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Estimating a covariance matrix and its associated principal components
is a fundamental problem in contemporary statistics. While optimal estima-
tion procedures have been developed with well-understood properties, the
increasing demand for privacy preservation introduces new complexities to
this classical problem. In this paper, we study optimal differentially private
Principal Component Analysis (PCA) and covariance estimation within the
spiked covariance model.

We precisely characterize the sensitivity of eigenvalues and eigenvectors
under this model and establish the minimax rates of convergence for estimat-
ing both the principal components and covariance matrix. These rates hold
up to logarithmic factors and encompass general Schatten norms, including
spectral norm, Frobenius norm, and nuclear norm as special cases.

We introduce computationally efficient differentially private estimators
and prove their minimax optimality, up to logarithmic factors. Additionally,
matching minimax lower bounds are established. Notably, in comparison
with existing literature, our results accommodate a diverging rank, neces-
sitate no eigengap condition between distinct principal components, and re-
main valid even if the sample size is much smaller than the dimension.

1. Introduction. The covariance structure plays a fundamental role in multivariate anal-
ysis, and Principal Component Analysis (PCA) is a widely recognized technique known
for its efficacy in dimension reduction and feature extraction [4]. PCA is particularly
adept in settings where the data is high-dimensional but the underlying signal displays
a low-dimensional structure. The estimation of covariance matrices and principal com-
ponents finds applications across a diverse spectrum, encompassing tasks such as im-
age recognition, data compression, clustering, risk management, portfolio allocation, mean
tests, independence tests, and correlation analysis. Methodologies and theoretical advance-
ments, including minimax optimality, for covariance matrix estimation and PCA, have been
well-established in both low-dimensional and high-dimensional settings. See, for example,
[6, 9, 10, 15, 26, 30, 39, 41, 44, 51]. For a survey on optimal estimation of high-dimensional
covariance structures, see [11].

Amidst the increasing availability of large datasets containing sensitive personal informa-
tion, privacy concerns in statistical data analysis have gained heightened prominence. The
utilization of personal information in statistical analyses raises apprehensions about the po-
tential compromise of individual privacy. Consequently, there is a growing emphasis on de-
veloping methodologies and techniques that offer robust privacy guarantees while still facili-
tating accurate statistical insights. This motivates a comprehensive exploration of the optimal
tradeoff between privacy and accuracy in fundamental statistical problems, including PCA
and covariance matrix estimation.
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Differential privacy (DP), a concept introduced by [22], provides a framework for safe-
guarding individual privacy in statistical analysis. DP has become a commonly accepted
standard in both industrial and governmental applications [1, 2, 19, 24, 42]. The goal of the
present paper is to develop methods and optimality results for PCA and covariance matrix
estimation within the framework of the spiked covariance model under DP constraints.

1.1. Problem formulation. We begin by formally introducing the spiked covariance
model and general formulation of the privacy constrained estimation problems.

The spiked covariance structure [26, 27] naturally arises from factor models with ho-
moscedastic noise and has found diverse applications in signal processing, chemometrics,
econometrics, population genetics, and various other fields. See, for example, [25, 33, 36, 38].
The spiked covariance model assumes that the population covariance matrix can be decom-
posed as

⌃= U⇤U> + �2Ip,(1)

where U 2 Op,r and ⇤ = diag(�1, · · · ,�r) represent the leading eigenvectors and eigen-
values (excluding �2), respectively. Here, Op,r denotes the set of p⇥ r matrices satisfying
U>U = Ir . The spiked covariance model is convenient for studying the distribution of sam-
ple eigenvalues and eigenvectors, which play a critical role in the statistical inference of ⌃
and its eigenvectors. For instance, [20] studied the optimal shrinkage of sample eigenvalues
in the spiked covariance model. In particular, [10] and [51] established the minimax optimal
rates
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where the infimum is taken over all possible estimators using the data set X = (X1, · · · ,Xn)
consisting of n observations sampled independently from the spiked covariance model (1) ,
the parameter set ⇥(�,�2) is defined in (4) with � being the magnitudes of eigenvalues, and
k · k denotes the matrix spectral norm.

The concept of differential privacy was first introduced in [22]. For a given dataset X
and any " > 0 and � 2 [0,1), a randomized algorithm A that maps X into R

d1⇥d2 is called
(", �)-differentially private ((", �)-DP) over the dataset X if

P
�
A(X) 2Q

�
 e"P

�
A(X 0) 2Q

�
+ �,

for all measurable subset Q⇢R
d1⇥d2 and all neighboring data set X 0. In the standard defini-

tion, a dataset X 0 is a neighbor of X if they differ by only one datum, i.e., one observation in
X is replaced by some other, possibly arbitrary, datum. In the context of PCA and covariance
matrix estimation, as observations in X are independently sampled from a common distribu-
tion, a neighboring dataset X 0 is obtained by replacing one datum in X with an independent
copy. This facilitates exploration of the statistical properties of the sample data.

Under the (", �)-DP constraint, our goal is to investigate the cost of privacy in PCA and
covariance matrix estimation. This includes designing minimax optimal (", �)-DP estimators
of the principal components and covariance matrix and establishing the privacy-constrained
minimax lower bounds.
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1.2. Main contribution. In this paper, we establish the minimax optimal rates for PCA
and covariance matrix estimation in the spiked model under DP constraints. These rates, up
to logarithmic terms, are given by:
(3)
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where the infimum is taken over all possible (", �)-DP algorithms denoted by U",� for prin-
cipal components and M",� for the covariance matrix. The expectation is taken with respect
to the randomness of both the data and the differentially private algorithm. These rates hold
in Schatten-q norms for all q 2 [1,1], including spectral norm (q =1), Frobenius norm
(q = 2), and nuclear norm (q = 1) as special cases. The rank r can grow with respect to p
as long as r  p/2, and the sample size can be much smaller than p as long as the signal-
to-noise ratio (SNR) satisfies �/�2 � C1(

p
p/n + p/n). This condition is minimal since

no consistent estimation is possible when this condition does not hold. To our knowledge,
this represents the first comprehensive presentation of minimax optimal rates for PCA and
covariance matrix estimation under DP constraints.

Our contributions are manifold. Methodologically, we introduce (", �)-DP estimators for
PCA and covariance matrices that are computationally efficient. Specifically, we employ the
Gaussian mechanism for the sample spectral projector in differentially private PCA. Notably,
our DP estimator for the covariance matrix incorporates a novel design to handle unknown
orthogonal rotations. These estimators are shown to achieve minimax optimality, up to log-
arithmic factors. Theoretically, we provide a comprehensive understanding of the minimax
optimal rates for PCA and covariance estimation under privacy constraints, valid across all
Schatten norms. The derivation of minimax lower bounds employs Fano’s lemma with a dif-
ferential privacy constraint and the construction of well-separated spectral projectors based
on the packing complexity of Grassmannians [31, 50].

Differentially private PCA and covariance estimation are challenging because it is dif-
ficulty to characterize a sharp sensitivity bound for the eigenvectors. Our main technical
contribution lies in a precise characterization of the sensitivity of the sample spectral pro-
jector bU bU>, quantifying its deviation when one datum Xi is replaced by an independent
copy X 0

i . A key technical tool is an explicit spectral representation formula for bU bU> adapted
from [47]. We derive a similar formula specifically for the spiked covariance model, which
is of independent interest. Based on this sharp sensitivity analysis, we apply the Gaussian
mechanism to achieve the upper bounds in (3), up to logarithmic terms.

1.3. Related work. Minimax optimal rates under (✏, �)-DP guarantees have been es-
tablished for several statistical problems, such as mean estimation, linear regression, pair-
wise comparisons, matrix completion, factorization, generalized linear models (GLMs), and
sparse GLMs [8, 12, 13, 17, 46]. Additionally, optimality results have also been developed
under local privacy constraints. For example, [21] established minimax rates for mean esti-
mation, GLMs, and nonparametric density estimation, while [40] developed minimax theory
for estimating linear functionals under local privacy. It is worth noting that local privacy is
a stronger notion of privacy compared to (", �)-DP, and it may not be compatible with high-
dimensional problems [21].

Differentially private PCA algorithms were proposed in [7, 16, 23] based on the perturba-
tion mechanism, treating each datum Xi as a fixed vector and investigating the sensitivity of
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sample eigenvectors. However, their deterministic sensitivity analysis disregards the statisti-
cal properties of sample data, resulting in suboptimal error rates when Xi’s are i.i.d. sampled
from a common distribution, such as the spiked covariance model. Recently, [34] introduced
an online PCA algorithm with DP, providing a much sharper upper bound for differentially
private PCA under the spiked covariance model. The online Oja’s algorithm in [34] consumes
one datum at a time, allowing for an explicit representation formula in the updated estimate
of eigenvectors and enabling a study of their sensitivity. However, their bound is valid only
for the rank-one case (r = 1) and is minimax optimal only when �� �2. The optimality of
their algorithm for general rank r or �⌧ �2 remains unclear. Moreover, the minimax optimal
rates for estimating ⌃ under privacy constraints are still unknown.

