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Minimax and Adaptive Estimation of Covariance
Operator for Random Variables Observed on a Lattice

Graph
T. Tony CAI and Ming YUAN

Covariance structure plays an important role in high-dimensional statistical inference. In a range of applications including imaging analysis
and fMRI studies, random variables are observed on a lattice graph. In such a setting, it is important to account for the lattice structure
when estimating the covariance operator. In this article, we consider both minimax and adaptive estimation of the covariance operator over
collections of polynomially decaying and exponentially decaying parameter spaces. We first establish the minimax rates of convergence for
estimating the covariance operator under the operator norm. The results show that the dimension of the lattice graph significantly affects the
optimal rates convergence, often much more so than the dimension of the random variables. We then consider adaptive estimation of the
covariance operator. A fully data-driven block thresholding procedure is proposed and is shown to be adaptively rate optimal simultaneously
over a wide range of polynomially decaying and exponentially decaying parameter spaces. The adaptive block thresholding procedure is
easy to implement, and numerical experiments are carried out to illustrate the merit of the procedure. Supplementary materials for this article
are available online.
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1. INTRODUCTION

In many high-dimensional inference problems, random vari-
ables are observed on a lattice graph. For example, in imaging
analysis the intensity values are observed on pixels that form a
two-dimensional lattice, and in fMRI studies, the observations
are made at voxels that can be described as a three-dimensional
lattice graph. In these applications, the covariance structure,
which needs to be estimated from the data, often plays a critical
role. For covariance estimation in such settings, it is important
to account for the structural information because the covariance
between two random variables often depends on where they are
observed. Simply vectorizing the observations and estimating
the covariance as a matrix typically does not lead to satisfactory
results as the lattice structure is ignored. Consider, for example,
extracting eigenimages from a training set—a standard task in
imaging analysis, especially for the purpose of face recognition
(see, e.g., Sirovich and Kirby 1987; Turk and Pentland 1991).
Typically eigenimages are estimated directly from the sample
covariance operator which does not account for the lattice struc-
ture of an image, but recent results suggest that consistency can
only be achieved with a prohibitive sample size requirement; see,
for example, Rudelson (1999) and Johnstone and Lu (2009). In
this article, we develop new estimation procedures which are
specifically designed to account for the lattice structure and
show that, in doing so, drastically improved performance of
covariance estimation can be achieved.

Let G(q1, . . . , qd ) = [q1] × [q2] × · · · × [qd ] be a d-
dimensional lattice where [q] = {1, 2, . . . , q}. Assume with-
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out loss of generality that q1 ≤ q2 ≤ · · · ≤ qd . Hereafter, we
shall use Gd as a shorthand notation for the d-dimensional lat-
tice G(q1, . . . , qd ) when no confusion occurs. Let X = (X(t) :
t ∈ Gd ) be a stochastic process defined on the lattice graph
Gd . Suppose we observe n independent realizations of X, de-
noted by X1, X2, . . . , Xn. We are interested in estimating the
covariance operator of X, ! = (σ (s, t))s,t∈Gd

where σ (s, t) =
cov(X(s), X(t)), based on the random sample {X1, X2, . . . , Xn}.
Note that the covariance operator ! is defined over the Carte-
sian product space of Gd × Gd , that is, ! ∈ RGd×Gd . A partic-
ularly interesting case here is when the number of variables
p := q1q2, . . . , qd is moderate or large when compared with
the sample size n. Estimating a covariance operator in the high-
dimensional setting is difficult, and it is crucial to take advantage
of the special structure of the problem. In particular, it is often
the case that the covariance between X(s) and X(t) diminishes
as their distance D(s, t) increases. Note that ! corresponds to a
compact operator from ℓ2(Gd ) to itself. Let ∥!∥ be its operator
norm. We shall consider the setting where the covariance oper-
ator ! ∈ Fd ({ak}; M) for some nonincreasing sequence ak ↓ 0
and a constant M > 0 where

Fd ({ak}; M0)

=

⎧
⎨

⎩! : ! ≻ 0, ∥!∥ ≤ M0,
∑

s:D(s,t)≥k

|σ (s, t)| ≤ ak,

∀k > 0 and t ∈ Gd

⎫
⎬

⎭ . (1)

To fix ideas, in what follows, we shall take D(·, ·) to be the
Manhattan or equivalently ℓ1 distance on Gd , a natural metric
for lattice graph (Krause 1987). Our development, however, can
be easily generalized to deal with other distance measures on
Gd .
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We study in this article optimal and adaptive estimation of
! ∈ Fd ({ak}; M0) under the operator norm ∥ · ∥. In particu-
lar, we shall focus on two specific choices of {ak : k ≥ 1},
namely, ak = Mk−α and ak = M exp(−α0k

α) for some con-
stants M,α0,α > 0. For brevity, in what follows, we de-
note by Fd (α; M0,M) the first class of covariance opera-
tors and F∗

d (α0,α; M0,M) the class that corresponds to ak =
M exp(−α0k

α). It is clear that the former describes a class of
covariance operators where the covariance between two random
variables decays polynomially in their distances whereas the lat-
ter consists of covariance operators where the covariances decay
exponentially fast with their distances. We shall consider sub-
Gaussian variables X which satisfy, for some constant ρ > 0,

P

⎧
⎨

⎩

∣∣∣∣∣∣

∑

t∈Gd

u(t)(X(t) − EX(t))

∣∣∣∣∣∣
> x

⎫
⎬

⎭ ≤ e−ρx2/2,

for all x > 0 and ∥u∥ = 1. (2)

Denote by Pd (α; M0,M) the collection of sub-Gaussian dis-
tributions with the covariance operator ! ∈ Fd (α; M0,M) and
similarly, P∗

d (α0,α; M0,M) is the collection of sub-Gaussian
distributions with ! ∈ F∗

d (α0,α; M0,M). We write an ≍ bn if
there are constants 0 < c1 ≤ c2 such that c1 ≤ an/bn ≤ c2 for
all n. We establish the following minimax rates of convergence
for estimating ! under the operator norm.

Theorem 1. Let X be a random variable defined on a lattice
graph G(q1, . . . , qd ) with q1 ≤ · · · ≤ qd . Given a random sam-
ple X1, . . . , Xn from the distribution of X. The minimax risk for
estimating the covariance operator ! under the operator norm
∥ · ∥ satisfies

inf
!̃(data)

sup
Pd (α;M0,M)

E∥!̃ − !∥2 ≍ log p

n

+ min

⎧
⎨

⎩

(

n−1
k∏

l=0

ql

) 2α
2α+d−k

: 0 ≤ k ≤ d

⎫
⎬

⎭ , (3)

where q0 := 1; and

inf
!̃(data)

sup
P∗

d (α0,α;M0,M)
E∥!̃ − !∥2 ≍ log p

n

+ 1
n

d∏

k=1

(min{qk, (log n)1/α}). (4)

The minimax rates of convergence given in Theorem 1 quan-
tify how well the covariance operators can be estimated. The
optimal rates are established in two steps. We first obtain lower
bounds for the minimax risk by applying Fano’s lemma to a
carefully constructed finite subset of the parameter spaces. A
blockwise banding estimator is then proposed and is shown to
attain the same rates of convergence as those of the minimax
lower bounds, and it is thus rate optimal.

