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Abstract

This paper studies the problem of detecting dependence between two mixture
distributions, motivated by questions arising from statistical genomics. The funda-
mental limits of detecting weak positive dependence are derived and an oracle test
statistic is proposed. It is shown that for mixture distributions whose components
are stochastically ordered, the oracle test statistic is asymptotically optimal. Con-
nections are drawn between dependency detection and signal detection, where the
goal of the latter is to detect the presence of non-null components in a single mixture
distribution. It is shown that the oracle test for dependency can also be used as a
signal detection procedure in the two-sample setting, and there can achieve detection
even when detection using each sample separately is provably impossible. A nonpara-
metric data-adaptive test statistic is then proposed, and its closed-form asymptotic
distribution under the null hypothesis of independence is established. Simulations
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show that the adaptive procedure performs as well as the oracle test statistic, and
that both can be more powerful than existing methods. In an application to the
analysis of the shared genetic basis of psychiatric disorders, the adaptive test is able
to detect genetic relationships not detected by other procedures.
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1 Introduction

The problem of detecting dependence between two sequences of test statistics arises fre-

quently in many settings. Three canonical examples from statistical genomics illustrate

how dependency detection is applied. First, in gene expression profiling it is often of

interest to determine whether a given gene set is enriched with differentially expressed

genes (Subramanian et al. 2005). When the gene set is created by selecting differentially

expressed genes from another experiment, testing for enrichment is equivalent to testing

whether the differential expression test statistics from the two experiments are correlated;

see Rhinn et al. (2013) for an example from Alzheimer’s research. Second, in genetics it is

often of interest to jointly analyze genome-wide association studies of two different traits

to determine whether the traits are genetically related; see Bhattacharjee et al. (2012) and

Andreassen et al. (2013) for examples from cancer and psychiatric disorder research. A

positive correlation between the SNP-trait test statistics indicates some degree of genetic

similarity. Finally, in the integrative analysis of genomic data it is often of interest to de-

termine whether there are any SNPs that are associated with both a gene and a phenotype,

in order to better understand the underlying molecular mechanisms (Nicolae et al. 2010,

He et al. 2013, Ware et al. 2013). Testing for simultaneous associations can be framed as

testing for correlation between the SNP-gene and SNP-phenotype test statistics.

This paper focuses on detecting a particular type of dependence between two ran-

dom variables Ui and Vi that marginally follow mixture distributions, given observations

(Ui, Vi), i = 1, . . . , n. Specifically, introduce unobserved indicator variables Xi ∼ Ber(πU)

and Yi ∼ Ber(πV ) such that

Ui | Xi = 0 ∼ FU
0 , Ui | Xi = 1 ∼ FU

n ,

Vi | Yi = 0 ∼ F V
0 , Vi | Yi = 1 ∼ F V

n ,
(1)

where Ui and Vi are independent conditional on Xi and Yi. The FU
0 , FU

n , F V
0 , and F V

n are

assumed to be distribution functions of continuous random variables. In other words, the

marginal distributions of Ui and Vi are Ui ∼ FU = (1 − πU)FU
0 + πUF

U
n and Vi ∼ FV =

(1 − πV )F V
0 + πV F

V
n . In the asymptotic analysis in Section 4, the FU

n and F V
n will be

allowed to depend on n.
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Table 1: Bivariate distribution of (Xi, Yi) under null and alternative hypotheses

H0 HA : ε 6= πUπV

Yi = 0 Yi = 1 Yi = 0 Yi = 1

Xi = 0 (1− πU)(1− πV ) (1− πU)πV 1− πU − πV + ε πV − ε

Xi = 1 πU(1− πV ) πUπV πU − ε ε

These mixture models are especially appropriate when Ui and Vi are test statistics, as

in the statistical genomics applications. The FU
0 and F V

0 can be thought of as the null

distributions of the test statistics, and the FU
n and F V

n can be thought of as the alternative

distributions. The Xi and Yi are latent indicators for whether the ith test statistics are

null or not. Marginally, proportions 1 − πU and 1 − πV of the Ui and Vi, respectively,

are null and proportions πU and πV are non-null. Modeling multiple test statistics using

mixture distributions is common in the large-scale hypothesis testing literature (Storey &

Tibshirani 2003, Donoho & Jin 2004, Cai et al. 2007, Efron 2010).

This paper studies the problem of detecting dependence between the unobserved Xi

and Yi. Under (1), this is equivalent to detecting dependence between Ui and Vi. Testing

for dependence is not a new problem; see Section 2 for a brief summary of relevant previous

work. However, it is difficult to find an omnibus test that is optimally powerful against all

possible alternatives. On the other hand, the mixture model structure (1) gives rise to a

particular dependence alternative. Table 1 shows that in general, the joint distribution of

the tuple (Ui, Vi) is (Ui, Vi) ∼ (1− πU − πV + ε)FU
0 F

V
0 + (πV − ε)FU

0 F
V
n + (πU − ε)FU

n F
V
0 +

εFU
n F

V
n , where 0 < ε ≤ πU∧πV . Detecting dependence amounts to testing whether ε equals

πUπV . This paper is concerned with the alternative of weak positive dependence:

H0 : ε = πUπV vs. HA : ε > πUπV , (2)

where ε is only very slightly larger than πUπV . Dependency detection is very challenging

in this setting.

Detecting weak positive dependence is important for two reasons. First, it is exactly the

alternative of interest in the statistical genomics problems mentioned above. For example,

if Ui and Vi are the test statistics from two different experiments, when a gene or a SNP

which has a non-null effect in one experiment is more likely to also have a non-null effect in
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the other experiment than by random chance alone, the Ui and Vi are positively dependent.

Generally it is expected that only a very small proportion of genes or SNPs exhibit non-

null effects in both experiments, which makes the dependence weak. The notion of weak

dependence corresponds to the sparsity assumption of large-scale hypothesis testing, which

assumes that only a small proportion of the tests are non-null. Second, a dependency

detection procedure can also be used for signal detection, an important problem which has

been the subject of a great deal of research; see Section 2. The signal detection problem is

to determine whether πU > 0 given only the Ui. In the dependency detection setting, if it

is found that Ui and Vi are weakly positively dependent, then πU must be non-zero.

This paper makes three contributions. First, Section 3 proposes an oracle test for de-

tecting dependence. Simply implementing a likelihood ratio test is impossible because the

distribution functions FU
0 , F V

n , FU
0 , and F V

n , and the parameters πU and πV , are all un-

known. Section 4 shows that when the non-null and null distributions are stochastically

ordered, the oracle test is asymptotically optimal for distinguishing between the indepen-

dence null and the weak positive dependence alternative. In addition, Section 5 shows

that the oracle test, interpreted as a signal detection procedure, can asymptotically detect

non-null components in the Ui and Vi even when signal detection is provably impossible

given only Ui or Vi alone. Finally, Section 6 proposes an adaptive version of the oracle test

that is entirely data-driven, and is distribution-free in that its asymptotic null distribution

that does not depend on any unknown parameters. Furthermore, its asymptotic distri-

bution can be expressed in closed form, so p-values can be computed without resorting

to permutation. In the remainder of the paper, Sections 7 and 8 show that in simulated

data and in a study of the genetic relatedness of psychiatric disorders, the adaptive test

performed as well as the oracle test in practice, and both tests could outperform competing

procedures. Section 9 concludes with a discussion of future work. Proofs are found in the

Supplementary Material.

2 Previous work

In statistical genomics, a popular method for testing for weak positive dependence is to

define thresholds τU and τV and then to use the hypergeometric distribution to test for
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dependence between I(|Ui| ≥ τU) and I(|Vi| ≥ τV ) (Goeman & Bühlmann 2007, Rivals

et al. 2007). The motivation is that these indicator functions estimate the latent indicators

Xi and Yi defined in (1). However, it is unclear how best to choose the thresholds. He et al.

(2013) developed a Bayesian version of this enrichment approach and avoided choosing

thresholds by specifying prior distributions on all unknown parameters. However, their

formulation requires knowing the distributions of Ui and Vi, as well as having reasonable

priors for πU and πV . Another test for dependence is to test the Spearman correlation

between Ui and Vi, but this method may not be sensitive enough to detect weak dependence.

Recent interest in the statistical literature has centered on detecting arbitrary types of

dependence (Székely et al. 2009, Reshef et al. 2011); see in particular Heller et al. (2014).

In the actuarial sciences, a great deal of work has gone into methods for detecting positive

dependence; see Ledwina & Wy lupek (2014) and references therein. In contrast, the focus

of the present paper is to detect a specific type of dependence (2). Furthermore, there has

been little prior work on characterizing the fundamental limits of dependency detection, or

on the asymptotic optimality of existing procedures.

The statistical framework used in this paper to analyze the dependency detection prob-

lem is also found in the signal detection literature, where the problem is to test

Ui ∼ FU
0 vs. Ui ∼ (1− πU)FU

0 + πUF
U
n

given only one sequence Ui, i = 1, . . . , n, where FU
0 is known but πU and FU

n are unknown.

The fundamental limits of detection for this problem, namely, conditions on πU , FU
0 , and

FU
n that render detection by any test impossible regardless of sample size, have been derived

(Ingster 1997, 2002a,b, Donoho & Jin 2004, Cai et al. 2011, Cai & Wu 2014). Asymptotically

optimal tests, which can detect πU > 0 as n→∞ for any πU , FU
0 , and FU

n above the limits

of detection, have also been developed (Ingster 1997, 2002a,b, Donoho & Jin 2004, Jager

& Wellner 2007). In particular, special attention has been paid to sparse mixtures, where

πU is very close to zero, because standard tests fail in this regime. Notably, the higher

criticism test developed by Donoho & Jin (2004) can still detect the presence of non-null

components in Ui for both sparse and non-sparse mixtures anywhere above the detection

boundary (Cai et al. 2011). Section 4 presents a similar analysis of the dependency test

proposed here.
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The obvious difference between signal detection and dependency detection is that the

latter involves two sequences Ui and Vi, while the former involves only one. These problems

are nevertheless closely related. When πU and πV are small, as in the sparse mixture setting,

πUπV ≈ 0, so dependency detection (2) amounts to testing ε = 0 versus ε > 0. Assuming

that the magnitudes of Ui and Vi are large when they are non-null, Zhao et al. (2014)

defined Ti = max(|Ui|, |Vi|), which should be large only if both Ui and Vi are non-null.

They then modeled the Ti using a mixture distribution and performed signal detection

on the Ti. Taking the pairwise maximum is not the only scalar summary of (Ui, Vi), and

Phillips & Ghosh (2013) evaluate three other summary statistics. However, it is unclear

how to choose the best summary statistic. The method proposed in this paper deals directly

with the bivariate (Ui, Vi) and will be shown to be asymptotically optimal for weak positive

dependence regardless of the magnitudes of πU and πV .

The work in this paper is most closely related to recent research on correlation detection

(Arias-Castro, Bubeck & Lugosi 2012, Arias-Castro, Bubeck, Lugosi et al. 2012). Those

authors also studied fundamental detection limits as well as asymptotically optimal tests.

However, they were concerned with multivariate Gaussian distributions, while here the

focus is on mixture distributions with a particular type of dependence structure.

