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Summary. A major challenge in instrumental variable (IV) analysis is to find instruments that
are valid, or have no direct effect on the outcome and are ignorable. Typically one is unsure
whether all of the putative IVs are in fact valid. We propose a general inference procedure in
the presence of invalid IVs, called two-stage hard thresholding with voting. The procedure uses
two hard thresholding steps to select strong instruments and to generate candidate sets of
valid IVs. Voting takes the candidate sets and uses majority and plurality rules to determine the
true set of valid IVs. In low dimensions with invalid instruments, our proposal correctly selects
valid IVs, consistently estimates the causal effect, produces valid confidence intervals for the
causal effect and has oracle optimal width, even if the so-called 50% rule or the majority rule
is violated. In high dimensions, we establish nearly identical results without oracle optimality. In
simulations, our proposal outperforms traditional and recent methods in the invalid IV literature.
We also apply our method to reanalyse the causal effect of education on earnings.

Keywords: Exclusion restriction; High dimensional covariates; Invalid instruments; Majority
voting; Plurality voting; Treatment effect

1. Introduction

1.1. Motivation: invalid instruments
Instrumental variable (IV) analysis is a popular method to deduce causal effects in the presence
of unmeasured confounding. Informally, an IV analysis requires instruments that

(a) are associated with the exposure (assumption 1),
(b) have no direct pathway to the outcome (assumption 2) and
(c) are not related to unmeasured variables that affect the exposure and the outcome (as-

sumption 3); see Section 2.1 for details.

A major challenge in IV analysis is to find valid instruments, i.e. instruments that satisfy as-
sumptions 2 and 3.
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For example, a long-standing interest in economics is studying the causal effect of education
on earnings (Angrist and Krueger, 1991; Card, 1993, 1999). Often, IV analysis is used to deduce
this effect and a popular instrument for the analysis is a person’s proximity to a college when
growing up (Card, 1993, 1999). However, proximity to a college may be related to a person’s
socio-economic status, high school characteristics and other variables that may affect a person’s
earnings, thereby invalidating the instrument. Often, covariates, potentially many, are controlled
for to make instruments more plausibly valid (Hernán and Robins, 2006; Swanson and Hernán,
2013; Baiocchi et al., 2014; Imbens, 2014). For instance, in the earnings example, socio-economic
status, family background and genetic status can be controlled for to alleviate concerns about
instrument validity.

But, some IVs may still turn out to be invalid after controlling and subsequent analysis
assuming that all the IVs are valid after conditioning can be misleading (Murray, 2006). For
instance, in the earnings example with proximity as the instrument, if living close to college had
other benefits beyond receiving more education, say by being exposed to many programmes
that are available to high school students for job preparation and employers who come to the
area to discuss employment opportunities for college students, then the IV can directly affect
an individual’s earning potential and violate assumption 2 (Card, 1999). This problem is also
prevalent in other applications of IVs, most notably in Mendelian randomization (Davey Smith
and Ebrahim, 2003, 2004) where the instruments are genetic in nature and some instruments
are likely to be invalid because they have pleiotropic effects (Lawlor et al., 2008; Burgess et al.,
2015).

This paper tackles the problem of constructing confidence intervals for causal effects when
invalid instruments may be present. We consider two major cases. The first case is where the
number of covariates and instruments is small and fixed relative to the sample size; this setting is
typical in Mendelian randomization studies and many traditional applied settings. The second
case is where the number of covariates and/or instruments is growing and may exceed the sample
size, which is becoming more prevalent with modern large data sets.

1.2. Prior work and our contributions
In non-IV settings with high dimensional covariates as controls, Zhang and Zhang (2014),
Javanmard and Montanari (2014), van de Geer et al. (2014), Belloni et al. (2014) and Cai and
Guo (2017) have provided confidence intervals for a treatment effect. In IV settings with high
dimensional covariates (or IVs), Gautier and Tsybakov (2011), Belloni et al. (2012), Fan and
Liao (2014) and Chernozhukov et al. (2015) have provided confidence intervals for a treatment
effect, under the assumption that all the IVs are valid after controlling for the said covariates.
In invalid IV settings, Kolesár et al. (2015) and Bowden et al. (2015) have provided inferential
methods for treatment effects. However, the method requires that the effects of the instruments
on the treatment are orthogonal to their direct effects on the outcome, which is a stringent
assumption. Bowden et al. (2016), Burgess et al. (2016), Kang et al. (2016b) and Windmeijer
et al. (2016) also worked on the invalid IV setting, but without making a stringent orthogonality
assumption.

Unfortunately, all of these methods

(a) work only in the low dimensional setting and
(b) rely on the sufficient condition in Han (2008) and Kang et al. (2016b),

which is known as the ‘50% rule’ or the ‘majority rule’ where a majority of the instruments must
be valid to establish consistency or inferential guarantees (see Section 2.2 for details); to the best
of our knowledge, no method in this literature has established consistency, inferential and oracle
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guarantees under a general condition established in theorem 1 of Kang et al. (2016b), including
the setting where the majority rule is violated; see Section 3.6 for a review and a comparison of
the methods in the literature with our proposed method.

Our work makes three major contributions in inferring treatment effects in the presence of
possibly invalid instruments. First, we propose a novel two-stage hard thresholding (TSHT)
method with voting that works both in low and high dimensional settings. Second, in the low
dimensional setting, our method is the first method to be complete; our method relies only on
a general condition for identification under invalid instruments to

(a) to select valid IVs correctly,
(b) to estimate the causal effect consistently,
(c) to produce confidence intervals with the desired level of coverage and
(d) to achieve oracle optimality in the sense that it performs as well asymptotically as the

oracle procedure that knows which instruments are valid.

In particular, our method can guarantee these properties even when more than 50% of the
instruments are invalid as long as a more general condition, which we call the plurality rule,
holds; see Section 2.2 for details. Third, in the high dimensional setting, our method achieves
the same selection, estimation and inferential guarantees without the oracle optimality.

The outline of the paper is as follows. After describing the model set-up in Section 2, we
describe our procedure TSHT with voting in Section 3 and provide theoretical justification for
it in Section 4. In Section 5, we investigate the performance of our procedure in a simulation study
and compare it with existing methods, in particular the median method with bootstrapping of
Bowden et al. (2016) and Burgess et al. (2016) and the adaptive lasso method of Windmeijer
et al. (2016). We find that our method and that of Windmeijer et al. (2016) are comparable when
the 50% rule holds, whereas the median estimator suffers from coverage and optimality issues.
However, when the 50% rule fails, our method dominates all these methods. In Section 6, we
present an empirical study where we revisit the question of the causal effect of years of schooling
on income by using data from the Wisconsin longitudinal study (WLS). We provide conclusions
and discussions in Section 7. The code to implement the proposed method along with a running
example is available from https://github.com/hyunseungkang/invalidIV.

2. Model

To define causal effects and instruments, the potential outcome approach (Neyman, 1923; Ru-
bin, 1974) that is laid out in Holland (1988) is used. For each individual i ∈ {1, : : : , n}, let
Y

.d,z/
i ∈ R be the potential outcome if the individual were to have exposure or treatment d ∈ R

and instruments z∈Rpz . Let D
.z/
i ∈R be the potential exposure if the individual had instruments

z∈Rpz . For each individual, only one possible realization of Y
.d,z/
i and D

.z/
i is observed, denoted

as Yi and Di respectively, based on his or her observed candidate instrument values Zi: ∈ Rpz

and exposure value Di. We also denote baseline covariates for each individual i as Xi: ∈Rpx . In
total, n sets of outcome, exposure, instruments and baseline covariates, which are denoted as
.Yi, Di, Zi:, Xi:/, are observed in an independent and identically distributed fashion.

Let Y = .Y1, : : : , Yn/ be an n-dimensional vector of observed outcomes, D = .D1, : : : , Dn/ be
an n-dimensional vector of observed exposures, Z be an n × pz matrix of instruments, where
row i consists of Zi·, and X be an n × px matrix of covariates where row i consists of Xi·. Let
W be an n × p = pz + px matrix where W is the result of concatenating the matrices Z and X
and let ΣÅ =E.Wi·WT

i· / be the positive definite covariance matrix of the instrument–covariate
matrix.
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For any vector v ∈ Rp, let vj denote the jth element of v. Let ‖v‖1, ‖v‖2 and ‖v‖∞ denote
the usual 1-, 2- and ∞-norms respectively. Let supp.v/⊆ {1, : : : , p} denote the support of the
vector v, supp.v/={j :vj �=0}, and ‖v‖0 denote the size of the support of v or, equivalently, the
number of non-zero elements in v. For a set J , let |J | denote its cardinality and JC denote its
complement. For an n×p matrix M ∈ Rn×p, we denote the .i, j/ element of matrix M as Mij,
the ith row as Mi· and the jth column as M·j. For any sets A⊆{1, : : : , n} and B⊆{1, : : : , p}, let
MA,B denote the submatrix that is formed by the rows specified by the set A and the columns
specified by the set B. Let MT be the transpose of M and ‖M‖∞ represent the elementwise
matrix sup-norm of matrix M. For a symmetric matrix M, let λmin.M/ and λmax.M/ denote
the smallest and largest eigenvalues of M respectively.