Theorem 1 shows that the optimal rate of convergence for
estimating the covariance operator depends not only on the total
number p of variables but also on the individual dimensions
q1, . . . , qd of the lattice. In the case of exponentially decaying
covariance operators, the rate is determined jointly by p and
those dimensions that are smaller than (log n)1/α . The effect of

dimensions on the optimal rate of convergence for polynomially
decaying covariance operator is more profound. A revealing
example is the case when d = 2. The optimal rate for estimating
polynomially decaying covariance operator is given by

inf
!̃(data)

sup
!∈F2(α;M0,M)

E∥!̃ − !∥2 ≍ log(q1q2)
n

+ min
{
n− α

α+1 ,
(q1

n

) 2α
2α+1

,
q1q2

n

}
. (5)

We note an interesting phase transition behavior in the effect of
the dimensionality of the lattice: the optimal rate of convergence
does not depend on the specific value of q2 whenever q2 ≫
(n/q1)1/(2α+1); and the rate does not depend on either q1 or q2

when q1 ≫ n1/(2α+2).
It is also instructive to examine carefully the special case when

q1 = · · · = qd =: q and hence p = qd . In this case, the minimax
rates given in (3) and (4) can be more explicitly expressed as

inf
!̃(data)

sup
!∈Fd (α;M0,M)

E∥!̃ − !∥2 ≍ min
{
n− 2α

2α+d + d log q

n
,

qd

n

}
,

(6)
and

inf
!̃(data)

sup
!∈F∗

d (α0,α;M0,M)
E∥!̃ − !∥2

≍ min
{

(log n)d/α

n
+ d log q

n
,

qd

n

}
. (7)

It is interesting to note the different roles played by the two
measures of dimensionality d and p. Except for the case when
the number p of variables is very small relative to the sample
size n, the optimal rates depend on p only through its logarithm.
Therefore, quality estimates can be obtained with a relatively
small sample size even if the number of variables is large. The
dimension d of the lattice, on the other hand, has a much more
severe impact on the optimal rate of convergence. For both
classes of covariance operators, the rate of convergence quickly
deteriorates when d increases, in a way reminiscent of the so-
called “curse of dimensionality” often associated with the clas-
sical multivariate nonparametric regression (see, e.g., Tsybakov
2009). As a result, a lot more observations are needed to yield a
good estimate as the dimension of the lattice increases.

In addition to the minimax optimality, we also study the
problem of adaptive estimation of covariance operators for ran-
dom variables observed on a lattice graph. A fully data-driven
block thresholding procedure is introduced in Section 3 and
is shown to adaptively attain the optimal rate of convergence
over Fd (α; M0,M) and F∗

d (α0,α; M0,M) simultaneously for
all α0,α > 0. The block thresholding procedure first carefully
divides the sample covariance operator into blocks of varying
sizes and then applies thresholding to each block depending
on its size and operator norm. The idea of adaptive estimation
through block thresholding can be traced back to nonparametric
function estimation (see, e.g., Efromovich 1985 and Cai 1999),
and has been recently applied to covariance matrix estimation
(Cai and Yuan 2012). The setting here is, however, more com-
plicated due to the lattice structure.

Our work relates to a fast growing literature on estimation
of structured covariance and precision matrices. See, for exam-
ple, Ledoit and Wolf (2004), Huang et al. (2006), Yuan and
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Lin (2007), Bickel and Levina (2008a, b), El Karoui (2008),
Fan, Fan, and Lv (2008), Friedman et al. (2008), Rothman
et al. (2008), Lam and Fan (2009), Rothman, Levina, and Zhu
(2009), Yuan (2010), Cai and Liu (2011), Cai, Liu, and Luo
(2011), Cai and Yuan (2012), Cai, Liu, and Zhou (2011), Cai
and Zhou (2012), among many others. In particular, a com-
monly considered class of covariance matrices is the so-called
bandable covariance matrices which amounts to a special case
of Fd (α; M0,M) with d = 1. It can be easily deduced from (6)
that the minimax rate of convergence for estimating bandable
covariance matrices over F1(α; M0,M) is

inf
!̃(data)

sup
!∈F1(α;M0,M)

E∥!̃ − !∥2 ≍ min
{
n− 2α

2α+1 + log p

n
,
p

n

}
,

which was first established by Cai, Zhang, and Zhou (2010).
More recently, Cai and Yuan (2012) showed that a carefully de-
vised block thresholding procedure can adaptively achieve the
optimal rate of convergence over F1(α; M0,M) simultaneously
for all α > 0. But unlike these earlier developments where the
analysis techniques are specifically tailored for covariance ma-
trices, our treatment here is more general and can handle not
only higher dimensional lattices but also covariance operators
with arbitrarily decaying rates.

The rest of the article is organized as follows. After intro-
ducing basic notation and definitions, Section 2 establishes the
minimax rates of covergence for estimating both polynomially
decaying and exponentially decaying covariance operators. It is
shown that a blockwise banding estimator attains the optimal
rate of convergence. Section 3 considers adaptive estimation.
A fully data-driven block thresholding estimator is constructed
by first carefully dividing the sample covariance operator into
blocks and then simultaneously estimating the entries in a block
by thresholding. This estimator is shown to attain the optimal
rate of convergence adaptively over the collections of both poly-
nomially decaying and exponentially decaying covariance op-
erators. Section 4 considers the performance of the proposed
method through numerical studies. Extensions to other related
problems are discussed in Section 5.

2. OPTIMAL RATES OF CONVERGENCE

In this section, we establish the optimal rates of convergence
for estimating the covariance operator !. We begin by intro-
ducing some basic notation and definitions. Throughout the
article, for r ≥ 1 and u ∈ RGd , denote ∥u∥r =
(
∑

t∈Gd
|u(t)|r )1/r . In the special case of r = 2, we de-

note ∥u∥ for the usual Euclidean norm of u. For the covariance
operator ! of a random variable X defined on the lattice Gd ,
we define ∥!∥ℓr→ℓr

= max∥u∥r=1 ∥!u∥r for the operator norm
from ℓr (Gd ) to ℓr (Gd ). When r = 2, we simply denote ∥!∥ for
the norm ∥!∥ℓ2→ℓ2 .

A key step in establishing the optimal rate of convergence is
the derivation of the minimax lower bounds. We obtain sepa-
rately the lower bounds for the collection of polynomially decay-
ing covariance operators Fd (α; M0,M) and for the collection of
exponential decaying covariance operators F∗

d (α0,α; M0,M).
Note that any lower bound for a specific case yields immedi-
ately a lower bound for the general case. It therefore suffices to
consider the case when X is normally distributed. More specifi-

cally, we have the following lower bounds for the minimax risk
of estimating ! over Fd (α; M0,M) or F∗

d (α0,α; M0,M).

Theorem 2. Suppose that we observe a random sample

X1, . . . , Xn
iid∼ N (0,!) and wish to estimate ! ∈ RGd×Gd un-

der the operator norm ∥ · ∥. Then, there exists a constant C > 0
not depending on p or n such that

inf
!̃(data)

sup
!∈Fd (α;M0,M)

E∥!̃ − !∥2

≥ C

⎛

⎝ log p

n
+ min

⎧
⎨

⎩

(

n−1
k∏

l=0

ql

) 2α
2α+d−k

: 0 ≤ k ≤ d

⎫
⎬

⎭

⎞

⎠ ,

(8)

and

inf
!̃(data)

sup
!∈F∗

d (α0,α;M0,M)
E∥!̃ − !∥2

≥ C

(
log p

n
+ 1

n

d∏

k=1

(min{qk, (log n)1/α})
)

, (9)

where q0 = 1.

We now show the lower bounds given in Theorem 2 are indeed
tight and the convergence rates are achievable. Without loss of
generality, we shall assume in the rest of the article that X is
centered, for the covariance operator is invariant to the mean.
Recall that the sample covariance operator is given by

S = (S(s, t))s,t∈Gd
:=
(

1
n

n∑

i=1

Xi(s)Xi(t) − X̄(s)X̄(t)

)

s,t∈Gd

,

where X̄(s) = 1
n

∑n
i=1 Xi(s). We first state the following result

on the sample covariance operator.

Lemma 1. Assume that X1, . . . , Xn are independent copies
of a sub-Gaussian random process X defined over Gd with co-
variance operator !. Then, there exists a constant C > 0 such
that

E∥S − !∥2 ≤ Cp

n
.