1.4. Organization of the paper. The rest of the paper is organized as follows. In Sec-
tion 2, we introduce the Gaussian mechanism and study the sensitivity of the empirical spec-
tral projector under the spiked covariance model. We present a DP algorithm for estimating
the spectral projector and spiked covariance matrix in the same section. The upper bounds for
our proposed DP algorithms are proven in Section 3, where an explicit spectral representation
formula under the spiked covariance model is also developed. Section 4 establishes a differ-
entially private Fano’s lemma and minimax lower bounds. Extensions to the settings with
diverging conditioning number and sub-Gaussian distributions are discussed in Section 5.
The proofs of the main results and some of the key technical lemmas are presented in Sec-
tion 6. The proofs of additional results and technical lemmas are given in the Supplementary
Materials [14].

2. Methodology: Gaussian Mechanism and Sensitivity. Our differentially private
PCA and covariance estimation method relies on a precise characterization of the sensitivity
for both eigenvectors and eigenvalues under the spiked covariance model. We first focus on
Gaussian PCA for technical convenience, with a broader discussion on general sub-Gaussian
PCA provided in Section 5.

For brevity, let X := (X1, · · · ,Xn) represent the p⇥ n matrix collecting all i.i.d. obser-
vations Xi sampled from a centered normal distribution N (0,⌃). The sensitivity of eigen-
vectors and eigenvalues denotes their perturbation if an observation Xi is replaced by an
independent copy X 0

i expressed briefly as X(i) := (X1, · · · ,Xi�1,X 0
i,Xi+1, · · · ,Xn). Here,

X and X(i) form a pair of neighboring datasets [22]. Notably, the sensitivity is contingent on
the covariance matrix ⌃.

Through out this paper, we consider the spiked covariance matrix model where ⌃ is from
the following parameter space
(4)
⇥(p, r,�,�2) =

n
⌃= U⇤U>+�2Ip :

U 2Op,r,⇤= diag(�1, · · · ,�r), c0� �r  �1 C0�
o
,

where Ip is the identity matrix and and Op,r refers to the set of matrices with orthonormal
columns, i.e., matrices satisfying U>U = Ir . Thus, our focus is on spiked covariance matrices
with a bounded condition number, a common assumption in existing literature [9, 16, 34].
However, our methodology remains valid, and the theoretical framework can be extended to
the case of an unbounded condition number, as discussed in Section 5. For simplicity, we use
⇥(�,�2) without explicitly stating the dimensions p and rank r. Let P denote the family of
normal distributions N (0,⌃) with the population covariance matrix ⌃ 2⇥(�,�2). Without
loss of generality, we assume that �2 is known.

Formally, the sensitivity and Gaussian mechanism are described as follows without proofs.
See, for example, [22] for more details. Here, k · kF stands for the matrix Frobenius norm.
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LEMMA 2.1 (sensitivity and Gaussian mechanism). Let X be a given data set and X 0

be any neighboring data set of X , i.e., X and X 0 differs by at most one observation. The
sensitivity of a function f that maps X into R

d1⇥d2 is defined by

(5) �f := sup
neighboring(X,X0)

kf(X)� f(X 0)kF.

Then, for any "> 0 and � 2 [0,1), the randomized algorithm A defined by A(X) = f(X)+Z
where Z has i.i.d. N

�
0,2�2

f"
�2 log(1.25/�)

�
entries is (", �)-DP over the dataset X .

The definition of sensitivity in Lemma 2.1 relies on the pair of neighboring data sets. Here,
X is simply the data matrix where each column represents one observation. While X and X 0

differ only by one observation, the sensitivity can still be unbounded if no restriction is posed
on the difference, e.g., by replacing one observation of X by infinite. Since X consists of
i.i.d. columns under the spiked covariance model, we assume that a neighboring data set X 0

is obtained by replacing some column of X by its i.i.d. copy throughout this paper.

2.1. Differentially private estimation by Gaussian mechanism. Our DP-estimators of
principal components and covariance matrix are built on Gaussian mechanism. Here, we
assume that the rank r and nuisance variance �2 are known for simplicity. Let bU be the
top-r eigenvectors of the sample covariance matrix b⌃ := n�1

Pn
i=1XiX>

i and denote bU bU>

the sample spectral projector. By Lemma 2.1, differentially private PCA can be obtained by
adding Gaussian noise Z to bU bU> provided that the entrywise variance of Z dominates the
sensitivity of bU bU>. While publishing bU bU> +Z protects privacy, it is certainly not a prefer-
able estimator of principal components as it generally lacks validity as a spectral projector.
We therefore take the eigenvectors of bU bU> +Z as the ultimate estimator. This choice main-
tains differential privacy, as the post-processing of a differentially private algorithm retains
differential privacy according to well-established results, as discussed in [22].

Algorithm 1 Differentially private PCA and covariance estimation
Input: data matrix X = (X1, · · · ,Xn) 2 R

n⇥p; eigenvectors and eigenvalues sensitivity �1 and �2 > 0;
rank r; nuisance variance �2; privacy budget "> 0, � 2 (0,1).
Output: (", �)-DP estimate of U and ⌃.
Compute the sample covariance matrix and top-r eigenvectors:

b⌃ � 1
n

nX

i=1

XiX
>
i and bU  � SVDr(b⌃)

Compute ("/2, �/2)-DP PCA by adding artificial Gaussian noise:

eU  � SVDr

⇣
bU bU> +Z

⌘
where Zij = Zji

i.i.d.⇠ N
⇣
0,

8�2
1

"2
log

2.5
�

⌘
, 81 i j  p

Compute ("/2, �/2)-DP estimates of eigenvalues up to rotations:

e⇤  � eU>�b⌃� �2Ip
�eU +E where Eij =Eji

i.i.d.⇠ N
⇣
0,

8�2
2

"2
log

2.5
�

⌘
, 81 i j  r

Compute (", �)-DP covariance estimate by :

e⌃ � eU e⇤eU> + �2Ip

Return: eU and e⌃

Our proposed differentially private PCA and covariance estimation procedures are given
in Algorithm 1. The sensitivities �1 and �2 are determined by Lemma 2.3 and Lemma 2.4
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in Section 2.2, respectively. However, eU and bU are close up to an orthogonal rotation. As
a result, our algorithm chooses to add Gaussian noise to eU>b⌃eU instead of the empirical
eigenvalues b⇤ := (b�1, · · · ,b�r)>. The added noise level depends on the sensitivity of eU>b⌃eU ,
within which eU is already differentially private. It thus suffices to study the upper bound of
keU>(b⌃� b⌃(i))eUkF  kb⌃� b⌃(i)kF, which will be established in Lemma 2.4.

Our approach to differentially privately estimating the main covariance term involves sep-
arately privatizing the eigenvectors and eigenvalues. This separation is driven by the obser-
vation that the relative sensitivity of eigenvalues is significantly larger than that of eigen-
vectors. Note that a natural estimator of U(⇤ + �2Ir)U> is bU bU>b⌃bU bU>. It is possible to
characterize the sensitivity of this estimator by directly studying the bound kbU bU>b⌃bU bU> �
bU (i) bU (i)>b⌃(i) bU (i) bU (i)>kF. However, the sensitivity of eigenvalues will be the dominating
factor and force us to add unnecessarily large noise to a p⇥ p matrix. This delivers a statisti-
cally sub-optimal estimator of the spiked covariance matrix.

The estimated eigenvectors eU is ("/2, �/2)-DP and eigenvalues e⇤ is ("/2, �/2)-DP with
high probability. By the composition property of differentially private algorithm, the estima-
tor eU e⇤eU> is (", �)-DP. The conclusion is formally stated in the following lemma. Recall that
r̃ = (r�+p�2)/(�+�2) is the effective rank of ⌃. Here, � is regarded as the signal strength.

LEMMA 2.2. Let the data matrix X = (X1, · · · ,Xn) consists of i.i.d. columns sam-
pled from N (0,⌃) with ⌃ 2 ⇥(�,�2), " > 0, � 2 (0,1), and assume n � C1(r logn +
log2 n),2r +C1 logn p, and �/�2 � C1(p/n+

p
p/n) for some large absolute constant

C1 > 0. If we choose

�1 =C2
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for some large absolute constants C2,C3 > 0, then Algorithm 1 is (", �)-DP with probability
at least 1� e�c1p � 4n�9 � 10�20r̃ for some absolute constant c1 > 0.

Compared with existing literature [16, 34], our algorithm does not truncate the observa-
tions so that kXik is essentially unbounded and, as a result, our algorithm is differentially
private with high probability. Note that the probability terms n�9 and 10�20r̃ in Lemma 2.2
can be replaced by n�C3 and 10�C4r̃ with any absolute constants C3,C4 > 0. While we be-
lieve Algorithm 1 can be easily modified, e.g., by an additional trimming procedure, to ensure
(", �)-differentially privacy almost surely, which will inevitably introduce more logarithmic
factors into the upper bounds, we spare no further efforts to pursue the goal in this paper.

