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Proof of Lemma 2. Without loss of generality, we assume that EX = 0 and Var(Xi) = 1

for 1 ≤ i ≤ p. We first prove (i). Let

θ̃ij =
1

n

n∑
k=1

[
XkiXkj − σ̃ij

]2
with σ̃ij =

1
n

∑n
k=1 XkiXkj.

We shall show that for any M > 0, there exists a constant C1 such that

P
(
max
ij

|θ̂ij − θ̃ij| ≥ C1

√
log p/n

)
= O(p−M). (1)

To prove (1), we write

θ̂ij = θ̃ij +
2

n

n∑
k=1

[
XkiXkj − σ̃ij

][
−XkiX̄

j −XkjX̄
i + 2X̄ iX̄j

]
+
1

n

n∑
k=1

[
−XkiX̄

j −XkjX̄
i + 2X̄ iX̄j

]2
. (2)

By the simple inequality s2es ≤ e2s for s > 0, we have EX2
kie

t|Xki| ≤ CηK1t
−2 for t ≤ η1/2.

It follows from the inequality (24) and (C1) that for any M > 0, there exists a constant

C2 such that

P
(
max

i
|X̄ i| ≥ C2

√
log p/n

)
= O(p−M). (3)
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Let

Ykij = X2
kiXkj, Ȳkij = X2

kiX̄kj, X̄kj = XkjI{|Xkj| ≤ C3

√
log(p+ n)},

where C3 satisfies C2
3η > M + 1. Then for any C4 > 0,

P
(
max
ij

∣∣∣ n∑
k=1

Ykij

∣∣∣ ≥ C4n
)

≤ P
(
max
ij

∣∣∣ n∑
k=1

Ȳkij

∣∣∣ ≥ C4n
)
+ npmax

i
P
(
|Xi| ≥ C3

√
log(p+ n)

)
= P

(
max
ij

∣∣∣ n∑
k=1

Ȳkij

∣∣∣ ≥ C4n
)
+O(p−M). (4)

Let t = τ(log(n+p))−1/2 and x = ((M+2) log p)1/2 in Lemma 1 with τ > 0 sufficiently small.

We have B̄2
n = O(1)nmaxi,j(EY

4
kij)

1/2(Ee2C3τX2
ki)1/2 = O(n). By (C1) and p ≤ exp(n1/2),

we can let C4 be sufficiently large such that C4n ≥ 2CtB̄nx and C4 > 2maxij EX
2
1i|X1j|. It

follows from Lemma 1 that

P
(
max
ij

∣∣∣ n∑
k=1

Ȳkij

∣∣∣ ≥ C4n
)

≤ P
(
max
ij

∣∣∣ n∑
k=1

(Ȳkij − EȲkij)
∣∣∣ ≥ C4n/2

)
= O(p−M). (5)

Combining (3)-(5), we see that for any M > 0, there exists C5 > 0 such that

P
(
max
ij

1

n

∣∣∣ n∑
k=1

X2
kiXkjX̄

j
∣∣∣ ≥ C5

√
log p

n

)
= O(p−M). (6)

Similar inequalities can be proved for other terms in (2), and hence (1) is proved.

Write

θ̃ij − θij =
1

n

n∑
k=1

[
(XkiXkj)

2 − E(XkiXkj)
2
]
− σ̃2

ij + (σ0
ij)

2 − (σ̃ij − σ0
ij)

2.

By Lemma 1 and (C1), we see that

P
(
max
ij

|σ̃ij − σ0
ij| ≥ C6

√
log p/n

)
= O(p−M). (7)

Take t = τ(log(n + p))−1 and x = ((M + 2) log p)1/2 in Lemma 1. Since p = exp(o(n1/3)),

we have nε ≥ Ct

√
nx for any ε > 0. Thus by some similar truncation arguments in (4) and
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(5), it can be shown that for any ε > 0,

P
(
max
ij

∣∣∣ 1
n

n∑
k=1

[
(XkiXkj)

2 − E(XkiXkj)
2
]∣∣∣ ≥ ε

)
= O(p−M). (8)

Combining (1), (7) and (8) yields that for any ε > 0 and M > 0,

P
(
max
ij

{|θ̃ij − θij|+ |θ̂ij − θij|} ≥ ε
)
= O(p−M). (9)

By (13) and Var(Xi) = 1, we see that mini,j θij ≥ τ0 which implies

P
(
min
i,j

θ̃ij ≥ τ0/2
)
≥ 1−O(p−M). (10)

By (1), (3) and (10), it is easy to show that

P
(
max
ij

|σ̂ij − σ0
ij|/θ̂

1/2
ij ≥ δ

√
log p/n

)
≤ P

(
max
ij

{
(nθ̃ij)

−1/2
∣∣∣ n∑
k=1

(XkiXkj − σ0
ij)
∣∣∣} ≥ δ

√
(1− C7

√
log p/n) log p

)
+O(p−M) (11)

with some C7 > 0 and any M > 0. Applying Theorem 2.2 and equation (2.2) in Shao

(1999) to the second probability in (11), we have for δ ≥ 0,

P
(
max
ij

|σ̂ij − σ0
ij|/θ̂

1/2
ij ≥ δ

√
log p/n

)
= O((log p)−1/2p−δ+2).