In the light of Lemma 1, the lower bound (8) for polynomially
decaying covariance operators is attained by the sample covari-
ance operator whenever q ≤ n1/(2α+d). Similarly, the sample
covariance operator achieves the lower bound (9) for exponen-
tially decaying covariance operator if q ≤ q∗ where q∗ is defined
as the solution to

log n + d log x = 2α0x
α. (10)

It therefore suffices to focus on the cases when q >

n1/(2α+d) for ! ∈ Fd (α; M0,M); and when q > q∗ for ! ∈
F∗

d (α0,α; M0,M). Our approach is constructive and in particu-
lar, we shall introduce a simple “blockwise banding” procedure
for estimating ! and show that it can attain the rates from The-
orem 2 under these settings.

We start by dividing the lattice Gd into blocks of size
b × · · · × b for some b. More specifically, let I (l)

j = {(j − 1)b +
1, (j − 1)b + 2, . . . , jb} for j = 1, 2, . . . , Nl − 1 and I

(l)
Nl

=
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{(Nl − 1)b + 1, . . . , ql} where Nl = ⌈ql/b⌉ for l = 1, . . . , d.
Define a “block”

Bj = I
(1)
j1

× I
(2)
j2

× · · · × I
(d)
jd

,

for j = (j1, j2, . . . , jd ) ∈ G(N1, . . . , Nd ). For a linear operator
A : ℓ2(Gd ) 1→ ℓ2(Gd ), we shall define

Ajj′ := ABj×Bj′ = (a(s, t))s∈Bj,t∈Bj′ .

We then proceed to estimate all blocks !jj′ where j, j′ ∈
G(N1, . . . , Nd ) based upon their sample version. In particular,
let

!̂jj′ =
{

Sjj′ , if ∥j − j′∥∞ ≤ 1

0, otherwise.
(11)

In other words, we estimate !jj′ by its sample counterpart if and
only if the two blocks Bj and Bj′ are “neighbors,” as illustrated
in Figure 1.

We now show that with appropriate choice of b, the proposed
estimator !̂ can achieve the optimal rate of convergence. In
particular, when ! ∈ Fd (α; M0,M), we take

b =

⎡

⎢⎢⎢

(

n/

k∗∏

l=0

ql

) 1
2α+d−k∗

⎤

⎥⎥⎥
,

where

k∗ = argmin
k

⎧
⎨

⎩

(

n−1
k∏

l=0

ql

) 2α
2α+d−k

: 0 ≤ k ≤ d

⎫
⎬

⎭ .

On the other hand, in the case of F∗
d (α0,α; M0,M), we shall

take b = ⌈q∗⌉ to be the block size where q∗ is the solution to
(10). With these choices, we have

Theorem 3. Suppose that we observe a random sample
X1, . . . , Xn consisting of independent copies of a sub-Gaussian

Figure 1. Blocks and their “neighbors”—A two-dimensional ex-
ample of the blocking scheme. In this case, k = 3 and the blocks are
represented with red dashed lines as boundary. The gray blocks are the
“neighbors” of the solid black block.

random process X defined over Gd and wish to estimate its co-
variance operator ! ∈ RGd×Gd . Let !̂ be the blockwise banding
estimate defined as above. Then, there exists a constant C > 0
not depending on p or n such that

sup
!∈Fd (α;M0,M)

E∥!̂ − !∥2

≤ C

⎛

⎝ log p

n
+ min

⎧
⎨

⎩

(

n−1
k∏

l=0

ql

) 2α
2α+d−k

: 0 ≤ k ≤ d

⎫
⎬

⎭

⎞

⎠ ,

(12)

provided that q > n1/(2α+d); and

sup
!∈F∗

d (α0,α;M0,M)
E∥!̂ − !∥2

≤ C

(
log p

n
+ 1

n

d∏

k=1

(min{qk, (log n)1/α})
)

, (13)

provided that q > q∗ where q∗ is the solution to (10).

Together with the lower bound given in Theorem 2, this
etsablishes that the optimal rate of convergence for estimating
! ∈ F∗

d (α; M0,M) and F∗
d (α0,α; M0,M) and the blockwise

banding estimator is rate optimal.

3. ADAPTIVE BLOCK THRESHOLDING

Although the blockwise banding estimator proposed in the
last section achieves the optimal rate of convergence, it is evident
from its construction that it depends on the explicit knowledge
of α which is typically unknown in practice. This makes the con-
cept of adaptive estimation—a single estimator, not depending
on the decay rate α, that achieves the optimal rate of convergence
simultaneously—of great practical importance. In this section,
we shall introduce a fully data-driven adaptive estimator !̂ and
show that it is simultaneously rate optimal over the collection of
the parameter spaces Fd (α; M0,M) and F∗

d (α0,α; M0,M) for
all α > 0.

The main idea in our construction is block thresholding. We
first carefully divide the sample covariance operator into blocks
of varying sizes and then apply thresholding to each block de-
pending on its size and operator norm. The idea of adaptive
estimation through block thresholding can be traced back to
nonparametric function estimation (see, e.g., Efromovich 1985
and Cai 1999) and has been recently applied to covariance ma-
trix estimation (Cai and Yuan 2012).

Recall that ! is defined over Gd × Gd . A main challenge
in adopting the strategy for our purpose is to fill the domain
Gd × Gd by blocks of different sizes depending on the distance
between the coordinates. The task becomes especially hard for
d > 1 when it is no longer possible to visualize the blocking
scheme. To gain insights, let us first review the scheme devel-
oped by Cai and Yuan (2012) for covariance matrices which
corresponds to the case d = 1. Note that a covariance matrix
is defined over the Cartesian product space of [q] × [q]. The
construction begins by dividing the two-dimensional lattice into
blocks of size s0 × s0 for some s0, and the blocks are then consol-
idated systematically. More specifically, the blocks are created
as follows:
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• Start by constructing blocks of size k × k where k = s0

– Create blocks on the diagonal
– Create more blocks successively toward right and toward

bottom

∗ Two or one in an alternating fashion

• Double block size k = 2k and create blocks successively

– Three or two in an alternating fashion

• Continue until the whole matrix is covered

The final blocking of [q] × [q] is shown in Figure 2. Denote
by Bl the collection of blocks with size 2l−1s0. For example, B1

consists of the solid black blocks in Figure 2. A key property of
the blocking scheme is that for any block B ∈ Bl ,

min
(i,j )∈B

|i − j | ≥ 2l−1s0.

Interested readers are referred to Cai and Yuan (2012) for details.

Let

Al ={(i, j ) ∈ [q] × [q] : (i, j )∈B for some B ∈ Bk and k≤ l} .

That is, Al consists of the entries of a q × q symmetric matrix
that are covered by blocks of size no greater than 2l−1s0. The
total number of blocks to cover Al is therefore

|B1| + · · · + |Bl| ≈ p/s0 + p/(2s0) + · · · + p/(2l−1s0) ≍ p/s0.

It turns out that for our purposes, this could be too many. To
address this issue, we shall consider a reconfiguration of Al so
that they can be covered by a smaller number of blocks. To this
end, consider a regular blocking at {((k − 1)2l + 1)s0, (k2l −
2)s0 : k = 1, 2, . . .}, that is, blocks of one of the following four

Figure 2. Blocking scheme for covariance matrices—Blocks are
with increasing sizes away from the diagonal. The solid black blocks are
of size s0 × s0. The gray ones are consolidated to be of size 2s0 × 2s0.

configurations:

{((k − 1)2l + 1)s0, . . . , (k2l − 3)s0}
× {((k′ − 1)2l + 1)s0, . . . , (k′2l − 3)s0};

{(k2l − 2)s0, (k2l − 1)s0, k2ls0}
× {((k′ − 1)2l + 1)s0, . . . , (k′2l − 3)s0};

{((k − 1)2l + 1)s0, . . . , (k2l − 3)s0}
× {(k′2l − 2)s0, (k′2l − 1)s0, k

′2ls0};
{(k2l − 2)s0, (k2l − 1)s0, k2ls0}

× {(k′2l − 2)s0, (k′2l − 1)s0, k
′2ls0},

for some k and k′. It is clear that, in general, the first three
types of blocks are of size (2l − 3)s0 whereas the fourth type
is of size 3s0. As an example, the reconfiguration for A2 is
given in Figure 3. We denote by B̄l the collection of blocks
that cover Al after the reconfiguration. The main advantage of
the reconfiguration is that now the number of blocks needed to
cover Al is of the order p/(2l−1s0).

