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SUPPLEMENT TO “LIMITING LAWS OF COHERENCE
OF RANDOM MATRICES WITH APPLICATIONS TO

TESTING COVARIANCE STRUCTURE AND
CONSTRUCTION OF COMPRESSED SENSING

MATRICES”

By T. Tony Cai ∗ and Tiefeng Jiang†

University of Pennsylvania and University of Minnesota

In this supplement we first give more details on Remarks 2.3 and
2.4. Then we prove Propositions 4.1 and 6.2 and verify the conclusions
in the three examples given in Section 4, and finally we prove Lemmas
6.5-6.12 which are used in the proofs of the main results.

Details on Remark 2.3. Consider Σ = Ip with p = 2n and τ = n. So
conditions (i) and (iii) in Theorem 4 hold, but (ii) does not. Observe{
(i, j); 1 ≤ i < j ≤ 2n, |i− j| ≥ n

}
= n+ (n− 1) + · · ·+ 1 =

n(n+ 1)

2
∼ p2

8

as n → ∞. So Ln,τ is the maximum of roughly p2/8 random variables,
and the dependence of any two of such random variables are less than that
appeared in Ln in Theorem 3. The result in Theorem 3 can be rewritten as

nL2
n − 2 log

p2

2
+ log log

p2

2
− log 8 converges weakly to F

as n → ∞. Recalling Ln is the maximum of roughly p2/2 weakly dependent
random variables, replace Ln with Ln,τ and p2/2 with p2/8 to have nL2

n,τ −
2 log p2

8 + log log p2

8 − log 8 converges weakly to F, where F is as in Theorem
3. That is,

(nL2
n,τ − 4 log p+ log log p) + log 16 converges weakly to F(76)

as n → ∞ (This can be done rigorously by following the proof of Theorem
3). The difference between (76) and Theorem 4 is evident.

∗The research of Tony Cai was supported in part by NSF FRG Grant DMS-0854973.
†The research of Tiefeng Jiang was supported in part by NSF FRG Grant DMS-

0449365.
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2 T. TONY CAI AND TIEFENG JIANG

Details on Remark 2.4. Let p = mn with integer m ≥ 2. We consider the
p×p matrix Σ = diag (Hn, · · · ,Hn) where there are m Hn’s in the diagonal
of Σ and all of the entries of the n × n matrix Hn are equal to 1. Thus,
if (ζ1, · · · , ζp) ∼ Np(0,Σ), then ζln+1 = ζln+2 = · · · = ζ(l+1)n for all 0 ≤
l ≤ m − 1 and ζ1, ζn+1, · · · , ζ(m−1)n+1 are i.i.d. N(0, 1)-distributed random
variables. Let {ζij ; 1 ≤ i ≤ n, 1 ≤ j ≤ m} be i.i.d. N(0, 1)-distributed
random variables. Then

(ζi1, · · · , ζi1︸ ︷︷ ︸
n

, ζi2, · · · , ζi2︸ ︷︷ ︸
n

, · · · , ζim, · · · , ζim︸ ︷︷ ︸
n

)′ ∈ Rp, 1 ≤ i ≤ n,

are i.i.d. random vectors with distribution Np(0,Σ). Denote the correspond-

ing data matrix by (xij)n×p. Now, take τ = n and m = [en
1/4

]. Notice
Γp,δ = p for any δ > 0. Since p = mn, both (i) and (ii) in Theorem 4 are
satisfied, but (iii) does not. Obviously,

Ln,τ = max
1≤i<j≤p, |i−j|≥τ

|ρij | = max
1≤i<j≤m

|ρ̂ij |,

where ρ̂ij is obtained from (ζij)n×m as in (1) (note that the mn entries of
(ζij)n×m are i.i.d. with distributionN(0, 1)). By Theorem 3 on max1≤i<j≤m |ρ̂ij |,
we have that nL2

n,τ − 4 logm+log logm converges weakly to F, which is the
same as the F in Theorem 4. Set log2 x = log log x for x > 1. Notice

nL2
n,τ − 4 logm+ log2m = nL2

n,τ − 4 log p+ 4 log n+ log2m

= (nL2
n,τ − 4 log p+ log2 p) + 4 log n+ o(1)

since p = mn and log2 p − log2m → 0. Further, it is easy to check that
4 log n − 16 log2 p → 0. Therefore, the previous conclusion is equivalent to
that

(nL2
n,τ − 4 log p+ log log p) + 16 log log p converges weakly to F(77)

as n → ∞. This is different from the conclusion of Theorem 4.

Proof of Proposition 4.1. Recall the definition of L̃n in (3), to prove the
conclusion, w.l.o.g., we assume µ = 0 and σ2 = 1. Evidently, by the i.i.d.
assumption,

P (L̃n ≥ t) ≤ p2

2
P
( |x′1x2|
∥x1∥ · ∥x2∥

≥ t
)

≤ p2

2
P
( |x′1x2|

n
≥ t

2

)
+

p2

2
· 2P

(
∥x1∥2

n
≤ 1

2

)
(78)
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LAWS OF COHERENCE OF RANDOM MATRICES 3

where the event {∥x11∥2/n > 1/2, ∥x12∥2/n > 1/2} and its complement
are used to get the last inequality. Since {xij ; i ≥ 1, j ≥ 1} are i.i.d., the

condition Eet0|x11|2 < ∞ implies Eet
′
0|x11x12| < ∞ for some t′0 > 0. By the

Chernoff bound (see, e.g., p. 27 from Dembo and Zeitouni (1998)) and noting
that E(x11x12) = 0 and Ex211 = 1, we have

