Supplement to "Adaptive Thresholding for Sparse Covariance Matrix Estimation"

Tony Cai¹ and Weidong $Liu^{1,2}$

Proof of Lemma 2. Without loss of generality, we assume that $\mathsf{EX} = 0$ and $\mathsf{Var}(X_i) = 1$ for $1 \le i \le p$. We first prove (i). Let

$$\tilde{\theta}_{ij} = \frac{1}{n} \sum_{k=1}^{n} \left[X_{ki} X_{kj} - \tilde{\sigma}_{ij} \right]^2 \quad \text{with } \tilde{\sigma}_{ij} = \frac{1}{n} \sum_{k=1}^{n} X_{ki} X_{kj}.$$

We shall show that for any M > 0, there exists a constant C_1 such that

$$\mathsf{P}\Big(\max_{ij}|\hat{\theta}_{ij} - \tilde{\theta}_{ij}| \ge C_1 \sqrt{\log p/n}\Big) = O(p^{-M}).$$
(1)

To prove (1), we write

$$\hat{\theta}_{ij} = \tilde{\theta}_{ij} + \frac{2}{n} \sum_{k=1}^{n} \left[X_{ki} X_{kj} - \tilde{\sigma}_{ij} \right] \left[-X_{ki} \bar{X}^{j} - X_{kj} \bar{X}^{i} + 2 \bar{X}^{i} \bar{X}^{j} \right] \\ + \frac{1}{n} \sum_{k=1}^{n} \left[-X_{ki} \bar{X}^{j} - X_{kj} \bar{X}^{i} + 2 \bar{X}^{i} \bar{X}^{j} \right]^{2}.$$
(2)

By the simple inequality $s^2 e^s \leq e^{2s}$ for s > 0, we have $\mathsf{E} X_{ki}^2 e^{t|X_{ki}|} \leq C_\eta K_1 t^{-2}$ for $t \leq \eta^{1/2}$. It follows from the inequality (24) and (C1) that for any M > 0, there exists a constant C_2 such that

$$\mathsf{P}\Big(\max_{i} |\bar{X}^{i}| \ge C_2 \sqrt{\log p/n}\Big) = O(p^{-M}).$$
(3)

¹Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA

^{19104,} tcai@wharton.upenn.edu. The research was supported in part by NSF FRG Grant DMS-0854973. ²Department of Mathematics and Institute of Natural Sciences, Shanghai Jiao Tong University, China.

Let

$$Y_{kij} = X_{ki}^2 X_{kj}, \quad \bar{Y}_{kij} = X_{ki}^2 \bar{X}_{kj}, \quad \bar{X}_{kj} = X_{kj} I\{|X_{kj}| \le C_3 \sqrt{\log(p+n)}\},$$

where C_3 satisfies $C_3^2\eta > M + 1$. Then for any $C_4 > 0$,

$$\mathsf{P}\Big(\max_{ij}\Big|\sum_{k=1}^{n}Y_{kij}\Big| \ge C_4n\Big) \le \mathsf{P}\Big(\max_{ij}\Big|\sum_{k=1}^{n}\bar{Y}_{kij}\Big| \ge C_4n\Big) + np\max_i\mathsf{P}\Big(|X_i| \ge C_3\sqrt{\log(p+n)}\Big) \\
= \mathsf{P}\Big(\max_{ij}\Big|\sum_{k=1}^{n}\bar{Y}_{kij}\Big| \ge C_4n\Big) + O(p^{-M}).$$
(4)

Let $t = \tau (\log(n+p))^{-1/2}$ and $x = ((M+2)\log p)^{1/2}$ in Lemma 1 with $\tau > 0$ sufficiently small. We have $\bar{B}_n^2 = O(1)n \max_{i,j} (\mathsf{E}Y_{kij}^4)^{1/2} (\mathsf{E}e^{2C_3\tau X_{ki}^2})^{1/2} = O(n)$. By (C1) and $p \leq \exp(n^{1/2})$, we can let C_4 be sufficiently large such that $C_4n \geq 2C_t\bar{B}_nx$ and $C_4 > 2\max_{ij}\mathsf{E}X_{1i}^2|X_{1j}|$. It follows from Lemma 1 that

$$\mathsf{P}\Big(\max_{ij}\Big|\sum_{k=1}^{n}\bar{Y}_{kij}\Big| \ge C_4n\Big) \le \mathsf{P}\Big(\max_{ij}\Big|\sum_{k=1}^{n}(\bar{Y}_{kij} - \mathsf{E}\bar{Y}_{kij})\Big| \ge C_4n/2\Big) \\
= O(p^{-M}).$$
(5)

