed errors about the regression line.

Discussion
– Model is additive
– Geometry of multiple regression
– Slopes measure effect of each predictor “holding others fixed”

“Simple” regression slope vs multiple regression slope

Relationship between R2 and RMSE
– Both describe “goodness-of-fit”
– R2 is relative whereas RMSE is absolute.
– They are related as follows:

RMSE2 = Var (residuals) ≈ (1 – R2) Var (response)
– Same interpretation in simple (one predictor) and multiple regression.



Statistics 102 Multiple Regression
Spring, 2000                                                                                                                                              -     2     -

Inference in Multiple Regression

Inference in multiple regression
– One coefficient t-ratio (estimate/SE)

“Is this slope different from zero?”
“Does this variable significantly improve a model containing rest?”

– All coefficients overall F-ratio (anova table)
“Does this entire model explain significant amounts of variation?”

Analysis of variance (ANOVA) summary (page 141) 
– Summary of how much variation is being explained per predictor.
– Example for the car data with weight and horsepower as predictors.

Source
Model
Error
C Total

DF
    2

  109
  111

Sum of Squares
 7062.5945
 1335.0408
 8397.6353

Mean Square
 3531.30

   12.25

F Ratio
288.3143

Prob>F
  <.0001

Why do we need different tests?
– Each addresses a specific aspect of the fitted model:

t-ratio considers one coefficient (intercept or slope)
F-ratio considers all slopes, simultaneously

– Why not just do a bunch of t-tests, one for each slope?
With 20 predictors and 95% CI, you can expect one significant (not
zero) by chance alone! Too many things will appear significant that
really are not meaningful.

– Recall the use of multiple comparisons in anova.
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Collinearity in Multiple Regression

What is collinearity?   (Also known as multicollinearity.)
– Collinearity is correlation among the predictors in a regression.
– As such, collinearity does not “violate an assumption” in regression.

What does collinearity do in regression?  Consequences?
– Complicates interpretation, making it hard to separate the predictors.
– Inflates the SE’s of the estimated coefficients.

SE(slope estimate for Xj) ≈  
σ
√n 

1
 SD(Adjusted Xj)

    

=  
σ
√n  

√VIFj
SD(Xj)

    

= √VIFj ∗  (SE if no collinearity)

How can I tell if collinearity is present?
– Graphically: Scatterplots help, but leverage plots are better.

- Multiple “simple regression” views of one multiple regression.
- Essential for identifying leverage points in multiple regression.
-“Do I like the shown simple regression model?”

– Tests: Big F ratio, small t-ratio
– Diagnostic: Variance inflation factors (VIF)

What do I do about collinearity?
– Nothing.  Collinearity weakens ability to interpret, but

in sample prediction works well (or at least is not injured!).
– Reformulate predictors.  Identify distinct concepts.
– Get rid of one of the offenders.  Stats help you decide which one.
– Summary discussion on page 147 of the casebook.
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Example of Multiple Regression

Automobile design Car89.jmp, page 109

“What is the predicted mileage for a 4000 lb. design, and what characteristics
of the design are crucial?”

“How much does my 200 pound brother owe me for gas for carrying him
3,000 miles to California?” (Oops, it’s urban mileage in example)

– Initial one-predictor model
• Transform response to gallons per 1000 mile scale.
• Cannot compare R2’s since two model use different dependent

 variables (MPG and GPM)
• Effect of scaling from GPM to GP1000M.
• RMSE = 4.23 (p 111)
• Skewness in residuals from regression with Weight. (p 112)
• Prediction @ 4000 lbs = 63.9,⇑  200 lbs for 3000 miles ≈ 8.2 gals

– Add variable for Horsepower  (p 117)
• R2 increases from 77% to 84%  (added variable is significant, t=7.21)
• RMSE drops to 3.50
• Predictors are related, both increase together, higher SE for Weight.
• Picture explains the increase in SE due to restricted range (p 120).
• ⇑  200 lbs for 3000 miles ≈ 5.3 gals
• Prediction from multiple regression

– Add a predictor less correlated with Weight, use HP/Pound (p 123)
•Weight and HP/Pound less related, more distinct properties of these cars.
• Engineer can manipulate these separately, unlike HP and weight.