P
( |x′1x2|

n
≥ t

2

)
≤ 2e−nI1(t/2) and P

(
∥x1∥2

n
≤ 1

2

)
≤ 2e−nI2(1/2)

for any n ≥ 1 and t > 0, where the following facts about rate functions I1(x)
and I2(y) are used:

(i) I1(x) = 0 if and only if x = 0; I2(y) = 0 if and only if y = 1;
(ii) I1(x) is non-decreasing on A := [0,∞) and non-increasing on Ac. This

is also true for I2(y) with A = [1,∞).
These and (78) conclude

P (L̃n ≥ t) ≤ p2e−nI1(t/2) + 2p2e−nI2(1/2) ≤ 3p2e−ng(t)

where g(t) = min{I1(t/2), I2(1/2)} for any t > 0. Obviously, g(t) > 0 for
any t > 0 from (i) and (ii) above. �

Proof of Proposition 6.2. We prove the proposition by following the
outline of the proof of Proposition 6.1 step by step. It suffices to show

lim
n→∞

P
( Wn√

n log p
≥ 2 + 2ϵ

)
= 0 and(79)

lim
n→∞

P
( Wn√

n log p
≤ 2− ϵ

)
= 0(80)

for any ϵ > 0 small enough. Note that |x11x12|ϱ = |x11|ϱ · |x12|ϱ ≤ |x11|2ϱ +
|x12|2ϱ for any ϱ > 0. From the given moment condition, we see that

E exp
(
t0|x11|4β/(1−β)

)
< ∞. This implies that E exp

(
|x11|

4β
1+β

)
< ∞ and

E exp
(
|x11x12|

2β
1+β

)
< ∞. By (i) of Lemma 6.4, (28) holds for {pn} such

that pn → ∞ and log pn = o(nβ). By using (27) and (29), we obtain (79).

By using condition E exp{t0|x11|
4β
1+β } < ∞ again, we know (33) also holds

for {pn} such that pn → ∞ and log pn = o(nβ). Then all statements after
(30) and before (36) hold. Now, by Lemma 6.7, (37) holds for {pn} such that
pn → ∞ and log pn = o(nβ), we then have (38). This implies (30), which is
the same as (80). �

To verify the assertions stated in the three examples in Section 4, we need
the following lemma.
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4 T. TONY CAI AND TIEFENG JIANG

LEMMA 0.1 Let Z be a random variable with EZ = 0, EZ2 = 1 and
Eet0|Z| < ∞ for some t0 > 0. Choose α > 0 such that E(Z2eα|Z|) ≤ 3/2.
Set I(x) = supt∈R{tx− logEetZ}. Then I(x) ≥ x2/3 for all 0 ≤ x ≤ 3α/2.

Proof. By the Taylor expansion, for any x ∈ R, ex = 1+x+ x2

2 e
θx for some

θ ∈ [0, 1]. It follows from EZ = 0 that

EetZ = 1 +
t2

2
E(Z2eθtZ) ≤ 1 +

t2

2
E(Z2et|Z|) ≤ 1 +

3

4
t2

for all 0 ≤ t ≤ α. Use the inequality log(1 + x) ≤ x for all x > −1 to see
that logEetZ ≤ 3t2/4 for every 0 ≤ t ≤ α. Take t0 = 2x/3 with x > 0. Then
0 ≤ t0 ≤ α for all 0 ≤ x ≤ 3α/2. It follows that

I(x) ≥ t0x− 3

4
t20 =

x2

3
. �

Verifications of Examples 1, 2, and 3 in Section 4. We consider the
three examples one by one.
(i) If x11 ∼ N(0, n−1) as in (19), then ξ and η are i.i.d. with distribution
N(0, 1). By Lemma 3.2 from Jiang (2005), I2(x) = (x − 1 − log x)/2 for
x > 0. So I2(1/2) > 1/12. Also, since Eeθξη = Eeθ

2ξ2/2 = (1 − θ2)−1/2 for
|θ| < 1. It is straightforward to get

I1(x) =

√
4x2 + 1− 1

2
− 1

2
log

√
4x2 + 1 + 1

2
, x > 0.

Let y =
√
4x2+1−1

2 . Then y > 2x2/3 for all |x| ≤ 4/5. Thus, I1(x) = y −
1
2 log(1 + y) > y

2 > x2

3 for |x| ≤ 4/5. Therefore, g(t) ≥ min{I1( t2),
1
12} ≥

min{ t2

12 ,
1
12} = t2

12 for |t| ≤ 1. Since 1/(2k − 1) ≤ 1 if k ≥ 1. By Proposition
4.1, we have

P
(
(2k − 1)L̃n < 1

)
≥ 1− 3p2 exp

{
− n

12(2k − 1)2

}
(81)

for all n ≥ 2 and k ≥ 1, which is (23).
(ii) Let x11 be such that P (x11 = ±1/

√
n) = 1/2 as in (20). Then ξ and η in

Proposition 4.1 are i.i.d. with P (ξ = ±1) = 1/2. Hence, P (ξη = ±1) = 1/2
and ξ2 = 1. Immediately, I2(1) = 0 and I2(x) = +∞ for all x ̸= 1. If
α = log 3

2 ∼ 0.405, then E(Z2eα|Z|) = eα ≤ 3
2 with Z = ξη. Thus, by

Lemma 0.1, I1(x) ≥ x2/3 for all 0 ≤ x ≤ 3
5 ≤ 3α

2 . Therefore, g(t) ≥ t2

12 for
0 ≤ t ≤ 6

5 . This gives that

P
(
(2k − 1)L̃n < 1

)
≥ 1− 3p2 exp

{
− n

12(2k − 1)2

}
(82)
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LAWS OF COHERENCE OF RANDOM MATRICES 5

provided 1
2k−1 ≤ 6

5 , that is, k ≥ 11
12 . We then obtain (23) for all n ≥ 2 and

k ≥ 1.
(iii) Let x11 be such that P (x11 = ±

√
3/n) = 1/6 and P (x11 = 0) = 2/3 as

in (21). Then ξ and η in Proposition 4.1 are i.i.d. with P (ξ = ±
√
3) = 1/6

and P (ξ = 0) = 2/3. It follows that P (Z = ±3) = 1/18 and P (Z = 0) = 8/9
with Z = ξη. Take α = 1

3 log
3
2 > 0.13. Then E(Z2eα|Z|) = 2×9

18 e3α = 3
2 .

