Statistics 430 Summary, Spring 2003

Probability

- Counting methods, sample space S, events; $P(E)=\# E / \# S$
- Unions $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
- Conditional probability $P(A \mid B)=P(A \cap B) / P(B)$
- Intersections $P(A \cap B)=P(A \mid B) P(B)=P(B \mid A) P(A)$
- Complements $P\left(A^{c}\right)=1-P(A)$
- Law of total probability $P(A)=\sum_{j} P\left(A \mid B_{j}\right) P\left(B_{j}\right), \quad \cup B_{j}=B$
- Bayes $P(A \mid B)=P(B \mid A) P(A) / P(B)$
- Independent vs. dependent events

Random variables

- Properties of PDF and CDF
- Mean, variance, and standard deviation of random variable
- Marginal, conditional, joint distributions
- Relationships that connect the different types (e.g., Poisson process and exponential r.v.)
- Independence of random variables; sums of random variables
- Markov chain (sequence of random variable)

		Mean	Variance
Bernoulli	$p(x)=p^{x}(1-p)^{1-x}, x=0,1$	p	$p(1-p)$
Binomial	$p(x)=\binom{n}{x} p^{x}(1-p)^{n-x}, x=0, \ldots, n$	$n p$	$n p(1-p)$
Geometric	$p(x)=(1-p)^{x-1} p, x=1,2, \ldots$	$1 / p$	$(1-p) / p^{2}$
Poisson	$p(x)=e^{-\lambda} \lambda^{x} / x!, x=0,1, \ldots$	λ	λ
Uniform	$f(x)=1, \quad 0 \leq x \leq 1$	$1 / 2$	$1 / 12$
Exponential	$f(x)=\lambda e^{-\lambda x}, x \geq 0$	$1 / \lambda$	$1 / \lambda^{2}$
Normal	$f(x)=e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)} / \sqrt{2 \pi \sigma^{2}},-\infty<x<\infty$	μ	σ^{2}

Expected value

- Definition of $E X$ as a weighted sum, with weights given by $p(x)$.
- Expected value of a sum $=$ sum of expected values
$E(a+b X+c Y)=a+b E(X)+c E(Y)$
- Covariance, correlation and variance of sums; portfolios
$\operatorname{Cov}(X, Y)=E((X-E X)(Y-E Y))=E(X Y)-(E X)(E Y)$
- Variance of a sum $=$ sum of variances if all covariances are zero, otherwise $\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)+2 a b \operatorname{Cov}(X, Y)$
- Expected value of indicator variable, $E I=P(I=1)$
- Conditional expected value, $E(X \mid Y)$; use in prediction
- Marginal from conditional $E X=\sum_{y} E(X \mid Y=y) P(Y=y)$

Inequalities and asymptotics

- Bonferroni $P\left(\cup_{i} A_{i}\right) \leq \sum_{i} P\left(A_{i}\right)$
- Jensen $f(E(X)) \leq E(f(x))$ if $f(x)$ is convex (e.g., $f(x)=x^{2}$)
- Markov $P(X \geq k) \leq E X / k$ if X is a non-negative r.v.
- Chebyshev $P(|X-E X| / S D(X) \geq k) \leq 1 / k^{2}$
- Central limit theorem $\sum_{i} X_{i} \rightarrow$ Normal
- Weak law of large numbers; averages get close their expected value