Combining (3)-(5), we see that for any M > 0, there exists $C_5 > 0$ such that

$$\mathsf{P}\Big(\max_{ij}\frac{1}{n}\Big|\sum_{k=1}^{n}X_{ki}^{2}X_{kj}\bar{X}^{j}\Big| \ge C_{5}\sqrt{\frac{\log p}{n}}\Big) = O(p^{-M}).$$
(6)

Similar inequalities can be proved for other terms in (2), and hence (1) is proved.

Write

$$\tilde{\theta}_{ij} - \theta_{ij} = \frac{1}{n} \sum_{k=1}^{n} \left[(X_{ki} X_{kj})^2 - \mathsf{E} (X_{ki} X_{kj})^2 \right] - \tilde{\sigma}_{ij}^2 + (\sigma_{ij}^0)^2 - (\tilde{\sigma}_{ij} - \sigma_{ij}^0)^2.$$

By Lemma 1 and (C1), we see that

$$\mathsf{P}\Big(\max_{ij}|\widetilde{\sigma}_{ij} - \sigma_{ij}^0| \ge C_6\sqrt{\log p/n}\Big) = O(p^{-M}).$$
(7)

Take $t = \tau (\log(n+p))^{-1}$ and $x = ((M+2)\log p)^{1/2}$ in Lemma 1. Since $p = \exp(o(n^{1/3}))$, we have $n\varepsilon \ge C_t \sqrt{nx}$ for any $\varepsilon > 0$. Thus by some similar truncation arguments in (4) and (5), it can be shown that for any $\varepsilon > 0$,

$$\mathsf{P}\Big(\max_{ij}\Big|\frac{1}{n}\sum_{k=1}^{n}\Big[(X_{ki}X_{kj})^{2}-\mathsf{E}(X_{ki}X_{kj})^{2}\Big]\Big|\geq\varepsilon\Big)=O(p^{-M}).$$
(8)

Combining (1), (7) and (8) yields that for any $\varepsilon > 0$ and M > 0,

$$\mathsf{P}\Big(\max_{ij}\{|\tilde{\theta}_{ij} - \theta_{ij}| + |\hat{\theta}_{ij} - \theta_{ij}|\} \ge \varepsilon\Big) = O(p^{-M}).$$
(9)

By (13) and $\operatorname{Var}(X_i) = 1$, we see that $\min_{i,j} \theta_{ij} \ge \tau_0$ which implies

$$\mathsf{P}\Big(\min_{i,j}\tilde{\theta}_{ij} \ge \tau_0/2\Big) \ge 1 - O(p^{-M}).$$
(10)

By (1), (3) and (10), it is easy to show that

$$\mathbb{P}\left(\max_{ij} |\hat{\sigma}_{ij} - \sigma_{ij}^{0}| / \hat{\theta}_{ij}^{1/2} \ge \delta \sqrt{\log p/n}\right) \\
 \le \mathbb{P}\left(\max_{ij} \left\{ (n\tilde{\theta}_{ij})^{-1/2} \Big| \sum_{k=1}^{n} (X_{ki}X_{kj} - \sigma_{ij}^{0}) \Big| \right\} \ge \delta \sqrt{(1 - C_7 \sqrt{\log p/n}) \log p} \right) \\
 + O(p^{-M})
 \tag{11}$$

with some $C_7 > 0$ and any M > 0. Applying Theorem 2.2 and equation (2.2) in Shao (1999) to the second probability in (11), we have for $\delta \ge 0$,

$$\mathsf{P}\Big(\max_{ij}|\hat{\sigma}_{ij} - \sigma_{ij}^{0}|/\hat{\theta}_{ij}^{1/2} \ge \delta\sqrt{\log p/n}\Big) = O((\log p)^{-1/2}p^{-\delta+2}).$$