Thus, by Lemma 0.1, I1(x) ≥ x2/3 for all 0 ≤ x ≤ 3α
2 = 1

2 log
3
2 ∼ 0.2027.

Now, P (ξ2 = 3) = 1
3 = 1− P (ξ2 = 0). Hence, ξ2/3 ∼ Ber(p) with p = 1

3 . It
follows that

I2(x) = sup
θ∈R

{
(3θ)

x

3
− logEe3θ(ξ

2/3)
}

= Λ∗
(x
3

)
=

x

3
log x+

(
1− x

3

)
log

3− x

2

for 0 ≤ x ≤ 3 by (b) of Exercise 2.2.23 from Dembo and Zeitouni (1998).
Thus, I2(

1
2) =

1
6 log

1
2 + 5

6 log
5
4 ∼ 0.0704 > 1

15 . Now, for 0 ≤ t ≤ 2
5 , we have

g(t) = min
{
I1(

t

2
), I2(

1

2
)
}
≥ min

{ t2

12
,
1

15

}
=

t2

12
.

Easily, t := 1
2k−1 ≤ 2

5 if and only if k ≥ 7
4 . Thus, by Proposition 4.1,

P
(
(2k − 1)L̃n < 1

)
≥ 1− 3p2 exp

{
− n

12(2k − 1)2

}
(83)

for all n ≥ 2 and k ≥ 7
4 . We finally conclude (23) for all n ≥ 2 and k ≥ 2.

�

Proof of Lemma 6.5. (i) First, since xij ’s are i.i.d. bounded random vari-
ables with mean zero and variance one, by (i) of Lemma 6.4,

P (
√

n/ log p bn,4 ≥ K) = P
(
max
1≤i≤p

∣∣∣∣∣ 1√
n log p

n∑
k=1

xki

∣∣∣∣∣ ≥ K
)

(84)

≤ p · P
(∣∣∣ 1√

n log p

n∑
k=1

xk1

∣∣∣ ≥ K
)

≤ p · e−(K2/3) log p =
1

pK2/3−1
→ 0(85)

as n → ∞ for any K >
√
3. This says that {

√
n/ log p bn,4} are tight.
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6 T. TONY CAI AND TIEFENG JIANG

Second, noticing that |t−1| ≤ |t2−1| for any t > 0 and nh2i = ∥xi−x̄i∥2 =
xTi xi − n|x̄i|2, we get that

bn,1 ≤ max
1≤i≤p

|h2i − 1| ≤ max
1≤i≤p

∣∣∣∣∣ 1n
n∑

k=1

(x2ki − 1)

∣∣∣∣∣+ max
1≤i≤p

∣∣∣∣∣ 1n
n∑

k=1

xki

∣∣∣∣∣
2

= Zn + b2n,4(86)

where Zn = max1≤i≤p

∣∣ 1
n

∑n
k=1(x

2
ki − 1)

∣∣ . Therefore,√
n

log p
bn,1 ≤

√
n

log p
Zn +

√
log p

n
·
(√ n

log p
bn,4

)2
.(87)

Replacing “xki” in (84) with “x2ki − 1” and using the same argument, we
obtain that {

√
n/ log pZn} are tight. Since log p = o(n) and {

√
n/ log p bn,4}

are tight, using (25) we know the second term on the right hand side of (87)
goes to zero in probability as n → ∞. Hence, we conclude from (87) that
{
√

n/ log p bn,1} are tight.
Finally, since log p = o(n) and {

√
n/ log p bn,1} are tight, use (25) to have

bn,1 → 0 in probability as n → ∞. This implies that bn,3 → 1 in probability
as n → ∞.

(ii) We first claim that

bn,3
P→ 1 as n → ∞, and {

√
n/ log p bn,1} and {

√
n/ log p bn,4}

are tight if Eet0|x11|α < ∞ for some 0 < α ≤ 2 and t0 > 0, and(88)

pn → ∞ and log pn = o(nβ1) as n → ∞, where β1 = α/(4− α).

If the claim holds and 0 < α ≤ 2, recalling β = α/(4+α) < α/(4−α) = β1,
then log pn = o(nβ) = o(nβ1) as n → ∞, the desired conclusions follow.

If claim (88) holds and α > 2, then Eet0|x11|2 < ∞. It follows that
{
√

n/ log p bn,1} and {
√

n/ log p bn,4} are all tight with log pn = o(n). Notic-
ing β = α

4+α < 1, we see that {
√

n/ log p bn,1} and {
√

n/ log p bn,4} are all

tight with log pn = o(nβ). We also have that bn,3 → 1 in probability as
n → ∞ by the same argument as in the last paragraph of the proof of (i)
above. Now we turn to prove claim (88).

