Statistics 430 Summary, Spring 2003

Probability

- Counting methods, sample space S, events; P(E) = #E/#S
- Unions $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- Conditional probability $P(A|B) = P(A \cap B)/P(B)$
- Intersections $P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$
- Complements $P(A^c) = 1 P(A)$
- Law of total probability $P(A) = \sum_{j} P(A|B_j)P(B_j), \quad \cup B_j = B$
- Bayes P(A|B) = P(B|A)P(A)/P(B)
- Independent vs. dependent events

Random variables

- Properties of PDF and CDF
- Mean, variance, and standard deviation of random variable
- Marginal, conditional, joint distributions
- Relationships that connect the different types (*e.g.*, Poisson process and exponential r.v.)
- Independence of random variables; sums of random variables
- Markov chain (sequence of random variable)

		Mean	Variance
Bernoulli	$p(x) = p^x (1-p)^{1-x}, \ x = 0, 1$	p	p(1-p)
Binomial	$p(x) = {n \choose x} p^x (1-p)^{n-x}, \ x = 0, \dots, n$	np	n p (1-p)
Geometric	$p(x) = (1-p)^{x-1}p, \ x = 1, 2, \dots$	1/p	$(1-p)/p^2$
Poisson	$p(x) = e^{-\lambda} \lambda^x / x!, \ x = 0, 1, \dots$	λ	λ
Uniform	$f(x) = 1, 0 \le x \le 1$	1/2	1/12
Exponential	$f(x) = \lambda e^{-\lambda x}, \ x \ge 0$	$1/\lambda$	$1/\lambda^2$
Normal	$f(x) = e^{-(x-\mu)^2/(2\sigma^2)} / \sqrt{2\pi\sigma^2}, -\infty < x < \infty$	μ	σ^2

Expected value

- Definition of EX as a weighted sum, with weights given by p(x).
- Expected value of a sum = sum of expected values E(a + bX + cY) = a + b E(X) + c E(Y)
- Covariance, correlation and variance of sums; portfolios Cov(X, Y) = E((X - EX)(Y - EY)) = E(XY) - (EX)(EY)
- Variance of a sum = sum of variances *if* all covariances are zero, otherwise $Var(aX + bY) = a^2 Var(X) + b^2 Var(Y) + 2ab Cov(X, Y)$
- Expected value of indicator variable, EI = P(I = 1)
- Conditional expected value, E(X|Y); use in prediction
- Marginal from conditional $E X = \sum_{y} E(X|Y = y)P(Y = y)$

Inequalities and asymptotics

- Bonferroni $P(\cup_i A_i) \leq \sum_i P(A_i)$
- Jensen $f(E(X)) \leq E(f(x))$ if f(x) is convex $(e.g., f(x) = x^2)$
- Markov $P(X \ge k) \le EX/k$ if X is a non-negative r.v.
- Chebyshev $P(|X EX|/SD(X) \ge k) \le 1/k^2$
- Central limit theorem $\sum_i X_i \to \text{Normal}$
- Weak law of large numbers; averages get close their expected value