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Multiple Regression

Project Analysis for Today

Getting your data!

Review of Bivariate Regression

Utopian model for regression
  Ave(Y|X) = Intercept + Slope (X)

= β0 + β1 (X)
where we assume

(a) Independence
(b) Constant variance around Ave(Y|X)
(c) Normally distributed around Ave(Y|X)

Standard error and inference

SE(slope estimate) ≈  
σ
√n 

1
 SD(X) 

Use SE to form confidence intervals and test H0: β1= some constant.

R-squared (R2)
 Variation captured by fitted model
R2 = -------------------------------------------- = % explained variation

Variation in Response

Prediction accuracy
Given the RMSE (or estimated SD of the errors), form a 95% prediction interval
as (prediction) ± 2 RMSE.

The previous interval is only accurate for predictions in the range of the
observed data.  Extrapolation beyond that range is less accurate.

Leverage, influence, and outliers
Observations with unusual values of the predictor are said to be leveraged.
Removing influential observations lead to changes in the fitted model.

Questions?

Use of software?

About regression?
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Review Example: Housing Prices and Crime

Philadelphia housing prices Phila.jmp, page 62

“How do crime rates impact the average selling price of houses?”

– Initial plot shows that Center City is “leveraged” (unusual in X).

– All data
• Initial regression with all data finds $577 impact per crime (p 64).
• Residuals show lack of normality (p 65).
• Plot using JMP button associated with fit in Fit Y by X view.

– Set aside Philadelphia temporarily
• Regression has much steeper decay, $2289/crime (p 66).
• Residuals remain non-normal (p 67).

– Scatterplot without Philadelphia suggests curvature (p 66-68).

– Alternative analysis with transformation
• Suggests Center City may be not so unusual. (pages 68-70)

– Why is CC an outlier?
• What do we learn from this one observation?
• Should it be included in the analysis, or excluded?
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Multiple Regression

Illustrative Application: Separating the factors that drive sales
– Which factor is the most important determinant of business growth?

Advertising?  Product loyalty?  Price?
– Complicated because of the relationships among the predictors.

Model
Add several other predictors

“Y” = β0 + β1 “X 1” + ... + βk “X k”  + Error

Sales = β0 + β1 Adv$ + β2 Price + Error
with same three other assumptions

- Independence
- Constant variance σ2 about regression line
- Normally distributed errors about the regression line.

Discussion of equation
– Slopes measure effect of each predictor “holding others fixed”
– Same slope βj for each Xj regardless of values of other factors
– Factors combine additively (a.k.a., an additive model)

Marginal slope versus partial slope
– Marginal: “simple” regression slope
– Partial: multiple regression slope, adjusted for levels of other factors.
– Draw the “graph” with variables as “nodes”

Determinants of SE for slope
– Relationships/correlation among predictors increase the SE of slopes.

– SE(slope estimate for Xj) ≈  
σ
√n 

1
 SD(Adjusted Xj)

 

Goodness-of-fit and R2
– R2 = Proportion of variation in response captured by the fitted model.
– R2  = Squared correlation of Y and predicted values from fitted model.
– Judge changes in R2 by looking at what is left over...

Easy... 0.50 ⇒  0.51 Hard... 0.98 ⇒  0.99

Leverage plots
– Important graphical diagnostic for multiple regression.
– Reduces multiple regression to sequence of simple regressions.
– “Do I like the shown simple regression model?”
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Inference in Multiple Regression

Does this predictor improve a model containing the others?
– Answer this using the t-ratio for a partial slope.
– Large values (i.e., |t| > 2) imply a significant improvement.

Does the model, taken collectively, explain significant variation?
– Answer this using the F-ratio from the anova table.
– Large values (i.e., p-value for F < 0.05) imply significant variation

“explained” or represented by the fitted model.

Example of Multiple Regression

Automobile design Car89.jmp, page 109

“What is the predicted mileage for a 4000 lb. design, and what characteristics
of the design are crucial?”