By (85) and (87), to prove claim (88), it is enough to show, for some
constant K > 0,

p · P
( ∣∣∣ 1√

n log p

n∑
k=1

xk1

∣∣∣ ≥ K
)
→ 0 and(89)

p · P
( ∣∣∣ 1√

n log p

n∑
k=1

(x2k1 − 1)
∣∣∣ ≥ K

)
→ 0(90)
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LAWS OF COHERENCE OF RANDOM MATRICES 7

as n → ∞. Using an :=
√
log pn = o(nβ/2) and (i) of Lemma 6.4, we have

P
( ∣∣∣ 1√

n log p

n∑
k=1

xk1

∣∣∣ ≥ K
)
≤ 1

pK2/3
and

P
( ∣∣∣ 1√

n log p

n∑
k=1

(x2k1 − 1)
∣∣∣ ≥ K

)
≤ 1

pK2/3

as n is sufficiently large, where the first inequality holds provided

E exp
(
t0|x11|2β/(1+β)

)
= E exp(t0|x11|α/2) < ∞;

the second holds since E exp
(
t0|x211−1|2β/(1+β)

)
= E exp(t0|x211−1|α/2) < ∞

for some t0 > 0, which is equivalent to Eet
′
0|x11|α < ∞ for some t′0 > 0. We

then get (89) and (90) by taking K = 2. �

Proof of Lemma 6.6. Let Gn = {|
∑n

k=1 x
2
k1/n − 1| < δ}. Then, by the

Chernoff bound (see, e.g., p. 27 from Dembo and Zeitouni (1998)), for any
δ ∈ (0, 1), there exists a constant Cδ > 0 such that P (Gc

n) ≤ 2e−nCδ for all
n ≥ 1. Set an = tn

√
n log p. Then

Ψn ≤ E
{
P 1

(
|

n∑
k=1

xk1xk2| > an

)2
IGn

}
+ 2e−nCδ(91)

for all n ≥ 1. Evidently, |xk1xk2| ≤ C2, E1(xk1xk2) = 0 and E1(xk1xk2)
2 =

x2k1, where E
1 stands for the conditional expectation given {xk1, 1 ≤ k ≤ n}.

By the Bernstein inequality (see, e.g., p.111 from Chow and Teicher (1997)),

P 1
(
|

n∑
k=1

xk1xk2| > an

)2
IGn ≤ 4 · exp

{
− a2n

(
∑n

k=1 x
2
k1 + C2an)

}
IGn

≤ 4 · exp
{
− a2n

((1 + δ)n+ C2an)

}
≤ 1

pt2/(1+2δ)
(92)

as n is sufficiently large, since a2n/(n(1 + δ) + C2an) ∼ t2(log p)/(1 + δ)
as n → ∞. Recalling (91), the conclusion then follows by taking δ small
enough. �

Proof of Lemma 6.7. Let P 2 stand for the conditional probability given
{xk2, 1 ≤ k ≤ n}. Since {xij ; i ≥ 1, j ≥ 1} are i.i.d., to prove the lemma, it
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is enough to prove

Ψn := E
{
P 2

(
|

n∑
k=1

xk1xk2| > tn
√

n log p
)2}

= O

(
1

pt2−ϵ

)
(93)

as n → ∞. Here we use the notation “P 2” instead of “P 1” simply because
of the convenience of notation.

Step 1. For any x > 0, by the Markov inequality

P ( max
1≤k≤n

|xk2| ≥ x) ≤ nP (|x12| ≥ x) ≤ Cne−t0xα
(94)

where C = Eet0|x11|α < ∞. Second, we know that Eet|x11|4β/(1+β)
< ∞ for

any t > 0 from the given condition. For any ϵ > 0, by (ii) of Lemma 6.4,
there exists a constant C = Cϵ > 0 such that

P
( |∑n

k=1 x
2
k2 − n|

n(β+1)/2
≥ ϵ

)
≤ e−Cϵnβ

(95)

for each n ≥ 1.
Set hn = n(1−β)/4, µn = ExijI(|xij | ≤ hn),

yij = xijI(|xij | ≤ hn)− ExijI(|xij | ≤ hn)

zij = xijI(|xij | > hn)−ExijI(|xij | > hn)(96)

for all i ≥ 1 and j ≥ 1. Then, xij = yij+zij for all i, j ≥ 1. Use the inequality
P (U + V ≥ u+ v) ≤ P (U ≥ u) + P (V ≥ v) to obtain

P 2
(
|

n∑
k=1

xk1xk2| > tn
√

n log p
)2

≤ 2P 2
(
|

n∑
k=1

yk1xk2| > (tn − δ)
√
n log p

)2

+ 2P 2
(
|

n∑
k=1

zk1xk2| > δ
√

n log p
)2

:= 2An + 2Bn(97)

for any δ > 0 small enough. Hence,

Ψn ≤ 2EAn + 2EBn(98)

for all n ≥ 2.

imsart-aos ver. 2010/08/03 file: Coherence_Supplement_01_15_11.tex date: January 15, 2011



LAWS OF COHERENCE OF RANDOM MATRICES 9

Step 2: the bound of An. Now, if max1≤k≤n |xk2| ≤ hn, then |yk1xk2| ≤ 2h2n
for all k ≥ 1. It then follows from the Bernstein inequality (see, e.g., p. 111
from Chow and Teicher (1997)) that

An = P 2
(
|

n∑
k=1

yk1xk2| > (tn − δ)
√

n log p
)2

≤ 4 · exp
{
− (tn − δ)2n log p

E(y211)
∑n

k=1 x
2
k2 + 2h2n(tn − δ)