To prove (ii), we only need to show (1), (3) and (8) hold under (C2) with $O(p^{-M})$ being replaced by $O(p^{-M} + n^{-\epsilon/8})$. Let

$$\check{X}_{ki} = X_{ki} I\{|X_{ki}| \le (n/(\log n)^2)^{1/4}\}.$$

Then we have

$$\mathsf{P}\Big(\max_{i} |\bar{X}^{i}| \ge C_{2}\sqrt{\log p/n}\Big) \le \mathsf{P}\Big(\max_{i} |\sum_{k=1}^{n} (\check{X}_{ki} - \mathsf{E}\check{X}_{ki})| \ge 2^{-1}C_{2}\sqrt{n\log p}\Big) \\
+ np\max_{i} \mathsf{P}\Big(|X_{1i}| \ge (n/(\log n)^{2})^{1/4}\Big)$$

$$= O(p^{-M} + n^{-\epsilon/8}), (12)$$

where in the last inequality we used Bernstein's inequality (cf. Bennett (1962)) and (C2). Recall Y_{kj} and define $\check{Y}_{kij} = \check{X}_{ki}^2 \check{X}_{kj}$. Using Bernstein's inequality again, we have

$$\mathsf{P}\Big(\max_{ij}\Big|\sum_{k=1}^{n}Y_{kij}\Big| \ge C_4n\Big) \le \mathsf{P}\Big(\max_{ij}\Big|\sum_{k=1}^{n}(\check{Y}_{kij} - \mathsf{E}\check{Y}_{kij})\Big| \ge 2^{-1}C_4n\Big) + O(n^{-\epsilon/8})$$
$$= O(p^{-M} + n^{-\epsilon/8}).$$

Therefore, (6) holds under (C2). Replacing $O(p^{-M})$ with $O(p^{-M} + n^{-\epsilon/8})$, the inequalities (7) and (8) can be similarly proved. Finally, applying Theorem 2.2 and (2.2) in Shao (1999) to the second probability in (11), we complete the proof of (ii).

Proof of Lemma 4. Let $s_1 = Ms_0(p)$ with M > 0 being a sufficiently large number. Let

$$A_{j_1\cdots j_{s_1}}^{(i)} = \bigcap_{k=1}^{s_1} \{ |\hat{\sigma}_{ij_k}| \ge \lambda_{nij_k}(\delta) \},\$$

$$B_i = \{ j : \sigma_{ij}^0 = 0; j \neq i \}.$$

We will show that for any $\delta > \sqrt{2}$,

$$\mathsf{P}\left(\cup_{i=1}^{p}\cup_{j_{1}\cdots j_{s_{1}}\in B_{i}}A_{j_{1}\cdots j_{s_{1}}}^{(i)}\right) = O(p^{-C_{\delta}M})$$
(13)

for some $C_{\delta} > 0$, which implies that with probability $1 - O(p^{-C_{\delta}M})$, for each *i*, there are at most s_1 nonzero numbers of $\{|\hat{\sigma}_{ij}|; j \in B_i\}$ and by Lemma 2, they are of order $O(\max_i \sigma_{ii}^0 \sqrt{\log p/n})$. This together with (44) proves (36). Let *D* denote the subset of $\{j_1, \dots, j_{s_1}\}$ such that the random variables $\{X_i : i \in D\}$ are pairwise uncorrelated. Let $k = \max\{Card(D)\}$ be the largest number of X_j 's with $j \in \{j_1, \dots, j_{s_1}\}$ such that they are uncorrelated. Suppose the lower bound for *k* is k_0 . Then we can write the set

$$\{(j_1, \cdots, j_{s_1}) : j_1, \cdots, j_{s_1} \in B_i\} = \bigcup_{k=k_0}^{s_1} \{(j_1, \cdots, j_{s_1}) : j_1, \cdots, j_{s_1} \in B_i, \max\{Card(D)\} = k\}$$

=: $\bigcup_{k=k_0}^{s_1} B_{i,k}.$ (14)

As in the proof of Theorem 3, we can show that $k_0 \ge M$. The number of elements in $B_{i,k}$ is no more than $(ks)^{s_1}C_p^k$. Define

$$\hat{A}_{j_{1}\cdots j_{s_{1}}}^{(i)} = \bigcap_{k=1}^{s_{1}} \Big\{ \Big| \sum_{l=1}^{n} Y_{lij_{k}} \Big| \ge \delta \sqrt{n \log p} \Big\},\$$

where $\hat{Y}_{lij_k} = \theta_{ij_k}^{-1/2} X_{li} X_{lj_k}$. To prove (13), we only need to show that for any $\delta > \sqrt{2}$,