We are now in position to describe the blocking scheme for
Gd × Gd when d > 1. To fix ideas, we focus on hypercubic
lattices, and the discussion can be straightforwardly extended
to accommodate the more general hyperrectangular lattices al-
though the presentation is much more tedious. We shall adopt
the following notation. Let B1, B2, . . . , Bk ⊆ G2, write

B1 ⊙ B2 ⊙ · · · ⊙ Bk = {((i1, . . . , ik), (j1, . . . , jk)) ∈ Gk

×Gk : (i1, j1) ∈ B1, . . . , (ik, jk) ∈ Bk}

and

B⊙k
1 = B1 ⊙ B1 ⊙ · · · ⊙ B1︸ ︷︷ ︸

k times

.

In addition, for two collections, B and B′, of subsets from Gd ,
we shall write

B ⊙ B′ = {B ⊙ B ′ : B ∈ B, B ′ ∈ B′}.

Figure 3. Reconfiguration of A2: Original blocks of size s0 are
represented as black whereas the area covered by blocks of original
size 2s0 is in gray. Dashed lines show the reconfigured blocks.
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We then consider a blocking of Gd × Gd as

C :=
⋃

1≤l≤⌈log(p/s0)⌉
Cl , (14)

where

Cl =
⋃

1≤s≤d

⎛

⎝
⋃

1≤i1≤···≤is≤d

B̄⊙(i1−1)
l−1 ⊙ Bl ⊙ B̄⊙(i2−i1−1)

l−1

⊙Bl ⊙ · · · ⊙ B̄⊙(d−is )
l−1

⎞

⎠ . (15)

For example, in the special case of d = 2,

Cl =
(
B̄l−1 ⊙ Bl

)⋃(
Bl ⊙ B̄l−1

)⋃
(Bl ⊙ Bl) .

A few properties of the blocking scheme immediately follow.

Lemma 2. Let C and Cl be defined by (14) and (15). Then

• C consists of “blocks” that divide Gd × Gd in that, for any
B,B ′ ∈ C and B ̸= B ′, B ∩ B = ∅; and

⋃

B∈C
B = Gd × Gd .

• Cl is the collection of blocks that has “size” no greater than
2l−1s0 in that for any B ∈ Cl , there exist Ik = (ak, bk] for
some 0 ≤ ak < bk ≤ q and k = 1, . . . , 2d such that

B = I1 × I2 × · · · × I2d , and
s(B) : = max

1≤k≤2d
(bk − ak) ≤ 2l−1s0.

• There exists a constant c > 0 depending on d only such
that the number of elements in Cl ,

|Cl| ≤ c(p/(2l−1s0))d .

Once the blocking is defined, we then proceed to estimate the
covariance operator ! block by block. By Lemma 2, for any
B ∈ Bd , there exist I = I1 × · · · × Id, J = J1 × · · · × Jd such
that I1, . . . , Id , J1, . . . , Jd ⊂ {1, . . . , q} and B = I × J . Write
!B = (σ (s, t))(s,t)∈B for a block B, and let SB be defined simi-
larly. If B is a diagonal block, that is, Il = Jl for l = 1, . . . , d,
we shall estimate !B by its sample counterpart. If B is large
in that sd (B) > n/ log n, we estimate !B simply by zero. For
other blocks, we estimate !B by SB if

∥SB∥/(∥SI×I∥∥SJ×J ∥)1/2 ≥ λ0n
−1/2(sd (B) + log p)1/2,

and 0 otherwise where λ0 > 0 is a numerical constant. Similar
to the covariance matrix case, our theoretical development indi-
cates that the resulting block thresholding estimator is optimally
rate adaptive whenever λ0 is a sufficiently large. In particular, it
can be taken as fixed at λ0 = 6 when X follows a multivariate
normal distribution. In practice, a data-driven choice of λ0 could
potentially lead to further improved finite sample performance.

It is clear from the construction, the proposed block thresh-
olding estimator !̂ does not rely on the knowledge of any par-
ticular parameter space. The following theorem shows that it

simultaneously achieves the optimal rate of convergence over
F(α; M0,M) and F∗(α0,α; M0,M) for all α0,α,M0,M > 0.

Theorem 4. Let !̂ be the block thresholding estimate defined
above with s0 = ⌈(log p)1/d⌉. Then, there exists a constant C >

0 such that

sup
P(α;M0,M)

E∥!̂ − !∥2 ≤ C min
{
n− 2α

2α+d + log p

n
,
p

n

}
, (16)

and

sup
P∗(α0,α;M0,M)

E∥!̂ − !∥2 ≤ C min
{

(log n)d/α

n
+ log p

n
,
p

n

}

(17)
over all α > 0.

4. NUMERICAL EXPERIMENTS

The proposed adaptive block thresholding procedure is easy
to implement. We shall now present some numerical experi-
ments to illustrate its merits.

We first conduct a set of simulation study following a Markov
random field model. Because Markov random field models give
rise to good, flexible, stochastic image models, they are com-
monly used in many areas of image processing. In particular, we
simulated the stochastic process X(t1, t2) (t1, t2 ∈ {1, . . . , q})
such that

X(t1, t2) = 0.2 (X(t1 − 1, t2) + X(t1, t2 − 1) + X(t1 + 1, t2)
+X(t1, t2 + 1)) + ϵ(t1, t2),

where ϵ(t1, t2)
iid∼ N (0, 1). We compare in particular the pro-

posed adaptive block thresholding method with the sample co-
variance operator and a simple thresholding approach (see, e.g.,
Bickel and Levina 2008b). As indicated in the theoretical de-
velopment, it is sufficient to take λ0 = 6 for the adaptive block
thresholding. The thresholding estimator of Bickel and Levina
(2008b) does not take into account of the lattice graph struc-
ture and simply zero out those entries of the sample covariance
operator that have small absolute values. The threshold level,
as suggested by Bickel and Levina (2008b), is determined by
cross-validation.

To illustrate the importance of accounting for the lattice graph
structure, we first present results from a typical simulated dataset
with q = 25. For a total of n = 400 simulated images, we com-
puted the sample covariance operator, thresholding covariance
operator, and the adaptive block thresholding estimator. To fix
ideas, we consider estimating the leading eigenimage—a stan-
dard task in imaging analysis, especially for the purpose of
face recognition (see, e.g., Sirovich and Kirby 1987; Turk and
Pentland 1991). Eigenimages are the eigenvectors of the covari-
ance operator of images. Typically eigenimages are estimated
directly from the sample covariance operator which does not
account for the lattice structure of an image; see, for example,
Turk and Pentland (1991). With a relatively small sample size,
such an estimate may be unreliable. The absolute value of the
loadings of the leading eigenimage for the true covariance op-
erator and the three estimates are given in Figure 4. It is clear,
visually, that the adaptive block thresholding method leads to
a superior estimate of the eigenimage. More quantitatively, the
correlation between the truth and the sample eigenimage and
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Figure 4. Importance of accounting for the lattice structure of images—loadings of the true leading eigenimage, along with the estimate
derived from adaptive block thresholding, simple thresholding, and sample covariance operator.

the eigenimage estimated from simple thresholding is 41% and
43%, respectively, indicating their rather poor performance. As
a comparison, the correlation between the true eigenimage and
the eigenimage corresponding to the adaptive block thresholding
estimate is 81%, which represents a significant improvement.

