Harmonic Regression

Overview

1. Example: periodic data
2. Regression at Fourier frequencies
3. Discrete Fourier transform (periodogram)
4. Examples of the DFT

Example: Periodic Data

Magnitude of variable star This integer time series is reported to be the magnitude of a variable star observed on 600 successive nights (Whittaker and Robinson, 1924, varstar.dat).

Periodic model Classical example of “signal in noise,” with a hidden (though not very hidden in this case) periodic signal. Model for periodic data with a single sinusoid is (Example 2.7)

\[x_t = A \cos(2\pi \omega t + \phi) + w_t \]

with amplitude \(A \), frequency \(\omega \), and phase \(\phi \). Don’t confuse \(w_t \) (white noise) for \(\omega \) (frequency, the reciprocal of the period in \(t \) units).

Caution: Aliasing and identifiability The frequency must be restricted to the range \(-1/2 < \omega \leq 1/2\) in order for the model to be identified (or a translation of this range). For discrete-time, equally-spaced data, frequencies outside of this range are aliased into this range. For example, suppose that \(\lambda = 1 - \delta \), \(0 < \delta < 1/2 \), then for \(t = 1, 2, \ldots \)

\[
\cos(2\pi \lambda t) = \cos(2\pi(1 - \delta)t + \phi) = \cos(2\pi t + (-2\pi \delta t + \phi))
\]
\[
= \cos(2\pi t) \cos(2\pi \delta t - \phi) + \sin(2\pi t) \sin(2\pi \delta t + \phi)
\]
\[
= \cos(2\pi \delta t - \phi).
\]

Thus, a sampled sinusoid with frequency \(\omega > 1/2 \) appears as a sinusoid with frequency in the interval \((-1/2, 1/2]\). If the data is sampled at
a spacing of Δ time units, then the highest frequency observable in
discrete data is $2/\Delta$, which is known as the folding frequency or Nyquist
frequency.

Notation alert! Many books (including the ones I learned from) write the
sinusoids using the angular frequency notation that embeds the 2π
into the frequency as $\lambda = 2\pi \omega$. Thus, the sinusoidal model would look
like

$$x_t = A \cos(\lambda t + \phi) + w_t$$

Question How to estimate unknown parameters?
the amplitude A, the frequency ω and the phase ϕ.

Estimation by regression Convert the expression of the model into one
in which the unknown parameters can be linearly estimated. (This
is a common, and very useful theme.) Once the model is expressed
with unknown that offer linear estimators, we can estimate them using
regression and OLS. The conversion uses the first of the following two
“double-angle” formulas:

$$\cos(a + b) = \cos(a) \cos(b) - \sin(a) \sin(b) \quad \text{even}$$

$$\sin(a + b) = \sin(a) \cos(b) + \cos(a) \sin(b) \quad \text{odd}$$

Write it as the linear regression (sans intercept)

$$x_t = \underbrace{A \cos(\phi)}_{\beta_1} \cos(2\pi \omega t) + \underbrace{-A \sin(\phi) \sin(2\pi \omega t)}_{\beta_2} + w_t$$

Notice that $\beta_1^2 + \beta_2^2 = A^2$. The sum of the squared regression coef-
ficients is the squared amplitude of the hidden sinusoid. This sum is
also, as we’ll see, proportional to the regression sum-of-squares asso-
ciated with this pair of variables.

Frequency The estimation is linear if ω is known. What’s a good estimator
for ω?

Hint: count cycles. The estimation of ω is non-standard: we can get
an estimator within $o_p(1/n)$ rather than the usual root-n rate. There’s
also a nice plot. If the period is $M = 1/\omega$, then plot x_t on $t \mod M$.
This is useful as it introduces a nonparametric estimator for a general
periodic function.
What if the background is not white noise? Least squares provides good estimates (i.e., efficient) of β_1 and β_2 if w_t in the regression $y_t = \beta_1 \cos 2\pi \omega t + \beta_2 \sin 2\pi \omega t + w_t$ forms a stationary process. The explanation goes back to our comparison of OLS and GLS: OLS is fully efficient if the regression variable is an eigenvector of the covariance matrix of the process. Sinusoids at the Fourier frequencies (next section) are just that – for any stationary process (asymptotically).