$$\mathsf{P}\left(\cup_{i=1}^{p}\cup_{j_{1}\cdots j_{s_{1}}\in B_{i}}\hat{A}_{j_{1}\cdots j_{s_{1}}}^{(i)}\right) = O(p^{-C_{\delta}M}) \tag{15}$$

for some $C_{\delta} > 0$. Without loss of generality we assume that $\mathsf{E}X_{j_k} = 0$ and $\mathsf{E}X_{j_k}^2 = 1$. By Lemma 1, we have for any $\varepsilon > 0$,

$$\mathsf{P}\Big(\max_{i} \left| \frac{\sum_{k=1}^{n} Y_{ki}^{2}}{n} - 1 \right| \le \varepsilon \Big) = O(p^{-M})$$

for any M > 0. Thus it suffices to prove that for any $\delta > \sqrt{2}$,

$$\sum_{i=1}^{p} \sum_{j_1 \cdots j_{s_1} \in B_i} \mathsf{P}\Big(\bigcap_{k=1}^{s_1} C_k\Big) = O(p^{-C_{\delta}M}),$$

where

$$C_k = \left\{ \left| \frac{\sum_{l=1}^n X_{li} X_{lj_k}}{\sqrt{\sum_{l=1}^n X_{li}^2}} \right| \ge \delta \sqrt{\log p} \right\}.$$

Note that X_i and $\{X_{j_1}, \ldots, X_{j_{s_1}}\}$ are independent. So by (14) and conditioning on $\{X_{li}, 1 \leq l \leq n\}$, we can get

$$\sum_{i=1}^{p} \sum_{j_1 \cdots j_{s_1} \in B_i} \mathsf{P}\Big(\bigcap_{k=1}^{s_1} C_k\Big) \le Cp \sum_{k=k_0}^{s_1} (ks)^{s_1} C_p^k p^{-\delta^2 k/2} = O(p^{-C_\delta M})$$

for some $C_{\delta} > 0$. This proves (13).

To prove (37), we have for any M > 0 in (36),

$$\begin{aligned} \mathsf{E}\|\hat{\Sigma}^{\star}(\delta) - \Sigma_{0}\|_{2}^{2} &\leq C_{\gamma,\delta,K,M}s_{0}^{2}(p)\frac{\log p}{n} \\ &+ \mathsf{E}\|\hat{\Sigma}^{\star}(\delta) - \Sigma_{0}\|_{2}^{2}I\{\|\hat{\Sigma}^{\star}(\delta) - \Sigma_{0}\|_{2} > C_{\gamma,\delta,M}\max_{i}\sigma_{ii}^{0}s_{0}(p)\Big(\frac{\log p}{n}\Big)\} \end{aligned}$$

$$\leq C_{\gamma,\delta,K,M} s_0^2(p) \frac{\log p}{n} + 2\mathsf{E} \|\Sigma_n - \Sigma_0\|_2^2 I\{\|\hat{\Sigma}^*(\delta) - \Sigma_0\|_2 > C_{\gamma,\delta,M} \max_i \sigma_{ii}^0 s_0(p) \Big(\frac{\log p}{n}\Big)\} + 2\mathsf{E} \|\hat{\Sigma}^*(\delta) - \Sigma_n - \Sigma_0\|_2^2 I\{\|\hat{\Sigma}^*(\delta) - \Sigma_0\|_2 > C_{\gamma,\delta,M} \max_i \sigma_{ii}^0 s_0(p) \Big(\frac{\log p}{n}\Big)\}.$$

It is easy to show that $\mathsf{E} \| \Sigma_n - \Sigma_0 \|_2^4 \leq c_0 \max_i (\sigma_{ii}^0)^4 p^5 / n^2$, where c_0 is an absolute constant. Note that $\max_{i,j} \mathsf{E} \hat{\theta}_{ij}^4 \leq c_0 \max_i (\sigma_{ii}^0)^8$. Then by Lemma 2,

$$\begin{aligned} \mathsf{E} \| \hat{\Sigma}^{\star}(\delta) - \Sigma_n - \Sigma_0 \|_2^4 &\leq c_0 \Big(\max_i (\sigma_{ii}^0)^4 p^4 + \mathsf{E} \max_i (\sum_{j=1}^p \lambda_{nij}(\delta))^4 \Big) \\ &\leq c_0 \max_i (\sigma_{ii}^0)^4 \Big(p^4 + p^5 \Big(\frac{\log p}{n} \Big)^2 \Big) \\ &+ c_0 p^5 \max_{ij} \mathsf{E} \lambda_{nij}^4(\delta) I\{ |\hat{\theta}_{ij} - \theta_{ij}| \geq \max_i (\sigma_{ii}^0)^2 \} \\ &\leq C \max_i (\sigma_{ii}^0)^4 \Big(p^5 + p^5 \Big(\frac{\log p}{n} \Big)^2 + p^5 \Big(\frac{\log p}{n} \Big)^2 p^{-M} \Big). \end{aligned}$$