To further compare these different methods for estimating
the covariance operator, we now consider different values of
q: q = 25, 35, or 45. For each dataset, 400 realizations of X
were simulated, and the four estimators, sample, thresholding,
adaptive block thresholding with λ0 = 6 were evaluated. For
each choice of q, the experiment was repeated for 200 times,
and for each run, the estimation error measured in terms of the
operator norm is evaluated for each estimate. The results are
summarized in Figure 5, where boxplots for each estimator are
given.

It is evident that the block thresholding improves over the
sample covariance operator. The improvement is particularly
significant for large-scale problem, that is when q is large.

Next, for illustration purposes, we apply the block thresh-
olding estimator to the AT&T database of faces, a benchmark
database in image analysis, and face recognition (Samaria and
Harter 1994). The dataset contains a set of 400 face images
taken between April 1992 and April 1994 at the AT&T labora-
tories in Cambridge, England. The images are taken for a total
of 40 individuals. Each subject has ten images of size 46×56
pixels (coalesced from original pictures of size 92×112), with
256 gray levels per pixel. The readers are referred to Samaria
and Harter (1994) for further details about the database. To vi-
sualize the resulting covariance operator estimate, the top panel

of Figure 6 gives the first three eigenimages corresponding to
our estimate.

Several observations can be made from these eigenimages.
First of all, it can be observed that most leading eigenimages
pertain to local facial characteristics. In particular, most weights
of the top three eigenimages are given to top portion of image,
perhaps reflecting the different hairstyles or illumination on the
forehead. To further appreciate the merits of our estimate, we
computed the scores corresponding to the leading eigenimages
for each of the 400 images. The scores are given in the bottom
panels of Figure 6. Images from the same subject correspond to
points with the same color and symbol. It is noteworthy that the
leading eigenimages appear to capture the main characteristics
of the subject in that the images corresponding to a common
subject tend to cluster together.

5. DISCUSSIONS

We studied in this article the minimax and adaptive esti-
mation of covariance operators for random variables observed
on a lattice graph in a general framework. The more conven-
tional covariance matrix estimation problem can be regarded as
a special case where the random variables are observed on a one-
dimensional lattice. To fix ideas, we focused in the present article
on two classes of covariance operators, those with polynomially
decaying entries and those with exponentially decaying entries.
We should note that the construction of the estimators and the
technical tools developed in this article are general and can be
applied to other settings.
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Figure 5. Comparison between different methods—each panel corresponds to a particular value of q. Reported here are the boxplots of the
estimation error measured in operator norm for the sample covariance operator, thresholding, and adaptive block thresholding estimator with
λ0 = 6.

Consider for example the general parameter space
Fd ({ak}; M) defined in (1). Our results can be extended to other
choices of {ak : k ≥ 1}. Let us focus on the hypercubic lattices.
Define the quantity k(q) by

k(q) = min{1 ≤ k ≤ q : ak ≤ n−1/2kd/2−1}

if the set on the right-hand side is nonempty, and k(q) = q

otherwise. Then following the same argument, it can be shown
that the minimax rate of convergence is intimately related to the
quantity k(q). Under mild regularity conditions, the minimax
risk for estimating the covariance operator over Fd ({ak}; M)

satisfies

inf
!̃(data)

sup
!∈Fd ({ak};M)

E∥!̃ − !∥2 ≍ [k(q)]d + log p

n
.

Similar but more complicated rates can also be established for
hyperrectangular lattices.

The techniques and results developed in this article can also
be used to solve other related problems. One such problem is the
analysis of spatial data where X is a stochastic process defined
in a general metric space (T ,D) with T of cardinality p. Taking
into account the spatial structure when estimating the covariance

Figure 6. Estimated eigenimages—first three eigenimages corresponding to the adaptive block thresholding estimate, from left to right, are
given in the top panel. The gray scale in each panel corresponds to the weight (absolute value) at each pixel, with the largest value represented
by the brightest, and smallest value (0) represented by the darkest. The bottom panels gives the scores for each of the 400 images with images
from the same subject plotted in the same color and symbol.
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operator is important in spatial analysis. A feature of spatial data
that is distinct from the setting of the present article is that the
random variables are typically not observed on a regular lattice.
For r > 0, define

N (r) = max
t∈T

card{s ∈ T : D(s, t) ≤ r},

the largest number of elements of T contained in a ball of radius
r. Assuming that

max
t∈T

∑

s:D(s,t)≥k

|σ (s, t)| ≤ ak,

then the minimax rate of convergence for estimating the covari-
ance operator can also be established under certain regularity
conditions. We shall report the details of the results elsewhere
in the future as a significant amount of additional work is still
needed.

APPENDIX

We present here the proofs to the main results.

A.1 Proof of Theorem 2

We consider first the case of polynomially decaying covariances.
Recall that q1 ≤ q2 ≤ · · · ≤ qd . Denote by

k∗ = argmin
k

⎧
⎨

⎩

(

n−1
k∏

l=0

ql

) 2α
2α+d−k

: 0 ≤ k ≤ d

⎫
⎬

⎭ .

Recall that the lower bound for a special case yields a lower bound for
the general case. It therefore suffices to show that

inf
!̃(data)

sup
!∈(1

E∥!̃ − !∥2 ≥ C log p

n
, (A.1)

and

inf
!̃(data)

sup
!∈(2

E∥!̃ − !∥2 ≥ C

(

n−1
k∗∏

l=0

ql

) 2α
2α+d−k∗

, (A.2)

for some carefully designed classes of covariance operators (1, (2 ⊂
Fd (α; M0,M).

Assume without loss of generality that M0 > 1. Let !0 be the iden-
tity operator, that is, σ0(s, t) = δst where δ is the Kronecker’s delta.
Denote by

(1 = {!0}
⋃

⎧
⎨

⎩! : ∃t0 ∈ Gd such that σ (s, t)

=

⎧
⎪⎨

⎪⎩

1 + a
√

n−1 log p, if s = t = t0

1, if s = t ̸= t0

0, otherwise

⎫
⎪⎬

⎪⎭
,

where 0 < a < 1/8 is a small enough constant such that (1 ⊂
Fd (α; M0,M). Denote by P! the joint distribution of n iid centered
Gaussian processes X1, . . . , Xn with covariance operator !. It is clear
that for any ! ̸= !0 ∈ (1, the Kullback–Leibler distance from P! to
P!0 is given by

K(P! |P!0 ) = n

2

[
a
√

n−1 log p − log(1 + a
√

n−1 log p)
]
.

Note that log(1 + x) ≥ x − x2/2 for any x ≥ 0. Therefore,

K(P! |P!0 ) ≤ a2 log p

4
.

Lower bound (A.1) then follows from Fano’s lemma and the fact that
∥!1 − !2∥ = a

√
n−1 log p, for any !1 ̸= !2 ∈ (1.

To prove (A.2), we consider separately the cases when (a) k∗ =
0; (b) k∗ = d; and (c) 1 ≤ k∗ < d . In each case, we appeal to the
Varshamov–Gilbert bound (see, e.g., Tsybakov 2009) to construct (2.
Consider first the case when k∗ = 0. Simple calculation indicates that
in this case,

n− 2α
2α+d ≤ (q1/n)−

2α
2α+d−1 ,

which implies that q1 ≥ n
1

2α+d .

Write k = ⌈n1/(2α+d)⌉. Denote by {0, 1}G(k,...,k) the collection of all
functions that map from a d-dimensional lattice G(k, . . . , k) to {0, 1}.
Then, Varshamov–Gilbert bound indicates that for any k such that
kd ≥ 8, there exist a subset * := {ω1, . . . , ωN } of {0, 1}G(k,...,k) obeying
N ≥ 2kd /8 and

∥ωj ′ − ωj∥1 ≥ kd/8, ∀0 ≤ j ̸= j ′ ≤ N

where ω0 = (0, . . . , 0). With slight abuse of notation, write ωj : Gd 1→
{0, 1} such that ωj (s) = 0 for any s such that ∥s∥∞ > k, and its restric-
tion ωj |G(k,...,k) ∈ *. Denote by

!j := !(ωj ) = δst +
{

an−1/2k−d/2, if ωj (s) = ωj (t) = 1

0, otherwise
,

where 0 < a < 1/4 is a small enough constant such that !j ∈
Fd (α; M0, M). It is not hard to see that for any 1 ≤ j ̸= j ′ ≤ N ,

max
{
∥I(ωj > ωj ′ )∥1, ∥I(ωj < ωj ′ )∥1

}
≥ 1

2
∥ωj ′ − ωj∥1 ≥ kd/16.