3 Oracle test statistic

3.1 Test statistic

Testing (2) is equivalent to testing for dependence between Ui and Vi. Therefore define the

empirical bivariate survival function

ŜUV (u, v) =
1

n

n∑
i=1

I(Ui ≥ u, Vi ≥ v),

and true marginal survival functions SU = 1− FU and SV = 1− FV . The proposed oracle

test statistic is

Dn = sup
−∞<u,v<∞

n1/2

(log n)1/2
|ŜUV (u, v)− SU(u)SV (v)|

{SU(u)SV (v)− S2
U(u)S2

V (v)}1/2
. (3)
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U
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O01 = 8 O11 = 8

O00 = 79 O10 = 5

Figure 1: The 2 × 2 table induced in the observed data by the tuple (u, v) = (2, 2). The

number of points in each cell of the table are denoted by Ojk, j = 0, 1 and k = 0, 1.

This is an oracle in the sense that SU and SV are usually unknown in practice. Section 6

proposes an adaptive test statistic which estimates these marginal survival functions from

the data.

The quantity ŜUV (u, v)− SU(u)SV (v) in the numerator of Dn is natural given the defi-

nition of statistical independence, but there is a useful alternative interpretation. Figure 1

is a scatterplot of 100 realizations from the following data-generating mechanism, which

follows the form of (1):

Ui | Xi = 0 ∼ N(0, 1), Ui | Xi = 1 ∼ N(3, 1),

Vi | Yi = 0 ∼ N(0, 1), Vi | Yi = 1 ∼ N(3, 1),

(Xi, Yi) =



(1, 1) with probability 0.1,

(1, 0) with probability 0.05,

(0, 1) with probability 0.05,

(0, 0) with probability 0.8.

The figure illustrates that any tuple (u, v) divides the observed data into a 2×2 table. With

Ojk(u, v), j = 0, 1 and k = 0, 1 denoting the number of observations in each cell of the table
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u

v

f(u,v)

Figure 2: Plot of the weight function f(u, v) = {SU(u)SV (v) − S2
U(u)S2

V (v)}−1/2 used in

Dn.

induced by (u, v), Blum et al. (1961) recognized that the quantity ŜUV (u, v)−SU(u)SV (v) is

closely related to the quantity O11(u, v)O00(u, v)−O10(u, v)O01(u, v). Thus Dn is intimately

connected to testing for independence using the 2× 2 table induced by (u, v).

It is difficult to know a priori which tuple (u, v) will give the most powerful test. For

example, the table in Figure 1 induced by (u, v) = (2, 2) suggests that the latent indicators

Xi and Yi are dependent, but the table generated by (u, v) = (0, 0) would look far less

convincing. This problem is solved in Dn by taking the supremum of the test statistic over

all possible (u, v). The best choice of (u, v) depends on the distributions FU
0 , F V

0 , FU
n , and

F V
n , the proportions πU , and πV , and the degree of dependency ε. Taking the supremum

over (u, v) allows Dn to adapt to any combination of these unknown parameters.

The denominator of Dn, which is natural in that it is the variance of ŜUV under the null

hypothesis of independence, acts as a weight function that controls the power of the test

statistic. Other weight functions are also possible, as discussed in Section 3.2. Figure 2

plots the inverse of the denominator. It implies that when Ui and Vi are dependent, Dn
will be largest when the optimal 2 × 2 table is induced by large u and v, as this is where

the weight function is the largest. This occurs when observations Ui and Vi from the non-

null components tend to be larger than the observations from the null components. Thus

Dn therefore has a preference for large Ui and Vi. In Section 4.3 another test statistic is
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proposed that eliminates this directional preference.

3.2 Relationship to other work

The proposed oracle Dn is a goodness-of-fit-type statistic. In this sense it is related to

the higher criticism statistic of Donoho & Jin (2004), used in signal detection. The higher

criticism statistic for detecting non-null components in the Ui is defined as

sup
U(1)≤u<U(n)

n1/2 |F̂U(u)− FU
0 (u)|

[FU
0 (u){1− FU

0 (u)}]1/2
, (4)

where FU
0 is the distribution of the non-null component of Ui and F̂U(u) is the empirical

distribution function. Jager & Wellner (2007) developed alternative goodness-of-fit-type

tests for the signal detection problem, which could perhaps also lead to alternative tests

for dependence.

Many existing tests for dependence are based on the numerator of Dn, starting with

Hoeffding (1948). Blum et al. (1961) recognized the connection to 2 × 2 tables. The

enrichment procedure mentioned in Section 2 is equivalent to choosing u = τU and v = τV

for some pre-defined thresholds τU and τV and then conducting a Fisher exact test using the

induced table. Instead of pre-selecting (u, v), Thas & Ottoy (2004) proposed a statistic that

integrates over all (u, v); their statistic turns out to be equivalent to summing the Pearson

chi-square test statistics calculated from each 2 × 2 table induced by the observed tuples

(Ui, Vi). Heller et al. (2014) proposed using the maximum of all Pearson test statistics,

instead of the sum. Thas & Ottoy (2004) and Heller et al. (2014) also considered using

k × k tables for k > 2, and Heller et al. (2014) showed that these tests are consistent and

can have greater power. The Dn proposed in (3) is closely related to but different from all

of these statistics.

The denominator of Dn is only one possible weight function. Without a weight Dn is

similar to a Kolmogorov-Smirnov-type test statistic, which in fact was studied by Scaillet

(2005). The test statistic of Thas & Ottoy (2004) uses the weight function

[SU(u){1− SU(u)}SV (v){1− SV (v)}]−1/2,

which gives equal preference to large and small u and v. It would be possible to replace the

weight function in Dn with this weight. However, characterizing the asymptotic properties
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of the resulting statistic requires a law of the iterated logarithm-type result, and calculating

p-values in finite samples requires the asymptotic distribution of a data-adaptive version.

These are difficult to derive for the Thas & Ottoy (2004) weight function. In contrast, both

of these results are available for Dn; see Lemma 1 and Theorem 6.

4 Asymptotic theory

4.1 Asymptotic testing framework

To evaluate the asymptotic properties of the weak positive dependency detection problem

(2) and the test statistic Dn (3), calibrate

πU = n−βU , 0 ≤ βU ≤ 1,

πV = n−βV , 0 ≤ βV ≤ 1,

ε = πUπV + n−β, 1/2 < β < 1, (βU ∨ βV ) ≤ β.

(5)

The calibrations of πU and πV imply that there are no restrictions on the proportions of

non-null signals in Ui and Vi, though of course when either proportion equals zero or one

the Ui and Vi are independent. In the signal detection setting, which deals only with a

single sequence Ui, the settings 0 < βU < 1/2 and 1/2 < βU are termed the “moderately

sparse” and “very sparse” regimes, respectively, and are frequently treated separately in

theoretical analyses (Cai et al. 2011). Zhao et al. (2014) considered simultaneous signal

detection with two sequences Ui and Vi, but their theoretical results depend heavily on πU

and πV being in the very sparse regime.

The calibration of ε makes specific the notion of weak positive dependence: ε is always

larger than πUπV , so under the alternative there are more pairs of non-null signals than

would be expected by chance. However, ε only differs from πUπV by a small amount n−β,

where β > 1/2. This weak dependence regime is the analog of the very sparse regime of

signal detection. In addition, since Table 1 makes clear that ε ≤ (πU ∧ πV ), it must be

that β is at least βU ∨ βV . The behavior of the proposed test under negative dependence,

for example where ε = πUπV − n−β, and under stronger dependence, for example where

0 < β < 1/2, is left for future work.
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The performance of the proposed oracle Dn will be studied using the asymptotic testing

framework. For any test φ(U1, . . . , Un, V1, . . . , Vn) : Rn × Rn → [0, 1] of H0 vs. HA, define

SH0,HA(φ) = EH0φ + EHA(1 − φ), the sum of the type I and II errors. For certain values

of the parameters βU , βV , and β and certain distribution functions FU
0 , F V

0 , FU
n , and F V

n ,

SH0,HA → 1 as n→∞ for all tests φ; this is called the undetectable region and characterizes

the fundamental limit of dependency detection. For a particular test, there may be some

parameter values and distribution functions for which SH0,HA → 0; this is referred to as the

detectable region of that test. Outside of the undetectable region, the likelihood ratio test

minimizes SH0,HA over all tests, but cannot be implemented in practice because the null

and alternative hypotheses contain many unknown parameters. It will be shown below that

when the components of the mixture distributions of Ui and Vi are stochastically ordered,

the oracle Dn, with a suitable critical value, has SH0,HA → 0 everywhere outside of the

undetectable region, making it asymptotically optimal.

4.2 Assumptions

The results derived below in Section 4.3 hold for distribution functions satisfying two

assumptions.

Assumption 1 The distributions FU
0 , F V

0 , FU
n , and F V

n are absolutely continuous with

respect to the Lebesgue measure and have continuous densities fU0 , fV0 , fUn , and fVn .

Assumption 2 The log-likelihood ratios `Un = log(fUn /f
U
0 ) and `Vn = log(fVn /f

V
0 ) satisfy

lim
n→∞

sup
a≥logn 2

∣∣∣∣`Un {(FU
0 )−1(n−a)}
log n

− α−U (a)

∣∣∣∣ = 0,

lim
n→∞

sup
a≥logn 2

∣∣∣∣`Un {(FU
0 )−1(1− n−a)}

log n
− α+

U (a)

∣∣∣∣ = 0,

lim
n→∞

sup
b≥logn 2

∣∣∣∣`Vn {(F V
0 )−1(n−b)}
log n

− α−V (b)

∣∣∣∣ = 0,

lim
n→∞

sup
b≥logn 2

∣∣∣∣`Vn {(F V
0 )−1(1− n−b)}

log n
− α+

V (b)

∣∣∣∣ = 0,

for measurable functions α−U , α
+
U , α

−
V , α

+
V : R→ R.
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Assumption 1 implies that the null and alternative distribution functions are continu-

ously differentiable almost everywhere, and is satisfied by most commonly-used test statis-

tics. Assumption 2 states that the asymptotic behaviors of the likelihood ratios can be

uniformly approximated by polynomial functions of n. In particular, nα
−
U and nα

−
V describe

their behaviors at values smaller than the median of the null distribution and nα
+
U and nα

+
V

describe them at values larger than the median. The likelihood ratios are characterized

separately on the left and right sides of the null in order to make the asymptotic properties

of the oracle test more clear, because as described in Section 3, Dn prefers the right side

over the left; see Theorems 2 and 3. For this reason the α functions only approximate the

log-likelihood ratios for a and b above logn 2, because n− logn 2 = 1 − n− logn 2 = 0.5; other-

wise the α− and α+ functions would simply be reparametrizations of each other. Intuitively

the α functions describe where observations from FU
n and F V

n are most likely to lie, and

therefore where to look for dependent pairs, when both Ui and Vi come from the non-null

components.

To illustrate Assumption 2, suppose the null component FU
0 of the Ui is N(0, 1). Since

Φ(−x) ≈ −φ(x)/x for large x, Φ{−(2a log n)1/2} ≈ n−a as long as 2a log n is sufficiently

large, which is guaranteed by the condition a ≥ logn 2. Therefore the (n−a)th quantile of

FU
0 is −(2a log n)−1/2, and by similar reasoning the (1 − n−a)th quantile is (2a log n)1/2.