√
n log p

}
≤ 4 · exp

{
− (tn − δ)2n log p

E(y211)(n+ ϵn(β+1)/2) + 2h2n(tn − δ)
√
n log p

}
for 0 < δ < tn and

|
∑n

k=1 x
2
k2−n|

n(β+1)/2 < ϵ. Notice E(y211) → 1 and 2h2n(tn −
δ)
√
n log p/3 = o(n) as n → ∞. Thus,

(tn − δ)2n log p

E(y211)(n+ ϵn(β+1)/2) + 2h2n(tn − δ)
√
n log p

∼ (t− δ)2 log p

as n → ∞. In summary, if max1≤k≤n |xk2| ≤ hn and
|
∑n

k=1 x
2
k2−n|

n(β+1)/2 ≤ ϵ, then
for any δ ∈ (0, t/2),

An ≤ 1

pt2−2tδ
(99)

as n is sufficiently large. Therefore, for any ϵ > 0 small enough, take δ
sufficiently small to obtain

EAn = E
{
P 2

(
|

n∑
k=1

yk1xk2| > (tn − δ)
√
n log p

)2}
≤ 1

pt2−ϵ
+ P ( max

1≤k≤n
|xk2| ≥ hn) + P

( |∑n
k=1 x

2
k2 − n|

n(β+1)/2
≥ ϵ

)
≤ 1

pt2−ϵ
+ Cne−hα

n + e−Cϵnβ
= O

(
1

pt2−ϵ

)
(100)

as n → ∞, where the second inequality follows from (94) and (95), and
the last identity follows from the fact that hαn = nβ and the assumption
log p = o(nβ).
Step 3: the bound of Bn. Recalling the definition of zij and µn in (96), we
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have √
Bn = P 2

(
|

n∑
k=1

zk1xk2| > δ
√
n log p

)
≤ P 2

(
|

n∑
k=1

xk1xk2I{|xk1| > hn}| > δ
√

n log p/2
)

+ I
(
|

n∑
k=1

xk2| >
δ
√
n log p

2(e−n + |µn|)

)
:= Cn +Dn.(101)

Now, by (94),

Cn ≤ P ( max
1≤k≤n

|xk1| > hn) ≤ Cne−t0hα
n = Cne−t0nβ

.(102)

Easily, |µn| ≤ E|x11|I(|x11| > hn) ≤ e−t0hα
n/2E(|x11|et0|x11|α/2) = Ce−t0nβ/2.

Also, P (|
∑n

k=1 ηk| ≥ x) ≤
∑n

k=1 P (|ηk| ≥ x/n) for any random variables
{ηi} and x > 0. We then have

EDn = P
(
|

n∑
k=1

xk2| >
δ
√
n log p

2(e−n + |µn|)

)
≤ nP

(
|x11| >

δ
√
n log p

2n(e−n + |µn|)

)
≤ nP

(
|x11| > et0n

β/3
)
≤ e−n(103)

as n is sufficiently large, where the last inequality is from condition Eet0|x11|α <
∞. Consequently,

EBn ≤ 2E(C2
n) + 2E(D2

n) = 2E(C2
n) + 2E(Dn) ≤ e−Cnβ

(104)

as n is sufficiently large. This joint with (98) and (100) yields (93). �

Proof of Lemma 6.8. Take γ = (1− β)/2 ∈ [1/3, 1/2). Set

ηi = ξiI(|ξi| ≤ nγ), µn = Eη1 and σ2
n = V ar(η1), 1 ≤ i ≤ n.(105)

Since the desired result is a conclusion about n → ∞, without loss of gener-
ality, assume σn > 0 for all n ≥ 1. We first claim that there exists a constant
C > 0 such that

max
{
|µn|, |σn − 1|, P (|ξ1| > nγ)

}
≤ Ce−nβ/C(106)
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for all n ≥ 1. In fact, since Eξ1 = 0 and αγ = β,

|µn| = |Eξ1I(|ξ1| > nγ)| ≤ E|ξ1|I(|ξ1| > nγ)

≤ E
(
|ξ1|et0|ξ1|

α/2
)
· e−t0nβ/2(107)

for all n ≥ 1. Note that |σn − 1| ≤ |σ2
n − 1| = µ2

n + Eξ21I(|ξ1| > nγ), by
the same argument as in (107), we know both |σn − 1| and P (|ξ1| > nγ) are

bounded by Ce−nβ/C for some C > 0. Then (106) follows.
Step 1. We prove that, for some constant C > 0,

∣∣P( Sn√
n log pn

≥ yn

)
− P

( ∑n
i=1 ηi√

n log pn
≥ yn

)∣∣ ≤ 2e−nβ/C(108)

for all n ≥ 1. Observe

ξi ≡ ηi for 1 ≤ i ≤ n if max
1≤i≤n

|ξi| ≤ nγ .(109)

Then, by (106),

P
( Sn√

n log pn
≥ yn

)
≤ P

( Sn√
n log pn

≥ yn, max
1≤i≤n

|ξi| ≤ nγ
)
+ P

( n∪
i=1

{|ξi| > nγ}
)

≤ P
( ∑n

i=1 ηi√
n log pn

≥ yn

)
+ Cne−nβ/C(110)

for all n ≥ 1. Use inequality that P (AB) ≥ P (A)− P (Bc) for any events A
and B to have

P
( Sn√

n log pn
≥ yn

)
≥ P

( Sn√
n log pn

≥ yn, max
1≤i≤n

|ξi| ≤ nγ
)

= P
( ∑n

i=1 ηi√
n log pn

≥ yn, max
1≤i≤n

|ξi| ≤ nγ
)