Regression at the Fourier Frequencies

Idea Rather than count peaks to guess the period or frequency (as in the variable star), fit regressions at many frequencies to find hidden sinusoids (simulated data). Use the estimated amplitude at these frequencies to locate hidden periodic components. It is particularly easy to estimate the amplitude at a grid of evenly spaced frequencies from 0 to 1/2.

Fourier frequencies determine the grid of frequencies. A frequency $0 \leq \omega \leq 1/2$ is known as a Fourier frequency if the associated sinusoid completes an integer number of cycles in the observed length of data,

$$\omega_j = \frac{j}{n}, \quad j = 0, 1, 2, \ldots, n/2,$$

assuming n is an even integer.

Because of aliasing, the set of j’s stop at $n/2$. We also don’t consider negative frequencies since cosine is an even function and sine is odd; these are redundant (aliased).

Orthogonality Cosines and sines at the Fourier frequencies generate an orthogonal (though not orthonormal) set of regressors. Consider the $n \times n$ matrix (assuming n is even) given by

$$X = \begin{pmatrix}
... & \vdots & \vdots & \vdots & \vdots & \vdots \\
\cos(2\pi \omega_0 t) & \cos(2\pi \omega_1 t) & \sin(2\pi \omega_1 t) & \ldots & \cos(2\pi \omega_{n/2-1} t) & \sin(2\pi \omega_{n/2-1} t) \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\cos(2\pi \omega_{n/2} t) & \sin(2\pi \omega_{n/2} t) & \ldots & \vdots & \vdots & \vdots
\end{pmatrix}$$

Note that the first column is all 1’s ($\omega_0 = 0$) and the last column alternates ±1 ($\omega_{n/2} = \frac{1}{2}$). (There’s no sine term at ω_0 or $\omega_{n/2}$ since...
these are both identically zero; \(\sin 0 = \sin \pi = 0 \). It follows that

\[
X'X = \begin{pmatrix}
 n & 0 & 0 & \ldots & 0 \\
 0 & n/2 & 0 & \ldots & 0 \\
 0 & 0 & \ddots & 0 & 0 \\
 0 & \ldots & 0 & n/2 & 0 \\
 0 & \ldots & 0 & 0 & n
\end{pmatrix}
\]

The non-constant columns are orthogonal to the constant (i.e. sum to zero) since

\[
\sum_{t=1}^{n} \cos(2\pi \omega_k t) = \sum \sin(2\pi \omega_k t) = 0
\]

at the Fourier frequencies. (Imagine summing the sine and cosines around the unit circle in the plane.) The cross-products between columns reduce to these since, for instance,

\[
\sum_{t=1}^{n} \cos(2\pi \omega_k t) \sin(2\pi \omega_j t) = \frac{1}{2} \sum \sin(2\pi \omega_{k+j} t) - \sin(2\pi \omega_{k-j} t)
\]

\[
= 0,
\]

For diagonal terms, notice that (from the double-angle expressions)

\[
\cos(a) \cos(b) = \frac{1}{2} (\cos(a + b) + \cos(a - b))
\]

\[
\sin(a) \sin(b) = \frac{1}{2} (\cos(a - b) - \cos(a + b))
\]

allow us handle the sums of squares as follows:

\[
\sum \cos(2\pi \omega_j t)^2 = \frac{1}{2} \sum \cos(4\pi \omega_j t) + 1 = n/2, \quad j \neq 0, n/2.
\]

Harmonic regression If we use Fourier frequencies in our harmonic regression, the regression coefficients are easily found since "\(X'X\)" is almost diagonal. Specifically, (with \(b_{2j}\)s on the cosine terms and \(b_{1j}\)s on the sines)

\[
b_0 = \sum_t x_t / n \quad b_{n/2} = \sum_t x_t (-1)^t / n
\]

\[
b_{2j} = \frac{2}{n} \sum_t x_t \cos 2\pi \omega_j t \quad b_{1j} = \frac{2}{n} \sum_t x_t \sin 2\pi \omega_j t.
\]
Note that there is no sine component at 0 or $n/2$ since $\sin 0 = \sin \pi = 0$.