Now suppose FU
n ∼ N{(2rµ log n)1/2, σ2}. Then the likelihood ratios obey

fUn {(FU
0 )−1(n−a)}

fU0 {(FU
0 )−1(n−a)}

= na−σ
−2(−a1/2−r1/2µ )2 ,

fUn {(FU
0 )−1(1− n−a)}

fU0 {(FU
0 )−1(1− n−a)}

= na−σ
−2(a1/2−r1/2µ )2 ,

so α−U (a) = a− σ−2(a1/2 + r
1/2
µ )2 and α+

U (a) = a− σ−2(a1/2− r1/2µ )2. In this case α−U (a) ≤ 0

while α+
U (a) ≥ 0 for all a, which implies that looking at values in the right-hand tail of FU

0

will be most useful for detecting dependency.

4.3 Optimality

The undetectable region of the dependency detection problem, where no test is capable of

differentiating H0 and HA, is characterized by the following theorem. The characterization

involves the essential supremum, which for a measurable function f and a measure µ is
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defined as

ess sup
x

f(x) = inf[a ∈ R : µ{f(x) > a} = 0].

Intuitively, the essential supremum is the supremum with probability one. In this paper

the essential suprema are taken with respect to the Lebesgue measure.

Theorem 1 (Undetectable region) Assume FU
0 6= FU

n , F V
0 6= F V

n , and Assumptions 1

and 2. Under weak positive dependence, SH0,HA(φ) → 1 for all tests φ if each of the

following holds:

1− 2β + 0 ∨ ess sup
a>0

{αU + (αU ∧ βU)− a} < 0, (6)

1− 2β + 0 ∨ ess sup
b>0

{αV + (αV ∧ βV )− b} < 0, and (7)

1 + 0 ∨ ess sup
a,b>0

[(−β + αU + αV )∧

{−2β + αU + αV + (αU ∧ βU) + (αV ∧ βV )} − a− b] < 0, (8)

where αU(a) = α−U (a) ∨ α+
U (a) and αV (a) = α−V (a) ∨ α+

V (a).

Outside of the undetectable region, an asymptotic test based on Dn (3) can be applied.

A suitable critical value for Dn is provided by Lemma 1, due to Einmahl & Mason (1985),

who showed that (log log n)−1 logDn → 1 almost surely. This motivates the asymptotic

test

reject H0 when (log n)1/2 < Dn. (9)

The detectable region of (9) is characterized by the following theorem.

Theorem 2 (Detectable region) Assume FU
0 6= FU

n , F V
0 6= F V

n , and Assumptions 1 and

2. Define

p−U(x) = sup
a≥x
{α−U (a)− a}, p+U(x) = sup

a≥x
{α+

U (a)− a},

p−V (y) = sup
b≥y
{α−V (b)− b}, p+V (y) = sup

b≥y
{α+

V (b)− b}.
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For the proposed test (9), SH0,HA → 0 if one of the following is true:

sup
x,y>0,
x+y<1

{
1

2
− β + (−x) ∨ p+U + (−y) ∨ p+V +

x ∧ (βU − p+U)

2
+
y ∧ (βV − p+V )

2

}
> 0, or (10)

sup
x,y>0,
x+y<1

{
1

2
− β + (−x) ∨ p−U + (−y) ∨ p+V +

y ∧ (βV − p+V )

2

}
> 0, or (11)

sup
x,y>0,
x+y<1

{
1

2
− β + (−x) ∨ p+U + (−y) ∨ p−V +

x ∧ (βU − p+U)

2

}
> 0, or (12)

sup
x,y>0,
x+y<1

{
1

2
− β + (−x) ∨ p−U + (−y) ∨ p−V +

x ∧ βU ∧ y ∧ βV
2

}
> 0. (13)

The interpretations of the functions p−U(x), p+V (x) and p−V (y), p+V (y) come from Lemma 5,

where it is shown that they characterize the asymptotic behaviors of the non-null distribu-

tions FU
n and F V

n evaluated at quantiles of the null distributions FU
0 and F V

0 . For example,

FU
n {(FU

0 )−1(n−x)} for x ≥ logn 2 behaves like np
−
U (x).

Theorem 3 below shows that if the non-null null components of Ui and Vi are stochasti-

cally larger than the null components, the detectable region from Theorem 2 is the interior

of the complement of the undetectable region from Theorem 1. The boundary that sep-

arates these two regions is called the detection boundary, and Theorem 3 shows that the

proposed oracle test (9) attains the detection boundary, making it asymptotically optimal.

The preference of the test for stochastically larger non-null components is a result of the

asymmetry of the weight function of Dn, as discussed in Section 3.1 and illustrated in

Figure 2.

Theorem 3 (Optimality) Under weak positive dependence, if FU
n (u) ≤ FU

0 (u) for all u

and F V
n (v) ≤ F V

0 (v) for all v, test (9) is asymptotically optimal.

The stochastic ordering condition on Ui and Vi is stronger than what is actually needed

for optimality, but is sensible when Ui and Vi are test statistics because the directions of

the stochastic order of their non-null and null components are often known a priori. An

alternative asymptotic test can be used when it is known only that the non-null and null

components are stochastically ordered, but the directions are unknown. Let Din, i = 1, . . . , 4

denote Dn calculated for (Ui, Vi), (Ui,−Vi), (−Ui, Vi), and (−Ui,−Vi), respectively, and
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define the asymptotic test

reject H0 when (log n)1/2 < D?n = max
i=1,...,4

Din. (14)

One of these four transformations, say i?, will be such that the non-null components are

stochastically larger than the null components, and D?n will be no smaller than Di?n . It is

also easy to show that D?n is asymptotically almost always less than (log n)1/2, leading to

the following theorem.

Theorem 4 Under weak positive dependence, if FU
n and FU

0 are stochastically ordered, and

F V
n and F V

0 are also stochastically ordered, test (14) is asymptotically optimal.

To be concrete, some quantities used in Theorems 1 and 2 are calculated here for two

sequences of normal mixtures when βU , βV > 1/2:

Ui ∼ (1− n−βU )N(0, 1) + n−βUN{(2rµ log n)1/2, 1},

Vi ∼ (1− n−βV )N(0, 1) + n−βVN{(2rν log n)1/2, 1},
(15)

for rµ, rν > 0. Then the functions αU and αV in Theorem 1 are

αU(a) = a− (a1/2 − r1/2µ )2, αV (b) = b− (b1/2 − r1/2ν )2,

as derived in Section 4.2, and the functions pU and pV from Theorem 2 are therefore

pU(x) = −{(x1/2 − r1/2µ )+}2, pV (y) = −{(y1/2 − r1/2ν )+}2.

In practice things can be much more complicated than example (15). For instance, when

Ui and Vi are test statistics, it is usually untenable to assume that the non-null effects in

one sequence are all identically distributed. It is more likely that each non-null effect has a

different mean µi or νi. On the other hand, taking an empirical Bayes interpretation, these

means can be considered as random draws from some hyper-distributions, making FU
n and

F V
n convolutions of a normal density and the hyper-distributions. Another complication is

that when the Ui and Vi are one-tailed test statistics, the µi and/or the νi can have different

signs for different i. The hyper-distributions will then not satisfy the stochastic ordering

conditions of Theorems 3 and 4. On the other hand, the Ui and Vi can be converted

to two-tailed test statistics by taking the absolute value or the square, which will satisfy
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the stochastic ordering. Finally, the null and non-null distributions of Ui and Vi can be

arbitrarily complicated in practice. One such situation will be simulated in Section 7.3.

This will pose no problem for the adaptive test discussed in Section 6 because there the

null and non-null distributions are empirically estimated from the data.

4.4 Implications

There are a number of interesting implications of Theorems 1 and 2 that will be introduced

here and then studied in simulations in Section 7. Most obviously, dependency detection

is easier for smaller β, corresponding to stronger dependence. It is also easier for larger

αU , αV , pU , and pV , corresponding to larger differences between the null and alternative

distributions. For example, under the normal mixture model (15) with rµ and rν big

enough, the inequality (10) that characterizes part of the detectable region becomes

sup
x,y∈(0,1),
x+y<1

[
1

2
− β − {(x1/2 − r1/2µ )+}2 − {(y1/2 − r1/2ν )+}2 +

x+ y

2

]
= 1− β > 0.

In this case dependency is always asymptotically detectable, since β < 1 from (5).

Next, for fixed β and αU and αV , dependency detection is easier for large βU and βV ,

corresponding to sparser individual sequences Ui and Vi, with the caveat that (βU∨βV ) ≤ β

from (5). For example, for large enough βU and βV , inequality (10) takes the same form

as above even if rµ and rν are not that large. The reason is that in dependency detection,

when there are very few non-null signals in the individual sequences, the presence of even a

single i for which Ui and Vi are both non-null provides significant evidence for dependence.

This is true even in the noiseless case when the latent indicators Xi and Yi from (1) are

directly observed.

Finally, the oracle test statistic can detect weak positive dependency even if in one of

the sequences, say in the Ui, the non-null and null components are very similar. Detection

is possible as long as the non-null and null distributions in the other sequence are stochasti-

cally ordered and sufficiently separated. This is reflected in the inequalities (6) and (7) that

characterize part of the undetectable region. For example, suppose in the normal mixture

model (15) that rµ is very close to zero. This makes FU
0 and FU

n extremely similar, and

it would seem that detecting dependency would be difficult. However, now suppose that
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rν = 1. Then when (7) is false,

0 < 1− 2β + 0 ∨ sup
b>0

[{−(b1/2 − 1)2 + βV } ∧ (−b+ 4b1/2 − 2)} = 1− 2β + βV .

The equality follows because the function −(b1/2 − 1)2 + βV has a maximum value of βV

at b = 1, where the function −b + 4b1/2 − 2 equals one. Since βV < 1 from (5), the

quantity inside the supremum above can never be larger than βV . Therefore dependency

is detectable when (1 + βV )/2 > β, even if rµ is close to zero.

This last phenomenon may be unexpected. Intuitively, it occurs because if the non-

null Vi are strong enough to be easily identified, dependency can be detected simply by

checking whether the Ui paired with those Vi are also non-null. Consider the case under

the normal mixture model where only V1 is non-null, in which case if U1 is also non-null

it is highly likely that the sequences Ui and Vi are dependent. If νn is extremely large,

it is easy to identify i = 1 as the non-null signal in the Vi. Then testing for dependency

amounts to testing whether U1 has mean zero. If U1 is truly non-null then it has distribution

N{(2rµ log n)1/2, 1}, and the test will easily reject for large n.

5 Signal detection via dependency detection

The properties of the proposed oracle test (9) are especially interesting when dependency

detection is used as signal detection, as briefly discussed in Sections 1 and 2. Specifically, the

standard signal detection problem tests whether one sequence, say Ui, contains observations

from two different distributions. If the Ui are found to be positively dependent with another

sequence Vi, both Ui and Vi must contain null and non-null components. Therefore (9) can

be used as a signal detection procedure for Ui and Vi simultaneously.

This approach to signal detection has some advantages. First, as discussed in Sec-

tion 4.4, for a fixed level of positive dependence, in other words for a fixed β, dependency

detection gets easier as the mixtures Ui and Vi get more sparse. This is in direct contrast

to the signal detection problem, which is more difficult when the mixture is sparse. When

the mixture is too sparse and the signal is weak, it can be proved that no test can de-

tect the presence of the non-null component given only one sequence. Theorems 1 and 2

show, however, that when another sequence is available, the non-null component of even a
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weak signal can be detected by dependency detection if the two sequences are sufficiently

positively dependent.