The sensitivities �1 and �2 play a critical role in guaranteeing the differential privacy
of Algorithm 1, which shall be developed in next section. The conditions r logn+ log2 n=
O(n) and 2r + logn = O(p) are mild. The SNR condition �/�2 � C1(p/n +

p
p/n) is

typical in the existing literature of spiked covariance matrix model. See, e.g., [35, 51] and
references therein.

2.2. Sensitivity analysis. In this section, we analyze the sensitivities of sample eigenvec-
tors and eigenvalues under the spiked covariance model. The data matrix X = (X1, · · · ,Xn)⇠
N (0,⌃)⌦n for some ⌃ 2⇥(�,�2). Similarly, its neighboring data matrix X(i) = (X1, · · · ,X 0

i,
· · · ,Xn)⇠N (0,⌃)⌦n. Define the sample covariance matrices by

b⌃ :=
1

n

nX

i=1

XiX
>
i and b⌃(i) :=

1

n

⇣
X 0

iX
0>
i +

X

j 6=i

XjX
>
j

⌘
,
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Denote bU 2Op,r and bU (i) 2Op,r the top-r left eigenvectors of b⌃ and b⌃(i), respectively. The
sensitivity of sample eigenvectors characterizes the deviation between bU and bU (i) caused by
replacing the i-th observation by its i.i.d. copy. Since eigenvectors are determined up to an
orthogonal rotation (note that we allow the eigengap |�i � �j | to be zero), a commonly used
metric for measuring the distance between eigenvectors is the projection distance defined by
kbU bU> � bU (i) bU (i)>kF.

The primary challenge in differentially private PCA lies in characterizing a precise upper
bound for kbU bU> � bU (i)> bU (i)kF. In most existing works [7, 16, 23], the data matrix X is
assumed to be fixed, and its columns are all bounded, denoted as kXik  �, where we slightly
abuse the notation by letting k ·k denote the `2-norm for vectors and � is a deterministic value.
This immediately implies an upper bound kb⌃� b⌃(i)k  2�2/n and the sensitivity of bU bU>

is guaranteed by the Davis-Kahan theorem.
However, this approach becomes invalid when observations are unbounded and sub-

optimal when observations are randomly sampled from a common distribution. A more re-
cent work [34] aimed to exploit the statistical properties of i.i.d. samples to achieve a sharper
bound for differentially private PCA. This work focused on the rank-one case (r = 1) and the
Oja’s algorithm, well-known for online PCA, which iteratively updates the estimation with
one additional observation. The online fashion of Oja’s algorithm in the rank-one case allows
for an explicit representation of the eigenvector estimator, enabling a sharp upper bound of
the sensitivity to be derived. Consequently, nearly optimal differentially private PCA for the
case r = 1 was achieved. However, it remains unclear how this approach can be extended to
the rank-r case and what the minimax optimal convergence rates are.

We take a fundamentally different approach by directly focusing on kbU bU>� bU (i) bU (i)>kF.
This task presents two challenges: the spectral projector bU bU> involves a complicated func-
tion of the data matrix X , and a sharp perturbation analysis is required for a set of r empiri-
cal eigenvectors. Fortunately, we leverage an explicit spectral representation formula adapted
from [47] and successfully establish a precise upper bound for kbU bU> � bU (i) bU (i)>kF.

For brevity in notation, we assume n � C1(r logn+ log2 n) and 2r + C1 logn  p. We
define r̃ := tr(⌃)/|⌃|= (r�+ p�2)/(�+ �2) as the effective rank. It is clear that r  r̃  p.

LEMMA 2.3. There exist absolute constants c1,C1,C2,C3 > 0 such that if �/�2 �
C1(p/n+

p
p/n), then with probability at least 1� e�c1p � 3n�9 � 10�20r̃ ,

(6) max
i2[n]
kbU bU> � bU (i) bU (i)>kF C2

✓
�2

�
+

r
�2

�

◆p
p(r+ logn)

n
.

The logn term in upper bound (6) is due to the maximization over n. Nevertheless, the
bound is much smaller than that achieved by the deterministic analysis in [7, 16, 23]. Indeed,
a direct application of Davis-Kahan theorem yields an upper bound O

�
kb⌃ � b⌃(i)k

p
r/�
�
,

which is at least in the order O
�
(r�+ p�2)

p
r/(n�)

�
, with high probability. The significant

improvement is due to a sharp spectral characterization showing that the difference bU bU> �
bU (i) bU (i)> is mainly contributed by the term kU>(XiX>

i �X 0
iX

0>
i )U?kF/(n�). Here, U? 2

Op,p�r denotes the orthogonal complement of U such that (U,U?) is an orthogonal matrix.
The proof of Lemma 2.3 is technically involved and deferred to Section 6.2. It is worth
noting that the original spectral representation formula developed in [47] is inapplicable here
because ⌃ is not exactly rank-r. Interestingly, we establish a similar spectral representation
formula exclusively for spiked covariance matrix, which may be of independent interest. See
Lemma 3.1 in Section 3.1.
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The sensitivity of eigenvalues is also necessary for constructing differentially private co-
variance estimation. Let �k(b⌃) and �k(b⌃(i)) denote the k-th largest eigenvalue of b⌃ and
b⌃(i), respectively. Compared to the eigenvectors, the sensitivity of eigenvalues can be eas-
ily characterized by Hoffman-Weilandt’s inequality. The proof of Lemma 2.4 is deferred to
Section 6.3.

LEMMA 2.4. There exist absolute constants c1,C1,C2 > 0 such that with probability at
least 1� n�10,

(7)
pX

k=1

����k(b⌃)� �k(b⌃(i))
���
2
C2

✓
�(r+ logn) + �2p

n

◆2

,

for all i 2 [n].

We can regard
⇣Pp

k=1

�
�k(b⌃)��k(b⌃(i))

�2⌘1/2
/� and kbU bU>� bU (i) bU (i)>kF/

p
r as the

relative sensitivity of eigenvectors and eigenvalues, respectively. Lemmas 2.3 and 2.4 show
that the relative sensitivity of eigenvalues can be considerably larger than that of eigenvectors.
This insight implies that, when designing a differentially private optimal estimation proce-
dure for the population covariance matrix, it is advisable to privatize the eigenvalues and
eigenvectors separately, as elaborated in Algorithm 1.

3. Upper Bounds with Differential Privacy.

3.1. Spectral representation formula. Our key technical tool is the following spectral
representation formula. Recall that bU and U denote the top-r eigenvectors of b⌃ and ⌃, re-
spectively. Denote the deviation matrix by b� = b⌃ � ⌃ so that b⌃ = ⌃ + b� is viewed as a
perturbation of the “signal" matrix ⌃. The spectral representation formula was first intro-
duced in [47], which, however, requires the “signal" matrix to be exactly rank-r. This is
certainly not the case here since ⌃ is full-rank. Here, we develop the spectral representation
formula exclusively for the perturbation of a spiked covariance matrix.

The spectral representation formula is actually deterministic. Let the symmetric matrix
� 2 R

p⇥p be an arbitrary perturbation. Denote bU the top-r eigenvectors of ⌃ +� where
⌃= U⇤U> + �2Ip with ⇤= diag(�1, · · · ,�r). We are interested in developing an explicit
representation formula for the spectral projector bU bU> in terms of �. Let Q? := U?U>

? =
Ip �UU> denotes the orthogonal projection. For all t� 1, we define Q�t := U⇤�tU>. We
slightly abuse the notation and denote Q0 :=Q? = U?U>

? .

LEMMA 3.1. Suppose that 2k�k  �r , then

bU bU> �UU> =
X

k�1

S⌃,k(�),

where the k-th order term S⌃,k(�) is a summation of
�2k
k

�
terms defined by

S⌃,k(�) =
X

s:s1+...+sk+1=k

(�1)1+⌧(s) ·Q�s1�Q�s2 . . .�Q�sk+1 ,

where s= (s1, . . . , sk+1) contains non-negative indices and ⌧(s) =
Pk+1

j=1 I (sj > 0) . A sim-
ple upper bound of the k-th order term is

��S⌃,k(�)
��

✓
2k

k

◆⇣k�k
�r

⌘k
.
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Based on Lemma 3.1, the leading term, i.e., the 1st-order term, of bU bU> � UU> is con-
tributed by ⇤�1U>�U? and U>

?�U⇤�1. The latter terms can be sharply controlled by ex-
ploiting the statistical properties of � if observations are i.i.d. sampled.

3.2. Upper bounds. In this section, we present the upper bounds of our (", �)-DP esti-
mator eU eU> and e⌃. Let k · kq denotes the matrix Schatten-q norm for any q 2 [1,1], e.g., the
spectral norm k · k if q =1, the Frobenius norm k · kF if q = 2, and the nuclear norm k · k⇤
if q = 1. A simple fact by the triangle inequality

keU eU> �UU>kq  keU eU> � bU bU>kq + kbU bU> �UU>kq,

leads to the following theorem.