To prove (ii), we only need to show (1), (3) and (8) hold under (C2) with O(p−M) being

replaced by O(p−M + n−ϵ/8). Let

X̌ki = XkiI{|Xki| ≤ (n/(log n)2)1/4}.

Then we have

P
(
max

i
|X̄ i| ≥ C2

√
log p/n

)
≤ P

(
max

i
|

n∑
k=1

(X̌ki − EX̌ki)| ≥ 2−1C2

√
n log p

)
+npmax

i
P
(
|X1i| ≥ (n/(log n)2)1/4

)
3



= O(p−M + n−ϵ/8), (12)

where in the last inequality we used Bernstein’s inequality (cf. Bennett (1962)) and (C2).

Recall Ykj and define Y̌kij = X̌2
kiX̌kj. Using Bernstein’s inequality again, we have

P
(
max
ij

∣∣∣ n∑
k=1

Ykij

∣∣∣ ≥ C4n
)

≤ P
(
max
ij

∣∣∣ n∑
k=1

(Y̌kij − EY̌kij)
∣∣∣ ≥ 2−1C4n

)
+O(n−ϵ/8)

= O(p−M + n−ϵ/8).

Therefore, (6) holds under (C2). Replacing O(p−M) with O(p−M + n−ϵ/8), the inequalities

(7) and (8) can be similarly proved. Finally, applying Theorem 2.2 and (2.2) in Shao (1999)

to the second probability in (11), we complete the proof of (ii).

Proof of Lemma 4. Let s1 = Ms0(p) with M > 0 being a sufficiently large number. Let

A
(i)
j1···js1

= ∩s1
k=1{|σ̂ijk | ≥ λnijk(δ)},

Bi = {j : σ0
ij = 0; j ̸= i}.

We will show that for any δ >
√
2,

P
(
∪p

i=1 ∪j1···js1∈Bi
A

(i)
j1···js1

)
= O(p−CδM) (13)

for some Cδ > 0, which implies that with probability 1 − O(p−CδM), for each i, there

are at most s1 nonzero numbers of {|σ̂ij|; j ∈ Bi} and by Lemma 2, they are of order

O(maxi σ
0
ii

√
log p/n). This together with (44) proves (36). Let D denote the subset of

{j1, · · · , js1} such that the random variables {Xi : i ∈ D} are pairwise uncorrelated. Let

k = max{Card(D)} be the largest number of Xj’s with j ∈ {j1, · · · , js1} such that they

are uncorrelated. Suppose the lower bound for k is k0. Then we can write the set

{(j1, · · · , js1) : j1, · · · , js1 ∈ Bi} = ∪s1
k=k0

{(j1, · · · , js1) : j1, · · · , js1 ∈ Bi,max{Card(D)} = k}

=: ∪s1
k=k0

Bi,k. (14)
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As in the proof of Theorem 3, we can show that k0 ≥ M . The number of elements in Bi,k

is no more than (ks)s1Ck
p . Define

Â
(i)
j1···js1

=

s1∩
k=1

{∣∣∣ n∑
l=1

Ylijk

∣∣∣ ≥ δ
√
n log p

}
,

where Ŷlijk = θ
−1/2
ijk

XliXljk . To prove (13), we only need to show that for any δ >
√
2,

P
(
∪p

i=1 ∪j1···js1∈Bi
Â

(i)
j1···js1

)
= O(p−CδM) (15)

for some Cδ > 0. Without loss of generality we assume that EXjk = 0 and EX2
jk

= 1. By

Lemma 1, we have for any ε > 0,

P
(
max

i

∣∣∣∑n
k=1 Y

2
ki

n
− 1

∣∣∣ ≤ ε
)
= O(p−M)

for any M > 0. Thus it suffices to prove that for any δ >
√
2,

p∑
i=1

∑
j1···js1∈Bi

P
( s1∩

k=1

Ck

)
= O(p−CδM),

where

Ck =
{∣∣∣∑n

l=1 XliXljk√∑n
l=1 X

2
li

∣∣∣ ≥ δ
√
log p

}
.