Thus,

∥!j ′ − !j∥ ≥ max
{
∥!(I(ωj > ωj ′ ))∥, ∥!(I(ωj < ωj ′ ))∥

}

≥ akd/2

16n1/2
≥ a

16
nα/(2α+d).

Note that if the covariance operator of a Gaussian process X is !j , then
the covariance matrix of vec(X), the vectorized process, is given by
Ip + an−1/2k−d/2vec(ωj )vec(ωj )T. It can then be computed that

K(P!j
|P!0 )

= n

2

[
trace(Ip + an−1/2k−d/2vec(ωj )vec(ωj )T)

− log det(Ip + an−1/2k−d/2vec(ωj )vec(ωj )T) − p
]

= n

2

[
an−1/2k−d/2∥ωj − ω0∥1 − log(1 + an−1/2k−d/2∥ωj − ω0∥1)

]
,

by the matrix determinant lemma. It follows from the fact log(1 + x) ≥
x − x2/2 for x ≥ 0 that

K(P!j
|P!0 ) ≤ a2

4kd
∥ωj − ω0∥2

1 ≤ a2kd

4
<

log N

8
.

An application of Fano’s lemma yields (A.2) by defining (2 = {!j :
0 ≤ j ≤ N}.

Now consider the case k∗ = d where a similar argument can be used.
Observe that in this case,

(
n−1q1, . . . , qd−1

) 2α
2α+1 ≥ (n−1q1, . . . , qd ),

which, together with the fact that q1 ≤ · · · ≤ qd , implies that qd ≤
n

1
2α+d .

Let (2 be defined in a similar fashion as before except that now
ωj are defined over Gd . More specifically let * := {ω1, . . . , ωN } of
{0, 1}Gd obeying N ≥ 2p/8 and

∥ωj ′ − ωj∥1 ≥ p/8, ∀0 ≤ j ̸= j ′ ≤ N,
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which is possible thanks to another application of Varshamov–Gilbert
bound. It can be calculated as before,

∥!j ′ − !j∥ ≥ a

16

√
p

n
,

for any !j ̸= !j ′ ∈ (2; and

K(P! |P!0 ) ≤ log N

8
,

for any ! ̸= !0 ∈ (2. Fano’s lemma then yields

inf
!̃(data)

sup
!∈(2

E∥!̃ − !∥2 ≥ Cp

n
. (A.3)

It remains to consider the case when 1 ≤ k∗ < d . Observe that in this
case,

(

n−1
k∗∏

l=0

ql

) 2α
2α+d−k∗

≤
(

n−1
k∗+1∏

l=0

ql

) 2α
2α+d−k∗−1

,

which implies that qk∗+1 ≥ (n/
∏k∗

l=0 ql)
1

2α+d−k∗ .

We need to modify the construction of (2. Similar to before, by
Varshamov–Gilbert bound, there exists a subset * := {ω1, . . . , ωN } of
{0, 1}G(q1,...,qd ) such that

(a) ωj (s) = 0 for any s such that max{sk∗+1, . . . , sd} > k;
(b) N ≥ 2q1 ···qk∗ kd−k∗

/8;
(c) for any 0 ≤ j ̸= j ′ ≤ N , ∥ωj ′ − ωj∥1 ≥ q1 . . . qk∗kd−k∗

/8,

∀0 ≤ j ̸= j ′ ≤ N, where ω0 = 0.

Take

k =

⎡

⎢⎢⎢⎢

(

n/

k∗∏

l=0

ql

) 1
2α+d−k∗

⎤

⎥⎥⎥⎥
. (A.4)

Let (2 = {!j : 0 ≤ j ≤ N} where

!j := !(ωj ) = δst +
{

an−1/2k−d/2, if ωj (s) = ωj (t) = 1

0, otherwise.

Here, 0 < a < 1/4 is a small enough constant such that !j ∈
Fd (α; M0,M). Then, by Fano’s lemma, as before, it can be shown
that

inf
!̃(data)

sup
!∈(2

E∥!̃ − !∥2 ≥ C

(

n−1
k∗∏

l=0

ql

) 2α
2α+d−k∗

. (A.5)

The lower bound (8) for estimating ! ∈ Fd (α; M0, M) then follows
from (A.1) and (A.2).

The argument for exponentially decaying covariances is similar to
that of the polynomially decaying ones. Let q∗ > 1 be the solution to

log n + d log x = 2α0x
α. (A.6)

It is clear that q∗ ≍ (log n)1/α . More precisely,
(

1
2α0

log n

)1/α

< q∗ <

((
1

2α0
+ δ

)
log n

)1/α

for any δ > 0. The case when q1 ≥ q∗ can be treated in the same
fashion as the case when k∗ = 0 for polynomially decaying covariance
operators by taking k = ⌈q∗⌉. Similarly, the case when qd ≤ q∗ can
be treated in the same fashion as the case when k∗ = d; and the case
when q1 < q∗ < qd can be treated in the same fashion as the case when
1 ≤ k∗ < d .

A.2 Proof of Theorem 3

The proof for Fd (α; M0, M) and Fd (α0, α; M0,M) is identical, and
we shall focus on Fd (α; M0, M) for brevity.

Define !1 = (σ1(s, t))s,t∈Gd
such that σ1(s, t) = σ (s, t), if s ∈ Bj,

t ∈ Bj′ and ∥j − j′∥∞ ≤ 1, and 0 otherwise. Let !2 = ! − !1. Then

∥!̂ − !∥ ≤ ∥!̂ − !1∥ + ∥!2∥.

It is easy to see that

∥!2∥ ≤ ∥!2∥ℓ1→ℓ1 ≤ max
s∈Gd

∑

t :D(s,t)≥b

|σ (s, t)| ≤ M

(

n−1
k∗∏

l=0

ql

) α
2α+d−k∗

.

To bound ∥!̂ − !1∥, note that

∥!̂ − !1∥ = sup
u∈ℓ2(Gd ):∥u∥=1

∣∣⟨u, (!̂ − !1)u⟩
∣∣ .

For any u ∈ ℓ2(Gd ) with ∥u∥ = 1,
∣∣⟨u, (!̂ − !1)u⟩

∣∣

≤
∑

∥j−j′∥∞≤1

∣∣∣
〈
uBj ,

(
Sjj′ − !jj′

)
uBj′

〉∣∣∣

≤
∑

∥j−j′∥∞≤1

∥uBj∥∥uBj′ ∥∥Sjj′ − !jj′ ∥

≤

⎛

⎝
∑

∥j−j′∥∞≤1

∥uBj∥∥uBj′ ∥

⎞

⎠×
(

max
∥j−j′∥∞≤1

∥Sjj′ − !jj′ ∥
)

,

where for any a ∈ ℓ2(Gd ), aB = (a(t))t∈B . The Cauchy–Schwartz In-
equality yields

∑

∥j−j′∥∞≤1

∥uBj∥∥uBj′ ∥ ≤ 1
2

∑

∥j−j′∥∞≤1

(
∥uBj∥2 + ∥uBj′ ∥

2
)

≤ 3d
∑

j∈G(N1,...,Nd )

∥uBj∥2 = 3d .