THEOREM 3.2. Suppose that n� C1(r logn+ log2 n),2r + C1 logn p, and �/�2 �
C1(p/n+

p
p/n) for some large absolute constant C1 > 0. If we choose

�1 =C2

✓
�2

�
+

r
�2

�

◆p
p(r+ logn)

n
,

then, there exist absolute constants c1,C4 > 0 such that, for any "> 0, � 2 (0,1), Algorithm 1
outputs an (", �)-DP estimator eU eU> satisfying

keU eU> �UU>kq
r1/q

C4

✓
�2

�
+

r
�2

�

◆✓r
p

n
+

p
p
r+ logn

n"

r
log

2.5

�

◆
,

with probability at least 1� e�c1p � 3n�9 � 10�20r̃ . Moreover,

EkeU eU> �UU>kq
r1/q

C4

✓
�2

�
+

r
�2

�

◆✓r
p

n
+

p
p
r+ logn

n"

r
log

2.5

�

◆
.

Here, q can be any number in [1,1] and r̃ denotes the effective rank of ⌃.

Basically, the upper bounds consist of two parts: the first one represent the statistical error
rate and the second one is the cost of privacy constraint. It is well-known that the first term
is minimax optimal [10, 30, 35]. The second term decays at the rate O

�
p/(n") log1/2 ��1

�

with respect to the sample size, dimension and privacy-related parameters, which is typical in
differentially private algorithms [13, 34]. In Section 4, we shall develop matching minimax
lower bounds showing that the rates in Theorem 3.2 are minimax optimal up the logn and
log(2.5/�) terms.

It worth to mention that the logn term appearing in the privacy-related rate is due to the
requirement of differential privacy that applies to each of the n observations. This logn term
seems to be present in the upper bounds of most differentially private algorithms. See, e.g.,
[12, 13, 23] and references therein. A slight difference here is that the logn term appears not
as an additional factor, but as an additive term. If r � logn, the logarithmic factor can be
ignored and the rate becomes minimax optimal except for the log ��1 factor. Note that the
probability guarantee in Theorem 3.2 depends on the effective rank r̃. The rationale is that if
the nuisance variance �2 is very small, e.g., �2 = 0 , the distribution of N (0,U⇤U>+�2Ip)
becomes actually degenerate to a distribution in r-dimensional space. The concentration phe-
nomenon for an r-dimensional distribution can be weaker than that for a p-dimensional dis-
tribution.

We now present the performance bound of our differentially private covariance estimator
e⌃.
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THEOREM 3.3. Suppose that n� C1(r logn+ log2 n),2r + C1 logn p, and �/�2 �
C1(p/n+

p
p/n) for some large absolute constant C1 > 0. If we choose

�1 =C2

✓
�2

�
+

r
�2

�

◆p
p(r+ logn)

n
and �2 =C2

�(r+ logn) + �2p

n
,

then, there exist absolute constants c1,C4 > 0 such that, for any "> 0, � 2 (0,1), Algorithm 1
outputs an (", �)-DP estimator e⌃ satisfying

ke⌃�⌃kq
r1/q

C4

 
�

✓r
r

n
+

p
r(r+ logn)

n"
·
r

log
2.5

�

◆
+
p

�2(�+ �2)

✓r
p

n
+

p
p

(r+ logn)

n"

r
log

2.5

�

◆!
,

with probability at least 1� 10�19r � 3n�9 � e�c1p. Moreover,

Eke⌃�⌃kq
r1/q

C4

 
�

✓r
r

n
+

p
r(r+ logn)

n"
·
r

log
2.5

�

◆
+
p

�2(�+ �2)

✓r
p

n
+

p
p

(r+ logn)

n"

r
log

2.5

�

◆!
.

By Theorem 3.3, the privacy-irrelevant error rate

�

r
r

n
+
p

�2(�+ �2)

r
p

n
,

matches the minimax optimal rate of spiked covariance estimation in the existing literature
[10, 15]. For ease of discussion, let us focus on the error rate in spectral norm. There are two
terms related to the cost of privacy:

� ·
p
r(r+ logn)

n"

r
log

2.5

�
and

p
�2(�+ �2)

✓r
p

n
+

p
p

(r+ logn)

n"

r
log

2.5

�

◆
,

where the second term is approximately of order �keU eU> � UU>k, contributed by the cost
of estimating the eigenvectors. The first term grows at the rate O(r3/2) with respect to the
rank, which is contributed by the cost of estimating the eigenvalues. Due to the unknown
orthogonal rotation measuring the alignment between bU and eU , privacy cost is also paid
for the r ⇥ r unknown rotation matrix. Minimax lower bounds are developed in Section 4
demonstrating the optimality of these bound up to the logn and log(2.5/�) related terms.

4. Minimax Lower Bounds. In this section, we establish the minimax lower bound of
PCA and covariance matrix estimation under the constraint of differential privacy. Our main
technical tool is a version of Fano’s lemma with privacy constraint.

4.1. DP-constrained Fano’s Lemma. Several techniques have been developed to estab-
lish minimax lower bounds under the constraint of differential privacy. Notable examples
include the fingerprint method [28], Le Cam’s method under differential privacy [5], differ-
entially private Fano’s lemma [3], and the recently introduced Score Attack method [13]. Le
Cam’s method and Fano’s lemma construct a multitude of hypotheses that are difficult to
distinguish, while the fingerprint method and Score Attack design a test statistic with a prior
distribution.
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For our convenience, we employ the differentially private Fano’s lemma, as detailed in
Lemma 4.1, whose proof is provided in Section A.3 of the Supplementary Materials [14].
Here, KL(·, ·) and TV(·, ·) denote the Kullback-Leibler divergence and total variation dis-
tance between two distributions.

LEMMA 4.1. Let P := {P : P = µ(1) ⇥ · · · ⇥ µ(n)} be a family of product measures
indexed by a parameter from a pseudo-metric space (⇥,⇢). Denote ✓(P ) 2 ⇥ the param-
eter associated with the distribution P . Let Q = {P1, · · · , PN} ⇢ P contain N probability
measures and there exist constants ⇢0, l0, t0 > 0 such that for all i 6= i0 2 [N ],

⇢ (✓(Pi),✓(Pi0))> ⇢0, KL(PikPi0) l0,

and
X

k2[n]

TV
⇣
µ(k)
i , µ(k)

i0

⌘
 t0,

where Pi = µ(1)
i ⇥ · · ·⇥ µ(n)

i and Pi0 = µ(1)
i0 ⇥ · · ·⇥ µ(n)

i0 . Then,

inf
A2A",�(P)

sup
P2P

EA ⇢(A,✓(P ))>max

⇢
⇢0
2

✓
1� l0 + log 2

logN

◆
,
⇢0
4

✓
1
^ N � 1

exp (4"t0)

◆✓
1� 2�e4"t0

e" � 1

◆�
,

(8)

where the infimum is taken over all the (", �)-DP randomized algorithm defined by
A",�(P) := {A :X 7!⇥ and A is (", �)-differentially private for all X ⇠ P 2 P } .

Lemma 4.1 provides a powerful tool for developing a minimax lower bound in estima-
tion problems under the constraint of differential privacy. Basically, if one can construct a
sufficiently large set of distributions which are pairwise close in both Kullback-Leibler di-
vergence and total variation distance, then a minimax lower bound can be derived if the
underlying parameters are well-separated. The first term in the RHS of (8) is derived from
the classic Fano’s Lemma without privacy constraint and serves as a lower bound for the
statistical error rate. This term is a well-established outcome in information theory by the
framework of hypothesis testing and has been extensively employed in the statistics litera-
ture. The second term in the RHS of (8) characterizes the price one needs to pay for dif-
ferential privacy. It is noteworthy that the cost of privacy is determined by t0, which is the
summation of marginal total variances. Intuitively, if the marginal total variance distances
between Pi = µ(1)

i ⇥ · · ·⇥µ(n)
i and Pi0 = µ(1)

i0 ⇥ · · ·⇥µ(n)
i0 are small , it becomes challenging

to identify the distribution from which the dataset is drawn. Therefore, the cost of privacy is
expected to be low when t0 is small. Moreover, if we assume that X = (X1, · · · ,Xn)⇠ Pi,
then the cost of privacy resulting from replacing Xk ⇠ µ(k)

i by X 0
k ⇠ µ(k)

i0 should be upper
bounded in terms of TV(µ(k)

i , µ(k)
i0 ).

4.2. Minimax lower bounds. In this section, we apply Lemma 4.1 to establish the mini-
max lower bounds for differentially private PCA and covariance estimation under the spiked
covariance model. Denote the family of normal distribution with a spiked covariance matrix
by

P(�,�2) :=
n
N (0,⌃) :⌃= U⇤U> + �2Ip 2⇥(�,�2)

o
.

By definition, each distribution P 2 P(�,�2) is indexed by the pair of eigenvalues ⇤ and
eigenvectors U 2Op,r . We first focus on the minimax lower bounds for estimating the spec-
tral projector UU>. Similarly, the minimax lower bounds are established in all Schatten-q
norms for q 2 [1,1].
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THEOREM 4.2. Let the p⇥n data matrix X have i.i.d. columns sampled from a distribu-
tion P =N (0,U>⇤U> + �2Ip) 2 P(�,�2). Then, there exists an absolute constant c1 > 0
such that

inf
eU2U",�

sup
P2P(�,�2)

EkŨ Ũ> �UU>kq
r1/q

� c1

 ✓
�2

�
+

r
�2

�

◆✓r
p

n
+

p
p
r

n✏

◆!^
1,

where the infimum is taken over all the possible (", �)-DP algorithms, denoted by U",� , and
the expectation is taken with respect to both eU and P .