For a sequence of random variables Xn, let Xn →p X and Xn →d X denote that Xn converges
to X in probability and in distribution respectively. For any two sequences an and bn, let an �bn

denote that lim supn→∞ bn=an =0; similarly, let an 	bn denote bn �an.

2.1. Models and instrumental variables assumptions
We consider the additive linear, constant effects model of Holland (1988) and extend it to
allow for possibly invalid instruments as in Small (2007) and Kang et al. (2016b). For two
possible values of the exposure d′, d and instruments z′ and z, we assume the following potential
outcomes model:

Y
.d′,z′/
i −Y

.d, z/
i = .z′ − z/TκÅ + .d′ −d/βÅ,

E.Y
.0,0/
i |Zi:, Xi:/=ZT

i:η
Å +XT

i:φ
Å .1/

where κÅ, βÅ, ηÅ and φÅ are unknown parameters. The parameter βÅ represents the causal
parameter of interest: the causal effect (divided by d′ −d) of changing the exposure from d′ to d

on the outcome. The parameter φÅ represents the effect of covariates on the baseline potential
outcome Y

.0,0/
i . The parameter κÅ represents the violation of the no-direct-effect assumption

between the instruments and the outcome. For example, if instruments have a causal effect on an
unobserved confounder of the exposure–outcome relationship, this would lead to a direct effect
on the outcome and be reflected inκÅ. The parameterηÅ represents the presence of unmeasured
confounding between the instrument and the outcome. Finally, the model does not assume that
the instruments are uncorrelated with each other.

Our model parameters κÅ and ηÅ encode a particular case of the definitions of the exclusion
restriction (assumption 2) and no unmeasured confounding (assumption 3) in Angrist et al.
(1996) where we assume an additive, linear and constant treatment effect βÅ; see Holland (1988)
and its appendix, and section 1.4 of Hernán and Robins (2006) for additional discussions about
different formalizations of the IV assumptions 2 and 3. For example, the exclusion restriction
(assumption 2) which is typically stated (Angrist et al., 1996) as Y

.d,z/
i = Y

.d,z′/
i for all z, z′ ∈ R

implies that κÅ = 0. Also, the assumption of no unmeasured confounding of the IV–outcome
relationship 3, which is typically stated (Angrist et al., 1996) as Y

.d,z/
i and D

.z/
i are independent

of Zi for all d, z ∈ R, implies that ηÅ = 0; we note that Angrist et al. (1996) considered the
instrument to have a non-zero average causal effect on the exposure, and hence the potential
outcome notation for the exposure D

.z/
i .

Let πÅ =κÅ +ηÅ, ei =Y
.0, 0/
i −E.Y

.0,0/
i |Zi:, Xi:/ and var.ei|Zi:, Xi:/=σ2. When we combine

equation (1) along with the definition of ei, we have the following observed data model, which
is also known as the underidentified single-equation linear model in econometrics (page 83 of
Wooldridge (2010)):



Confidence Intervals by using Two-stage Hard Thresholding with Voting 5

Yi =ZT
i:π

Å +Diβ
Å +XT

i:φ
Å + ei,

E.ei|Zi:, Xi:/=0:
.2/

The observed model is not a usual regression model because Di might be correlated with ei.
In particular, the parameter βÅ measures the causal effect of changing D on Y rather than
an association. Also, the parameter πÅ in model (2) combines two assumptions: the exclusion
restriction (assumption 2) parameterized by κÅ, and no unmeasured confounding (assumption
3) parameterized by ηÅ; in econometrics, the two assumptions are often combined and referred
to as instrument exogeneity (Holland, 1988; Imbens and Angrist, 1994; Angrist et al., 1996;
Wooldridge, 2010). If both assumptions are satisfied, κÅ = ηÅ = 0 so πÅ = 0, although the
converse is not necessarily true. Nevertheless, under both assumptions, the instruments are said
to be valid (Murray, 2006) andπÅ can be used to define valid IVs and we formalize the definition
of valid IVs as follows.

Definition 1. Suppose that we have pz candidate instruments along with models (1) and (2).
We say that instrument j =1, : : : , pz satisfies both assumptions 2 and 3, or is valid, if πÅ

j =0 and
we denote PÅ to be the set of valid instruments.

Definition 1 is closely related to definitions of valid instruments in the literature. If pz =1, our
definition is identical to the definition of a valid instrument in Holland (1988) and is a special case
of the definition in Angrist et al. (1996) where we assume a model. In particular, the exclusion
restriction and no unmeasured confounding in Angrist et al. (1996) imply thatφÅ =ψÅ =0 and,
consequently, πÅ = 0, which is the definition of a valid IV in definition 1; however, satisfying
definition 1 only implies φÅ =−ψÅ, not necessarily φÅ =0 or ψÅ =0. If pz > 1, our framework
is a generalization of these two prior works. In Mendelian randomization, our definition is
identical to the definition of a valid instrument using πÅ (Bowden et al., 2016; Burgess et al.,
2016). We note the validity of an instrument j in the context of the set of instruments {1, : : : , pz}
being considered; see Section 2.3 of Kang et al. (2016b) for details.

In addition to the model for the outcome, we assume a linear association or observational
model between the exposure Di, the instruments Zi: and the covariates Xi::

Di =ZT
i:γ

Å +XT
i:ψ

Å + εi2,

E.εi2|Zi:, Xi:/=0:

Each element γÅ
j , j =1, : : : , L, is the partial correlation between the jth instrument and Di. The

parameterψÅ represents the association between the covariates and Di. Also, unlike models (1)
and (2), we do not need a causal model between Di, Zi: and Xi:; this is because the constant
effect assumption that we make in model (1) eliminates the need to assume a causal instrument;
see Angrist et al. (1996) for details.

On the basis of model (3), we formally define assumption 1, the instruments’ relevance to the
exposure; this is sometimes referred to as existence of non-redundant instruments in economet-
rics (Cheng and Liao, 2015).

Definition 2. Suppose that we have pz candidate instruments along with model (3). We say
that instrument j =1, : : : , pz satisfies assumption 1, or is a non-redundant IV, if γÅ

j �=0 and we
denote SÅ to be the set of these instruments.

Like definition 1, if pz = 1, definition 2 is a special case of the more general definition of
assumption 1 in Angrist et al. (1996) and, if pz >1, our definition is a local version of satisfying
assumption 1 in econometrics, which is typically stated asγÅ �=0 (see section 5.2.1 of Wooldridge
(2010)). In Mendelian randomization, typically, all pz instruments are relevant.
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Combining definitions 1 and 2, we can formally define the usual three core conditions for
instruments, i.e. assumptions 1–3.

Definition 3. Suppose that we have pz candidate instruments along with models (1)–(3). We
say that Zij, j = 1, : : : , pz, is an instrument if assumptions 1–3 are satisfied, i.e. if πÅ

j = 0 and
γÅ

j �=0. Let VÅ =SÅ ∩PÅ be the set of instruments.

For the rest of the paper, we define the sparsity level of πÅ,φÅ,γÅ and ψÅ as sz2 =‖πÅ‖0,
sx2 =‖φÅ‖0, sz1 =‖γÅ‖0 and sx1 =‖ψÅ‖0. Let s=max{sz2, sx2, sz1, sx1}.

2.2. Identification of model parameters
Identification of the model parameters with invalid instruments has been discussed in several
references (Han, 2008; Bowden et al., 2015; Kolesár et al., 2015; Kang et al., 2016b). This
section briefly discusses these references to guide the discussion of our inferential method for
the treatment effect βÅ; because the focus of our paper is inference, we defer additional remarks
about identification to section A of the on-line supplementary materials.