This is related to the second advantage of dependency detection: it can detect non-null

components that can never be detected given only a single sequence, even in nearly dense

settings. A concrete example is

Ui ∼ (1− n−βU )N(0, 1) + n−βUN [{(2βU − 1) log n}1/2, 1],

Vi ∼ (1− n−βV )N(0, 1) + n−βVN{(2 log n)1/2, 1),

1/2 < βU ∧ βV , (1 + βV )/2 > β.

(16)

The results of Ingster (1997) and Donoho & Jin (2004) imply that the non-null component

of Ui is not detectable using the sequence Ui alone. However, as discussed in Section 4.4,

the proposed test can detect dependency between Ui and Vi, and therefore can detect the

presence of non-null signals in Ui. This is demonstrated in simulated data in Section 7.4.

The advantages of dependency detection arise from the pairing information available

from the bivariate observations (Ui, Vi). In order to improve upon standard signal detection

methods for Ui, a sequence Vi must be found such that a particular Vi is likely to be non-

null when the Ui that it is paired with is non-null. The locations of the non-null i do not

need to be known. On the other hand, if the non-null Vi are easily identified, the problem

of checking whether the correspondingly Ui are also non-null is made significantly easier.

6 Data-adaptive test statistic

6.1 Test statistic

The oracle test statistic Dn defined in (3) cannot be calculated when the true marginal

survival functions SU and SV are unknown. On the other hand, they can be estimated

from the data using the empirical survival functions

ŜU(u) =
1

n

n∑
i=1

I(Ui ≥ u), ŜV (v) =
1

n

n∑
i=1

I(Vi ≥ v).

The proposed data-adaptive test statistic is

D̂n = sup
U(1)<u≤U(n),
V(1)<v≤V(n)

n1/2

(log n)1/2
|ŜUV (u, v)− ŜU(u)ŜV (v)|

{ŜU(u)ŜV (v)− Ŝ2
U(u)Ŝ2

V (v)}1/2
. (17)
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This adaptive test statistic can be used for dependency detection in practice. When

used for signal detection, as in Section 5, has an additional advantage over other detection

procedures: it does not require knowledge of the null components FU
0 and F V

0 or the non-

null components FU
n and F V

n . In contrast, the higher criticism statistic (4) cannot be

calculated if FU
0 is unknown. Arias-Castro & Wang (2013) proposed nonparametric signal

detection procedures but needed to assume that the null component is symmetric about

zero while the non-null component has positive median.

6.2 Implementation

A simple algorithm for calculating D̂n requires only O(n2) operations: the Ui and Vi are

first sorted using quicksort, which on average requires O(n log n) operations and at most

requires O(n2). Let U(i) and V(i) denote the order statistics of Ui and Vi, respectively. Next,

the algorithm iterates from the largest to the smallest U(i), where for each i it iterates from

the largest to the smallest V(j) in order to calculate

Dij =
n1/2

(log n)1/2
|ŜUV (U(i), V(j))− ŜU(U(i))ŜV (V(j))|

{ŜU(U(i))ŜV (V(j))− ŜU(U(i))2ŜV (V(j))2}1/2

for all i, j = 1, . . . , n. Finally, D̂n = maxij Dij. Heller et al. (2014) proposed a similar

algorithm with the same computational complexity.

When the non-null components are known to be stochastically larger than the null

components, the algorithm only needs to iterate over U(n−n1), . . . , U(n) and V(n−n2), . . . , V(n),

where n1 and n2 can be close to n, because Dij is likely to achieve its supremum at large

i and j. Even if the true maximum Dij is not attained in i ≥ n − n1, j ≥ n − n2, the

largest Dij over this restricted area may still be large enough to reject the null hypothesis.

In other words, this truncated iteration will provide a conservative p-value, which can still

be powerful. This algorithm has been implemented as a C function called by R. As an

example, calculating D̂n with n = 107 and n1 = n2 = 104 took 29 seconds on a laptop with

a 2.5 GHz Intel Core i5 processor with 8 GB RAM.

6.3 Finite-sample p-values

Einmahl (1996) derived a closed-form expression for the asymptotic null distribution of the
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oracle test statistic Dn (3), which is reproduced in Lemma 2. The following theorem shows

that under certain conditions on the true bivariate distribution of (Ui, Vi), Dn is very close

to D̂n.

Theorem 5 Define U ′i = −Ui and V ′i = −Vi, let F̂U ′V ′ be the corresponding bivariate

empirical distribution function, and let FU ′ and FV ′ be the true univariate distribution

functions. Under Assumption 1, for D̂n defined in (17),

D̂n = Dn + oP (1),

Combining Theorem 5 and Lemma 2 leads to the following result, which is used to

obtain p-values in the simulations and data analysis in Sections 7 and 8.

Theorem 6 Under Assumption 1, under the null hypothesis where Ui and Vi are indepen-

dent,

PH0(D̂n > x) −→ 1− exp(−x2),

with D̂n defined in (17).

Theorem 6 can be used when the stochastic order of the non-null and null components

of Ui and Vi are known a priori. For example, if Ui and Vi are two-tailed test statistics,

their non-null components will be stochastically larger than their nulls. When Ui and Vi

are p-values, their non-null components will be stochastically smaller. By multiplying Ui or

Vi by negative one if necessary, the test statistics can be transformed so that the conditions

of Theorem 3 hold. This is the approach taken in the simulations and data analysis in

Sections 7 and 8.

When the directions of the stochastic ordering are unknown, the appropriate oracle test

statistic is D?n, defined in (14). A data-adaptive version of D?n can also be defined. However,

D?n is the maximum of four highly correlated random variables, so its adaptive version has

a complicated null distribution. In theory its null could be simulated by fixing the indices

of the Ui and permuting those of the Vi, but this is computationally inconvenient when n

is large. The most convenient option is to use a Bonferroni adjustment, which would give

a conservative but valid p-value.
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7 Simulations

7.1 Simulation settings and competing methods

Simulations were conducted to numerically explore the performance of dependency detec-

tion based on the oracle and adaptive test statistics proposed in (3) and (17). These simula-

tion settings were designed to illustrate the theoretical properties discussed in Sections 4.4

and 5, and to mimic situations that might arise in statistical genomics applications. Three

sets of simulations were conducted, described in Sections 7.2–7.4. Each had n = 100, 000

and was repeated 200 times.

Under the null hypothesis, the latent indicators Xi and Yi were independently sampled

from Bernoulli random variables with parameters n−βU and n−βV , respectively. Under the

alternative hypothesis, bivariate (Xi, Yi) were sampled according to Table 1. The values

of βU and βV varied across the three sets of simulations. The positions of the null and

non-null Ui and Vi were not changed throughout the replications, but in each simulation

new observations were drawn from the appropriate distributions. This was done because

in real applications, for example in statistical genomics, whether or a not a gene or a SNP

exhibits a non-null effect remains the same across repeated samples. It is only the value

of the test statistic that is random, which is the case in these simulations. The Ui and Vi

were simulated to mimic two-tailed test statistics.

To implement the proposed tests, it was assumed that the stochastic ordering of the non-

null and null components of the Ui and Vi was known a priori, as discussed in Section 6.3.

For computational convenience the supremum in the adaptive D̂n was taken only over the

5,000 largest Ui and Vi, as discussed in Section 6.2, and the same was done for the oracle

Dn. Lemma 2 and Theorem 6 were used to calculate p-values.

The proposed tests were compared to two competing methods. The first is Spearman’s

correlation, which is robust to the distribution of the Ui and Vi. The second is the method

of Zhao et al. (2014) mentioned in Section 2. They first calculated Ti = |Ui| ∧ |Vi|, and

their test statistic is Mn = maxi Ti, so that Mn will be large only if there exist i such that

both Ui and Vi are simultaneously non-null. This will be referred to as the “max test”.

The null distribution of Mn can be obtained by permuting the indices of only the Ui or the
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Table 2: Type I errors at nominal α = 0.05 for simulation setting I; see Section 7.2

βU , βV

Test 0.3,0.3 0.3,0.5 0.3,0.7 0.5,0.5 0.5,0.7 0.7,0.7

Oracle Dn 0.05 0.06 0.09 0.02 0.02 0.04

Adaptive D̂n 0.03 0.04 0.04 0.01 0.02 0.01

Spearman 0.04 0.04 0.04 0.06 0.04 0.03

Max 0.04 0.07 0.09 0.01 0.04 0.04

Vi, which induces independence. Zhao et al. (2014) gave a simple analytic expression based

on the hypergeometric distribution to obtain this p-value without actually implementing

the permutation: the p-value is defined to be the proportion of permutations in which the

calculated Mn exceeds the observed Mn. This is equal to the probability that at least one

of the Ui with magnitude at least Mn is permuted such that it is paired with one of the Vi

with magnitude at least Mn. Thus if there are k indices such that |Ui| ≥Mn and m indices

such that |Vi| ≥Mn, the permutation p-value of the max test is

1−
(
m

0

)(
n−m
k

)(
n

k

)−1
.

Others possible competing methods were not implemented. The enrichment procedure

described in Section 2 was not implemented because requires pre-selected thresholds τU

and τV . The Bayesian procedure of He et al. (2013) is too computationally inconvenient

for large-scale simulations. The tests of Heller et al. (2014) are perhaps the most natural

competitors to the proposed procedure, but their implementation cannot handle an n as

large as the one considered here.

7.2 Setting I: sequence sparsity and dependence strength

For i such that Xi = 0, Ui was drawn from |N(0, 1)|, and otherwise was drawn from

|N(3, 1)|. Similarly, Vi ∼ |N(0, 1)| when Yi = 0 and Vi ∼ |N(3, 1)| when Yi = 1. For

comparison, a Z-statistic equal to three corresponds to a two-tailed p-value of 0.0027. The

sparsity parameters βu and βV equaled either 0.3, 0.5, or 0.7. The dependency parameter

β equaled either 0.305, 0.505, or 0.705.
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Table 3: Powers at nominal α = 0.05 for simulation setting I; see Section 7.2

β

βU , βV Test 0.305 0.505 0.705

0.3,0.3 Oracle Dn 1.00 0.89 0.03

Adaptive D̂n 1.00 0.88 0.01

Spearman 1.00 0.73 0.06

Max 0.91 0.21 0.06

0.3,0.5 Oracle Dn 1.00 0.12

Adaptive D̂n 1.00 0.09

Spearman 0.74 0.06

Max 0.88 0.19

0.3,0.7 Oracle Dn 0.47

Adaptive D̂n 0.36

Spearman 0.06

Max 0.49

0.5,0.5 Oracle Dn 1.00 0.64

Adaptive D̂n 1.00 0.61

Spearman 0.67 0.07

Max 1.00 0.78

0.5,0.7 Oracle Dn 0.94

Adaptive D̂n 0.94

Spearman 0.07

Max 0.93

0.7,0.7 Oracle Dn 0.99

Adaptive D̂n 0.99

Spearman 0.06

Max 0.97
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Table 2 reports the type I errors at a nominal α = 0.05 achieved by the competing

methods for different combinations of βU and βV . The method proposed in this paper and

Spearma’sn correlation controlled type I error at the nominal rate for all combinations,

while the max test of Zhao et al. (2014) had trouble when Ui was moderately sparse but Vi

was very sparse. Table 3 reports the powers of the competing methods to detect dependency

for different combinations of βU , βV , and β. Some of the cells of the table are empty because

β must be greater than the larger of βU and βV . As Theorem 1 predicted, detection was

most difficult when the Ui and Vi were moderately sparse and dependency was weak.