It is worth noting the two terms in the minimax lower bound of spectral norm (q =1):

(9)
✓
�2

�
+

r
�2

�

◆r
p

n
and

✓
�2

�
+

r
�2

�

◆
p
p
r

n"
.

The first term concerns the statistical error of PCA without privacy constraint. The error
bound is free of the rank r, which is very typical in spectral norm error rate and the rate
matches the existing minimax optimal rate of PCA for spiked covariance model. See, e.g.,
[10, 49, 50]. The second term is the price paid for differential privacy. Interestingly, the
second term is dependent on the rank r even though spectral norm is considered here. The
technical explanation is that the sensitivity of empirical spectral projector increases as the
number of PC’s grows. Comparing the two terms in (9), we observe that if " � (rp/n)1/2,
the cost of privacy is dominated by the statistical error.

A minimax lower bound for rank-one PCA has been established in [34, Theorem 5.3].
Their developed rate in spectral norm also have two terms:

r
�2

�+ �2
·
r

p

n
and

r
�2

�+ �2
· p

n"
.

Their rate matches ours when r = 1 and �� �2. On the other hand, if �⌧ �2, our minimax
lower bound is much stronger. Moreover, our minimax lower bounds hold for a diverging
rank as long as 2r  p.

We now shift our focus to the minimax lower bound of differentially private estimation of
the spiked covariance matrix. Here, we assume �2 is known and it suffices to estimate the
signal part U⇤U>. As a result, the minimax lower bound is essentially determined jointly by
the lower bounds in estimating eigenvalues and eigenvectors.

THEOREM 4.3. Let the p⇥n data matrix X have i.i.d. columns sampled from a distribu-
tion P =N (0,U>⇤U> + �2Ip) 2 P(�,�2). Then, there exists an absolute constant c1 > 0
such that

inf
e⌃ 2M",�

sup
P2P(�,�2)

E
��e⌃�⌃

��
q

r1/q
� c1

✓
�

✓r
r

n
+

r3/2

n"

◆
+
p

�2(�+ �2)

✓r
p

n
+

p
rp

n"

◆◆^
�,

where the infimum is taken over all the possible (", �)-DP algorithms, denoted by M",� , and
the expectation is taken with respect to both e⌃ and P . Here, q can be any number in [1,1].

Without loss of generality, let us discuss the two terms in the spectral norm distance

(10) �

✓r
r

n
+

r3/2

n"

◆
and

p
�2(�+ �2)

✓r
p

n
+

p
rp

n"

◆
.

The second term is contributed by the differentially private estimation error of PCA in the
form of �keU eU> � UU>k2F. The first term dominates if the signal strength is exceedingly
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large, or more precisely, when �/�2� p/r. In this case, we can simply regard � = 0 and
the stochastic error mainly comes from the randomness of a low-dimensional distribution.
Basically, it suffices to consider the minimax optimal estimation under a smaller family of
normal distributions {N (0,�UU> + �Ir) : U 2 Or,r/4}. By replacing �  �, r  r/4,
and p r, the second term reduces to the first term in (10). Without the privacy constraint,
the first term also matches the existing optimal rate in covariance estimation under spiked
covariance model [10, 15].

5. Extensions. For the sake of clarity, we have assumed uniformity in the order of spiked
eigenvalues and Gaussian distributions. In this section, we extend our analysis to provide up-
per bounds for differentially private PCA and covariance estimation without requiring these
specific conditions.

5.1. Diverging condition number. Suppose that X1, · · · ,Xn
i.i.d.⇠ N (0,⌃) where ⌃ =

U⇤U>+�2Ip with spiked eigenvalues ⇤= diag(�1, · · · ,�r). Denote 0 := �1/�r , the ratio
of the largest and smallest spiked eigenvalues. The proof of Corollary 5.1 is almost identical
to that of Theorems 3.2 and 3.3, and thus omitted. We only present the upper bounds of the
expected error in Schatten norms, but high probability bounds hold similarly.

COROLLARY 5.1. Suppose that n � C1(20r logn + log2 n),2r + C1 logn  p, and
�r/�2 �C1(0p/n+

p
p/n) for some large absolute constant C1 > 0. If we choose

�1 =C2

✓
�2

�r
+

s
0�2

�r

◆p
p(r+ logn)

n
and �2 =C2

�1(r+ logn) + �2p

n
,

then, there exist absolute constants C4 > 0 such that, for any " > 0, � 2 (0,1), Algorithm 1
outputs an (", �)-DP estimators eU eU> and e⌃ satisfying

EkeU eU> �UU>kq
r1/q

C4

✓
�2

�r
+

s
0�2

�r

◆✓r
p

n
+

p
p
r+ logn

n"
log1/2

⇣2.5
�

⌘◆
.

and

Eke⌃�⌃kq
r1/q

C4

 
�1

✓r
r

n
+

p
r(r+ logn)

n"
·
r

log
2.5

�

◆
+
p

�2(�1 + �2)

✓r
p

n
+

p
p

(r+ logn)

n"

r
log

2.5

�

◆!
.

for all q 2 [1,1].

5.2. Sub-Gaussian. Suppose that X follows a sub-Gaussian distribution satisfying that,
for any u 2Rp, the following bound holds

E exp

⇢
hX,ui2

u>⌃u

�
 2,

where ⌃ 2 ⇥(�,�2). For ease of exposition, we focus on the case of bounded condition
number. Interestingly, the sensitivity of eigenvectors and eigenvalues is actually identical to
that under Gaussian distributions.
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COROLLARY 5.2. Suppose that n�C1
�
r log(p+n) log2 r+log2 n

�
,2r+C1 logn p,

and �/�2 � C1(p/n +
p

p/n) log(p + n) for some large absolute constant C1 > 0. If we
choose

�1 =C2

✓
�2

�
+

r
�2

�

◆p
p(r+ logn)

n
and �2 =C2

�(r+ logn) + �2p

n
,

then, there exist absolute constant C4 > 0 such that, for any " > 0, � 2 (0,1), Algorithm 1
outputs an (", �)-DP estimators eU eU> and e⌃ satisfying

EkeU eU> �UU>kq
r1/q

C4

✓
�2

�
+

r
�2

�

◆✓r
p log p

n
+

p
p
r+ logn

n"
log1/2

⇣2.5
�

⌘◆
,

and

Eke⌃�⌃kq
r1/q

C4

 
�

✓r
r

n
+

p
r(r+ logn)

n"
·
r

log
2.5

�

◆
+
p

�2(�+ �2)

✓r
p log p

n
+

p
p
r+ logn

n"

r
log

2.5

�

◆!
.

for all q 2 [1,1].

As shown by Corollary 5.2, the upper bounds of differentially private sub-Gaussian PCA
and covariance estimation are almost the same as those for Gaussian distributions, implying
that these bounds are minimax optimal. However, some additional logarithmic factors appear
in the upper bound and signal-to-noise ratio condition when controlling the higher-order
terms in spectral perturbation.

6. Proofs of Main Results. In this section, we prove the main results and some of the
key lemmas. Some additional technical results are given in the Supplementary Materials [14].
We begin by stating several technical lemmas that will be frequently used in the subsequent
proofs. Due to space constraints, their proofs are given in the supplement [14].

6.1. Technical lemmas. Lemma 6.1 is a well-known dimension-free concentration in-
equality of sample covariance matrix developed by [30]. Here, k · k denote the spectral norm
of a matrix and `2-norm of a vector.

LEMMA 6.1 ([30]). Suppose X1, · · · ,Xn are i.i.d. sampled from N (0,⌃) and b⌃ :=Pn
i=1XiX>

i /n. Then,

Ekb⌃�⌃k ⇣
 r

tr(⌃)k⌃k
n

_ tr(⌃)

n

!
.

Moreover, there exists an absolute constant C1 > 0 such that, for all t� 1, with probability
at least 1� e�t,

���kb⌃�⌃k �Ekb⌃�⌃k
���C1k⌃k

 
t

n
+

r
t

n

✓
1 +

r
tr(⌃)/k⌃k

n

◆!
.

The following lemma characterizes the concentration of the norm of a Gaussian random
vector.