We start by rewriting the models of Y and D in equations (2) and (3) in reduced forms, i.e.
models of Y and D that are functions of Zi: and Xi: only:

Di =ZT
i:γ

Å +XT
i:ψ

Å + εi2,

E.εi2|Zi:, Xi:/=0,
.3/

Yi =ZT
i:Γ

Å +XT
i:Ψ

Å + εi1,

E.εi1|Zi:, Xi:/=0:
.4/

Here, ΓÅ =βÅγÅ +πÅ, ΨÅ =βÅψÅ +φÅ and εi1 =βÅεi2 + ei is the reduced form error term.
The term ΓÅ represents the intent-to-treat effect of the instruments on the outcome and the
term γÅ represents the association between the instruments and the treatment. The terms
εi1 and εi2 are reduced form errors with covariance matrix ΘÅ where ΘÅ

11 = var.εi1|Zi:, Xi:/,
ΘÅ

22 =var.εi2|Zi:, Xi:/ and ΘÅ
12 = cov.εi1, εi2|Zi:, Xi:/. Each reduced form model is the usual re-

gression model with regressors Zi: and Xi: and outcomes Di and Yi and, thus, the parameters
of the reduced form models, especially ΓÅ and γÅ, can be identified and estimated. Then, the
identification of parameters in equations (2) and (3), specifically βÅ and πÅ, can be framed as
finding conditions that provide a unique, invertible mapping between ΓÅ,γÅ and βÅ and πÅ,
through the relation ΓÅ =βÅγÅ +πÅ. A popular condition is that the majority of the instru-
ments are valid, i.e. the majority rule or 50% rule, |VÅ| > 1

2 |SÅ|: Han (2008) and Kang et al.
(2016b) discussed a special case of the 50% rule where all the instruments are relevant, i.e.
|SÅ|=pz. However, as stressed in Kang et al. (2016b), the 50% rule is only a sufficient condition
to identify the model parameters. A more general condition, which we state in theorem 1, is that
the valid instruments form a plurality defined by ratios of πÅ and γÅ.

Theorem 1. Suppose that models (2) and (3) hold and ΣÅ exists and is invertible. Then, given
reduced form parameters γÅ and ΓÅ, there is a unique βÅ and πÅ if and only if the following
plurality rule condition holds:

|VÅ|> max
c �=0

|{j ∈SÅ :πÅ
j =γÅ

j = c}|:

The result in theorem 1 provides a blueprint for building a confidence interval for βÅ. Specifi-
cally, theorem 1 implies that we need an estimate of IVs that satisfy assumption 1, i.e. the set SÅ,
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and an estimate of IVs that satisfy assumptions 2 and 3, i.e. PÅ. Additionally, these estimates
must satisfy the plurality rule condition to identify and eventually to construct a confidence
interval for βÅ. Our method, TSHT with voting, does exactly this. In particular, the first stage
of TSHT estimates SÅ and the second stage of TSHT generates many candidate estimates of
PÅ. The voting step ensures asymptotically that we provide a good estimator of VÅ under the
plurality rule condition.

3. Confidence interval estimation via two-stage hard thresholding with voting

3.1. An illustration of two-stage hard thresholding in low dimensional settings
We first illustrate TSHT under the low dimensional setting where n�pz +px. The low dimen-
sional setting is common in many applications of IVs, such as economics, social sciences and
medical sciences, including Mendelian randomization.

As mentioned before, each reduced form model in equations (3) and (4) is the usual regression
model with regressors Zi: and Xi: and outcomes Di and Yi respectively. There are consistent and
asymptotically normal (CAN) estimators of the regression model parameters in low dimensional
settings, for instance estimators based on ordinary least squares (OLS) stated below:

.γ̂, ψ̂/T = .WTW/−1WTD,

.Γ̂, Ψ̂/T = .WTW/−1WTY,

Θ̂11 = 1
n
‖Y −ZΓ̂−XΨ̂‖2

2,

Θ̂22 = 1
n
‖D−Zγ̂−Xψ̂‖2

2,

Θ̂12 = 1
n

.Y −ZΓ̂−XΨ̂/T.D−Zγ̂−Xψ̂/:

Let Û denote an estimate of .ΣÅ/−1, the precision matrix of W, i.e. Û = .WTW=n/−1. Then,
Θ11 Û=n and Θ22 Û=n are the covariance matrices of the OLS estimators .Γ̂, Ψ̂/ and .γ̂, ψ̂/

respectively.
The estimators above are the only necessary inputs for TSHT:
(a) CAN estimators of the reduced form coefficients in equations (3) and (4),
(b) a consistent estimator of the error variance matrix ΘÅ and
(c) the instrument–covariate matrix W, primarily to estimate its precision matrix, .ΣÅ/−1;

there is an implicit assumption in our notation of γ̂, ψ̂, Γ̂ and Ψ̂ where we know which estimates
are associated with instruments and covariates and we cannot swap the role of covariates and
instruments. Although our discussion was restricted to OLS estimators, any estimator that
satisfies the input requirements will work for TSHT. For example, in Section 3.7, we discuss
input estimators for TSHT when the data are high dimensional. Finally, we emphasize that no
additional choices or inputs are needed for TSHT, such as tuning parameters, beyond the inputs
that are stated above.

3.2. First hard thresholding: select strong instrumental variables satisfying assumption
1, S*

The first thresholding step estimates the set of instruments that satisfy assumption 1, or the set
SÅ = {j : γÅ

j �= 0} defined in definition 2. To do this, we use one of the inputs for TSHT, the
estimator for γÅ: γ̂. Specifically, if the jth component of γ̂ exceeds some threshold away from
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zero, then j most likely belongs to the set SÅ. Estimating SÅ based on this principle is called
hard thresholding (Donoho and Johnstone, 1994; Donoho, 1995) and we denote an estimator
of SÅ as Ŝ:

Ŝ =
{

j :
∣∣γ̂j

∣∣� √
Θ̂22‖WÛ:j‖2√

n

√[
2:01 log{max.pz, n/}

n

]}
: .5/

The threshold to declare whether the estimate γ̂j is away from zero consists of two terms.
The first term

√
Θ̂22‖WÛ:j‖2=n represents the standard error of γ̂j. The second term√

[2:01 log{max.pz, n/}] represents a multiplicity correction for checking whether normally dis-
tributed estimators, like γ̂j, are away from zero. In particular, the

√{2:01 log.·/} part comes from
the tail bound of a normal distribution. The max.pz, n/ part comes from checking multiple γ̂j’s
distance from zero. Without the multiplier term max.pz, n/ in equation (5) and if we have many
instruments, some estimates γ̂j may exceed the threshold by chance and be part of the set Ŝ,
even though their true γÅ

j s may actually be 0. In practice, max.pz, n/ is often replaced by pz or n

to improve the finite sample performance of hard thresholding procedures and we explore this
numerically in Section 5. But, so long as this term grows with n, like max.pz, n/ or pz that grow
with n in high dimensional asymptotics, the asymptotic properties of our procedure described
in Section 4 hold. Combined are the two terms for the variability of the estimate γ̂j as well as
the repeated testing of whether an IV satisfies assumption 1. Finally, the estimator of SÅ does
not require selection of tuning parameters, which is in contrast with other variable selection
procedures like the lasso (Tibshirani, 1996) which typically uses cross-validation to select the
tuning parameters (Hastie et al., 2016); all the components of our threshold in equation (5) are
predetermined from the inputs that were provided in Section 3.1.

If external information suggests that all instruments are strongly associated with the expo-
sure, then the first thresholding step may not be necessary and we can simply set Ŝ ={1, : : : , pz}.
However, when some of these associations may be weak, we recommend running the first thresh-
olding step to improve the finite sample performance of TSHT since the first thresholding should
eliminate weak instruments and make TSHT more robust.

3.3. Second hard thresholding: select valid instrumental variables satisfying
assumptions 2 and 3, P*

The second thresholding step estimates the set of instruments that satisfy assumptions 2 and 3,
or the set PÅ ={j :πÅ

j �=0} defined in definition 1. Unfortunately, unlike the first thresholding
step, none of the inputs for TSHT in Section 3.1 directly estimate πÅ, which we can use to
estimate PÅ via hard thresholding. Instead, we propose many estimates of PÅ and combine
each estimate via voting. We illustrate the estimation of PÅ in this section and the voting in the
next section.

To estimate PÅ, we take each individually strong IV j ∈ Ŝ and propose a plug-in estimate
of πÅ, which is denoted as π̂[j], based on the relationship between the model parameters ΓÅ =
βÅγÅ +πÅ in equation (4):

π̂[j] = Γ̂− Γ̂j

γ̂j

γ̂, j ∈ Ŝ: .6/

The terms Γ̂ and γ̂ in equation (6) are directly from the inputs to TSHT. The term Γ̂j=γ̂j in
equation (6) is a Wald-type or ratio estimate of βÅ based on instrument j. We also propose an
estimate of the variance σ2 based on this jth strong IV as σ̂2

[j] = Θ̂11 + .β̂
[j]

/2 Θ̂22 − 2β̂
[j]

Θ̂12.
In total, we have |Ŝ| estimates of πÅ and σ2.
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For each estimate of πÅ, we estimate the set PÅ similarly to the first hard thresholding step;
the only difference is that we select instrument k with πÅ

k = 0 whereas, in the first thresholding
step, we select instrument k with γÅ

k �= 0. Specifically, for each estimate π[j], we threshold each
component of the vector π[j] below some threshold and we denote the set consisting of these
components as P̂ [j]

:

P̂ [j] =:
{

k : |π̂[j]
k |�√

σ̂2
[j] ‖W{Û:k − .γ̂k=γ̂j/Û:j}‖2√

n

√[
2:012 log{max.pz, n/}

n

]}
: .7/

Like the first threshold in equation (5), the threshold in equation (7) comprises two
terms: the term

√
σ̂2

[j]‖W.Û:k − .γ̂k=γ̂j/Û:j/‖2=n representing the standard error of π̂[j]
k and√

[2:012 log{max.pz, n}] representing the multiplicity correction. The constant 2:012 is
because we are performing (at most) p2

z hypothesis testing for all candidate–component combi-
nations. Also, similarly to the first thresholding step, the thresholds in equation (7) are predeter-
mined. In the end, we have |Ŝ| estimates of PÅ, P̂ [j]

, j ∈ Ŝ.
Combining the two thresholding steps gives estimates of IVs that satisfy all assumptions 1–3,

or the set VÅ in definition 3. Specifically, each intersection V̂ [j] = Ŝ ∩ P̂ [j]
is an estimate of VÅ and

we have |Ŝ| estimates of VÅ (i.e. V̂ [j]
, j ∈ Ŝ). The remaining task is to combine the information

from these estimates to produce a single consistent estimate of the set VÅ.