To find the hidden sinusoid, we now can plot $b_{2j}^2 + b_{1j}^2$ versus the “frequency” j. There should be a peak for frequencies near that of the hidden sinusoid.

Estimated amplitude The sum of squares captured by a specific sine/cosine pair is ($j \neq 0, n/2$)

$$\frac{n}{2}(b_{1j}^2 + b_{2j}^2) = \frac{n}{2} A_j^2.$$

That is, the amplitude of the fitted sinusoid at frequency ω_j determines the variance explained by this term in a regression model.

Since we have fit a regression of n parameters to n observations x_1, \ldots, x_n, the model fits perfectly. Thus the variation in the fitted values is exactly that of the original data, and we obtain the following decomposition of the variance:

$$\sum_t X_t^2 = n(A_0^2 + A_{n/2}^2) + \frac{n}{2} \sum_j A_j^2,$$

where the weights on A_0 and $A_{n/2}$ differ since there is no sine term at these frequencies. Thus

Vector space The data $X = (x_1, \ldots, x_n)'$ is a vector in n-dimensional space. The usual basis for this space is the set of vectors

$$e_j = (0 \ldots 0 1 0 \ldots 0)'.$$

Thus we can write $X = \sum_t X_t e_t$. The harmonic model uses a different orthogonal basis, namely the sines and cosines associated with the Fourier frequencies. The “saturated” harmonic regression

$$X_t = b_0 + b_{n/2}(-1)^t + \sum_{j=1}^{n/2-1} (b_{2j} \cos(2\pi\omega_j t) + b_{1j} \sin(2\pi\omega_j t))$$

represents the vector X in this new basis. The coordinates of X in this basis are the coefficients b_{1j} and b_{2j}.

Discrete Fourier transform

Time origin When dealing with the Fourier transform, it is common to index time from $t = 0$ to $t = n - 1$.

Definition Changing to complex variables via Euler’s form

$$\exp(i\theta) = \cos \theta + i \sin \theta$$ \hspace{1cm} (1)

leads to the discrete Fourier transform. The discrete Fourier transform (DFT) of the real-valued n sequence y_0, \ldots, y_{n-1} is defined as

$$d(\omega_j) = D_j = \frac{1}{n} \sum_{t=0}^{n-1} y_t \exp(-i2\pi \omega_j t), \quad j = 0, 1, 2, \ldots, n - 1.$$

The DFT is the set of harmonic regression coefficients, written using complex variables. For $j = 0, 1, \ldots, \frac{n}{2}$,

$$D_j = \frac{1}{n} \sum_{t=0}^{n-1} y_t \exp(-i2\pi \omega_j t)$$

$$= \frac{1}{n} \sum_{t=0}^{n-1} y_t (\cos 2\pi \omega_j t - i \sin 2\pi \omega_j t)$$

$$= \frac{1}{2} (b_{2j} - ib_{1j})$$

Note: SS define the DFT using a divisor \sqrt{n} rather than n; R defines the DFT with no divisor.