When the Ui and Vi were moderately sparse, with βU = βV = 0.3, Spearman’s cor-

relation was usually the most powerful. However, the proposed dependency detection

procedures had comparable power. All three tests dramatically outperformed the max test

of Zhao et al. (2014), which was designed for very sparse Ui and Vi. When at least one of

the Ui or Vi was very sparse, with either βU ≥ 0.5 or βV ≥ 0.5, the max test was usually the

most powerful. However, again the proposed dependency detection procedures had com-

parable power, and all three dramatically outperformed Spearman’s correlation. Table 3

shows that the oracle and adaptive tests had similar performances. They were powerful for

both large and small βU , βV , and β, and consistently performed as well as or better than

competing methods.

7.3 Setting II: complicated distributions

The Ui and Vi were very sparse, with βU = βV = 0.5. Dependency was relative weak, with

β = 0.705, as is often the case in genomics studies. For i such that Xi = 0, Ui was the

absolute value of a central t distribution with 19 degrees of freedom, and otherwise was the

absolute value of a non-central t with 19 degrees of freedom and noncentrality parameter

equal to 3.5. For comparison, a t-statistic with 19 degrees of freedom and equal to 3.5

corresponds to a two-tailed p-value of 0.0024.

The Vi were generated as follows. An observation from a p-variate mean-zero normal

distribution with a compound symmetry covariance matrix with parameter 0.5 was first

generated, where p equaled one, 10, or 50. Next, each component of this observation was

transformed to have a marginal t distribution with 19 degrees of freedom. For i such that
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Table 4: Type I errors and powers at nominal α = 0.05 for simulation setting II; see

Section 7.3

Type I errors Powers

p p

Test 1 10 50 1 10 50

D̂n 0.01 0.00 0.01 0.51 0.71 0.80

Spearman 0.07 0.04 0.07 0.07 0.07 0.06

Max 0.06 0.00 0.00 0.21 0.00 0.00

Yi = 0, this t distribution had a noncentrality parameter of zero, and otherwise had a

noncentrality parameter equal to 3.5. Finally, Vi was calculated by taking the sum of the

squared t-transformed components.

The construction of Vi was motivated by a problem in statistical genomics. Sometimes

it is of interest to test whether there are SNPs that are simultaneously associated with

a trait and with the expressions of any, some, or all of an entire set of genes, in order

to test whether the gene set as a whole is associated with the trait. The p-dimensional

vector generated in the calculation of Vi models the test statistics associated with each of

p genes. The compound symmetry covariance models the covariance between the genes.

Taking the sum of the squares of the transformed components models one way to combine

the individual SNP-gene test statistics. The final distribution of the Vi is very complicated

and unknown in practice, especially because the correlation between genes in the gene set

is usually unknown.

The oracle test was not implemented because of the complicated distribution of Vi, but

the other competing methods were implemented as in Section 7.2. Table 4 reports the type I

errors and powers at a nominal α = 0.05 for different values of p, i.e. different gene set sizes.

All methods were successful at controlling the type I error, and the proposed dependency

detection test was far more powerful than the other methods. The poor performance of

Spearman’s correlation with very sparse Ui and Vi should be expected given the results of

Section 7.2. The poor performance of the max test of Zhao et al. (2014) when p 6= 1 is due

to the fact that the Ui and Vi had different variances even when both were null signals.

Thus the pairwise maximum used in the max test, which implicitly assumes that the Ui
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Table 5: Type I errors and powers at nominal α = 0.05 for simulation setting III; see

Section 7.4

Type I errors Powers

βU βU

Test 0.51 0.6 0.7 0.51 0.6 0.7

Oracle Dn 0.06 0.04 0.08 0.12 0.48 0.62

Adaptive D̂n 0.03 0.04 0.05 0.10 0.41 0.56

Spearman 0.03 0.01 0.03 0.03 0.10 0.05

Max 0.07 0.06 0.08 0.14 0.64 0.74

and Vi are of comparable scales, is no longer sensible. Good performance of their test can

be recovered by standardizing Ui and Vi to have unit variance. Nevertheless, even when

p = 1 the proposed adaptive D̂n outperformed the max test.

Table 4 also shows that the power increased for increasing p. This is because for i such

that Yi = 1, each of the p components was simulated to have signal, which was aggregated

into Vi by taking the sum of their squares. This shows the potential gain in power than

can be achieved by using gene sets in integrative genomics.

7.4 Detecting the undetectable

The Ui and Vi were generated according to the mixture model (16) discussed in Section 5.

Specifically, for i such that Xi = 0, Ui was drawn from |N(0, 1)| and otherwise was drawn

from |N [{(2βU − 1) log n}1/2, 1]|, with βU equaling 0.51, 0.6, or 0.7. These choices give

non-null Z-statistic means of 0.48, 1.51, and 2.15, which correspond to two-tailed p-values

of 0.63, 0.13, and 0.03. Similarly, Vi ∼ |N(0, 1)| when Yi = 0 and Vi ∼ |N{(2 log n)1/2, 1}|

when Yi = 1. Throughout these simulations Vi was very sparse, with βV = 0.5. The

dependency parameter β was set to βU ∨ βV + 0.01. As discussed in Section 5, the work

of Ingster (1997) and Donoho & Jin (2004) imply that the components with Xi = 1 are

undetectable by an test given only the Ui.

Table 5 reports the type I errors and powers at a nominal α = 0.05 for different sparsity

levels of Ui. Both proposed tests, and the max test of Zhao et al. (2014), had power
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to detect the presence of the non-null component of Ui, though the max had type I errors

slightly larger than the nominal α. Again the oracle and adaptive tests performed similarly.

8 Data analysis

The adaptive dependency detection test statistic D̂n (17) was applied to study the genetic

relationships between five psychiatric disorders: attention-deficit disorder, autism-spectrum

disorders, bipolar disorder, major depressive disorder, and schizophrenia. Pairs of geneti-

cally related diseases can be jointly studied to discover pleiotropic SNPs as in Bhattacharjee

et al. (2012), which may lead to a better understanding of the common underlying biological

processes. The Cross-Disorder Group of the Psychiatric Genomics Consortium also studied

this issue (Cross-Disorder Group of the Psychiatric Genomics Consortium et al. 2013a,b),

and has made available meta-analysis p-values from genome-wide association studies of all

five disorders; see http://www.med.unc.edu/pgc/downloads.

SNP association p-values were available for each of the five disorders for 1,219,805

genotyped and imputed SNPs. Many of these SNPs are highly correlated due to linkage

disequilibrium. To account for this, the SNPs were pruned by physical distance. This was

done for each chromosome by starting with the 5’-most SNP, proceeding in the 3’ direction,

and keeping only SNPs separated by at least 250 kilobases. The results of Dawson et al.

(2002) suggest that the average r2 between the remaining SNPs is only around 0.05. This

pruning left n = 10, 488 roughly independent SNPs.

The proposed D̂n was applied to each pair of disorders after converting the p-values

to Z-scores. Non-null Z-scores are stochastically larger than null Z-scores, making D̂n
asymptotically optimal. For comparison, Spearman’s correlation and the max test of Zhao

et al. (2014) were also performed, and the results are reported in Table 6. The proposed test

suggested that bipolar disorder might be genetically related to major depressive disorder

and schizophrenia, while the max test suggested only the latter relationship and Spearman’s

correlation identified no marginally significant disorder pairs. However, it is important to

correct for having performed 10 pairwise tests. It is difficult to accurately adjust for multiple

testing because of the complicated correlation of the tests, so a conservative approach is to

use a Bonferroni threshold of 0.005. With this threshold none of the disorder pairs were

28



Table 6: Dependency detection p-values for all pairs of disorders

Disorder pair Adaptive D̂n Spearman Max

ADD Autism 0.8142 0.1461 0.5745

ADD Bipolar 0.2774 0.5514 0.1533

ADD MDD 0.6701 0.2349 0.9637

ADD Schizophrenia 0.6815 0.0771 0.8812

Autism Bipolar 0.2902 0.4288 0.6705

Autism MDD 0.4189 0.3418 0.1689

Autism Schizophrenia 0.4603 0.0631 0.2391

Bipolar MDD 0.0306? 0.7427 0.0825

Bipolar Schizophrenia 0.0289? 0.1653 0.0310?

MDD Schizophrenia 0.2447 0.2814 0.1904

ADD: attention-deficit disorder; MDD: major depressive disorder; ?marginally significant.

significant.

On the other hand, there is an alternative method of analysis: it is also of interest to test

whether each disorder is related to any of the remaining disorders. Specifically, let Zj
i be

the Z-score of the ith SNP for the jth disorder. Now let Ui = Zj
i and Vi =

∑
k 6=j(Z

k
i )2; this

is similar to the test statistics used in simulation setting II in Section 7.3. Now dependency

detection can be applied to Ui and Vi. If dependency is detected, it can be concluded that

disorder j is genetically related to at least one of the remaining disorders. One advantage

of this analysis is that only 5 tests are required, reducing the multiple testing burden.

Table 7: Dependency detection p-values for each disorder against all remaining disorders

Disorder Adaptive D̂n Spearman Max

ADD 0.6577 0.4433 0.8444

Autism 0.1897 0.0034 0.8636

Bipolar 0.0035 0.3395 0.3954

MDD 0.0306? 0.5090 0.9938

Schizophrenia 0.0289? 0.0260? 0.3212

ADD: attention-deficit disorder; MDD: major depressive disorder; bold p-values pass

Bonferroni correction; ?marginally significant.
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Table 7 reports the results of testing each disorder against the entire group of remaining

disorders. The proposed D̂n found that bipolar disorder was highly genetically related

to at least one of the remaining disorders. Furthermore, the corresponding p-value is

much smaller than any of the pairwise p-values associated with bipolar disorder given in

Table 6. This suggests that there is more than one disorder that is genetically related to

bipolar disorder, but that the individual genetic relationships are too weak to be detected

separately. In light of the pairwise p-values, it seems that bipolar disorder, major depressive

disorder, and schizophrenia constitute a trio of highly related disorders. This is in keeping

with previous findings (Cross-Disorder Group of the Psychiatric Genomics Consortium

et al. 2013a). Spearman’s correlation found a similar relationship between autism and the

remaining diseases, though this is not reflected in any of the pairwise analyses. These

results show that grouping disorders can be a valuable analysis strategy.

9 Discussion

In some applications, for example in the psychiatric disorder example in Section 8, the n

observations in one or both sequences may not be independent. In other words, the Ui may

not be independent across i, and the Vi may not be independent either. For example, if Ui

is a test statistic for association between the ith gene and a disease, the different Ui will be

dependent because different genes can be highly correlated with each other. Characterizing

the behavior of D̂n, especially its asymptotic null distribution, for dependent components

of Ui and Vi is of great practical interest. Hall & Jin (2010) studied this problem in the

signal detection setting, and a related approach may work well for the dependency detection

setting.

As discussed in Section 5, when two paired sequences Ui and Vi are available, using

dependency detection as a method of signal detection can be more powerful than signal

detection methods that use only one sequence at a time. A natural question is whether

this advantage extends to signal identification, specifically to identifying signals that are

simultaneously present in both sequences. One approach would be to identify signals in

the Ui and Vi separately, and then to record the signals common to both sequences. Signal

identification in this one-sample setting has been extensively studied. Xie et al. (2011)
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established the fundamental limits of signal recovery, and Cai & Sun (2014) developed data-

driven procedures for signal screening and discovery and also established phase diagrams

to characterize the fundamental limits of signal identification. One of the implications of

the findings in Section 5 is that having two paired sequences may allow the identification

of simultaneous signals that are below these limits.