3.4. Majority and plurality voting
To explain how we combine several estimates V̂ [j]

, j ∈ Ŝ, to produce a single estimate of VÅ,
it is helpful to consider a voting analogy where each j ∈ Ŝ is an expert and V̂ [j]

is expert
j’s ballot that contains expert j’s opinion about which instruments he or she believes satis-
fy assumptions 1–3. Because V̂ [j] ⊆ Ŝ for any j, all experts must pick instruments from the set
Ŝ when they cast their ballots. For example, k ∈ V̂ [j]

indicates that expert j voted on instrument
k as satisfying assumptions 1–3.

Following the voting analogy, we can tally the number of experts who cast their votes for a
particular candidate IV as satisfying assumptions 1–3. Specifically, let 1.k ∈ V̂ [j]

/ be the indi-
cator function that denotes whether the kth instrument belongs to V̂ [j]

and VMk =Σ
j∈Ŝ1.k ∈

V̂ [j]
/ denote the tally of votes that the kth instrument received from all experts where k ∈ Ŝ.

For example, VMk = 3 indicates that three out of |Ŝ| total experts have voted instrument k as
satisfying assumptions 1–3.

Now, suppose that the kth instrument received votes from a majority of experts, i.e. more
than 50% of experts, as satisfying assumptions 1–3, i.e. VMk > 1

2 |Ŝ|. Let V̂M consist of such
instruments and we refer to this type of voting as majority voting:

V̂M ={
k ∈ Ŝ|VMk > 1

2 |Ŝ|}: .8/

Also suppose that V̂M is empty and no instrument won support from a majority of the voters.
Instead, suppose that a candidate IV k received a plurality of votes to satisfy assumptions 1–3,
i.e. VMk =maxl VMl. Let V̂P denote instruments that received a plurality of votes and we refer
to this type of voting as plurality voting:

V̂P ={
k ∈ Ŝ|VMk =max

l
VMl

}
: .9/

Intuitively, V̂M or V̂P is a good proxy of VÅ if the 50% rule or plurality rule condition respectively
hold. For example, if instrument k ∈VÅ and the 50% rule condition held, a majority of experts
would vote for k so that k ∈ V̂ [j]

and the total votes for instrument k across experts, VMk,
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would exceed 50% so that k ∈ V̂M. Similarly, under the plurality rule condition, there are more
experts using valid instruments to inform their ballots V̂ [j]

and their ballots contain k ∈ V̂ [j]
;

in contrast, experts using invalid instruments would not contain k and their ballots would not
form a plurality over any instrument l under consideration. Thus, VMk would be the largest
among all instruments under consideration and k ∈ V̂P.

A single, robust estimate of VÅ under any of the two conditions is the union of the two sets
V̂ = V̂M ∪ V̂P. Technically speaking, because the plurality rule condition is both sufficient and
necessary, the union can consist of only the set V̂P. However, we find that, in simulation studies
and in practice, taking the union of the two sets provides robustness in finite samples.

3.5. Point estimate, standard error and confidence interval
Once we estimated the set of instruments that satisfy assumptions 1–3, i.e. V̂ , estimation and
inference of βÅ are straightforward in the low dimensional setting. In particular, we can use
two-stage least squares (TSLS) with V̂ as the set of IVs that satisfy assumptions 1–3 and obtain
a point estimate for βÅ, which we denote as β̂L

β̂L = γ̂T
V̂ ÂΓ̂V̂
γ̂T

V̂ Âγ̂V̂
, Â = Σ̂V̂ , V̂ − Σ̂V̂ , V̂cΣ̂

−1
V̂c

, V̂cΣ̂V̂c
, V̂ : .10/

The Â is a weighting matrix for the estimates γ̂ and Γ̂, which, among other things, comprises
Σ̂=WTW=n, the inverse of the estimated precision matrix of W that we used in the inputs for
TSHT. The estimated variance of β̂L is

v̂arL =
γ̂T

V̂ Â.Σ̂
−1

/V̂ , V̂ Âγ̂V̂
.γ̂T

V̂ Âγ̂V̂ /2
.Θ̂11 + β̂

2
L Θ̂22 −2β̂L Θ̂12/ .11/

which simplifies to

v̂arL = Θ̂11 + β̂
2
L Θ̂22 −2β̂L Θ̂12

γ̂T
V̂ Âγ̂V̂

:

Finally, for any α where 0 <α< 1, the 1−α confidence interval for βÅ is

.β̂L − z1−α=2
√

.v̂arL=n/, β̂L + z1−α=2
√

.v̂arL=n//, .12/

where z1−α=2 is the .1−α=2/-quantile of the standard normal distribution.
In Section 4.1, we show that the β̂L achieves optimal performance in the sense that β̂L con-

verges to an asymptotic normal distribution that is identical to the asymptotic normal distribu-
tion of the TSLS estimator for βÅ that knows which IVs satisfy assumptions 1–3, i.e. VÅ.

3.6. Comparison with other methods
We make some remarks about our method and the methods that have been proposed in the
literature on invalid IVs. The work by Windmeijer et al. (2016) is the methodologically most
similar to our method in that it also estimates VÅ and uses the estimate of VÅ to obtain an
oracle optimal point estimate and confidence interval of βÅ like we do in Section 3.5. To esti-
mate VÅ, Windmeijer et al. (2016) utilized the adaptive lasso with a median estimator of Han
(2008) and Bowden et al. (2016) as the initial estimator; the tuning parameter in the adaptive
lasso is chosen by cross-validation. In contrast, TSHT with voting utilizes hard thresholding
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steps to estimate VÅ where our ‘tuning’ parameters, i.e. the thresholds, are predetermined and
theoretically motivated. On the basis of numerical results in Section 5.2, we suspect that, in low
dimensional settings, their method and TSHT with voting are asymptotically equivalent when
the 50% rule condition holds.

Another inferential method in the invalid IV literature is bootstrapping the median estimator
(Bowden et al., 2016; Burgess et al., 2016). The key idea is to go directly after the target estimand
βÅ with the median estimator mentioned above and to bootstrap the estimate with sufficient
statistics. Their works are under the two-sample designs with summary data where the errors in
the reduced form models are independent of each other. In contrast, TSHT with voting and the
method of Windmeijer et al. (2016) focus on the one-sample design with individual level data
and correlated error terms. Also, neither method utilizes the bootstrap to generate inferential
quantities.

We argue that TSHT with voting is a major improvement from the methods of Windmeijer
et al. (2016), Bowden et al. (2016) and Burgess et al. (2016) for the following three reasons.
First, all three methods rely on the 50% rule condition because their estimators rely on the
median estimator, which is consistent for βÅ only under the 50% rule condition. In contrast,
TSHT with voting does not rely on an initial consistent estimator and our inferential guarantees
are possible under the more general plurality rule condition. Second, the median methods of
Bowden et al. (2016) and Burgess et al. (2016) may not be oracle optimal in the sense that it may
not be as efficient as the oracle estimator that knows, a priori, which instruments are invalid. The
method of Windmeijer et al. (2016) is oracle optimal in low dimensional settings, but only when
the majority rule holds. In contrast, TSHT with voting is oracle optimal in low dimensional
settings under the more general plurality rule condition; see Section 4.1. Third, there are no
theoretical guarantees that the bootstrap approach to inference for the median method will
always generate a confidence interval that will cover the true parameter with probability 1−α,
although it does perform well in large numerical studies under two-sample designs (Burgess
et al., 2016). Similarly, the theoretical properties of the method of Windmeijer et al. (2016)
are under the assumption that the tuning parameter is not chosen via cross-validation, despite
the fact that Windmeijer et al. (2016) utilized cross-validation when they used their method
in simulations and in a real data example. In contrast, TSHT with voting uses predetermined
thresholding values both in theory and in numerical studies and has theoretical guarantees
on inference; see Section 4. Finally, work by Kang et al. (2016a) does not rely on the 50%
rule to obtain inferential quantities, but it is conservative and works only in low dimensional
settings.