Note thatXi and {Xj1 , . . . , Xjs1
} are independent. So by (14) and conditioning on {Xli, 1 ≤

l ≤ n}, we can get

p∑
i=1

∑
j1···js1∈Bi

P
( s1∩

k=1

Ck

)
≤ Cp

s1∑
k=k0

(ks)s1Ck
pp

−δ2k/2 = O(p−CδM)

for some Cδ > 0. This proves (13).

To prove (37), we have for any M > 0 in (36),

E∥Σ̂⋆(δ)− Σ0∥22 ≤ Cγ,δ,K,Ms20(p)
log p

n

+E∥Σ̂⋆(δ)− Σ0∥22I{∥Σ̂⋆(δ)− Σ0∥2 > Cγ,δ,M max
i

σ0
iis0(p)

( log p
n

)
}
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≤ Cγ,δ,K,Ms20(p)
log p

n

+2E∥Σn − Σ0∥22I{∥Σ̂⋆(δ)− Σ0∥2 > Cγ,δ,M max
i

σ0
iis0(p)

( log p
n

)
}

+2E∥Σ̂⋆(δ)− Σn − Σ0∥22I{∥Σ̂⋆(δ)− Σ0∥2 > Cγ,δ,M max
i

σ0
iis0(p)

( log p
n

)
}.

It is easy to show that E∥Σn−Σ0∥42 ≤ c0 maxi(σ
0
ii)

4p5/n2, where c0 is an absolute constant.

Note that maxi,j Eθ̂
4
ij ≤ c0 maxi(σ

0
ii)

8. Then by Lemma 2,

E∥Σ̂⋆(δ)− Σn − Σ0∥42 ≤ c0

(
max

i
(σ0

ii)
4p4 + Emax

i
(

p∑
j=1

λnij(δ))
4
)

≤ c0max
i

(σ0
ii)

4
(
p4 + p5

( log p
n

)2)
+c0p

5 max
ij

Eλ4
nij(δ)I{|θ̂ij − θij| ≥ max

i
(σ0

ii)
2}

≤ Cmax
i

(σ0
ii)

4
(
p5 + p5

( log p
n

)2

+ p5
( log p

n

)2

p−M
)
.

This implies that for M = 5 + ξ−1,

E∥Σ̂⋆(δ)− Σ0∥22 ≤ C
(
s20(p)

log p

n
+ p5/2−M/2 log p

)
≤ Cs20(p)

log p

n
.

Proof of Lemma 5. Take l = [pτ2 ] with 2ϵ0+τ 2/2 < τ2 < 1. Then there exist independent

variables Xi0 , . . . , Xil , where i0 = i and i1, · · · , il ∈ Bi = {j : σ0
ij = 0; j ̸= i}. To prove the

result, it suffices to prove (38). In fact, by (38) and the inequality ∥A∥2 ≥ maxi(
∑p

j=1 a
2
ij)

1/2

for a symmetric matrix A = (aij), we have with probability tending to 1,

∥Σ̂⋆(τ)− Σ0∥2 ≥ Cpϵ0
( log p

n

)1/2

≥ Cpϵ0/2s0(p)
( log p

n

)1/2

.

Split the set {i1, · · · , il} into p2ϵ0 subsets H1, · · · , Hp2ϵ0 with the same cardinality [pτ2−2ϵ0 ].

Note that τ2 − 2ϵ0 > τ 2/2. By Lemma 2, it suffices to show that for some ϵ > 0,

P
(
min
i,m

∑
j∈Hm

I
{∣∣∣ n∑

k=1

XkiXkj

∣∣∣ ≥ (τ + ϵ)
√
n log p

}
≥ 1

)
→ 1, (16)
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where we assume that EXj = 0 and EX2
j = 1. As in the proof of Lemma 4, it suffices to

show that for some ϵ > 0, P
(
mini,m

∑
j∈Hm

I{Cj} ≥ 1
)
→ 1, where

Cj =
{∣∣∣∑n

k=1 XkiYkj√∑n
k=1 X

2
ki

∣∣∣ ≥ (τ + ϵ)
√
log p

}
.

By conditioning on {Xki; 1 ≤ k ≤ n}, we can get

P
( ∪

j∈Hm

Cj

)
≥ 1− (1− p−(τ+2ϵ)2/2)|Hm| −O(p−M)

≥ 1− exp
(
− |Hm|p−(τ+2ϵ)2/2

)
−O(p−M),

where |Hm| = [pτ2−2ϵ0 ]. This implies (16) by letting ϵ satisfy τ2 − 2ϵ0 > (τ + 2ϵ)2/2.
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