≥ P
( ∑n

i=1 ηi√
n log pn

≥ yn

)
− Cne−nβ/C

where in the last step the inequality P (max1≤i≤n |ξi| > nγ) ≤ Cne−nβ/C is
used as in (110). This and (110) concludes (108).
Step 2. Now we prove

P
( ∑n

i=1 ηi√
n log pn

≥ yn

)
∼ e−x2

n/2

√
2πxn

(111)
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12 T. TONY CAI AND TIEFENG JIANG

as n → ∞, where

xn = y′n
√

log pn and y′n =
1

σn

(
yn −

√
n

log pn
µn

)
.(112)

First, by (106),

|y′n − yn| ≤
|1− σn|

σn
yn +

1

σn
·
√

n

log pn
|µn| ≤ Ce−nβ/C(113)

for all n ≥ 1 since both σn and yn have limits and pn → ∞. In particular,
since log pn = o(nβ),

xn = o(nβ/2)(114)

as n → ∞. Now, set

η′i =
ηi − µn

σn

for 1 ≤ i ≤ n. Easily

P
( ∑n

i=1 ηi√
n log pn

≥ yn

)
= P

( ∑n
i=1 η

′
i√

n log pn
≥ y′n

)
(115)

for all n ≥ 1. Reviewing (105), for some constant K > 0, we have |η′i| ≤ Knγ

for 1 ≤ i ≤ n. Take cn = Knγ−1/2. Recalling xn in (112). It is easy to check
that

sn :=
( n∑

i=1

Eη′2i

)1/2
=

√
n, ϱn :=

n∑
i=1

E|η′i|3 ∼ nC, |η′i| ≤ cnsn and

0 < cn ≤ 1

as n is sufficiently large. Recall γ = (1 − β)/2, it is easy to see from (114)
that

0 < xn <
1

18cn

for n large enough. Now, let γ(x) be as in Lemma 6.3, since β ≤ 1/3, by the
lemma and (114),∣∣∣γ(xn

sn

)∣∣∣ ≤ 2x3nϱn
s3n

= o
(
n

3β
2
− 1

2

)
→ 0 and

(1 + xn)ϱn
s3n

= O(n(β−1)/2) → 0
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as n → ∞. By (112) and (113), xnsn = y′n
√
n log pn and xn → ∞ as n → ∞.

Use Lemma 6.3 and the fact 1− Φ(t) = 1√
2πt

e−t2/2 as t → +∞ to obtain

P
( ∑n

i=1 η
′
i√

n log pn
≥ y′n

)
= P

( n∑
i=1

η′i ≥ xnsn

)
∼ 1− Φ(xn) ∼

e−x2
n/2

√
2πxn

(116)

as n → ∞. This and (115) conclude (111).
Step 3. Now we show

e−x2
n/2

√
2πxn

∼ p
−y2n/2
n (log pn)

−1/2

√
2πy

:= ωn(117)

as n → ∞. Since yn → y and σn → 1, we know from (113) that

√
2πxn =

√
2πy′n(log pn)

1/2 ∼
√
2πy (log pn)

1/2(118)

as n → ∞. Further, by (112),

e−x2
n/2

p
−y2n/2
n

= exp
{
− x2n

2
+

y2n
2

log pn

}
= exp

{1

2

(
y2n − y′2n

)
log pn

}
.(119)

Since yn → y, by (113), both {yn} and {y′n} are bounded. It follows from

(113) again that |y2n − y′2n | ≤ C|yn − y′n| = O(e−nβ/C) as n → ∞. With as-

sumption log pn = o(nβ) we get e−x2
n/2 ∼ p

−y2n/2
n as n → ∞, which combining

with (118) yields (117).
Finally, we compare the right hand sides of (108) and (117). Choose C ′ >

max{y2n; n ≥ 1}, since log pn = o(nβ), recall ωn in (117),

2e−nβ/C

ωn
= 2

√
2π y (log pn)

1/2py
2
n/2

n e−nβ/C

= O

(
nβ/2 · exp

{
C ′ log pn − nβ

C

})
= O

(
nβ/2 · exp

{
− nβ

2C

})
→ 0

as n → ∞ for any constant C > 0. This fact joint with (108), (111) and
(117) proves the lemma. �

Proof of Lemma 6.9. For any Borel set A ⊂ R, set

P2(A) = P (A|uk1, uk3, 1 ≤ k ≤ n),
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the conditional probability of A with respect to uk1, uk3, 1 ≤ k ≤ n. Observe
from the expression of Σ4 that three sets of random variables {uk1, uk3; 1 ≤
k ≤ n}, {uk2; 1 ≤ k ≤ n} and {uk4; 1 ≤ k ≤ n} are independent. Then

P
(
|

n∑
k=1

uk1uk2| > an, |
n∑

k=1

uk3uk4| > an

)
= E

{
P2

(
|

n∑
k=1

uk1uk2| > an

)
P2

(
|

n∑
k=1

uk3uk4| > an

)}
≤

{
E P2

(
|

n∑
k=1

uk1uk2| > an

)2}1/2
·
{
E P2

(
|

n∑
k=1

uk3uk4| > an

)2}1/2

by the Cauchy-Schwartz inequality. Use the same independence again

P2

(
|

n∑
k=1

uk1uk2| > an

)
= P

(
|

n∑
k=1

uk1uk2| > an

∣∣∣uk1, 1 ≤ k ≤ n
)
;(120)

P2

(
|

n∑
k=1

uk3uk4| > an

)
= P

(
|

n∑
k=1

uk3uk4| > an

∣∣∣uk3, 1 ≤ k ≤ n
)
.(121)

These can be also seen from Proposition 27 in Fristedt and Gray (1997). It
follows that

sup
|r|≤1

P
(
|

n∑
k=1

uk1uk2| > an, |
n∑

k=1

uk3uk4| > an

)
≤ E

{
P
(
|

n∑
k=1

uk1uk2| > an

∣∣∣u11, · · · , un1)2}
.