The work by Kang et al. (2016b), which is the precursor of this paper, also proposes a joint
estimator of βÅ and πÅ called sisVIVE. The estimator of Kang et al. (2016b) is based on the
lasso that minimizes the sum of squared errors from model (2) with respect to an l1-penalty on
πÅ. The tuning parameter of the lasso is chosen via cross-validation. A nice feature of sisVIVE
is that it is a one-step method to estimate βÅ. In contrast, TSHT requires two thresholding
steps plus voting to estimate βÅ. Unfortunately, sisVIVE requires more stringent conditions for
consistency than the identification 50% rule condition. Also, like the method of Windmeijer
et al. (2016), the theory behind consistency is developed under the assumption that the tuning
parameter is not chosen via cross-validation. More importantly, sisVIVE did not resolve the
issue of confidence interval construction.

Finally, since this paper was submitted for review, Hartwig et al. (2017) proposed confidence
intervals for βÅ under the plurality rule condition, referred to as the zero modal pleiotropy
assumption. Their method fits a kernel smoothing density on the distribution of different esti-
mates of βÅ from each instrument and takes the mode of the fitted density as the estimate of
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βÅ. Inference is achieved by running a bootstrap. Although the method is simple to understand,
the method suffers from

(a) choosing a good bandwidth parameter for the kernel smoothing density estimator,
(b) a potential lack of oracle optimality and
(c) no theoretical guarantee on inference.

In contrast, TSHT uses predetermined thresholds that lead to oracle optimal and valid inference
for the parameter βÅ.

3.7. High dimensional setting
TSHT with voting can accommodate settings where we have high dimensional covariates and/or
instruments. The modifications that we must make are the estimation of the reduced form model
parameters in equations (3) and (4), the weighting matrix A in equation (10) and the formula
for the standard error; the rest of the procedure is identical.

Specifically, instead of using OLS estimators in Section 3.1, we must resort to estimators that
can handle the case when n	p and are CAN so that the input requirements for TSHT are met.
There are many estimators in high dimensions that meet this criterion, such as the debiased
lasso or its variants laid out in Zhang and Zhang (2014), Javanmard and Montanari (2014),
van de Geer et al. (2014) and Cai and Guo (2017). For completeness, we present one estimator
in high dimensional regression that is CAN: the debiased square-root lasso estimator (Belloni
et al., 2011; Javanmard and Montanari, 2014); see the references cited for additional details on
CAN estimators in high dimensions. First, the square-root lasso estimator (Belloni et al., 2011)
estimates high dimensional reduced form model parameters in equations (3) and (4) based on
the following optimization problems:

{Γ̃, Ψ̃}= arg min
Γ∈Rpz ,Ψ∈Rpx

‖Y −ZΓ−XΨ‖2√
n

+
√{2:01 log.p/}

n

(
pz∑

j=1
‖Z:j‖2|Γj|+

px∑
j=1

‖X:j‖2|Ψj|
)

,

{γ̃, ψ̃}= arg min
Γ∈Rpz ,Ψ∈Rpx

‖D−Zγ−Xψ‖2√
n

+
√{2:01 log.p/}

n

(
pz∑

j=1
‖Z:j‖2|γj|+

px∑
j=1

‖X:j‖2|ψj|
)

:

Also, the corresponding estimates of the variances ΘÅ
11, ΘÅ

22 and ΘÅ
12 from the square-root

lasso are

Θ̂11 = 1
n
‖Y −ZΓ̃−XΨ̃‖2

2,

Θ̂22 = 1
n
‖D−Zγ̃−Xψ̃‖2

2,

Θ̂12 = 1
n

.Y −ZΓ̃−XΨ̃/T.D−Zγ̃−Xψ̃/:

Unfortunately, the square-root lasso estimator is biased because of the penalty term and Ja-
vanmard and Montanari (2014) proposed a way to debias the square-root lasso estimator and
to turn it into CAN estimators. Specifically, Javanmard and Montanari (2014) proposed pz

optimization problems where the solution to each pz optimization problem, which is denoted
as Û:j ∈Rp, j =1, : : : , pz, is

Û:j =arg min
u∈Rp

1
n
‖Wu‖2

2 subject to ‖Σ̂u − I:j‖∞ �12M2
1

√{
log.p/

n

}
.13/
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with Σ̂= .1=n/WTW. Here, I:j denotes the jth column of the identity matrix I and M1 denotes
the largest eigenvalue of ΣÅ. Let Û denote the matrix concatenation of the pz solutions to the
optimization problem. Then, the debiased estimates of Γ̃ and γ̃, which are denoted as Γ̂ and γ̂,
are

Γ̂= Γ̃+ 1
n

ÛWT.Y −ZΓ̃−XΨ̃/,

γ̂= γ̃+ 1
n

ÛWT.D−Zγ̃−Xψ̃/:

.14/

We now have obtained all the ingredients for TSHT in the high dimensional setting:

(a) the CAN estimators ofΓÅ andγÅ, Γ̂ and γ̂ respectively, based on the debiased square-root
lasso;

(b) consistent estimators of the error variances ΘÅ
11, ΘÅ

22 and ΘÅ
12, Θ̂11, Θ̂22 and Θ̂12 respecti-

vely, from the square-root lasso;
(c) an estimate of the precision matrix of W, Û from the debiasing procedure.

Running TSHT with these inputs will estimate the set of valid instruments V̂ in high dimensional
settings.

For point estimation of βÅ in high dimensions, we simply replace Â in equation (10) with the
identity matrix

β̂= γ̂T
V̂ Γ̂V̂
γ̂T

V̂ γ̂V̂
: .15/

The variance estimate of the estimator in equation (15) uses a high dimensional estimate of the
precision matrix in equation (11), i.e.

v̂ar=
γ̂T

V̂ .Û·,V̂ /
T

.WTW=n/Û
:,V̂ γ̂V̂

.γ̂T
V̂ γ̂V̂ /2

.Θ̂11 + β̂
2
Θ̂22 −2β̂ Θ̂12/: .16/

Given the point estimate and the variance, the confidence interval for βÅ follows the usual form

.β̂− z1−α=2
√

.v̂ar=n/, β̂+ z1−α=2
√

.v̂ar=n//: .17/

4. Theoretical results

In this section, we state the asymptotic properties of TSHT with voting. In Section 4.1, we
consider the low dimensional setting where px and pz are fixed. In Section 4.2, we consider the
general case when px and/or pz are allowed to grow and exceed sample size n.

4.1. Invalid instrumental variables in low dimensional setting
First, we prove that the estimated set V̂ is an asymptotically consistent estimator of the true set
VÅ in the low dimensional setting where px and pz are fixed.

Lemma 1. Under the plurality rule assumption, limn→∞ P.V̂ =VÅ/=1.

Lemma 1 confirms our intuition in Section 3.4 that the voting process correctly generates the
set of instruments that are relevant and valid. In fact, a useful feature of our method is that it
provably and correctly selects the IVs that satisfy assumptions 1–3, which is something that is
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not possible with prior methods that target only βÅ, e.g. the median method. Next, theorem 2
states that the confidence interval that was outlined in Section 3.5 has the desired coverage and
optimal length in the low dimensional settings with fixed px and pz.

Theorem 2. Suppose that the plurality rule assumption holds. Then, as n→∞, we have

√
n.β̂L −βÅ/

d→N

{
0,

σ2

γÅT
VÅ .ΣÅ

VÅVÅ −ΣÅ
VÅ.VÅ/CΣÅ−1

.VÅ/C.VÅ/CΣÅ
.VÅ/CVÅ/γÅ

VÅ

}
: .18/

Consequently, the confidence interval that is given in equation (12) has asymptotic coverage
probability 1−α, i.e.

P
{
βÅ ∈ .β̂L − z1−α=2

√
.v̂arL=n/, β̂L + z1−α=2

√
.v̂arL=n//

}→1−α: .19/

We note that the proposed estimator β̂L has the same asymptotic variance as the oracle TSLS
estimator with prior knowledge of VÅ, which is efficient under the homoscedastic variance
assumption; see theorem 5.2 in Wooldridge (2010) for details. Consequently, our confidence
interval in equation (12) asymptotically performs like the oracle TSLS confidence interval and
is of optimal length. But, unlike TSLS, we achieve this oracle performance without prior knowl-
edge of VÅ. We remind readers that the previous estimators that were proposed by Bowden et al.
(2015, 2016), Burgess et al. (2016) and Kang et al. (2016a) do not achieve oracle performance
and TSLS-like efficiency whereas the estimator that was proposed by Windmeijer et al. (2016)
does achieve this, but only when the 50% rule condition holds.