It may sometimes be useful to detect dependency or identify signals using more than

two sequences. For example, in the psychiatric disorder example in Section 8, it may be

desirable to test whether any of the five disorders are genetically related without testing all

pairs. In principle the proposed test statistic could be extended to higher dimensions, and

in fact Einmahl (1996) derived the asymptotic null distribution of the oracle Dn for any

dimension. However, it becomes computationally cumbersome to calculate a multivariate

empirical distribution function even in relatively low dimensions, so a different test statistic

is needed.

A related problem is that nonparametric estimation of multivariate distribution func-

tions is well-known to be difficult. Even in the bivariate setting, a large number of observa-

tions are needed before ŜUV can be a useful estimate for the true bivariate survival function.

In cases where something is known about the null and non-null components of Ui and Vi,

and when those sequences are dense enough that estimation of their mixture proportions

is feasible, a parametric dependency detection procedure may have greater power than the

method proposed here.

Finally, having two or more paired sequences opens up a number of interesting new

statistical questions, some of which are especially relevant for genomics research. For

example, it is sometimes desirable to identify genes that are expressed only in one cell type

and not another. Letting Ui and Vi denote the expression levels of gene i in the two cell

types, the task becomes to identify signals that are present only in the Ui but not the Vi.

As another example, it is sometimes also desirable to determine whether genes that are

correlated in one tissue type are also correlated in another. In this case, the task becomes

to detect differences in the supports of two correlations matrices, instead of two sequences

of test statistics. Ideas similar to those described in this paper may be applicable to these

new problems.
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SUPPLEMENTARY MATERIAL

Proofs: Lemmas and proofs of theorems. (pdf file)

10 Lemmas

The following lemmas are used to prove the results in this paper. Some useful results from

(Einmahl & Mason 1985), (Einmahl 1996), and Cai & Wu (2014) are reproduced here for

completeness.

Lemma 1 (Einmahl & Mason 1985) Let Dn be defined as in (3). If Ui and Vi are inde-

pendent, then

lim sup
n→∞

logDn
log log n

a.s.
= 1.

Lemma 2 (Einmahl 1996) Let Dn be defined as in (3). If Ui and Vi are independent, then

(log n)−1/2Dn
d→ E−1/2,

where E is a standard exponential random variable.

Lemma 3 (Lemma 3 of Cai & Wu (2014)) Let (X,F , ν) be a measure space. Let F :

X × R+ → R+ be measurable. Assume that

lim
M→∞

logF (x,M)

M
= f(x)

holds uniformly in x ∈ X for some measurable f : X → R. If∫
X

exp(M0f)dν <∞

for some M0 > 0, then

lim
M→∞

1

M
log

∫
X

F (x,M)dν = ess sup
x∈X

f(x).

Lemma 4 (Lemma 4.2 of Cai & Wu (2014)) For any 0 ≤ t, (21/2 − 1)2t ∧ t2 ≤ {1−

(1 + t)1/2}2 ≤ t ∧ t2.
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Lemma 5 Under Assumptions 1 and 2, for x, y ≥ logn 2,

FU
n {F−10 (n−x)} = ness supx≤a{α

−
U (a)−a}+o(1), FU

n {F−10 (1− n−x)} = 1− ness supx≤a{α
+
U (a)−a}+o(1),

F V
n {F−10 (n−y)} = ness supy≤b{α

−
V (b)−b}+o(1), F V

n {F−10 (1− n−y)} = 1− ness supy≤b{α
+
V (b)−b}+o(1).

Proof. This lemma is similar to Lemma 6 of Cai & Wu (2014). When x ≥ logn 2, using

Assumption 1 and making the change of variables u 7→ (FU
0 )−1(n−a) implies

du = −F
U
0 {(FU

0 )−1(n−a)} log n

fU0 {(FU
0 )−1(n−a)}

da = − n−a log n

fU0 {(FU
0 )−1(n−a)}

da.

Therefore

FU
n {(FU

0 )−1(n−x)} =

∫ (FU0 )−1(n−x)

−∞
fUn (u)du = − log n

∫ x

∞
exp[`n{(FU

0 )−1(n−a)}]n−ada

= log n

∫ ∞
x

nα
−
U (a)−a+o(1)da = ness supx≤a{α

−
U (a)−a}+o(1).

where the third equality follows from Assumption 2 and the last equality follows from

Lemma 3.

Similarly, making the change of variables u 7→ (FU
0 )−1(1− n−a) implies

du =
n−a log n

fU0 {(FU
0 )−1(n−a)}

da.

Therefore

FU
n {(FU

0 )−1(1− n−x)} =

∫ (FU0 )−1(1−n−x)

−∞
fUn (u)du = 1−

∫ ∞
(FU0 )−1(1−n−x)

fUn (u)du

= 1− log n

∫ ∞
x

exp[`n{(FU
0 )−1(1− n−a)}]n−ada

= 1− log n

∫ ∞
x

nα
+
U (a)−a+o(1)da = 1− ness supx≤a{α

+
U (a)−a}+o(1).

The proofs for F V
n when y ≥ logn 2 are exactly analogous. �

Lemma 6 Under Assumptions 1 and 2,

ess sup
a≥logn 2

{α−U (a)− a} = 0, ess sup
a≥logn 2

{α+
U (a)− a} = 0,

ess sup
b≥logn 2

{α−V (b)− b} = 0, ess sup
b≥logn 2

{α+
V (b)− b} = 0,
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Proof. This lemma is similar to Lemma 2 of Cai & Wu (2014). Following Lemma 5,

(log n)−1 = (log n)−1

{∫ (FU0 )−1(0.5)

−∞
fUn (u)du+

∫ ∞
(FU0 )−1(0.5)

fUn (u)du

}
.

For the first integral, make the change of variables u 7→ (FU
0 )−1(n−a), and for the second

integral use u 7→ (FU
0 )−1(1− n−a). Similar to Lemma 5,

(log n)−1 =

∫ ∞
logn 2

nα
−
U (a)−a+o(1)da+

∫ ∞
logn 2

nα
+
U (a)−a+o(1)da

= ness supa≥logn 2{α
−
U (a)−a+o(1) + ness supa≥logn 2{α

+
U (a)−a+o(1).

Both terms in the sum are positive, so both essential suprema must equal zero. The proof

for α−V and α+
V is analogous.�

Lemma 7 For any function f(x) and constants c1 and c2,

{sup
x
f(x)} ∧ [sup

x
{c1f(x) + c2}] = sup

x
[f(x) ∧ {c1f(x) + c2}].

Proof. First it is clear that

{sup
x
f(x)} ∧ [sup

x
{c1f(x) + c2}] ≥ sup

x
[f(x) ∧ {c1f(x) + c2}].

Now fix ε > 0. By the definition of the supremum, there exist x1 and x2 such that

f(x1) > sup
x
f(x)− ε, c1f(x2) + c2 > c1 sup

x
f(x) + c2 − ε.

Complete the proof by defining x? equal either x1 or x2 such that f(x?) ≥ f(x1) ∨ f(x2).

Then

f(x?)∧{c1f(x?) + c2} ≥ f(x1)∧{c2f(x2) + c2} ≥ {sup
x
f(x)− ε}∧ {c1 sup

x
f(x) + c2− ε}.�

11 Proof of Theorem 1

The squared Hellinger distance between two distributions P0 and P1, with densities p1 and

p1 with respect to the Lebesgue measure µ, is defined as

H2(P0, P1) =
1

2

∫
(p

1/2
0 − p

1/2
1 )2dµ.
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If P0 and P1 are the distributions of (Ui, Vi) under H0 and HA, respectively, then by Theo-

rem 13.1.3 of Lehmann & Romano (2005), SH0,HA(φ)→ 1 for all tests φ if nH2(P0, P1)→ 0.

It remains to show that conditions (6)–(8) imply H2(P0, P1) = o(n−1).

For compactness of notation define the function

q(u, v) =

(
1−

[
1 +

n−β(LUn − 1)(LVn − 1)

{1 + n−βU (LUn − 1)}{1 + n−βV (LVn − 1)}

]1/2)2

,

where LUn = fUn /f
U
0 and LVn = fVn /f

V
0 are likelihood ratios. Next define the sets

I1 = {u, v : LUn (u) < 1, LVn (v) < 1},

I2 = {u, v : 1 ≤ LUn (u), LVn (v) < 1},

I3 = {u, v : LUn (u) < 1, 1 ≤ LVn (v)},

I4 = {u, v : 1 ≤ LUn (u), 1 ≤ LVn (v)}.

By definition LUn and LVn are always positive. Then the squared Hellinger distance satisfies

2H2(P0, P1) =

∫
I1
qfUfV dudv +

∫
I2
qfUfV dudv +

∫
I3
qfUfV dudv +

∫
I4
qfUfV dudv,

where fU = (1− πU)fU0 + πUf
U
n and fV = (1− πV )fV0 + πV f

U
n are the marginal densities of

Ui and Vi. Each one of these four integrals can be bounded separately.

First, on I1 the term inside the square root in q(u, v) is always larger than one for

n > 1, and is maximized when LUn = LVn = 0. Therefore

∫
I1
qfUfV dudv ≤

∫
I1

(
1−

[
1 +

n−β

(1− n−βU )(1− n−βV )

]1/2)2

fUfV dudv

≤ n−β

(1− n−βU )(1− n−βV )
∧ n−2β

(1− n−βU )2(1− n−βV )2

= o(n−1),

where the second inequality comes from Lemma 4 and the last equality follows because

β > 1/2 under weak dependence.

Next, to upper-bound q(u, v) on I2, it is easy to show that ∂q/∂LVn ≤ 0, which implies
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that q is maximized when LVn = 0. Therefore∫
I2
qfUfV dudv ≤

∫
I2

[
1−

{
1− n−β

1− n−βV
LUn − 1

1 + n−βU (LUn − 1)

}1/2
]2
fUfV dudv

≤ n−2β

(1− n−βV )2

∫
I2

(LUn − 1)2

{1 + n−βU (LUn − 1)}2
fUfV dudv

=
n−2β

(1− n−βV )2

∫
I2

(LUn − 1)2

1 + n−βU (LUn − 1)
fU0 fV dudv.

where the second inequality follows the facts that {1− (1− x)1/2}2 < x2 for x ∈ [0, 1].

The set I2 can be divided into disjoint subsets

I21 = {u, v : 1 ≤ LUn (u), u ≤ (FU
0 )−1(0.5), LVn (v) < 1},

I22 = {u, v : 1 ≤ LUn (u), u > (FU
0 )−1(0.5), LVn (v) < 1}.

On I21 make the change of variables u 7→ (FU
0 )−1(n−a), a ≥ logn 2, such that by Assump-

tion 1,

du = − log n
FU
0 (u)

fU0 (u)
da = − n−a log n

fU0 {(FU
0 )−1(n−a)}

da.

On I22 use u 7→ (FU
0 )−1(n1−a), a > logn 2, which implies

du =
n−a log n

fU0 {(FU
0 )−1(n−a)}

da.

Finally, Assumption 2 implies that for n sufficiently large, there is a small δ > 0 such that

a ≥ logn 2, LUn {(FU
0 )−1(n−a)} ≤ nα

−
U (a)+δ and LUn {(FU

0 )−1(1− n−a)} ≤ nα
+
U (a)+δ.

