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Prediction and Outliers in Regression

Administrative Items

Get help!
– See me Monday 3-5:30, Wednesday from 4-5:30, or make an appointment.
– Send an e-mail to stine@wharton.
– Visit the StatLab/TAs, particularly for help using the computer.

Review of Regression

Questions
Can you use this measurement to predict the response?
How accurately can you predict the response?
How do the various observations influence this prediction?

Utopian model for regression
If we let Y denote the response and X the predictor, then

  Ave(Y | X) = Intercept + Slope (X)
= β0 + β1 (X)

where we assume that the underlying observations are
(a) Independent
(b) Have constant variance
(c) Are normally distributed around the “true” regression line

Yi = β0 + β1 Xi + εi , εi~N(0,σ2)

Estimation
Choose the line that minimizes the sum of the squared residuals, the vertical
deviations or fitting errors that separate the observed data points from the line.

Confidence intervals and tests
The standard error of the slope is

SE(slope estimate) ≈  
σ
√n 

1
 SD(X) 

It produces confidence intervals of the usual form

(estimated slope) ± 2 (SEs of estimated slope)

and leads to tests of hypotheses, such as whether the slope is zero, by counting
the number of standard errors that separate the fitted slope from zero (t-ratio).
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Regression and Prediction

Accuracy of prediction
Determined by the variability of points around the fitted regression line. In the
utopian model, the variance of the errors is σ2 (or the mean squared error).

Prediction and R2

R2 is the square of the usual correlation between the predictor X and the
response Y, so 0 ≤ R2 ≤ 1.  In regression it may also be computed as the ratio

Variation captured by fitted model
R2 = --------------------------------------------

Variation in Response

so that 100 R2 is interpreted as the percentage of variation in the response which
has been explained by the fitted model.  For a given set of data, the larger the
value of R2, the smaller the MSE and thus the more accurate the prediction.
Roughly,

MSE = (1- R2) Var(Y)

Prediction interval
Once you have an estimate of MSE = σ2, under the assumption of normality,
roughly 95% of the observations are within ± 2 (√MSE = RMSE) of the fitted
line.

Extrapolation penalty
The previous interval is only accurate for predictions in the range of the
observed data.  Extrapolation beyond that range is not so accurate as this
expression would suggest.

Importance of the normality assumption
In most problems, the Central Limit Theorem means that the estimator (like the
sample average) is close to normally distributed, so confidence intervals are
accurate even if the data are not normal.  For prediction intervals, however, the
assumption of normality is crucial.

Outliers

Leverage and influence
Single values can have substantial effect on a fitted model.

Observations with unusual values of the predictor are said to be leveraged.
Removing influential observations lead to changes in the fitted model.
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Two Intervals for the Regression
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Confidence intervals for the regression line
   “Where do I think the population regression line lies?”
– Fitted line ± 2 SE(Fitted line)
– Regression line gives average value of response for chosen values of X.
– “Statistical extrapolation penalty”

CI for regression line grows wider as get farther away from the
mean of the predictor.

– Is this penalty reasonable or “optimistic” (i.e., too narrow)?
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Prediction intervals for individual observations
     “Where do I think a single new observation will fall?”
– Interval captures single new random observation rather than average.
– Must accommodate random variation about the fitted model.
– Holds about 95% of data surrounding the fitted regression line.
– Approximate in sample form: Fitted line ± 2 RMSE
– Typically more useful that CI for the regression line:

More often are trying to predict a new observation, than wondering
where the average of a collection of future values lies.
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 Example: Prediction and Outliers in Regression

Housing construction Cottages.jmp, page 89

“How much can a builder expect to profit from building larger homes?”

– Highly leveraged observation (“special cottage”)  (p 89)

– Contrast confidence intervals with prediction intervals.
• role of assumptions of constant variance and normality.

– Model with “special cottage” • R2 ≈ 0.8, RMSE ≈ 3500  (p 90)
• Predictions suggest profitable

– Model without “special cottage” • R2 ≈ 0.08, RMSE ≈ 3500  (p94-95)
• Predictions are useless

– Should we keep the outlier, or should we exclude the outlier?