Matrix form The DFT amounts to a change of basis transformation. Define the $n \times n$ matrix $F_{jk} = \exp(-i2\pi jk/n)$. The inner product of columns (or rows) is (remember to conjugate the second)

$$F_j^T F_k = \sum_{t=0}^{n-1} e^{-i2\pi j t/n} e^{i2\pi k t/n}$$

$$= \sum_{t=0}^{n-1} e^{i2\pi(k-j)t/n}$$

$$= \begin{cases} n & j = k \\ 0 & j \neq k \end{cases}$$
Visually, imagine summing the locations evenly spaced around the unit circle in the complex plane. Algebraically, the zero follows from summing the geometric series (for \(h = 1, 2, \ldots \))

\[
\sum_{t=0}^{n-1} e^{2\pi it/n} = \sum_{t=0}^{n-1} \left(e^{2\pi i/n} \right)^t = \frac{1 - e^{2\pi i}}{1 - e^{2\pi i/n}} = \frac{e^{i\pi/n}}{\sin 2\pi/n} \sin 2\pi h/n = 0
\]

(You can see the advantage of indexing from 0, 1, \ldots, \(n - 1 \) now.) Hence, \(F^*F = nI_n \) (* denotes the conjugate of the transpose); the matrix \(n^{-1/2}F \) is orthonormal. Notice how much more simple — if you are okay with complex variables, that is — it is to see that the columns are orthogonal than with sines and cosines (no need for the double-angle formulas).

Normalizing There are many ways to write the transform, depending on how \(n \) appears. For example, to get something close to the \(\{A_j, B_j\} \) representation, express the transform as

\[
D = \frac{1}{n} F^*Y.
\]

The fast Fourier transform (FFT) is a method for evaluating this matrix multiplication (which appears to be of order \(n^2 \)) in \(O(n \log n) \) steps by a clever recursion. (Wavelets, another orthogonal basis, allow even faster calculation in \(O(n) \) operations.)

Symmetry & redundancy Since we begin with \(n \) real-valued observations \(y_t \), but obtain \(n \) complex values \(D_j \), the DFT has a redundancy (or symmetry):

\[
\overline{D}_{n-j} = \frac{1}{n} \sum_{t=0}^{n-1} y_t \exp(i2\pi \omega_{n-j}t) = \frac{1}{n} \sum_{t=0}^{n-1} y_t \exp(-i2\pi \omega_j t) = D_j.
\]
One can exploit this symmetry to obtain the transform of two real-valued series at once from one application of the FFT.

Inversion We can recover the original data from the inverse transform,

\[
\sum_j D_j \exp(i2\pi\omega_j t) = \frac{1}{n} \sum_j \sum_s y_s \exp(i2\pi\omega_j t - i2\pi\omega_j s)
\]

\[
= \frac{1}{n} \sum_s y_s \sum_j \exp(i2\pi\omega_j (t - s))
\]

since \(\sum_j \exp(i2\pi\omega_j (t - s)) = 0\) for \(s \neq t\), and otherwise is \(n\). Using the matrix form, multiplying both sides by \(F\) gives \(Y = FD\) immediately.

Variance decomposition As in harmonic regression, we can associate a variance with \(D_j\). In particular,

\[
\sum_t y_t^2 = \sum_t |y_t|^2 = \sum_t |\sum_j D_j \exp(i2\pi\omega_j t)|^2
\]

\[
= n \sum_j D_j \overline{D}_j = n \sum_{j=0}^{n-1} |D_j|^2,
\]

which is a much "neater" formula than that offered in the real-valued harmonic regression model. In matrix form, this is easier still:

\[
\sum_t y_t^2 = Y^*Y = (FD)^*(FD) = D^*(F^*F)D = n \sum_j |D_j|^2
\]

Periodogram The variance at the Fourier frequency \(2\pi\omega_j\) is \(\frac{n}{2}(b_{1j}^2 + b_{2j}^2) = 2n D_j \overline{D}_j\) for \(j \neq 0, n/2\). The periodogram gives the same decomposition of variance, defined as

\[
I_n(\omega_j) = nD_j \overline{D}_j = n|D_j|^2 = \frac{1}{n} \sum_t x_t \exp(-i2\pi\omega_j t)|^2
\]

Examples of the DFT (for future reference)

Linearity Since it’s just a linear transformation (change of basis), the DFT is a linear operator. Hence, \(e.g.,\) the DFT of a sum is the sum of the DFT’s:

\[
D_{x+y,j} = \frac{1}{n} \sum_t (x_t + y_t) \exp(-i2\pi\omega_j t) = D_{x,j} + D_{y,j}.
\]
Thus, once we understand how the DFT behaves for some simple series, we can understand it for any others that are sums of these simple cases.