4.2. Invalid instrumental variables in high dimensional setting
We now consider the asymptotic properties of TSHT with voting under the general case when
pz and/or px are allowed to grow, potentially exceeding sample size n. As noted in Section
3.2, to be in alignment with the traditional high dimensional literature where pz and/or px are
always larger than n and growing faster than n, we simplify TSHT by replacing the thresholds
in equations (5) and (7) from log.max{pz, n}/ to log.pz/.

We first introduce the regularity assumptions that are used in high dimensional statistics
(Bickel et al., 2009; Bühlmann and van de Geer, 2011; Cai and Guo, 2017).

Assumption 4 (coherence). The matrix ΣÅ satisfies 1=M1 �λmin.ΣÅ/ �λmax.ΣÅ/ � M1 for
some constant M1 �1 and has bounded sub-Gaussian norm.

Assumption 5 (normality). The error terms in equations (3) and (4) follow a bivariate normal
distribution.

Assumption 6 (global IV strength). The IVs are globally strong with
√{.γÅ

VÅ/TΣVÅ,VÅγÅ
VÅ}�

sz1 log.p/=
√

n, where VÅ is the set of valid IVs defined in definition 3.

Assumption 4 makes sure that the spectrum of the design matrix W is well behaved as p→∞.
Assumption 5 is made out of simplicity, similarly to the normal error assumption that is made in
the work on inference in the weak IV literature (e.g. section 2 of Moreira (2003) and section 2.2.1
of Andrews et al. (2007)) and in high dimensional linear models (e.g. theorem 2.5 in Javanmard
and Montanari (2014) and theorem 2.1 in van de Geer et al. (2014)). Finally, assumption 6
bounds the global strength of the instruments, measured by the weighted l2-norm of γÅ

VÅ , away
from zero. Assumption 6 is commonly assumed in the traditional IV literature under the guise
of a concentration parameter, which is a measure of instrument strength and is the weighted
l2-norm of γÅ

VÅ (Stock et al., 2002; Wooldridge, 2010), and in the high dimensional IV literature
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Belloni et al. (2012) and Chernozhukov et al. (2015). Sections B and C in the on-line supplemen-
tary materials provide additional discussions and show that, if the IVs are valid, then regularity
assumptions 4–6 are sufficient to construct valid confidence intervals in high dimensions.

When IVs are invalid, we need to make two additional assumptions that are not part of the
high dimensional statistics or IVs literature and may be of theoretical interest in future work.

Assumption 7 (individual IV strength). For IVs in SÅ, δmin =minj∈SÅ |γÅ
j |�√{log.pz/=n}.

Assumption 8 (separated levels of violation). For the pair j, k ∈SÅ with πÅ
j =γÅ

j �=πÅ
k =γÅ

k ,∣∣∣∣πÅ
j

γÅ
j

− πÅ
k

γÅ
k

∣∣∣∣� 12.1+maxj∈SÅ |ΓÅ
j =γÅ

j |/
δmin

√{
M1 log.pz/

λmin.ΘÅ/n

}
: .20/

Assumption 8 bounds individual IV strength away from zero so that all IVs in selected Ŝ
are strong. Without this condition, an individually weak IV with small γ̂j may be included in
the first thresholding step and subsequently cause trouble to the second thresholding step in
equation (7) that uses γ̂j in the denominator to construct a candidate estimate of πÅ and PÅ. In
the literature, assumption 8 is similar to the ‘beta-min’-assumption in high dimensional linear
regression without IVs, with the exception that this condition is not imposed on our inferential
quantity of interest, βÅ. Also, assumption 8 is different from assumption 6 in that assumption 6
requires only the global IV strength to be bounded away from zero. Next, assumption 9 requires
that the difference between different levels of ratios πÅ

j =γÅ
j is sufficiently large. Without this

assumption, it would be difficult to distinguish subsets of instruments with different πÅ
j =γÅ

j -
values from the data and to identify the set of valid IVs based on the plurality rule. For example,
consider instruments k and j with πÅ

k =γÅ
k �=πÅ

j =γÅ
j . If equation (20) is satisfied, then k �∈ P̂ [j]

with high probability because πÅ
k =γÅ

k and πÅ
j =γÅ

j are far apart from each other. In contrast, if
equation (20) does not hold, then P̂ [j]

might contain instrument k by chance because πÅ
k =γÅ

k

and πÅ
j =γÅ

j are close to each other.
Lemma 2 shows that, with assumptions 4–6 and 8 and 9 and the plurality rule condition,

TSHT with voting produces a consistent estimator of the set of valid instruments in the high
dimensional setting.

Lemma 2. Suppose that s
√

sz1log.p/=
√

n → 0 and assumptions 4–6, and 8 and 9 and the
plurality rule condition are satisfied. With probability larger than 1−c{p−c +exp .−cn/} for
some c> 0, V̂ =VÅ.

Next, the following theorem shows that β̂ is a consistent and asymptotic normal estimator of
βÅ.

Theorem 3. Under the same assumption as lemma 2, we have

√
n.β̂−βÅ/=T β

Å +ΔβÅ
.21/

where T β
Å |W ∼ N.0, var/ and var = σ2γT

VÅ.Û·,VÅ/TWTWÛ:,VÅγVÅ=n.γT
VÅγVÅ/2. As

s
√

sz1log.p/=
√

n → 0, ΔβÅ
=
√

var→p 0 and the confidence interval that is given in equation
(17) has asymptotic coverage probability of 1−α, i.e.

P{βÅ ∈ .β̂− z1−α=2
√

.v̂ar=n/, β̂+ z1−α=2
√

.v̂ar=n//}→1−α: .22/
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5. Simulation

5.1. Set-up: low dimensional setting
In addition to the theoretical analysis of our method in Section 4, we also conduct a simulation
study to investigate the numerical performance of our method. The design of the simulation
study follows closely that of Windmeijer et al. (2016) where we use models (2) and (3) in Section
2.1. Specifically,

(a) there are pz =7 or pz =10 instruments,
(b) there are no covariates,
(c) the instruments are generated from a multivariate normal distribution with mean 0 and

identity covariance,
(d) the treatment effect is fixed to be βÅ =1 and
(e) the errors have variance 1 and covariance 0:25.

Similarly to Windmeijer et al. (2016), we vary

(a) the sample size n,
(b) the strength of the IV by manipulating γÅ = .1, : : : , 1/Cγ with different values of Cγ and
(c) the degree of violations of assumptions 2 and 3 by manipulating πÅ.

With respect to the last variation, if pz = 7, we set πÅ = .1, 1, 0:5, 0:5, 0, 0, 0/Cπ where Cπ is a
constant that we vary to change the magnitude ofπÅ. If pz =10, we setπÅ = .1, 1, 1, 0, : : : , 0/Cπ.
The first setting mimics the case where the 50% rule condition holds, similarly to Windmeijer
et al. (2016), whereas the second setting mimics the case where the 50% rule fails but the plurality
rule condition holds.

Under this data-generating mechanism, we compare our procedure TSHT with voting with

(a) the naive TSLS that assumes that all the instruments satisfy assumptions 1–3,
(b) the oracle TSLS that knows, a priori, which instruments satisfy assumptions 1–3,
(c) the method of Windmeijer et al. (2016) that uses the adaptive lasso tuned via cross-

validation and the initial median estimator and
(d) the unweighted median estimator of Bowden et al. (2016) and Burgess et al. (2016) with

bootstrapped confidence intervals by using the R package MendelianRandomization
(Yavorska and Burgess, 2017) under default settings.

For (a), we implement TSLS so that it mimics most practitioners’ use of TSLS by simply
assuming that all the instruments Z are valid. For (b), we have the oracle TSLS where an oracle
provides us with the true set of valid IVs, which will not occur in practice. Because TSLS is not
robust against weak instruments, we purposely set our Cγ to correspond to strong IV regimes.
Finally, for (c) and (d), see Section 3.6 for discussions of the methods. Our simulations are
repeated 500 times and we measure the median absolute error, the empirical coverage proportion
and the average length of the confidence interval computed across simulations.