Liquor sales and display space Display.jmp, page 99

 “Can this model be used to predict sales for a promotion with 20 feet?”

– Fit of the two models is not distinguishable over the range of observed data.

– Predictions out to 20 feet are very sensitive to transformation
Prediction interval at 20 feet is far from range of data.
Very sensitive:  Log pred. interval does not include reciprocal pred (p111)

– Have we captured the “true” uncertainty

Philadelphia housing prices Phila.jmp, page 62
Further example of issues with outlying observations.

Next Time

Multiple regression
Using more than one predictor to reduce the unexplained variation and control
for other sources of variation.
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Profit By Sq_Feet
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Linear Fit
Profit = -416.86 + 9.75055 Sq_Feet

Summary of Fit
RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

   0.780
   0.766

3570.379
8347.799

  18.000

Analysis of Variance
Source
Model
Error
C Total

DF
    1

   16
   17

Sum of Squares
 721736309
 203961649
 925697959

Mean Square
7.2174e8

12747603

F Ratio
 56.6174
Prob>F
  <.0001

Parameter Estimates
T e r m
Intercept
Sq_Feet

Est imate
  -416.86

     9.75

Std Error
 1437.02

    1.30

t Ratio
 -0.29
  7.52

Prob>| t |
0.7755
<.0001
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Profit By Sq_Feet
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Linear Fit
Profit = 2245.4 + 6.13702 Sq_Feet

Summary of Fit
RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

   0.075
   0.014

3633.591
6822.899

  17.000

Analysis of Variance
Source
Model
Error
C Total

DF
    1

   15
   16

Sum of Squares
  16105172

 198044803
 214149975

Mean Square
16105172
13202987

F Ratio
  1.2198
Prob>F
  0.2868

Parameter Estimates
T e r m
Intercept
Sq_Feet

Est imate
  2245.40

     6.14

Std Error
 4237.25

    5.56

t Ratio
  0.53
  1.10

Prob>| t |
0.6039
0.2868
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Sales By Display Feet
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Transformed Fit to Log

Transformed Fit to Recip

Transformed Fit to Log
Sales = 83.5603 + 138.621 Log(Display Feet)

Summary of Fit
RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

   0.815
   0.811

  41.308
 268.130
  47.000

Analysis of Variance

Parameter Estimates
T e r m
Intercept
Log(Display Feet)

Est imate
    83.56

   138.62

Std Error
   14.41
    9.83

t Ratio
  5.80

 14.10

Prob>| t |
<.0001
<.0001

Transformed Fit to Recip
Sales = 376.695 – 329.704 Recip(Display Feet)

Summary of Fit
RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.826487
0.822631
40.04298

  268.13
      47

Analysis of Variance
Source
Model
Error
C Total

DF
    1

   45
   46

Sum of Squares
 343692.15
  72154.79

 415846.94

Mean Square
  343692

    1603

F Ratio
214.3468

Prob>F
  <.0001

Parameter Estimates
T e r m
Intercept

Est imate
376 70

Std Error
9 44

t Ratio
39 91

Prob>| t |
< 0001
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Sales By Display Feet

S
al

es

0

5 0

100

150

200

250

300

350

400

450

500

550

600

0 5 1 0 1 5 2 0
Display Feet

Transformed Fit to Log

Transformed Fit to Recip

Transformed Fit to Log
Sales = 83.5603 + 138.621 Log(Display Feet)

Summary of Fit
RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

   0.815
   0.811

  41.308
 268.130
  47.000

Analysis of Variance

Parameter Estimates
T e r m
Intercept
Log(Display Feet)

Est imate
    83.56

   138.62

Std Error
   14.41
    9.83

t Ratio
  5.80

 14.10

Prob>| t |
<.0001
<.0001

Transformed Fit to Recip
Sales = 376.695 – 329.704 Recip(Display Feet)

Summary of Fit
RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

   0.826
   0.823

  40.043
 268.130
  47.000

Analysis of Variance

Parameter Estimates
T e r m
Intercept
Recip(Display Feet)

Est imate
   376.70
  -329.70

Std Error
    9.44

   22.52

t Ratio
 39.91
-14.64

Prob>| t |
<.0001
<.0001