DP-PCA 15

LEMMA 6.2. Let X ⇠N (0,⌃) and the eigenvalues of ⌃ are �1 � · · · � �p � 0. Then,
there exist absolute constants C1,C2, c1 > 0 such that

P

✓���kXk2 � tr(⌃)
���C1

⇣
u

pX

i=1

�2
i

⌘1/2
+C2�1u

◆
� 1� e�c1u,

for any u > 0. Under the spiked covariance model ⌃ 2 ⇥(�,�2) and the condition that
p�C6 logn for some absolute constant C6 > 0, we have

P

✓n
max
i2[n]
kXik2 + kX 0

ik2 C3(r�+ p�2) +C4

p
(r�2 + p�4) logn+C5(�+ �2) logn

o◆

\n
max
i2[n]
kU>Xik2 +max

i2[n]
kU>X 0

ik2 C3r(�+ �2) +C4

p
r(�2 + �4) logn+C5(�+ �2) logn

o

\n
max
i2[n]
kU>

?Xik2 +max
i2[n]
kU>

?X 0
ik2 C3p�

2
o
� 1� n�10,

where C3,C4,C5 > 0 are some absolute constants. Let E0 denote the above event. Moreover,

EkXik2 C3(r�+ p�2), EkU>Xik2 C3r(�+ �2) and EkU>
?Xik2 C3p�

2.

Denote � := b⌃�⌃ and �(i) := b⌃(i) �⌃. We shall frequently use several concentration
bounds related to � and �(i) throughout the proof. For reader’s convenience, these con-
centration bounds are collected in the following lemma. Recall that r̃ = tr(⌃)/k⌃k is the
effective rank of ⌃.

LEMMA 6.3. Suppose that ⌃ 2 ⇥(�,�2), n � C1(r + log2 n), 2r + C1 logn  p, and
�/�2 � C1p/n for some absolute constant C1 > 0. There exist absolute constants C2 > 0
such that the event

E� :=

(
k�k+max

i2[n]
k�(i)k C2

r
(�+ �2)(r�+ p�2)

n

)
(11)

holds with probability P(E�)� 1�n�10� 10�20r̃ . Meanwhile, the upper bound in (11) also
holds for Ek�k. There exist absolute constants c2,C3 > 0 such that the event

E1 :=
(
��U>�U?

��+max
i2[n]
kU>�(i)U?k C3

r
�2(�+ �2)p

n

)(12)

\
(
max
i2[n]

��U>(XiX
>
i /n)U?

��+
��U>(X 0

iX
0>
i /n)U?

��C3

p
�2(�+ �2)p(r+ logn)

n

)

\
(
max
i2[n]

���U>
⇣ 1
n

X

j 6=i

XjX
>
j

⌘
U?U

>
?Xi

���C3� ·
r

�2(�+ �2)p(r+ logn)

n

)

holds with probability P(E1)� 1� e�c1p � 2n�9. Meanwhile, the first upper bound in (12)
also hods for EkU>�U?k.

The following perturbation bound of principal subspace will be useful.

LEMMA 6.4. Suppose that �r � (4 + �)k�k for some � > 0, then

��bU bU> �UU>�� 2
���⇤�1U>�U?

���+ 6(4 + �)
k�k

��U>�U?
��

��2
r

.
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6.2. Proof of Lemma 2.3. Let the events E0,E�,E1 be defined as in Section 6.1. The
following analysis proceeds mainly on the event E⇤ := E0 \ E� \ E1, which occurs with
probability at least 1� e�c1p � 3n�9 � 10�20r̃ .

On the event E⇤ and under the conditions that ⌃ 2 ⇥
�
p, r,�,�2

�
, n � C1(r logn +

log2 n), 2r + C1 logn  p and �/�2 � C1
�
p/n +

p
p/n

�
for a large absolute constant

C1 > 0, we have �r � 5
�
k�k _ k�(i)k

�
. Therefore, we are able to apply Lemma 3.1 to

obtain
bU bU> �UU> =

X

k�1

S⌃,k(�) and bU (i) bU (i)> �UU> =
X

k�1

S⌃,k(�
(i)).

The explicit formula of spectral projectors implies that
(13)

kbU bU> � bU (i) bU (i)>kF =

����
X

k�1

S⌃,k(�)�
X

k�1

S⌃,k(�
(i))

����
F

 kS⌃,1(�)� S⌃,1(�
(i))kF +

����
X

k�2

S⌃,k(�)�
X

k�2

S⌃,k(�
(i))

����
F

.

We now bound the first-order term kS⌃,1(�) � S⌃,1(�(i))kF and the higher order term
k
P

k�2 S⌃,k(�)�
P

k�2 S⌃,k(�(i))kF, separately.

Step 1: bounding the first order term. By the definitions of S⌃,1(�) and S⌃,1(�(i)),

max
i2[n]
kS⌃,1(�)� S⌃,1(�

(i))kF max
i2[n]
kQ�1(���(i))Q?kF + kQ?(���(i))Q�1kF

 2

n
max
i2[n]

⇣
k⇤�1U>XiX

>
i U?k+ k⇤�1U>X 0

iX
0>
i U?k

⌘

C3

r
�2(�+ �2)

�2
·
p

p(r+ logn)

n
,(14)

where the last inequality holds on E⇤ for all i 2 [n] based on Lemma 6.3.

Step 2: bounding the higher-order terms. Let Ik be the index set for terms in S⌃,k

Ik =

⇢
s : s= (s1, . . . , sk+1) ,

k+1X

m=1

sm = k, sm � 0, 8m 2 [k+ 1]

�
,

with the cardinality |Ik|=
�2k
k

�
. We define

T⌃,k,s,l(���(i)) :=Q�s1�(i)Q�s2 · · ·Q�sl(���(i))Qsl+1 · · ·Q�sk�Qsk+1 ,

for k � 2, s= (s1, · · · , sk+1) 2 Ik and l 2 [k]. Since |Ik|=
�2k
k

�
, the higher order terms can

be bounded as follows

(15)

���
X

k�2

S⌃,k(�)�
X

k�2

S⌃,k(�
(i))
���
F
=
���
X

k�2

X

s2Ik

X

l2[k]

T⌃,k,s,l(���(i))
���
F


X

k�2

✓
2k

k

◆
max
s2Ik

X

l2[k]

kT⌃,k,s,l(���(i))kF.

It suffices to upper bound kT⌃,k,s,l(���(i))kF for any s 2 Ik. Denote

Dmax :=C2

r
(�+ �2)(r�+ p�2)

n
,
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the upper bound appeared in the event E� so that k�k + maxi2[n] k�(i)k  Dmax in the
event E�.

LEMMA 6.5. Under the conditions of Lemma 2.3, the following bound holds in the event
E⇤ for all k � 2 and s 2 Ik.

X

l2[k]

kT⌃,k,s,l(���(i))kF C6
(3 + k)k

2

✓
Dmax

�r

◆k�2

· �
2

�

⇣r p

n
+

p

n

⌘
·
r

�2(�+ �2)

�2

p
p(r+ logn)

n
,

where C6 > 0 is an absolute constant.

We now continue from (15) and get for all i 2 [n]
���
X

k�2

S⌃,k(�)�
X

k�2

S⌃,k(�
(i))
���
F

X

k�2

✓
2k

k

◆
max
s2Ik

X

l2[k]

kT⌃,k,s,l(���(i))kF

.
X

k�2

✓
2k

k

◆
(3 + k)k

2

✓
Dmax

�r

◆k�2

· �
2

�

⇣r p

n
+

p

n

⌘
·
r

�2(�+ �2)

�2

p
p(r+ logn)

n

. �2

�

⇣r p

n
+

p

n

⌘
·
r

�2(�+ �2)

�2

p
p(r+ logn)

n
,(16)

where the last inequality holds if ��C7Dmax for a large enough constant C7 > 0.
Combining (14) and (16) together with the condition �/�2 �C3(

p
p/n+ p/n), we get in

event E⇤ that

max
i2[n]
kbU bU> � bU (i) bU (i)>kF .

r
�2(�+ �2)

�2

p
p(r+ logn)

n
.

6.3. Proof of Lemma 2.4. Recall that, by definition of � and �(i), we can write

b⌃(i) = b⌃� 1

n
XiX

>
i +

1

n
X 0

iX
0>
i .

By Hoffman-Weilandt’s inequality, we have
pX

k=1

�
�k(b⌃)� �k(b⌃(i))

�2 kb⌃� b⌃(i)k2F  2kb⌃� b⌃(i)k2  4

n2

⇣
kXik2 + kX 0

ik2
⌘2

C4

✓
�(r+ logn) + p�2

n

◆2

,

where the last inequality holds in the event E0 defined in Lemma 6.2 and under the condition
p�C1 logn. This completes the proof.

6.4. Proof of Theorem 3.2. It suffices to bound keU eU> � bU bU>kq and kbU bU> �UU>kq .
Without loss of generality, we start with q =1, i.e., the upper bound of spectral norm.

Recall that eU eU> denotes the spectral projector of the top-r eigenvectors of ⌃+�. Based
on Lemma 6.3,

k�k C2

r
(�+ �2)(r�+ p�2)

n
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with probability at least 1� n�10 � 10�20r̃ . In this event, we have �� 5k�k since n�C1r
and �/�2 �C1

�
p/n+

p
p/n

�
. Applying Lemma 6.4, we get in this event,

���bU bU> �UU>
��� 2

���⇤�1U>�U?