5.2. Low dimensional setting
We first present the setting where the 50% rule holds. Specifically, following Windmeijer et al.
(2016), Table 1 shows the cases where we have 10 IVs with sz2 = 3, n = .500, 1000, 2000, 5000,
10000/, Cγ = .0:2, 0:6, 1/ and Cπ = 0:2. For reference, with n = 500, 2000, 5000 and Cγ = 0:2,
the expected concentration parameter is 7nC2

γ , or, for each n, 140, 560 and 1400 respectively.
Because the 50% rule condition holds, TSHT, the method of Windmeijer et al. (2016) and the
median method should do well. Indeed, between TSHT and the method of Windmeijer et al.
(2016), there is little difference in terms of median absolute error, coverage and length of the
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Table 1. Comparison of methods when the 50% rule holds†

n Cγ Results for the following methods:

TSHT Adaptive lasso Median Naive TSLS Oracle TSLS

500 0.2 0.09 0.72 0.32 0.09 0.72 0.32 0.13 0.17 0.09 0.30 0.03 0.28 0.08 0.96 0.44
500 0.6 0.02 0.84 0.11 0.03 0.81 0.11 0.05 0.31 0.06 0.10 0.01 0.09 0.03 0.96 0.15
500 1.0 0.02 0.83 0.07 0.02 0.78 0.07 0.03 0.71 0.07 0.06 0.02 0.06 0.01 0.95 0.09

1000 0.2 0.04 0.93 0.24 0.04 0.91 0.23 0.09 0.09 0.05 0.30 0.00 0.20 0.05 0.94 0.31
1000 0.6 0.01 0.95 0.08 0.01 0.93 0.08 0.03 0.27 0.03 0.10 0.00 0.07 0.02 0.96 0.10
1000 1.0 0.01 0.94 0.05 0.01 0.94 0.05 0.02 0.49 0.04 0.06 0.00 0.04 0.01 0.96 0.06
2000 0.2 0.03 0.93 0.17 0.03 0.93 0.17 0.07 0.08 0.02 0.30 0.00 0.14 0.04 0.94 0.22
2000 0.6 0.01 0.96 0.06 0.01 0.96 0.06 0.02 0.16 0.02 0.10 0.00 0.05 0.01 0.96 0.07
2000 1.0 0.01 0.95 0.03 0.01 0.95 0.03 0.01 0.33 0.02 0.06 0.00 0.03 0.01 0.97 0.04
5000 0.2 0.02 0.96 0.11 0.02 0.95 0.10 0.04 0.06 0.01 0.30 0.00 0.09 0.03 0.95 0.14
5000 0.6 0.01 0.96 0.04 0.01 0.96 0.03 0.01 0.12 0.01 0.10 0.00 0.03 0.01 0.95 0.05
5000 1.0 0.00 0.94 0.02 0.00 0.95 0.02 0.01 0.25 0.01 0.06 0.00 0.02 0.00 0.95 0.03

10000 0.2 0.01 0.97 0.08 0.01 0.97 0.07 0.03 0.04 0.00 0.30 0.00 0.06 0.02 0.95 0.10
10000 0.6 0.00 0.96 0.03 0.00 0.97 0.02 0.01 0.06 0.00 0.10 0.00 0.02 0.01 0.94 0.03
10000 1.0 0.00 0.94 0.02 0.00 0.95 0.01 0.01 0.16 0.00 0.06 0.00 0.01 0.00 0.95 0.02

†Adaptive lasso stands for the method of Windmeijer et al. (2016) using the median estimator and tuning with
cross-validation. For each setting and method, say TSHT under n=500 and Cγ =0:2, the corresponding row of
numbers (0.09, 0.72, 0.32) represents the median absolute error, the empirical coverage and the average length of
the confidence interval.

confidence interval. Both of the methods struggle with low sample size at n = 500 but, once
n � 2000, the two methods perform as well as the oracle. The median method does well with
respect to median absolute error, but not as well as TSHT or the method of Windmeijer et al.
(2016) and is not near oracle level performance. Also, we note that the confidence interval
based on bootstrapping the median estimator is not a wise strategy in the one-sample setting.
However, this is expected since the median estimator and the R package that implements it
assume a two-sample setting with independent samples. Finally, the naive TSLS consistently
has the worst performance across all simulation settings. For example, naive TSLS performs
worse than TSHT even at n=500.

Next, we present the setting where the 50% rule is violated, i.e. with pz = 7 IVs where only
three satisfy assumptions 1–3. The other parameters of the simulation remain the same, i.e.
n= .500, 1000, 2000, 5000, 10000/, Cγ = .0:2, 0:6, 1/ and Cπ =0:2. We drop the median method
from our comparison because of its poor performance in Table 1.

As expected, in Table 2, the adaptive lasso approach of Windmeijer et al. (2016) performs as
badly as naive TSLS since the adaptive lasso depends on the 50% rule condition for consistency.
In contrast, TSHT, which relies on a more general identifying plurality rule condition, has
low error along with much better coverage than the adaptive lasso. Also, TSHT requires more
samples to achieve the desired level of coverage when the data are generated under the identifying
plurality rule condition than the 50% rule condition.

Overall, the simulation study shows that TSHT with voting performs no worse than the
competing approaches in the literature. When the 50% rule condition holds, TSHT performs
as well as the method that was proposed by Windmeijer et al. (2016). But, when the 50% rule
condition fails to hold, but the plurality rule condition holds, TSHT performs much better with
respect to absolute error, coverage and length of confidence intervals.
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Table 2. Comparison of methods when the 50% rule is violated but the plurality rule holds†

n Cγ Results for the following methods:

TSHT Adaptive lasso Naive TSLS Oracle TSLS

500 0.2 0.37 0.17 0.38 0.35 0.18 0.39 0.41 0.00 0.33 0.09 0.97 0.51
500 0.6 0.11 0.24 0.13 0.13 0.17 0.13 0.14 0.00 0.11 0.03 0.93 0.17
500 1.0 0.07 0.21 0.08 0.08 0.18 0.08 0.09 0.00 0.07 0.02 0.94 0.10

1000 0.2 0.37 0.17 0.36 0.37 0.10 0.33 0.42 0.00 0.24 0.07 0.96 0.36
1000 0.6 0.09 0.32 0.13 0.12 0.12 0.11 0.14 0.00 0.08 0.02 0.96 0.12
1000 1.0 0.06 0.24 0.07 0.07 0.11 0.07 0.09 0.00 0.05 0.01 0.93 0.07
2000 0.2 0.19 0.45 0.32 0.44 0.01 0.27 0.42 0.00 0.17 0.05 0.95 0.25
2000 0.6 0.04 0.62 0.10 0.15 0.02 0.09 0.14 0.00 0.06 0.01 0.94 0.08
2000 1.0 0.03 0.55 0.06 0.09 0.02 0.05 0.09 0.00 0.03 0.01 0.94 0.05
5000 0.2 0.04 0.90 0.19 0.49 0.00 0.19 0.42 0.00 0.11 0.03 0.95 0.16
5000 0.6 0.01 0.91 0.06 0.17 0.00 0.06 0.14 0.00 0.03 0.01 0.94 0.05
5000 1.0 0.01 0.91 0.04 0.10 0.00 0.04 0.09 0.00 0.02 0.01 0.94 0.03

10000 0.2 0.02 0.92 0.13 0.50 0.00 0.14 0.43 0.00 0.07 0.02 0.96 0.11
10000 0.6 0.01 0.92 0.04 0.17 0.00 0.04 0.14 0.00 0.02 0.01 0.95 0.04
10000 1.0 0.00 0.94 0.03 0.10 0.00 0.03 0.09 0.00 0.01 0.00 0.94 0.02

†Adaptive lasso stands for the method of Windmeijer et al. (2016) using the median estimator and tuning with
cross-validation. For each setting and method, say TSHT under n=500 and Cγ =0:2, the corresponding row of
numbers (0.37, 0.17, 0.38) represents the median absolute error, the empirical coverage and the average length of
the confidence interval.

5.3. High dimensional setting
In this section, we present simulations in high dimensions. We use the same data-generating
models as before, except that we have pz =100 instruments with the first sz1 =7 being relevant
and the first sz2 =5 being valid. We also have px =150 covariates with sx2 = sx1 =10. We refer to
this case as the high dimensional instruments and covariates setting. We also consider pz =9 and
px =150, which we refer to as the low dimensional instruments and high dimensional covariates
setting. The only difference between these two settings is the dimension of IVs. However, from
a theoretical standpoint, both settings are considered high dimensional.

Both the instruments and the covariates Wi: are generated from a multivariate normal with
mean 0 and covariance ΣÅ

ij =0:5|i−j| for 1� i, j �px +pz. The other parameters for the models
are βÅ =1, φÅ = .0:6, 0:7, 0:8, : : : , 1:5, 0, 0, : : : , 0/∈R150, ψÅ = .1:1, 1:2, 1:3, : : : , 2:0, 0, 0, : : : , 0/∈
R150, var.εi1/=var.εi2/=1:5 and cov.εi1, εi2/=0:75. We vary

(a) the sample size n,
(b) the strength of IV via γÅ and
(c) the degree of violations of assumptions 2 and 3 via πÅ.

For the sample size, we let n= .200, 300, 1000, 2500/. For the IV strength, we set γÅ =Cγ.1, 1, 1,
1, 1, 1, 1, 0, 0, : : : , 0/ with Cγ=0:5. For violations of assumptions 2 and 3, we setπÅ = .0, 0, 0, 0, 0,
1, 1, 0, 0, : : : , 0/Cπ where Cπ is a constant that we vary to change the magnitude of πÅ.