Therefore, ∥!̂ − !1∥ ≤ 3d max∥j−j′∥∞≤1 ∥Sjj′ − !jj′ ∥ and hence

∥!̂ − !∥ ≤ ∥!̂ − !1∥ + ∥!2∥

≤ 3d max
∥j−j′∥∞≤1

∥Sjj′ − !jj′ ∥ + M

(

n−1
k∗∏

l=0

ql

) α
2α+d−k∗

.

Consequently

E∥!̂ − !∥2 ≤ 2 · 32dE
(

max
∥j−j′∥∞≤1

∥Sjj′ − !jj′ ∥
)2

+ 2M2

(

n−1
k∗∏

l=0

ql

) 2α
2α+d−k∗

. (A.7)

It remains to bound the expectation on the right-hand side. We shall
make use of the following result:

Lemma A.1. Let I, J ⊆ Gd with card(I ), card(J ) ≤ s, then there
exist constants c1, c2 > 0 such that

P {∥SI×J − !I×J ∥ ≥ x} ≤ c125s exp(−c2n min{x2, x}).

Recall that when k∗ = 0,

n− 2α
2α+d ≤ (q1/n)−

2α
2α+d−1 ,

and as a result q1 ≥ b = ⌈n1/(2α+d)⌉. Then

N1 · · · Nd ≤ Cq1 · · · qd/b
d ≤ Cpn−d/(2α+d)
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for some constant C > 0. An application of Lemma A.1 and union
bound yields

P
{

max
∥j−j′∥∞≤1

∥Sjj′ − !jj′ ∥ ≥ x

}

≤ c1C3dpn−d/(2α+d)25bd
exp

(
−c2n min{x2, x}

)
,

which implies that for any x > 0

E
(

max
∥j−j′∥∞≤1

∥Sjj′ − !jj′ ∥
)2

≤ x2P
{

max
∥j−j′∥∞≤1

∥Sjj′ − !jj′ ∥ < x

}

+
∫ ∞

x2
P
{

max
∥j−j′∥∞≤1

∥Sjj′ − !jj′ ∥ ≥ u

}
du

≤ x2 + c1C3dpn−d/(2α+d)25bd

∫ ∞

x2
exp(−c2n min{u,

√
u})du

≤ x2 + c1C3dpn−d/(2α+d)25bd
(c2n)−1 exp(−c2nx2).

If log p ≤ nd/(2α+d), we take x = cn−α/(2α+d) for a sufficiently large
constant c > 0 which yields

E
(

max
∥j−j′∥∞≤1

∥Sjj′ − !jj′ ∥
)2

≤ Cn− 2α
2α+d

for some constant C > 0. When log p > nd/(2α+d), it follows by taking

x = c
√

log p

n
for a sufficiently large constant c > 0 that

E
(

max
∥j−j′∥∞≤1

∥Sjj′ − !jj′ ∥
)2

≤ C
log p

n
,

for some constant C > 0. These two bounds together with (A.7) implies
(12) in this case.

When k∗ = d , simple algebraic manipulation shows that

qd ≤ n1/(2α+d) ≤ b.

Therefore, N1 = · · · = Nd = 1. By Lemma A.1 and union bound, we
get

P
{

max
∥j−j′∥∞≤1

∥Sjj′ − !jj′ ∥ ≥ x

}
≤ c1C3d25p exp

(
−c2n min{x2, x}

)
,

which, following the same calculations as before, implies that for any
x > 0,

E
(

max
∥j−j′∥∞≤1

∥Sjj′ − !jj′ ∥
)2

≤ x2 + c13d25p(c2n)−1 exp(−c2n min{x2, x}).

The claim (12) follows by taking x = cp/n for a large enough constant
c > 0.

Finally, when 1 ≤ k∗ < d , it can be shown that

qk∗ ≤ b ≤ qk∗+1.

Therefore, N1 = · · · = Nk∗ = 1. By Lemma A.1 and union bound, we
now get

P
{

max
∥j−j′∥∞≤1

∥Sjj′ − !jj′ ∥ ≥ x

}

≤ c1C3dNk∗+1, . . . , Nd25q1 ···qk∗ bd−k∗
exp

(
−c2n min{x2, x}

)
.

The desired result then follows from the same calculations as before.

A.3. Proof of Theorem 4

We first consider polynomially decaying covariance operators
F(α; M0, M).

A.3.1. Large blocks. The following result is a consequence of the
construction of Bd and the properties of B1.

Lemma A.2. If (i, j) ∈ B ∈ Bd and s(B) ≥ 2s0, then D(i, j) > ∥i −
j∥∞ ≥ s(B).

Let B = I × J ∈ Bd . By Lemma A.2, if s(B) > 2L−1s0 with L > 1,
then

∥!B∥ ≤ ∥!B∥ℓ1→ℓ1 ≤ max
s∈Gd

∑

t :D(s,t)≥s(B)

|σ (s, t)| ≤ Ms−α(B).

On the other hand, by Lemma A.1, there exists a constant C > 1 such
that

∥SI×I − !I×I∥ ≤ C∥!I×I∥n−1/2 (s(B) + log p)1/2 ,

∥SJ×J − !J×J ∥ ≤ C∥!J×J ∥n−1/2 (s(B) + log p)1/2 ,

∥SB − !B∥ ≤ C(∥!I×I∥∥!J×J ∥)1/2n−1/2 (s(B) + log p)1/2 ,

with probability at least 1 − p−6. As a result,

∥SB∥ ≤ Ms−α(B) + C(∥!I×I∥∥!J×J ∥)1/2n−1/2 (s(B) + log p)1/2

≤ 2C(∥!I×I∥∥!J×J ∥)1/2n−1/2(sd (B) + log p)1/2

≤ 4C(∥SI×I∥∥SJ×J ∥)1/2n−1/2(sd (B) + log p)1/2

provided that

2L−1s0 ≥ (M/M0)2/(2α+d)n1/(2α+d). (A.8)

Taking λ0 ≥ 4C ensures !̂B = 0. By union bound, with probability
at least 1 − p−4, !̂B = 0 for all B ∈ Bd such that s(B) > 2L−1s0. Let
WL ∈ {0, 1}Gd×Gd such that wL(s, t) = 1, if and only if (s, t) ∈ B ∈ Bd .
Then

E∥(!̂ − !) ◦ WL∥2

= E
(
∥(!̂ − !) ◦ WL∥2I((!̂ − !) ◦ WL ̸= 0)

)

≤
(
E∥(!̂ − !) ◦ WL∥4)1/2

P 1/2{(!̂ − !) ◦ WL ̸= 0}
≤ p−2 (E∥(!̂ − !) ◦ WL∥4)1/2

≤ p−2 (E∥(!̂ − !) ◦ WL∥4
F

)1/2
,

where ◦ stands for the Schur product, that is, elementwise product, and
∥ · ∥F denotes the Frobenius norm. Observe that

E∥(!̂ − !) ◦ WL∥4
F = E

⎛

⎝
∑

B∈Bd :s(B)>2L−1s0

∥!̂B − !B∥2
F

⎞

⎠
2

≤ 2E

⎛

⎝
∑

B∈Bd :s(B)>2L−1s0

∥SB − !B∥2
F

⎞

⎠
2

+ 2

⎛

⎝
∑

B∈Bd :s(B)>2L−1s0

∥!B∥2
F

⎞

⎠
2

≤ 2M4p4n−2 + 2M4(2L−1s0)−4α.

Thus,

E∥(!̂ − !) ◦ WL∥2 = O(n−1). (A.9)

A.3.2. Small blocks. Now consider the smaller blocks. With slight
abuse of notation, denote by Wl ∈ {0, 1}Gd×Gd where wl(s, t) = 1 if and
only if (s, t) ∈ B ∈ Bd such that s(B) = l. By triangular inequality,

∥!̂ − !∥ ≤
∥∥∥∥∥(!̂ − !) ◦

L−1∑

l=1

Wl

∥∥∥∥∥+ ∥(!̂ − !) ◦ WL∥.