���+C3
k�k

��U>�U?
��

�2
C4

✓
�2

�
+

r
�2

�

◆r
p

n
,

where the last inequality holds with probability at least 1 � 2n�9 � e�c1p by Lemma 6.3.
Moreover,

EkeU eU> �UU>k C4

✓
�2

�
+

r
�2

�

◆r
p

n

^
1.

By Davis-Kahan theorem, keU eU> � eU eU>k . kZk ^ 1, where Z is a symmetric matrix
with i.i.d. entries having distribution N

�
0,8�2

1"
�2 log 2.5

�

�
. By [45, Theorem 4.4.5],

kZk.
✓
�2

�
+

r
�2

�

◆
· p
p
r+ logn

n"
log1/2(

2.5

�
),

with probability at least 1�O (e�c1p) and the same bound also holds for EkZk.
Combining the above two bounds, we can conclude that with probability at least 1 �

e�c1p � 3n�9 � 10�20r̃ ,

keU eU> �UU>k.
✓
�2

�
+

r
�2

�

◆
·
✓r

p

n
+

p
p

(r+ logn)

n"

r
log

2.5

�

◆
,

and the same bound also holds for EkeU eU> �UU>k. In the same event, we can also get the
upper bound of nuclear norm distance:

keU eU> �UU>k⇤ .
✓
�2

�
+

r
�2

�

◆
· r
✓r

p

n
+

p
p

(r+ logn)

n"

r
log

2.5

�

◆

and EkeU eU> �UU>k⇤. For general q 2 [1,1], we can apply the interpolation inequality:

keU eU> �UU>kq  keU eU> �UU>k1/q⇤ · keU eU> �UU>k
q�1
q ,

which completes the proof.

6.5. Proof of Theorem 3.3. Recall that we assume �2 is known. By the definition of e⌃
stated in Algorithm 1, for any q 2 [1,1], we have the Schatten-q norm bounded as

ke⌃�⌃kq =keU e⇤eU> �U⇤U>kq

=
��eU
�eU>(b⌃� �2Ip +E)eU

�eU> �UU>(⌃� �2Ip)UU>��
q


��eU eU>(b⌃� �2Ip)eU eU> �UU>(⌃� �2Ip)UU>��

q
+ kEkq.

Without loss of generality, we begin with q =1 and bound the spectral norm. Since E is an
r ⇥ r symmetric matrix with i.i.d. entries N

�
0,8�2

2"
�2 log

�
2.5
�

� �
, by [45, Theorem 4.4.5],

we get

kEk C4
�
p
r(r+ logn) + �2p

p
r

n"
·
r

log
2.5

�
,(17)

with probability at least 1� 10�20r and for some absolute constant C4 > 0. Moreover, the
same bound holds for EkEk.
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Observe that
��eU eU>(b⌃� �2Ip)eU eU> �UU>(⌃� �2Ip)UU>��


���eU eU> �UU>�����(b⌃� �2Ip)

��+ kUU>(b⌃�⌃)k+ k⌃� �2IpkkeU eU> �UU>k.
(18)

Since

kb⌃� �2Ipk  k⌃� �2Ipk+ kb⌃�⌃k. �,

where the last inequality holds in event E� defined in Lemma 6.3 and under the conditions
n�C1r and �/�2 �C1

�
p/n+

p
p/n

�
. By (18), we get

��eU eU>(b⌃� �2Ip)eU eU> �UU>(⌃� �2Ip)UU>��

.�keU eU> �UU>k+ kU>(b⌃�⌃)k

.
p

�2(�+ �2)

✓r
p

n
+

p
p

(r+ logn)

n"

r
log

2.5

�

◆
+

r
(�+ �2)(r�+ p�2)

n

.
p

�2(�+ �2)

✓r
p

n
+

p
p

(r+ logn)

n"

r
log

2.5

�

◆
+ �

r
r

n
,(19)

where the last inequality is due to Theorem 3.2 and Lemma 6.3. Combining (17) and (19),
we get

ke⌃�⌃k. �

✓r
r

n
+

p
r(r+ logn)

n"
·
r

log
2.5

�

◆
+
p

�2(�+ �2)

✓r
p

n
+

p
p

(r+ logn)

n"

r
log

2.5

�

◆
,

with probability at least 1� 10�20r � 3n�9 � 10�20r̃ � e�c1p. Since r̃ � r, we can simplify
10�20r + 10�20r̃  10�19r .

Moreover,

E
��eU eU>(b⌃� �2Ip)eU eU> �UU>(⌃� �2Ip)UU>��

.E
���eU eU> �UU>�����(b⌃� �2Ip)

��+EkUU>(b⌃�⌃)k+Ek⌃� �2IpkkeU eU> �UU>k

.E
1/2
���eU eU> �UU>���2E1/2

��(b⌃� �2Ip)
��2 +

r
(�+ �2)(r�+ p�2)

n

+
p

�2(�+ �2)

✓r
p

n
+

p
p

(r+ logn)

n"

r
log

2.5

�

◆
.

Note that

EkeU eU> �UU>k2 2EkeU eU � eU eU>k2 + 2EkeU eU> �UU>k2

.
✓
�2

�
+

r
�2

�

◆
·
✓r

p

n
+

p
p
r+ logn

n"

r
log

2.5

�

◆
,

where the last inequality is due to the classical concentration of operator norm of a Gaussian
random matrix, e.g., [32]. and

kb⌃� �2Ipk2 2kb⌃�⌃k2 + 2k⌃� �2Ipk2

.�+

r
(�+ �2)(r�+ p�2)

n
. �,



20

where the first inequality can be obtained by integrating the probability bound in Lemma 6.1.
Therefore, we conclude that

Eke⌃�⌃k. �

✓r
r

n
+

p
r(r+ logn)

n"
·
r

log
2.5

�

◆
+
p

�2(�+ �2)

✓r
p

n
+
p
p

(r+ logn)

n"

r
log

2.5

�

◆
.

Similar bounds can also be derived for the nuclear norm distance ke⌃�⌃k⇤ and the general
Schatten-q norm ke⌃�⌃kq . The detailed proof is skipped.

6.6. Proof of Theorem 4.2. Some preliminary results on the KL-divergence and to-
tal variation distance between Gaussian distributions are required. Let N (µ1,⌃1) and
N (µ2,⌃2) be two p-dimensional multivariate Gaussians, then

KL(N (µ1,⌃1)kN (µ2,⌃2))

=
1

2

✓
Tr
�
⌃�1
2 ⌃1 � Ip

�
+ (µ2 � µ1)

>⌃�1
2 (µ2 � µ1) + log

✓
det⌃2

det⌃1

◆◆
.

Suppose Ui,Uj 2 Op,r satisfying
��UiU>

i � UjU>
j

��
F
 "0. Let �,�2 � 0 be constants and

define ⌃i = �UiU>
i + �2Ip and ⌃j = �UjU>

j + �2Ip, respectively. Then it is easy to check
that

KL
�
N (0,⌃1)kN (0,⌃j)

�
=

1

2

✓
Tr
⇣
⌃�1
j ⌃i � Ip

⌘
+ log

✓
det⌃j

det⌃i

◆◆

=
1

2

✓
�

�2
� �

�+ �2

◆h
r�Tr

⇣
UjU

>
j UiU

>
i

⌘i
6 1

2

�2

�2(�2 + �)
"20,

and further by Pinsker’s inequality, we have

TV(N (0,⌃i),N (0,⌃j))
r

1

2
KL(N (0,⌃i)kN (0,⌃j))

1

2
"0

s
�2

�2(�2 + �)
.

In order to apply Fano’s lemma, we need to construct a large subset of Op,r within which
the elements are well-separated. Towards that end, we apply existing results of the packing
number of Grassmannians. Indeed, by [37, Proposition 8] and [31, Lemma 5], for any q 2
[1,1], there exists an absolute constant c0 > 0 and a subset S(p�r)

q ⇢ Op�r,r such that for
any Vi 6= Vj 2 S(p�r)

q ,

kViV
>
i � VjV

>
j kq � c0r1/q

and the cardinality of S(p�r)
q is at least 2r(p�r). Here, k · kq denotes the Schatten-q norm of a

matrix. In particular, spectral norm is Schatten-1 norm, Frobenius norm is Schatten-2 norm,
and nuclear norm is Schatten-1 norm. Let "0 > 0 be a small number to be decided later. Now,
for each V 2 S(p�r)

q , we define

U =

✓p
1� "20Irp
"20V

◆

such that U 2 R
p⇥r and U>U = Ir . This means that, for any V 2 S(p�r)

q , we can construct
a U 2Op,r . This defines a subset S(p)

q ⇢Op,r with Card
�
S(p)
q
�
� 2r(p�r) such that for any

Ui 6= Uj 2 S(p)
q ,

kUiU
>
i �UjU

>
j kq �

q
"20(1� "20)kVi � Vjkq &

q
"20(1� "20)kViV

>
i � VjV

>
j kq &

q
"20(1� "20)r

1/q
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and, meanwhile,

kUiU
>
i �UjU

>
j kF . kUi �UjkF  "0kVi � VjkF 

p
2r"0.