We compare TSHT with the oracle TSLS method where the oracle uses only the relevant and
valid instruments, i.e. knows the seven relevant instruments, of which the first five are valid.
We do not include the naive TSLS method because it is not feasible in high dimensions. We
also do not include other methods because they were not designed with high dimensionality in
mind. The high dimensional instruments and covariate setting is presented in Table 3 whereas
the low dimensional instruments and high dimensional covariates setting is presented in Table 4.
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Table 3. Performance of TSHT in high dimensional instruments and
covariates with px D150 and pz D100†

n Cπ Results for TSHT Results for oracle

200 0.25 0.162 0.162 0.202 0.038 0.956 0.219
200 0.50 0.129 0.448 0.232 0.036 0.962 0.218
200 1.00 0.056 0.876 0.259 0.036 0.956 0.221
300 0.25 0.155 0.080 0.164 0.033 0.952 0.179
300 0.50 0.093 0.516 0.197 0.029 0.952 0.177
300 1.00 0.041 0.906 0.209 0.029 0.946 0.176

1000 0.25 0.136 0.062 0.094 0.016 0.936 0.096
1000 0.50 0.020 0.942 0.119 0.016 0.936 0.095
1000 1.00 0.020 0.958 0.120 0.016 0.964 0.096
2500 0.25 0.015 0.802 0.068 0.011 0.946 0.060
2500 0.50 0.012 0.956 0.069 0.011 0.948 0.060
2500 1.00 0.011 0.954 0.069 0.010 0.942 0.060

†For each setting and method, say TSHT under n=200 and Cπ =0.25,
the row of numbers (0.162, 0.162, 0.202) represents the median abso-
lute error, the empirical coverage and average length of the confidence
interval.

To mimic the low dimensional results, Table 3 presents the result for Cπ = .0:25, 0:5, 1/. In both
settings, for n=200, our TSHT method does not achieve the desired level of coverage, although
coverage improves dramatically once the violation of assumptions 2 and 3 becomes bigger, i.e.
when Cπ =1. When n�300 and if the violations of assumptions 2 and 3 are substantial, TSHT
achieves the desired level of coverage with absolute error and length of the confidence interval
that are comparable with those of the oracle.

6. Application: causal effect of years of education on annual earnings

To demonstrate our method in a real setting, we analyse the causal effect of years of education on
yearly earnings, which has been studied extensively in economics by using IV methods (Angrist
and Krueger, 1991; Card, 1993, 1999). The data come from the WLS, which is a longitudinal
study that has kept track of American high school graduates from Wisconsin since 1957, and
we examine the relationship between graduates’ earnings and education from the 1974 survey
(Hauser, 2005), roughly 20 years after they graduated from high school. Our analysis includes
N =3772 individuals, 1784 males and 1988 females. For our outcome, we use imputed log(total
yearly earnings) prepared by the WLS (see WLS documentation and Hauser (2005) for details)
and, for the treatment, we use the total years of education, all from the 1974 survey. The median
total earnings is $9200 with a 25% quartile of $1000 and a 75% quartile of $15320 in 1974
dollars. The mean time of total education is 13.7 years with a standard deviation of 2.3 years.

We incorporate many covariates, including sex, graduate’s home town population, educational
attainment of the graduates’ parents, graduates’ family income, relative income in graduates’
home town, graduates’ high school denomination and high school class size, all measured in
1957 when the participants were high school seniors. We also include 81 genetic covariates,
specifically single-nucleotide polymorphisms, that were part of the WLS to control further for
potential variations between graduates; see section D in the on-line supplementary materials for
details on the non-genetic and genetic covariates. In summary, our data analysis includes seven
non-genetic covariates and 81 genetic covariates. We used five instruments in our analysis, all
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Table 4. Performance ofTSHT in low dimension instruments (pz D9)
and high dimension covariates (px D150)†

n Cπ Results for TSHT Results for oracle

200 0.25 0.169 0.196 0.214 0.037 0.928 0.221
200 0.50 0.167 0.362 0.240 0.039 0.926 0.221
200 1.00 0.057 0.852 0.276 0.041 0.942 0.222
300 0.25 0.155 0.094 0.170 0.031 0.938 0.178
300 0.50 0.123 0.426 0.198 0.031 0.956 0.177
300 1.00 0.043 0.916 0.222 0.030 0.960 0.177

1000 0.25 0.133 0.076 0.090 0.015 0.944 0.095
1000 0.50 0.019 0.962 0.113 0.016 0.954 0.096
1000 1.00 0.020 0.958 0.113 0.016 0.950 0.095
2500 0.25 0.012 0.860 0.067 0.009 0.948 0.060
2500 0.50 0.012 0.952 0.068 0.010 0.950 0.060
2500 1.00 0.012 0.958 0.068 0.011 0.944 0.060

†For each setting and method, say TSHT under n=200 and Cπ =0:25,
the row of numbers (0.169, 0.196, 0.214) represents the median absolute
error, the empirical coverage and the average length of the confidence
interval.

derived from past studies of education on earnings (Card, 1993; Blundell et al., 2005; Gary-Bobo
et al., 2006). They are

(a) total number of sisters,
(b) total number of brothers,
(c) individuals, birth order in the family, all from Gary-Bobo et al. (2006),
(d) proximity to college from Card (1993) and
(e) teachers’ interest in individual’s college education from Blundell et al. (2005),

all measured in 1957. Although all these IVs have been suggested to be valid with varying
explanations why they satisfy assumptions 2 and 3 after controlling for the aforementioned
covariates, in practice, we are always uncertain because of the lack of complete socio-economic
knowledge about the effect of these IVs. Our method should provide some protection against
this uncertainty compared with traditional methods where they simply assume that all five IVs
are valid. Also, the first-stage F -test produces an F -statistic of 90.3 with a p-value less than
10−16, which indicates a very strong set of instruments. For more details on the instruments, see
section D of the on-line supplementary materials.

When we use OLS where we run a regression of the treatment and the covariates on the out-
come and looking at the slope coefficient of the treatment variable, we find the effect estimate to
be 0.097 (95% confidence interval 0.051, 0.143). This agrees with previous literature which sug-
gests a statistically significant positive association between years of education and log-earnings
(Card, 1999). However, OLS does not completely control for confounding even after controlling
for covariates. TSLS provides an alternative method of controlling for confounding by using in-
struments so long as all the five instruments satisfy the three core assumptions and the inclusion
of covariates helps to make these assumptions more plausible. The TSLS estimate is 0.169 (95%
confidence interval 0.029, 0.301), which is inconsistent with previous studies’ estimates among
individuals from the USA between the 1950s and the 1970s, which range from 0.06 to 0.13 (see
Table 4 in Card (1999)). Our method, which addresses the concern for invalid instruments with
TSLS, provides an estimate of 0.062 (95% confidence interval 0.046, 0.077), which is more con-
sistent with previous studies’ estimates of the effect of years of education on earnings. The data
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analysis suggests that our method can be a useful tool in IV analysis when there is concern for
invalid instruments, even after attempting to mitigate this problem via covariates. Our method
provides more accurate estimates of the returns on education than does TSLS, which naively
assumes that all the instruments are valid.

7. Conclusion and discussion

We present a method to estimate the effect of the treatment on the outcome by using IVs where
we do not make the assumption that all the instruments are valid. Our approach is based on
the novel TSHT procedure with majority and plurality voting. We theoretically show that our
approach succeeds in selecting valid IVs in the presence of possibly invalid IVs even when the
50% rule is violated and produces robust confidence intervals. In simulation and in real data
settings, our approach provides a more robust analysis than the traditional IV approaches or
recent methods in the invalid IV literature by providing some protection against possibly invalid
instruments and reaches oracle performance around n � 2000. Overall, we believe that our
method can be a valuable tool for researchers in Mendelian randomization and IVs whenever
there are concerns for invalid IVs, which is often the case in practice.

Finally, our theoretical analysis for the case of invalid IVs in high dimensions require assump-
tions 8 and 9. We believe that assumption 9 is probably necessary for the invalid IV problem
in high dimensions because of the model selection literature by Leeb and Pötscher (2005) who
pointed out that ‘in general no model selector can be uniformly consistent for the most parsimo-
nious true model’ and hence that the post-model-selection inference is generally non-uniform.
Consequently, the set of competing models must be ‘well separated’ such that we can consistently
select a correct model. Assumption 9 serves as this ‘well-separated’ condition in our invalid IV
problem. Although some recent work in high dimensional inference (Zhang and Zhang, 2014;
Javanmard and Montanari, 2014; van de Geer et al., 2014; Chernozhukov et al., 2015; Cai and
Guo, 2017) does not make this well-separated assumption, our invalid IV problem is different
from the prior work because a single invalid IV declared as valid can ruin inference whereas the
said prior works assume that the moment conditions are known perfectly. Advanced methods
may weaken assumption 9 and we leave this as a direction for further research.
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