This implies that for $M = 5 + \xi^{-1}$,

$$\begin{aligned} \mathsf{E} \| \hat{\Sigma}^{\star}(\delta) - \Sigma_0 \|_2^2 &\leq C \left(s_0^2(p) \frac{\log p}{n} + p^{5/2 - M/2} \log p \right) \\ &\leq C s_0^2(p) \frac{\log p}{n}. \quad \blacksquare \end{aligned}$$

Proof of Lemma 5. Take $l = [p^{\tau_2}]$ with $2\epsilon_0 + \tau^2/2 < \tau_2 < 1$. Then there exist independent variables X_{i_0}, \ldots, X_{i_l} , where $i_0 = i$ and $i_1, \cdots, i_l \in B_i = \{j : \sigma_{ij}^0 = 0; j \neq i\}$. To prove the result, it suffices to prove (38). In fact, by (38) and the inequality $||A||_2 \ge \max_i (\sum_{j=1}^p a_{ij}^2)^{1/2}$ for a symmetric matrix $A = (a_{ij})$, we have with probability tending to 1,

$$\|\hat{\Sigma}^{\star}(\tau) - \Sigma_0\|_2 \ge Cp^{\epsilon_0} \left(\frac{\log p}{n}\right)^{1/2} \ge Cp^{\epsilon_0/2} s_0(p) \left(\frac{\log p}{n}\right)^{1/2}.$$

Split the set $\{i_1, \dots, i_l\}$ into $p^{2\epsilon_0}$ subsets $H_1, \dots, H_{p^{2\epsilon_0}}$ with the same cardinality $[p^{\tau_2-2\epsilon_0}]$. Note that $\tau_2 - 2\epsilon_0 > \tau^2/2$. By Lemma 2, it suffices to show that for some $\epsilon > 0$,

$$\mathsf{P}\Big(\min_{i,m}\sum_{j\in H_m} I\Big\{\Big|\sum_{k=1}^n X_{ki}X_{kj}\Big| \ge (\tau+\epsilon)\sqrt{n\log p}\Big\} \ge 1\Big) \to 1,\tag{16}$$

where we assume that $\mathsf{E}X_j = 0$ and $\mathsf{E}X_j^2 = 1$. As in the proof of Lemma 4, it suffices to show that for some $\epsilon > 0$, $\mathsf{P}\Big(\min_{i,m} \sum_{j \in H_m} I\{C_j\} \ge 1\Big) \to 1$, where

$$C_j = \left\{ \left| \frac{\sum_{k=1}^n X_{ki} Y_{kj}}{\sqrt{\sum_{k=1}^n X_{ki}^2}} \right| \ge (\tau + \epsilon) \sqrt{\log p} \right\}.$$

By conditioning on $\{X_{ki}; 1 \le k \le n\}$, we can get

$$\mathsf{P}\Big(\bigcup_{j\in H_m} C_j\Big) \geq 1 - (1 - p^{-(\tau+2\epsilon)^2/2})^{|H_m|} - O(p^{-M}) \\
\geq 1 - \exp\Big(-|H_m|p^{-(\tau+2\epsilon)^2/2}\Big) - O(p^{-M}),$$

where $|H_m| = [p^{\tau_2 - 2\epsilon_0}]$. This implies (16) by letting ϵ satisfy $\tau_2 - 2\epsilon_0 > (\tau + 2\epsilon)^2/2$.

References

- Bennett, G (1962). Probability inequalities for the sum of independent random variables. Journal of the American Statistical Association 57: 33-45.
 J. Amer. Statist. Assoc. 104: 177-186.
- Shao, Q.M. (1999). A Cramér type large deviation result for Student's t-statistic. Journal of Theoretical Probability 12: 385-398.