We then consider a family of distributions as

P
�
S(p)
q ,�,�2

�
= {N (0,⌃)⌦n :⌃= �UU> + �2Ip, U 2 S(p)

q }⇢ P(�,�2),

whose cardinality N := Card
⇣
P
�
S(p)
q ,�,�2

�⌘
� 2r(p�r).

For i 6= i0 2 [N ], the probability measures Pi = N (0,⌃i)⌦n and Pi0 = N (0,⌃i0)⌦n in
P
�
S(p)
q ,�,�2

�
satisfy

X

k2[n]

TV(N (0,⌃i),N (0,⌃i0)).
n

2

p
r"0

s
�2

�2(�2 + �)
,

and

max
i 6=j2[N ]

KL
�
N (0,⌃i)

⌦nkN (0,⌃i0)
⌦n
�
. n

2

�2

�2(�2 + �)
"20r.

To invoke Lemma 4.1, we define the metric ⇢ : Op,r ⇥ Op,r 7! R
+ as ⇢(Ui,Uj) :=

kUiU>
i �UjU>

j kq for any q 2 [1,1] and take ⇢0 ⇣ ⌧"0r1/q ,

l0 = c0
n

2

�2

�2(�2 + �)
"20r and t0 = c0

n

2

p
r"0

s
�2

�2(�2 + �)

for some small absolute constant c0, ⌧ > 0. Then, by Lemma 4.1, for any (", �)-DP estimator
eU ,

sup
P2P

�
S(p)

q ,�,�2
�E
��Ũ Ũ> �UU>��

q

>max

8
<

:
⌧"0r1/q

2

 
1�

c0
n
2

�2

�2(�2+�)"
2
0r+ log 2

logN

!
,
⌧"0r1/q

4

0

@1^ N � 1

exp
⇣
4"c0

n
2

p
r"0
q

�2

�2(�2+�)

⌘

1

A

9
=

; ,

where, for simplicity, we can choose � = 0. Recall that N � 2rp/2 if p� 2r. We can take

"0 ⇣
r

�2(�+ �2)

�2

r
p

n
+

r
�2(�+ �2)

�2

p
p
r

n"
,

and get

sup
P2P

�
S(p)

q ,�,�2
�E
���Ũ Ũ> �UU>

���
q
&
r

�2(�+ �2)

�2
· r1/q

r
p

n
+

r
�2(�+ �2)

�2
· r

1
2
+ 1

q
p

n"
.

Since a trivial upper of keU eU> �UU>kq  (2r)1/q and P
�
S(p)
q ,�,�2

�
⇢ P(�,�2), we con-

clude that, for any q 2 [1,1],

inf
Ũ

sup
P2P(�,�2)

E

���Ũ Ũ> �UU>
���
q
&
✓
�2

�
+

r
�2

�

◆✓
r1/q

r
p

n
+ r

1
2
+ 1

q
p

n"

◆^
r1/q,

where the infimum is taken over all possible (", �)-DP algorithms. Now it suffices to choose
q = 1,2,1 to obtain the bounds in nuclear norm, Frobenius norm, and spectral norm, respec-
tively.
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6.7. Proof of Theorem 4.3. Note that the two terms in the minimax lower bounds are
contributed by estimating the eigenvalues and eigenvectors, separately. We begin with the
term related to estimating eigenvectors. Consider a subset P1(�,�2)⇢ P(�,�2) defined by

P1(�,�
2) :=

⇢
N (0,⌃) :⌃= �UU> + �2Ip and U 2Op,r

�
,

where we assume � and �2 are both known. If � is already known, it suffices to estimate
UU> differentially privately by an estimator eU eU> so that we can construct the covariance
matrix estimator e⌃= �eU eU> + �2Ip. Therefore,

(20)

inf
e⌃

sup
P2P1(�,�2)

E
��⌃̃�⌃

��� inf
eU

sup
P2P1(�,�2)

� ·E
��eU eU> �UU>��

&
p

�2(�+ �2)
⇣r p

n
+

p
rp

n"

⌘^
�,

and

(21)

inf
e⌃

sup
P2P1(�,�2)

E
��⌃̃�⌃

��
F
� inf

eU
sup

P2P1(�,�2)
� ·E

��eU eU> �UU>��
F

&
p

�2(�+ �2)
⇣rpr

n
+

rp

n"

⌘^
�
p
r,

where the last inequalities in (20) and (21) are both due to Theorem 4.2. These establish the
second term in the minimax lower bounds of Theorem 4.3. More generally, we can establish
the minimax lower bound in Schatten-q norms:

inf
e⌃

sup
P2P1(�,�2)

E
��⌃̃�⌃

��
q
� inf

eU
sup

P2P1(�,�2)
� ·E

��eU eU> �UU>��
q

&
p

�2(�+ �2)
⇣
r1/q

r
p

n
+

pr
1
2
+ 1

q

n"

⌘^
�r1/q,(22)

for any q 2 [1,1].
We now establish the first term in the minimax lower bounds �

�p
r/n+r/(n")

�
, which is

contributed by estimating the singular values. It is unrelated to the nuisance variance �2 and
the eigenvectors U . Without loss of generality, we can assume �2 = 0 and UV in the format

UV =

✓
V

0(p�r)⇥r

◆
,

where V = [V0, V0?] 2Or,r with some V0 2Or,r/4. It is easy to check that U>
V UV = V >V =

Ir . Define

⇤0 = diag(2�, · · · ,2�| {z }
r/4

,�, · · · ,�),

which is an r ⇥ r diagonal matrix. For any V = [V0, V0?] 2Or,r with V0 2Or,r/4, we con-
sider the following covariance matrix

⌃V0
:= UV ⇤0U

>
V =

✓
�Ir + �V0V >

0 0r⇥(p�r)

0(p�r)⇥r 0(p�r)⇥(p�r),

◆

To this end, we define a subset P2(�)⇢ P(�,�2) as

P2(�) :=

⇢
N (0,⌃V0

) :⌃V0
=

✓
�Ir + �V0V >

0 0r⇥(p�r)

0(p�r)⇥r 0(p�r)⇥(p�r)

◆
, V0 2Or,r/4

�
.
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We are interested in the minimax lower bound:

inf
e⌃

sup
P2P2(�)

Eke⌃�⌃k and inf
e⌃

sup
P2P2(�)

Eke⌃�⌃kF,

where the infimum is taken over all the possible (", �)-DP algorithms.
Observe that if a random vector X = (X1, · · · ,Xp)> ⇠ N (0,⌃V0

), it means that only
the first r entries of X are random variables since other variables are simply zeros with
probability one. This suggests that it suffices to consider the reduced problem of estimating
an r ⇥ r spiked covariance matrix. Towards that end, define a family of distributions of r-
dimensional random vector

P(0)
2 (�) :=

n
N (0,⌃0V0

) : ⌃0V0
= �Ir + �V0V

>
0 , V0 2Or,r/4

o
.

Given i.i.d. observations X(0)
1 , · · · ,X(0)

n ⇠ P 2 P(r)
2 (�), we aim to estimate the covariance

matrix ⌃0 with an (", �)-differentially private algorithm. Clearly, by definition,

(23) inf
e⌃

sup
P2P2(�)

Eke⌃�⌃kq = inf
e⌃0

sup
P2P(0)

2 (�)

Eke⌃0 �⌃0kq,

for any Schatten-q norms. It therefore suffices to study the RHS of (23), which is the differ-
entially private minimax lower bound for estimating an r⇥ r spiked covariance matrix with
rank r/4. Without loss of generality, we can still assume � is known and we can immedi-
ately invoke the bounds (20), (21), (22) by replacing �2 = � and r r/4, p r there, and
conclude that

(24) inf
e⌃0

sup
P2P(0)

2 (�)

E
��⌃̃�⌃

��& �
⇣r r

n
+

r3/2

n"

⌘^
�,

and

(25) inf
e⌃0

sup
P2P(0)

2 (�)

E
��⌃̃�⌃

��
F
& �
⇣ rp

n
+

r2

n"

⌘^
�
p
r,

or more generally,

(26) inf
e⌃0

sup
P2P(0)

2 (�)

E
��⌃̃�⌃

��
q
& �
⇣r

1
2
+ 1

q

p
n

+
r

3
2
+ 1

q

n"

⌘^
�r1/q,

for any q 2 [1,+1].
Finally, putting together (20)-(22) and (24)-(26), we conclude that

inf
e⌃

sup
P2P(�,�2)

Eke⌃�⌃kq &
 
�
⇣r

1
2
+ 1

q

p
n

+
r

3
2
+ 1

q

n"

⌘
+
p

�2(�+ �2)
⇣
r1/q

r
p

n
+

pr
1
2
+ 1

q

n"

⌘!^
�r1/q.

Now by setting q = 1,2,1, we complete the proof.
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SUPPLEMENTARY MATERIAL

Supplement to “Optimal Differentially Private PCA and Estimation for Spiked Co-

variance Matrices"

In this supplement, we present the proofs of Lemmas 2.2, 3.1, 4.1, and 6.5, as well as
Corollary 5.2. Additionally, we provide the proofs for technical Lemmas 6.2, 6.2, and 6.4.
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