Residual plots
– Show residuals plotted on fitted values
– Inspect for deviations from assumptions (such as lack of constant variance)

Leverage plots (p 125)
– Diagnostic plot, designed especially for multiple regression
– Reveals leveraged observations in multiple regression.

Next steps for this model…
– What other factors are important for the design?
– How small can we make the RMSE?
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Example with Extreme Collinearity in Multiple Regression

Stock prices and market indices Stocks.jmp, page 138

“What’s the beta for Walmart when regressed on two indices?”

– Fitted slope of stock returns on market estimate the beta for the stock.
– Huge collinearity (correlation between VW and S&P is 0.993), so almost

no unique variation in either one given that other is in model.
– Either taken separately is a good predictor, but show weak effects

when used together.
– “Squished” leverage plots... little unique variation in either predictor

available to explain the variation in the response. (p 144)

– More complete VW index is better predictor, as financial theory suggests.

Next Time

Categorical predictors…
Categorical predictors allow us to compare regression models for different
groups, judging if the models for the different groups are comparable.
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Response: GP1000M City

Summary of Fit
RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

   0.765
   0.763
   4.233

  47.595
 112.000

Lack of Fit

Parameter Estimates
T e r m
Intercept
Weight(lb)

Est imate
   9.4323
   0.0136

Std Error
  2.0545
  0.0007

t Ratio
  4.59

 18.94

Prob>| t |
<.0001
<.0001

Analysis of Variance
Source
Model
Error
C Total

DF
    1

  110
  111

Sum of Squares
   6426.44
   1971.19
   8397.64

Mean Square
 6426.44

   17.92

F Ratio
358.6195

Prob>F
  <.0001

                                                                                                                                                     

Response: GP1000M City

Summary of Fit
RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

   0.841
   0.838
   3.500

  47.595
 112.000

Lack of Fit

Parameter Estimates
T e r m
Intercept
Weight(lb)
Horsepower

Est imate
  11.6843
   0.0089
   0.0884

Std Error
  1.7270
  0.0009
  0.0123

t Ratio
  6.77

 10.11
  7.21

Prob>| t |
<.0001
<.0001
<.0001

Analysis of Variance
Source
Model
Error
C Total

DF
    2

  109
  111

Sum of Squares
   7062.59
   1335.04
   8397.64

Mean Square
 3531.30

   12.25

F Ratio
288.3143

Prob>F
  <.0001
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SE(slope estimate for Xj) ≈  
σ
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1
 SD(Adjusted Xj)

    

=  
σ
√n  

√VIFj
SD(Xj)

    

= √VIFj ∗  (SE if no collinearity)

T e r m
Intercept
Weight(lb)
Horsepower

Est imate
  11.6843
   0.0089
   0.0884

Std Error
 1.72704
 0.00088
 0.01226

t Ratio
  6.77

 10.11
  7.21

Prob>| t |
<.0001
<.0001
<.0001
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    2.202
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Corre la t ions

Var iab le
VW
S P 5 0 0
WALMART
Sequence Number

VW
   1.000
   0.993
   0.696
  -0.036

S P 5 0 0
   0.993
   1.000
   0.682
   0.002

WALMART
   0.696
   0.682
   1.000
  -0.055

Sequence Number
  -0.036
   0.002
  -0.055
   1.000

Scatterplot Matrix

-0 .20

-0 .10

-0 .00

0.10

-0 .20

-0 .10

-0 .00

0.10

-0 .2

-0 .0

0.2

1 0
3 0

6 0

9 0

120

VW

-0.20 -0 .05 .10

SP500

-0 .20 -0 .05 .10

WALMART

-0 .2 -0 .0 .2 .3

Sequence Number

1 0 4 0 7 0 100

Parameter Estimates
T e r m
Intercept
SP500

Est imate
    0.024
    1.244

Std Error
   0.006
   0.123

t Ratio
  4.02

 10.10

Prob>| t |
0.0001
<.0001

VIF
        0
        1

Parameter Estimates
T e r m
Intercept
SP500
VW

Est imate
    0.015
   -1.258
    2.458

Std Error
   0.007
   1.041
   1.016

t Ratio
  2.13
 -1.21
  2.42

Prob>| t |
0.0356
0.2294
0.0171

VIF
    0.000

   74.297
   74.297
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