Therefore for n large enough and a generic constant Cn that contains a log n factor,∫
I2
qfUfV dudv ≤Cnn−2β

∫
I21

[LUn {(FU
0 )−1(n−a)} − 1]2

1 + n−βU [LUn {(FU
0 )−1(n−a)} − 1]

n−afV dadv+

Cnn
−2β
∫
I22

[LUn {(FU
0 )−1(1− n−a)} − 1]2

1 + n−βU [LUn {(FU
0 )−1(1− n−a)} − 1]

n−afV dadv

≤Cnn−2β
∫
{
0≤α−U (a)+δ,
a≥logn 2

} (nα
−
U+δ − 1)2

1 + n−βU (nα
−
U+δ − 1)

n−ada+

Cnn
−2β
∫
{
0≤α+

U (a)+δ,
a>logn 2

} (nα
+
U+δ − 1)2

1 + n−βU (nα
+
U+δ − 1)

n−ada.

If both α−U (a) < 0 and α+
U (a) < 0 for all a ≥ logn 2, both integrals above are equal to

zero. Otherwise, αU(a) = α−U (a) ∨ α+
U (a) > 0 for some subset of {a ≥ logn 2} with positive
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Lebesgue measure. Therefore∫
I2
qfUfV dudv ≤Cnn−2β

∫
logn 2

{
n2(α−U+δ)

1 + n−βU+α
−
U+δ

n−a +
n2(α+

U+δ)

1 + n−βU+α
+
U+δ

n−a

}
da

≤Cnn−2β
∫
logn 2

n(α−U∨α
+
U+δ)+{(α

−
U∨α

+
U+δ)∧βU}−ada,

and by Lemma 3 and (6),∫
I2
qfUfV dudv ≤ Cnn

−2β+ess supa≥logn 2[(αU+δ)+{(αU+δ)∧βU}−a] = o(n−1).

Similar reasoning shows that under (7),∫
I3
qfUfV dudv = o(n−1).

To complete the proof the integral of q(u, v) over I4 must be upper-bounded. Similar

to before, I4 can be divided into disjoint subsets

I41 = {u, v : 1 ≤ LUn (u), u ≤ (FU
0 )−1(0.5), 1 ≤ LVn (v), v ≤ (F V

0 )−1(0.5)},

I42 = {u, v : 1 ≤ LUn (u), u > (FU
0 )−1(0.5), 1 ≤ LVn (v), v ≤ (F V

0 )−1(0.5)},

I43 = {u, v : 1 ≤ LUn (u), u ≤ (FU
0 )−1(0.5), 1 ≤ LVn (v), v > (F V

0 )−1(0.5)},

I44 = {u, v : 1 ≤ LUn (u), u > (FU
0 )−1(0.5), 1 ≤ LVn (v), v > (F V

0 )−1(0.5)},

On I41 let u 7→ (FU
0 )−1(n−a) and v 7→ (F V

0 )−1(n−b) . If either α−U (a) < 0 or α−V (b) < 0 for

all a, b ≥ logn 2, the integral over I41 equals zero. Otherwise,

∫
I41
qfUfV dudv ≤ Cn

∫
{a,b≥logn 2}

1−

{
1 +

n−β+α
−
U+α−V +2δ

(1 + n−βU+α
−
U+δ)(1 + n−βV +α−V +δ)

}1/2
2

(1 + n−βU+α
−
U+δ)(1 + n−βV +α−V +δ)n−a−bdadb

≤ Cn

∫
{a,b≥logn 2}

{
n−β+α

−
U+α−V +2δ ∧ n−2β+2α−U+2α−V +4δ

(1 + n−βU+α
−
U+δ)(1 + n−βV +α−V +δ)

}
n−a−bdadb

= Cn

∫
{a,b≥logn 2}

[n−β+α
−
U+α−V +2δ ∧ n−2β+α

−
U+α−V +2δ+{(α−U+δ)∧βU}+{(α−V +δ)∧βV }]

n−a−bdadb,
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where the second inequality is due to Lemma 4. Corresponding calculations over the other

three subsets of I4 imply that when both αU(a) = α−U (a) ∨ α+
U (a) > 0 and αV (b) =

α−V (b) ∨ α+
V (b) > 0 on some subset of {a, b ≥ logn 2} of positive Lebesgue measure,∫

I4
qfUfV dudv ≤ Cnn

ess supa,b≥logn 2({−β+αU+αV +2δ}∧[−2β+αU+αV +2δ+{(αU+δ)∧βU}+{(αV +δ)∧βV }]−a−b),

which is o(n−1) when (8) holds.�

12 Proof of Theorem 2

Since PH0{Dn > (log n)1/2} = o(1) by Lemma 1, it remains to show that PHA{Dn ≤

(log n)1/2} is also o(1). Let U ′i = −Ui and V ′i = −Vi, and define

Wn(u′, v′) = n1/2

∑
i I{FU ′(U ′i) ≤ u′, FV ′(V

′
i ) ≤ v′} − u′v′

(u′v′ − u′2v′2)1/2
,

so that (log n)−1/2 sup0<u,v<1 |Wn| = Dn. Then for any (u′, v′),

PHA{Dn ≤ (log n)1/2} ≤ PHA{(log n)−1/2|Wn(u′, v′)| ≤ (log n)1/2}.

By the triangle inequality and Chebyshev’s inequality,

PHA{(log n)−1/2|Wn(u′, v′)| ≤ (log n)1/2 + r}

≤PHA{|Wn − EHAWn| ≥ |EHAWn| − log n− r(log n)1/2}

≤ varHAWn

{|EHAWn| − log n− r(log n)1/2}2
.

Therefore the desired result follows if there exists a (u′, v′) ∈ (0, 1)× (0, 1) such that

log n/|EHAWn| → 0, (18)

varHA(Wn)/|EHAWn|2 → 0. (19)

To check for such a (u′, v′), divide (0, 1)× (0, 1) into four quadrants

Q1 = [u′, v′ : u′ ≤ FU ′{−(FU
0 )−1(0.5)}, v′ ≤ FV ′{−(F V

0 )−1(0.5)}],

Q2 = [u′, v′ : u′ > FU ′{−(FU
0 )−1(0.5)}, v′ ≤ FV ′{−(F V

0 )−1(0.5)}],

Q3 = [u′, v′ : u′ ≤ FU ′{−(FU
0 )−1(0.5)}, v′ > FV ′{−(F V

0 )−1(0.5)}],

Q4 = [u′, v′ : u′ < FU ′{−(FU
0 )−1(0.5)}, v′ > FV ′{−(F V

0 )−1(0.5)}];
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the desired result follows if there exists a (u′, v′) in any of these quadrants that satisfies

(18) and (19). The distribution function FU ′ satisfies

FU ′(−u) = P(U ′i ≤ −u) = P(Ui ≥ u) = (1− πU){1− FU
0 (u)}+ πU{1− FU

n (u)}

and a similar relation holds for FV ′(−v). Thus letting u′ = FU ′(−u), v′ = FV ′(−v), and

FU ′V ′ be the the true bivariate distribution of (U ′i , V
′
i ),

EHAWn(u′, v′) =
n1/2(FU ′V ′ − FU ′FV ′)
{u′v′(1− u′v′))}1/2

=
n1/2−β{FU

n (u)− FU
0 (u)}{F V

n (v)− F V
0 (v)}

{u′v′(1− u′v′)}1/2
, (20)

varHAWn(u′, v′) =
FU ′V ′ − F 2

U ′V ′

u′v′(1− u′v′)

≤ FU
′FV ′ + n−β{FU

n (u)− FU
0 (u)}{F V

n (v)− F V
0 (v)}

u′v′(1− u′v′)

=
1

1− u′v′
+

(EHAWn)2

n1−β{FU
n (u)− FU

0 (u)}{F V
n (v)− F V

0 (v)}
. (21)

Quadrant Q1 corresponds to u′ = FU ′{−(FU
0 )−1(1− n−x)} and v′ = FV ′{−(F V

0 )−1(1−

n−y)} for x, y ≥ logn 2. Then from (20), Assumptions 1 and 2, and Lemma 5, for n

sufficiently large and some generic constant Cn that may contain factors of log n, the

numerator of |EHAWn| is

|n1/2−β[FU
n {(FU

0 )−1(1− n−x)} − 1 + n−x][F V
n {(F V

0 )−1(1− n−y)} − 1 + n−y]|

= |n1/2−β{n−x − np
+
U (x)+o(1)}{n−y − np

+
U (y)+o(1)}|

=Cnn
1/2−βn(−x)∨p+U (x)n(−y)∨p+U (y),

and

u′ = (1− n−βU )n−x + n−βU [1− FU
n {(FU

0 )−1(1− n−x)}]

=n−x + n−βU{np
+
U (x)+o(1) − n−x} = Cnn

(−x)∨(−βU+p+U ),

v′ =Cnn
(−y)∨(−βV +p+V ).

Lemma 6 implies that p+U , p
+
V ≤ 0, so u′v′ < 1 and (1− u′v′)→ 1. Therefore from (20) and
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(21),

|EHAWn| =Cn
n1/2−β+(−x)∨p+U+(−y)∨p+V

n{(−x)∨(−βU+p
+
U )}/2+{(−y)∨(−βV +p+V )}/2

,

varHAWn

|EHAWn|2
=

Cn
|EHAWn|2

+
Cn

n1−β+(−x)∨p+U+(−y)∨p+V
.

When x+ y < 1,

1− β + (−x) ∨ p+U + (−y) ∨ p+V

≥ 1

2
− β + (−x) ∨ p+U + (−y) ∨ p+V +

x+ y

2

≥ 1

2
− β + (−x) ∨ p+U + (−y) ∨ p+V +

x ∧ (βU − p+U)

2
+
y ∧ (βV − p+V )

2
,

so (10) is a sufficient condition for there to exist a (u′, v′) ∈ Q1 such that (18) and (19)

hold.

QuadrantQ2 corresponds to u′ = FU ′{−(FU
0 )−1(n−x)} and v′ = FV ′{−(F V

0 )−1(1−n−y)}

for x, y ≥ logn 2. Then the numerator of |EHAWn| is

|n1/2−β[FU
n {(FU

0 )−1(n−x)} − n−x][F V
n {(F V

0 )−1(1− n−y)} − 1 + n−y]|

=Cnn
1/2−βn(−x)∨p−U (x)n(−y)∨p+U (y),

and

u′ = (1− n−βU )(1− n−x) + n−βU{1− np
−
U (x)+o(1)}

= 1− n−x − n−βU + n−x−βU + n−βU − n−βU+p
−
U (x)+o(1)

= 1 + Cn(n−x + n−βU ) = O(1),

v′ =Cnn
(−y)∨(−βV +p+V ),

where the last equality for u′ used p−U ≤ 0 by Lemma 6. Again u′v′ < 1 and (1− u′v′)→ 1,

so from (20) and (21),

|EHAWn| =Cn
n1/2−β+(−x)∨p−U+(−y)∨p+V

n{(−y)∨(−βV +p+V )}/2
,

varHAWn

|EHAWn|2
=

Cn
|EHAWn|2

+
Cn

n1−β+(−x)∨p−U+(−y)∨p+V
.
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When x+ y < 1,

1− β + (−x) ∨ p−U + (−y) ∨ p+V

≥ 1

2
− β + (−x) ∨ p−U + (−y) ∨ p+V +

y

2

≥ 1

2
− β + (−x) ∨ p−U + (−y) ∨ p+V +

y ∧ (βV − p+V )

2
,

so (11) is a sufficient condition for there to exist a (u′, v′) ∈ Q2 such that (18) and (19)

hold. It can be similarly be shown that (12) is a sufficient condition in Q3.