Since {uk1; 1 ≤ k ≤ n} and {uk2; 1 ≤ k ≤ n} are independent, and
tn := an/

√
n log p → t = 2, taking α = 2 in Lemma 6.7, we obtain the

desired conclusion from the lemma. �

Proof of Lemma 6.10. Since Σ4 is always non-negative definite, the de-
terminant of the first 3× 3 minor of Σ4 is non-negative: 1− r21 − r22 ≥ 0. Let
r3 =

√
1− r21 − r22 and {uk5; 1 ≤ k ≤ n} be i.i.d. standard normals which

are independent of {uki; 1 ≤ i ≤ 4; 1 ≤ k ≤ n}. Then,

(u11, u12, u13, u14)
d
= (u11, u12, r1u11 + r2u12 + r3u15, u14).
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Define Zij = |
∑n

k=1 ukiukj | for 1 ≤ i, j ≤ 5 and r5 = r3. By the Cauchy-
Schwartz inequality,

|
n∑

k=1

(r1uk1 + r2uk2 + r3uk5)uk4| ≤
∑

i∈{1,2,5}

|ri| · |
n∑

k=1

ukiuk4|

≤
(
r21 + r22 + r23

)1/2(
Z2
14 + Z2

24 + Z2
54

)1/2

≤
√
3 ·max{Z14, Z24, Z54}.

It follows from the above two facts that

P
(
|

n∑
k=1

uk1uk2| > an, |
n∑

k=1

uk3uk4| > an

)
≤ P

(
Z12 > an, max{Z14, Z24, Z54} >

an√
3

)
≤

∑
i∈{1,2,5}

P
(
Z12 > an, Zi4 >

an√
3

)
= 2P

(
Z12 > an, Z14 >

an√
3

)
+ P

(
Z12 > an

)
· P

(
Z54 >

an√
3

)
(122)

by symmetry and independence. For any Borel set A ⊂ R, set P 1(A) =
P (A|uk1, 1 ≤ k ≤ n), the conditional probability of A with respect to
uk1, 1 ≤ k ≤ n. For any s > 0, from the fact that {uk1}, {uk2} and {uk4}
are independent, we see that

P
(
Z12 > an, Z14 > san

)
= E

(
P 1(Z12 > an) · P 1(Z14 > san)

)
≤

{
E P 1(Z12 > an)

2
}1/2

·
{
E P 1(Z14 > san)

2
}1/2

by the Cauchy-Schwartz inequality. Taking tn := an/
√
n log p → t = 2 and

tn := san/
√
n log p → t = 2s in Lemma 6.7, respectively, we get

E P 1(Z12 > an)
2 = O

(
p−4+ϵ

)
and EP 1(Z14 > san)

2 = O
(
p−4s2+ϵ

)
as n → ∞ for any ϵ > 0. This implies that, for any s > 0 and ϵ > 0,

P
(
Z12 > an, Z14 > san

)
≤ O

(
p−2−2s2+ϵ

)
(123)

as n → ∞. In particular,

P
(
Z12 > an, Z14 >

an√
3

)
≤ O

(
p−

8
3
+ϵ
)

(124)
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as n → ∞ for any ϵ > 0.
Now we bound the last term in (122). Note that |u11u12| ≤ (u211+u212)/2, it

follows that Ee|u11u12|/2 < ∞ by independence and E exp(N(0, 1)2/4) < ∞.
Since {uk1, uk2; 1 ≤ k ≤ n} are i.i.d. with mean zero and variance one, and
yn := an/

√
n log p → 2 as n → ∞, taking α = 1 in Lemma 6.8, we get

P
(
Z12 > an

)
= P

( 1√
n log p

|
n∑

k=1

uk1uk2| >
an√
n log p

)
∼ 2 · p

−y2n/2(log p)−1/2

2
√
2π

∼ e−y/2

√
2π

· 1

p2
(125)

as n → ∞. Similarly, for any t > 0,

P
(
Z12 > tan

)
= O

(
p−2t2+ϵ

)
(126)

as n → ∞ (this can also be derived from (i) of Lemma 6.4). In particular,

P
(
Z54 >

an√
3

)
= P

(
Z12 >

an√
3

)
= O

(
p−

2
3
+ϵ
)

(127)

as n → ∞ for any ϵ > 0. Combining (125) and (127), we know that the

last term in (122) is bounded by O(p−
8
3
+ϵ) as n → ∞ for any ϵ > 0. This

together with (122) and (124) concludes the lemma. �

Proof of Lemma 6.11. Fix δ ∈ (0, 1). Take independent standard normals
{uk5, uk6; 1 ≤ k ≤ n} that are also independent of {uki; 1 ≤ i ≤ 4; 1 ≤ k ≤
n}. Then, since {uk1, uk2, uk5, uk6; 1 ≤ k ≤ n} are i.i.d. standard normals,
by checking covariance matrix Σ4, we know

(u11, u12, u13, u14)
d
= (u11, u12, r1u11 + r′1u15, r2u12 + r′2u16)(128)

where r′1 =
√

1− r21 and r′2 =
√

1− r22. Define Zij = |
∑n

k=1 ukiukj | for
1 ≤ i, j ≤ 6. Then

|
n∑

k=1

(r1uk1 + r′1uk5)(r2uk2 + r′2uk6)|

≤ |r1r2|Z12 + |r1r′2|Z16 + |r′1r2|Z25 + |r′1r′2|Z56

≤ (1− δ)2Z12 + 3max{Z16, Z25, Z56}(129)

for all |r1|, |r2| ≤ 1 − δ. Let α = (1 + (1 − δ)2)/2, β = α/(1 − δ)2 and
γ = (1− α)/3. Then