“How much does my 200 pound brother owe me for gas for carrying him
3,000 miles to California?” (Oops, it’s urban mileage in example)

– Initial one-predictor model
• Transform response to gallons per 1000 mile scale.
• Cannot compare R2’s since two model use different dependent

 variables (MPG and GPM)
• Effect of scaling from GPM to GP1000M.
• RMSE = 4.23 (p 111)
• Skewness in residuals from regression with Weight. (p 112)
• Prediction @ 4000 lbs = 63.9,⇑  200 lbs for 3000 miles ≈ 8.2 gals

– Add variable for Horsepower  (p 117)
• R2 increases from 77% to 84%  (added variable is significant, t=7.21)
• RMSE drops to 3.50
• Predictors are related, both increase together, higher SE for Weight.
• Picture explains the increase in SE due to restricted range (p 120).
• ⇑  200 lbs for 3000 miles ≈ 5.3 gals

– Add a predictor less correlated with Weight, use HP/Pound (p 123)
•Weight and HP/Pound less related, more distinct properties of these cars.
• Predicted consumption = 64.3
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Residual plots
– Show residuals plotted on fitted values
– Inspect for deviations from assumptions (such as lack of constant variance)

Leverage plots (p 125)
– New diagnostic plot, designed for multiple regression
– Show leveraged observations in multiple regression.
– Reveal outliers that exert effects on fit that are hard to see otherwise.

Next steps for this model…
– What other factors are important for the design?
– How small can we make the RMSE?
– How do we avoid “false positives” by searching over many predictors?

Next Time

More multiple regression
Effects of correlation among the predictors.
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House Price By Crime Rate
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Linear Fit
House Price = 176629 – 576.908 Crime Rate

Summary of Fit
RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

   0.062
   0.053

84325.05
157835.6

  99.000

Analysis of Variance

Parameter Estimates
T e r m
Intercept
Crime Rate

Est imate
 176629.4

   -576.9

Std Error
 11245.6

   226.9

t Ratio
 15.71
 -2.54

Prob>| t |
<.0001
0.0126

Linear Fit
House Price = 225234 – 2288.69 Crime Rate

Summary of Fit
RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

   0.184
   0.176

78861.53
158464.5

  98.000

Analysis of Variance

Parameter Estimates
T e r m
Intercept
Crime Rate

Est imate
 225233.6
  -2288.7

Std Error
 16404.0

   491.5

t Ratio
 13.73
 -4.66

Prob>| t |
<.0001
<.0001
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Note: Point for Philadelphia is not included in the fitted model!

House Price By Crime Rate
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Transformed Fit to Recip
House Price = 98120.1 + 1298243 Recip(Crime Rate)

Summary of Fit
RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

   0.170
   0.161

79564.54
158464.5

  98.000

Analysis of Variance

Parameter Estimates
T e r m
Intercept
Recip(Crime Rate)

Est imate
  98120.1

1298242.7

Std Error
 15820.7

293170.8

t Ratio
  6.20
  4.43

Prob>| t |
<.0001
<.0001
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Linear Fit
MPG City = 40.1183 – 0.00655 Weight(lb)

Summary of Fit
RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

   0.742
   0.740
   2.168

  21.759
 112.000

Analysis of Variance

Parameter Estimates
T e r m
Intercept
Weight(lb)

Est imate
  40.1183
  -0.0066

Std Error
  1.0523
  0.0004

t Ratio
 38.12
-17.79

Prob>| t |
<.0001
<.0001

Transformed Fit Recip
Recip(MPG City) = 0.00943 + 0.00001 Weight(lb)

Summary of Fit
RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

   0.765
   0.763
   0.004
   0.048

 112.000

Analysis of Variance

Parameter Estimates
T e r m
Intercept
Weight(lb)

Est imate
0.0094323
0.0000136

Std Error
0.002055

 7.19e-7

t Ratio
  4.59
 18.94

Prob>| t |
<.0001
<.0001
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Response: GP1000M City

Summary of Fit
RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

   0.765
   0.763
   4.233

  47.595
 112.000

Lack of Fit

Parameter Estimates
T e r m
Intercept
Weight(lb)

Est imate
   9.4323
   0.0136

Std Error
  2.0545
  0.0007

t Ratio
  4.59

 18.94

Prob>| t |
<.0001
<.0001

Response: GP1000M City

Summary of Fit
RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

   0.841
   0.838
   3.500

  47.595
 112.000

Lack of Fit

Parameter Estimates
T e r m
Intercept
Weight(lb)
Horsepower

Est imate
  11.6843
   0.0089
   0.0884

Std Error
  1.7270
  0.0009
  0.0123

t Ratio
  6.77

 10.11
  7.21

Prob>| t |
<.0001
<.0001
<.0001
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