Therefore,

E∥!̂ − !∥2 ≤ 2E

∥∥∥∥∥(!̂ − !) ◦
L−1∑

l=1

Wl

∥∥∥∥∥

2

+ 2E∥(!̂ − !) ◦ WL∥2.
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Observe that
∥∥∥∥∥(!̂ − !) ◦

L−1∑

l=1

Wl

∥∥∥∥∥ ≤
L−1∑

l=1

∥∥(!̂ − !) ◦ Wl

∥∥

≤
L−1∑

l=1

(
∑

1≤k≤d

∥∥(!̂ − !) ◦ Wl,k

∥∥+ · · · +
∥∥(!̂ − !) ◦ Wl,1···d

∥∥
)

,

where wl,k(s, t) = 1, if and only if (s, t) ∈ B ∈ Bd for some B ∈ A′
k(l)

and so on. The terms on the right-hand side can be bounded in a similar
fashion. We shall focus on ∥(!̂ − !) ◦ Wl,1∥ for brevity.

Recall that

A′
1(l) = B1(l) ⊙ (B̃1(l))⊙(d−1).

Hence, for any u ∈ ℓ2(Gd ),
〈
u, (!̂ − !) ◦ Wl,1u

〉

=
∑

B1=I1×J1∈B1(l)

∑

B2,...,Bd=Id×Jd∈B̃1(l)

×
〈
uI1×···×Id , (!̂B1⊙···⊙Bd

− !B1⊙···⊙Bd
)uJ1×···×Jd

〉

≤
∑

B1=I1×J1∈B1(l)

∑

B2,...,Bd=Id×Jd∈B̃1(l)

× ∥!̂B1⊙···⊙Bd
− !B1⊙···⊙Bd

∥∥uI1×···×Id ∥∥uJ1×···×Jd
∥

≤ 1
2

sup
B∈A′

1(l)
∥!̂B − !B∥

∑

B1=I1×J1∈B1(l)

∑

B2,...,Bd=Id×Jd∈B̃1(l)

×
(
∥uI1×···×Id ∥2 + ∥uJ1×···×Jd

∥2) .

It is clear from the construction of Bd that if (I1 × · · · × Id ) ×
(J1 × · · · × Jd ) ∈ Bd , then (J1 × · · · × Jd ) × (I1 × · · · × Id ) ∈ Bd .
Therefore,

∑

B1=I1×J1∈B1(l)

∑

B2,...,Bd=Id×Jd∈B̃1(l)

(
∥uI1×···×Id ∥2 + ∥uJ1×···×Jd

∥2)

= 2
∑

B1=I1×J1∈B1(l)

∑

B2,...,Bd=Id×Jd∈B̃1(l)

∥uI1×···×Id ∥2.

In other words,
∥∥(!̂ − !) ◦ Wl,1

∥∥

≤ sup
B∈A′

1(l)
∥!̂B − !B∥

∑

B1=I1×J1∈B1(l)

∑

B2,...,Bd=Id×Jd∈B̃1(l)

∥uI1×···×Id ∥2.

Similarly, it can be shown that
∥∥(!̂ − !) ◦ Wl,k1k2

∥∥

≤ sup
B∈A′

k1k2
(l)

∥!̂B − !B∥
∑

B1, . . . , Bd ∈ B̃1(l)
Bk1 , Bk2 ∈ B1(l)

∥uI1×···×Id ∥2

and so on. As a result,
∥∥∥∥∥(!̂ − !) ◦

L−1∑

l=1

Wl

∥∥∥∥∥

≤ sup
B∈Bd :s(B)=l

∥!̂B − !B∥
∑

B1=I1×J1∈B1(l)

∑

B2,...,Bd=Id×Jd∈B̃1(l)

∥uI1×···×Id ∥2.

We now appeal to the following result.

Lemma A.3. Let u ∈ ℓ2(Gd ) such that ∥u∥ = 1. Then
∑

B1=I1×J1∈B1(l)

∑

B2,...,Bd=Id×Jd∈B̃1(l)

∥uI1×···×Id ∥2 ≤ 13d .

By Lemma A.3, we get
∥∥∥∥∥(!̂ − !) ◦

L−1∑

l=1

Wl

∥∥∥∥∥ ≤ 13d sup
B∈Bd :s(B)<2L−1s0

∥!̂B − !B∥.

Again by Lemma A.1, there exists a constant C > 0 such that

∥SB − !B∥ ≤ CM0n
−1/2(sd (B) + log p)1/2

for all B ∈ Bd with probability at least 1 − p−8. By the definition of
!̂, with the same probability,

∥!̂B − !B∥ ≤ CM0n
−1/2(sd (B) + log p)1/2

Therefore, with probability at least 1 − p−8,
∥∥∥∥∥(!̂ − !) ◦

L−1∑

l=1

Wl

∥∥∥∥∥ ≤ Cn−1/2
L−1∑

l=1

2d(l−1)/2s
d/2
0 ≤ Cn−1/2s

d/2
0 2dL/2.

(A.10)

A.3.3. Adaptivity over Fd (α; M0,M). The adaptivity of the block
thresholding follows from the bounds for large blocks and small blocks.
More specifically, we call a block large if

s(B) ≥ (M/M0)2/(2α+d)n1/(2α+d).

When p < (M/M0)2/(2α+d)n1/(2α+d), there are no large blocks. By

the bound (A.10) for small blocks, we have ∥!̂ − !| ≤ C
√

p

n
with

probability at least 1 − p−8. Denote E the even that the above inequality
holds. Then

E
(∥∥!̂ − !

∥∥2
I(E)

)

≤ E1/2
(∥∥!̂ − !

∥∥4
)

P 1/2(E) ≤ E1/2

⎛

⎝
∑

B∈Bd

∥∥!̂B − !B

∥∥

⎞

⎠
4

P 1/2(E).

We shall use the following lemma.

Lemma A.4. Let !̂ be the block thresholding estimate defined above
with s0 = ⌈(log p)1/d⌉, then there exists a constant C > 0 such that

E

⎛

⎝
∑

B∈Bd

∥∥!̂B − !B

∥∥

⎞

⎠
4

≤ Cn−2p10.

Lemma A.4 yields that E(∥!̂ − !∥2 ≤ E(∥!̂ − !∥2I(E)) +
Cp/n = O(p/n). When s0 = ⌈(log p)1/d⌉ ≥ (M/M0)2/(2α+d)n1/(2α+d),
only blocks of size s0 will be preserved as small blocks, and all blocks
of size greater than s0 will be treated as large blocks. In this case, fol-
lowing the small block bound (A.10), we have, with probability at least

1 − p−8, ∥(!̂ − !) ◦ W1∥ ≤ C
√

log p

n
. Again denote by E the event that

this inequality holds. Then by Lemma A.4,

E
(∥∥(!̂ − !)

∥∥2
I(E)

)
≤ E1/2

(∥∥!̂ − !
∥∥4
)

P 1/2(E) = O(p/n),

which implies that E∥(!̂ − !) ◦ W1∥2 = O
( log p

n

)
. Together with

(A.9), we conclude that

E
∥∥!̂ − !

∥∥2 = O

(
log p

n

)
.

Similarly, when there are both large and small blocks by definition
(A.8), it follows from (A.10) that

E

∥∥∥∥∥(!̂ − !) ◦
L−1∑

l=1

Wl

∥∥∥∥∥

2

≤ Cn− 2α
2α+d .

Together with (A.9), this yields E∥!̂ − !∥2 = O(n− 2α
2α+d ).
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A.3.4. Adaptivity over F∗(α0, α; M0, M). This case can be proved
in the exactly same way except that now a “large” block B satisfies
s(B) ≥ 2s0 and exp(2α0s

α(B))s2d (B) ≥ Cn for some constant C > 0.

SUPPLEMENTARY MATERIALS

The supplementary materials for this article contain proofs
for Lemmas 1, 3, 4, 5, and 6.
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