β > 1 and γ > 0.(130)
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Easily, if Z12 ≤ βan, max{Z16, Z25, Z56} ≤ γan, then from (129) we know
that the left hand side of (129) is controlled by an. Consequently, by (128)
and the i.i.d. property,

P (Z12 > an, Z34 > an)

= P
(
Z12 > an, |

n∑
k=1

(r1uk1 + r′1uk5)(r2uk2 + r′2uk6)| > an

)
≤ P (Z12 > an, Z12 > βan) +

∑
i∈{1,2,5}

P (Z12 > an, Zi6 > γan)

= P (Z12 > βan) + 2P (Z12 > an, Z16 > γan)

+P (Z12 > an) · P (Z56 > γan)(131)

where “2P (Z12 > an, Z16 > γan)” comes from that (Z12, Z16)
d
= (Z12, Z26).

Keep in mind that (Z12, Z16)
d
= (Z12, Z14) and Z56

d
= Z12. Recall (130), ap-

plying (123) and (126) to the three terms in the sum on the right hand side
of (131), we conclude (72). �

Proof of Lemma 6.12. Reviewing notation Ω3 = Ωj for j = 3 defined
below (65), the current case is that d1 ≤ d3 ≤ d2 ≤ d4 with d = (d1, d2)
and d′ = (d3, d4). Of course, by definition, d1 < d2 and d3 < d4. To save
notation, define the “neighborhood” of di as follows:

Ni =
{
d ∈ {1, · · · , p}; |d− di| < τ

}
(132)

for i = 1, 2, 3, 4.
Given d1 < d2, there are two possibilities for d4: (a) d4 − d2 > τ and

(b) 0 ≤ d4 − d2 ≤ τ. There are four possibilities for d3: (A) d3 ∈ N2\N1;
(B) d3 ∈ N1\N2; (C) d3 ∈ N1 ∩ N2; (D) d3 /∈ N1 ∪ N2. There are eight
combinations for the locations of (d3, d4) in total. However, by (64) the
combination (a) & (D) is excluded. Our analysis next will exhaust all of the
seven possibilities.
Case (a) & (A). Let Ωa,A be the subset of (d, d′) ∈ Ω3 satisfying restrictions
(a) and (A), and others such as Ωb,C are similarly defined. Thus,∑

(d,d′)∈Ω3

P (Zd > an, Zd′ > an) ≤
∑
θ,Θ

∑
(d,d′)∈Ωθ,Θ

P (Zd > an, Zd′ > an)(133)

where θ runs over set {a, b} and Θ runs over set {A,B,C,D} but (θ,Θ) ̸=
(a,D).
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Easily, |Ωa,A| ≤ τp3 and the covariance matrix of (wd2 , wd1 , wd3 , wd4) (see
(67)) is 

1 0 γ 0
0 1 0 0
γ 0 1 0
0 0 0 1

 , |γ| ≤ 1.

Take ϵ = 1/2 in Lemma 6.9 to have P (Zd > an, Zd′ > an) ≡ ρn = o(p−7/2)
for all (d, d′) ∈ Ωa,A. Thus∑

(d,d′)∈R

P (Zd > an, Zd′ > an) = |R| · ρn → 0(134)

as n → ∞ for R = Ωa,A.
Case (a) & (B). Notice |Ωa,B| ≤ τp3 and (wd1 , wd2 , wd3 , wd4) has the same
covariance matrix as that in Lemma 6.9. By the lemma we then have (134)
for R = Ωa,B.
Case (a) & (C). Notice |Ωa,C | ≤ τ2p2 and the covariance matrix of
(wd1 , wd2 , wd3 , wd4) is the same as that in Lemma 6.10. By the lemma, we
know (134) holds for R = Ωa,C .
Case (b) & (A). In this case, |Ωb,A| ≤ τ2p2 and the covariance matrix of
(wd3 , wd4 , wd2 , wd1) is the same as that in Lemma 6.10. By the lemma and
using the fact that

P (Zd > an, Zd′ > an) = P (Z(d3,d4) > an, Z(d2,d1) > an)

we see (134) holds with R = Ωb,A.
Case (b) & (B). In this case, |Ωb,B| ≤ τ2p2 and the covariance matrix of
(wd1 , wd2 , wd3 , wd4) is the same as that in Lemma 6.11. By the lemma, we
know (134) holds for R = Ωb,B.
Case (b) & (C). We assign positions for d1, d3, d2, d4 step by step: there
are at most p positions for d1 and at most k positions for each of d3, d2 and
d4. Thus, |Ωb,C | ≤ τ3p. By (125),

P (Zd > an, Zd′ > an) ≤ P (Zd > an) = P
(
|

n∑
i=1

ξiηi| > an

)
= O

( 1

p2

)
as n → ∞, where {ξi, ηi; i ≥ 1} are i.i.d. standard normals. Therefore, (134)
holds with R = Ωb,C .
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Case (b) & (D). In this case, |Ωb,C | ≤ τp3 and the covariance matrix of
(wd4 , wd3 , wd2 , wd1) is the same as that in Lemma 6.9. By the lemma and
noting the fact that

P (Zd > an, Zd′ > an) = P (Z(d4,d3) > an, Z(d2,d1) > an)

we see (134) holds with R = Ωb,D.
We obtain (72) by combining (134) for all the cases considered above with

(133). �
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