Convolutions If the input data are a product, \(x_t = y_t z_t \), the DFT has again a very special form. Using the inverse transform we find that the transform of the product is the convolution of the transforms,

\[
D_{x,j} = \frac{1}{n} \sum_t y_t z_t \exp(-i2\pi \omega_j t)
\]

\[
= \frac{1}{n} \sum_t y_t \left(\sum_k D_{z,k} \exp(i2\pi \omega_k t) \right) \exp(-i2\pi \omega_j t)
\]

\[
= \sum_k D_{z,k} \left(\frac{1}{n} \sum_t y_t \exp(-i2\pi \omega_j-k t) \right)
\]

\[
= \sum_{k=0} D_{z,k} D_{y,j-k}
\]

Recall the comparable property of r.v.’s: the MGF of a sum of two ind. r.v.’s is the product of the MGF’s and the distribution of the sum is the convolution.

Some Special Cases Several useful special cases are:

Constant. If the series \(y_t = k \) for all \(t \), then

\[
D_j = \frac{1}{n} \sum_t y_t \exp(-i\omega_j t) = \frac{k}{n} \sum_t \exp(-i\omega_j t)
\]

which is zero unless \(j = 0 \), in which case \(D_0 = k \). Hence a constant input generates a single “spike” in the output.

Spike. If the input is zero except for a single non-zero value \(k \) at index \(s \), then \(D_j = \frac{k}{n} \exp(-i2\pi \omega_j s) \). The amplitude of the DFT is constant, with the phase a linear function of the location of the single spike.

Sinusoid. If \(y_t = k \exp(i2\pi \lambda t) \), then we obtain a multiple of the Dirichlet kernel,

\[
D_j = \frac{1}{n} \sum_t \exp(i2\pi t(\lambda-\omega_j)) = \exp \left(i \frac{(n-1)(\lambda-\omega_j)}{2} \right) D_n(\lambda-\omega_j),
\]
where the version of Dirichlet kernel used here is

$$D_n(\lambda) = \frac{\sin(n\lambda/2)}{n\sin(\lambda/2)} \approx \frac{\sin(n\lambda/2)}{n\lambda/2} \quad \text{if } \lambda \approx 0.$$

If $\lambda = k/n$ is a Fourier frequency, only D_k is non-zero.

Boxcar. If the input is the step function (or “boxcar”),

$$y_t = 1, t = 0, 1, ..., m - 1, \quad y_t = 0, t = m, m + 1, ..., n - 1,$$

then $|D_j| = \frac{m}{n} D_m(2\pi\omega_j)$.

Periodic function. Suppose that the input data y_t is composed of K repetitions of the sequence of H points x_t so that $n = KH$. Then the DFT of y_t is

$$D_{y,j} = \frac{1}{n} \sum_t y_t e^{-i2\pi\omega_j t}$$

$$= \frac{1}{KH} \sum_k \sum_{h=0}^{K-1} x_h e^{-i\frac{2\pi j}{KH}(h+kH)}$$

$$= \frac{1}{K} \sum_k e^{-i\frac{2\pi j}{KH}h} \frac{1}{H} \sum_h x_h e^{-i\frac{2\pi jh}{KH}}$$

$$= D_K(2\pi j/K) \frac{1}{H} \sum_h x_h e^{-i\frac{2\pi jh}{KH}}$$

$$= \begin{cases} 0 & \text{for } j \neq 0, K, 2K, \ldots, (H - 1)K. \\ D_{x,\ell} & \text{for } j = \ell K. \end{cases}$$

The transform of the y’s is zero except at multiples of $2\pi K/n$, which is known as the **fundamental frequency**.