Quadrant Q4 corresponds to u′ = FU ′{−(FU
0 )−1(n−x)} and v′ = FV ′{−(F V

0 )−1(n−y)}

for x, y ≥ logn 2. Then the numerator of |EHAWn| is

Cnn
1/2−βn(−x)∨p−U (x)n(−y)∨p−U (y),

and

u′ = 1 + Cn(n−x + n−βU ), v′ = 1 + Cn(n−y + n−βV ).

Therefore u′v′ = O(1) and 1− u′v′ is of order

n−x + n−βU + n−y + n−βV ,

and

|EHAWn| =Cn
n1/2−β+(−x)∨p−U+(−y)∨p−V

n{(−x)∨(−βU )∨(−y)∨(−βV )}/2 ,

varHAWn

|EHAWn|2
=

Cn
|EHAWn|2

+
Cn

n1−β+(−x)∨p−U+(−y)∨p−V
.

When x+ y < 1,

1− β + (−x) ∨ p−U + (−y) ∨ p−V

≥ 1

2
− β + (−x) ∨ p−U + (−y) ∨ p−V +

1

2

≥ 1

2
− β + (−x) ∨ p−U + (−y) ∨ p+V +

x ∧ βU ∧ y ∧ βV
2

,

so (13) is a sufficient condition for there to exist a (u′, v′) ∈ Q4 such that (18) and (19)

hold. �
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12.1 Proof of Theorem 3

It must be shown that the interior of the region where (10)–(13) are all false corresponds

to the region where (6)–(8) are all true. The stochastic ordering condition implies that

FU
n {(FU

0 )−1(n−x)} ≤ n−x and FU
n {(FU

0 )−1(1 − n−x)} ≤ 1 − n−x for x ≤ logn 2. Using

Lemma 5, this implies that p−U ≤ p+U , where p−U(x) and p+U(x) are defined as in Theorem 2.

Similarly, p−V ≤ p+V , and therefore

p+U(x) = p+U(x) ∨ p−U(x) = ess sup
a≥x

{α+
U (a)− a} ∨ ess sup

a≥x
{α−U (a)− a} = ess sup

a≥x
{αU(a)− a},

p+V (y) = ess sup
b≥y

{αV (b)− b},

where αU(a) and αV (b) are defined as in Theorem 1. These results also imply that the

supremum term in (10) is larger than the supremum terms in (11)–(13). It remains only

to show that (6)–(8) are true in the interior of the complement of (10). A useful lemma

is Proposition 3.5 of Phu & Hoffmann (1996), which states that the supremum and essen-

tial supremum with respect to the Lebesgue measure are equal for lower semi-continuous

functions.

First, suppose there exist positive x, y such that x+y < 1 and p+U(x) > −x, p+V (y) > −y.

The interior of the complement of (10) is

0 > ess sup
x,y>0,
x+y<1

[
1

2
− β + p+U(x) + p+V (y) +

x ∧ {βU − p+U(x)}
2

+
y ∧ {βV − p+V (y)}

2

]

= ess sup
x,y>0,
x+y<1

[
ess sup
a≥x

{
αU(a)− a+

x

2

}
∧ ess sup

a≥x

{
αU(a)− a+ βU

2

}
+

ess sup
b≥y

{
αV (b)− b+

y

2

}
∧ ess sup

b≥y

{
αV (b)− b+ βV

2

}]
+

1

2
− β.

Using Lemma 7, the essential supremum term equals

ess sup
x,y>0,x+y<1,
a≥x,b≥y

[{
αU(a)− a+

x

2
+ αV (b)− b+

y

2

}
∧
{
αU(a)− a+

x

2
+
αV (b)− b+ βV

2

}
∧

{
αU(a)− a+ βU

2
+ αV (b)− b+

y

2

}
∧
{
αU(a)− a+ βU

2
+
αV (b)− b+ βV

2

}]
,
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and using Lemma 7 again and taking the essential suprema with respect to x and y gives

ess sup
a,b≥0

[{
αU(a)− a+ αV (b)− b+

(a+ b) ∧ 1

2

}
∧
{
αU(a)− a+

a ∧ 1

2
+
αV (b)− b+ βV

2

}
∧{

αU(a)− a+ βU
2

+ αV (b)− b+
b ∧ 1

2

}
∧
{
αU(a)− a+ βU

2
+
αV (b)− b+ βV

2

}]
.

Therefore one of the following holds almost everywhere on a, b ≥ 0:

1.

0 > 1− 2β + 2αU(a)− 2a+ 2αV (b)− 2b+ a+ b

≥ 1− 2β + αU(a) + {αU(a) ∧ βU}+ {αV (b) ∧ βV } − a− b;

2.

0 > 1/2− β + αU(a)− a+ αV (b)− b+ 1/2

= 1− β + αU(a) + αV (b)− a− b;

3.

0 > 1− 2β + 2αU(a)− 2a+ a+ αV (b)− b+ βV

≥ 1− 2β + αU(a) + {αU(a) ∧ βU} − a+ αV (b)− b+ {αV (b) ∧ βV };

4.

0 > 1/2− β + αU(a)− a+ 1/2 + {αV (b)− b+ βV }/2

≥ 1− β + αU(a)− a+ {αV (b)− b}/2 + 0

≥ 1− β + αU(a)− a+ αV (b)− b,

where the last inequality follows from Lemma 6;

5.

0 > 1− 2β + αU(a)− a+ βU + 2αV (b)− 2b+ b

≥ 1− 2β + αU(a)− a+ {αU(a) ∧ βU}+ αV (b) + {αV (b) ∧ βV } − b;
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6.

0 > 1/2− β + {αU(a)− a+ βU}/2 + αV (b)− b+ 1/2

≥ 1− β + αU(a)− a+ αV (b)− b,

following the same reasoning as in possibility 4; or

7.

0 > 1− 2β + αU(a)− a+ βU + αV (b)− b+ βV

≥ 1− 2β + αU(a)− a+ {αU(a) ∧ βU}+ αV (b) + {αV (b) ∧ βV } − b.

Furthermore, the interior of the complement of (10) contains

0 > ess sup
x,y>0,
x+y<1

[
1− 2β + p+U(x) +

x ∧ {βU − p+U(x)}
2

]
,

0 > ess sup
x,y>0,
x+y<1

[
1− 2β + p+V (y) +

y ∧ {βU − p+V (y)}
2

]
.

Similar reasoning as in possibility 1 above shows that these imply

0 ≥1− 2β + αU(a) + {αU(a) ∧ βU} − a,

0 ≥1− 2β + αV (bf) + {αV (b) ∧ βV } − b.

Thus when there exist positive x, y such that x + y < 1 and p+U(x) > −x, p+V (y) > −y,

(6)–(8) hold in the interior of the complement of (10).

Next assume there exists x ∈ (0, 1) such that p+U(x) > −x, but p+V (y) ≤ −y for all

y ∈ (0, 1). This implies that p+V (logn 2) < − logn 2, so αV (b)−b ≤ − logn 2 for all b ≥ logn 2,

so that (7) is always true and (8) becomes

1 + 0 ∨ ess sup
a>0

[(−β + αU) ∧ {−2β + αU + (αU ∧ βU)} − a] < 0.
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This also implies that in the interior of the complement of (10),

0 > ess sup
x,y>0,
x+y<1

[
1

2
− β + pU(x) +

x ∧ {βU − pU(x)}
2

− y

2

]

= ess sup
x,y>0,
x+y<1,
a≥x,b≥y

[{
αU(a)− a+

x− y
2

}
∧
{
αU(a)− a+ βU − y

2

}]
+

1

2
− β

= ess sup
a≥0,b≥0

[{
αU(a)− a+

a ∧ 1

2

}
∧
{
αU(a)− a+ βU

2

}]
+

1

2
− β.

Therefore one of the following holds almost everywhere on a, b ≥ 0:

1. 0 > 1− 2β + 2αU(a)− 2a+ a ≥ 1− 2β + αU(a) + {αU(a) ∧ βU} − a;

2. 0 > 1/2− β + αU(a)− a+ 1/2 ≥ 1− β + αU(a)− a; or

3. 0 > 1− 2β + αU(a)− a+ βU ≥ 1− 2β + αU(a) + {αU(a) ∧ βU} − a.

Thus when there exists x ∈ (0, 1) such that p+U(x) > −x, but p+V (y) ≤ −y for all y ∈ (0, 1),

(6)–(8) hold in the interior of the complement of (10). Similar reasoning shows that the

same is true when p+U(x) ≤ −x for all x ∈ (0, 1) but there exists a y ∈ (0, 1) such that

p+V (y) > −y.

Finally suppose that p+U(x) ≤ −x and p+V (y) ≤ −y for all x, y > 0, x + y < 1. Then

αU(a)− a ≤ − logn 2 and αV (b)− b ≤ − logn 2 for all a, b ≥ logn 2, and (6)–(8) are always

true, while the interior of the complement of (10) contains

sup
x,y>0,
x+y<1

(
1

2
− β − x

2
− y

2

)
< 0,

which also always holds under weak dependence. �
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13 Proof of Theorem 5

Since

D̂n = sup
U(1)<u≤U(n),
V(1)<v≤V(n)

n1/2

(log n)1/2
|ŜUV (u, v)− ŜU(u)ŜV (v)|

{ŜU(u)ŜV (v)− ŜU(u)2ŜV (v)2}1/2

= sup
−U(1)>u≥−U(n),
−V(1)>v≥−V(n)

n1/2

(log n)1/2
|ŜUV (−u,−v)− ŜU(−u)ŜV (−v)|

{ŜU(−u)ŜV (−v)− ŜU(−u)2ŜV (−v)2}1/2

= sup
U ′
(1)
≤u<U ′

(n)
,

V ′
(1)
≤v<V ′

(n)

n1/2

(log n)1/2
|F̂U ′V ′(u, v)− F̂U ′(u)F̂V ′(v)|

{F̂U ′(u)F̂V ′(v)− F̂U ′(u)2F̂V ′(v)2}1/2
= D̂′n,

where F̂U ′ and F̂V ′ are the univariate empirical distributions of U ′i and V ′i , it suffices to

show that D̂′n = Dn + oP (1).

Define

Ĉn(u, v) = n−1
∑
i

I{F̂U(U ′i) ≤ u, F̂V (V ′i ) ≤ v}

to be the empirical copula process, following Deheuvels (1979), and An to be the set

{i/n}, i = 1, . . . , (n− 1). It is clear that

D̂′n = max
u,v∈An

1

(log n)1/2
n1/2|Ĉn(u, v)− uv|

(uv − u2v2)1/2
.

First, it can be shown that the maximum can be replaced by a supremum over all

u, v ∈ (0, 1). Choose mn ∈ An, and consider the set Bn = {(u, v) : Ĉn(u, v) = mn}. Next

define the function

fn(u, v) =
{Ĉn(u, v)− uv}2

uv − u2v2
=

(mn − uv)2

uv − (uv)2
.

Since uv ∈ [0, 1] and

dfn
d(uv)

=
(1− 2m)(uv)2 + 2m2(uv)−m2

{(uv)− (uv)2}2
=

(uv −m){(1− 2m)uv +m}
{uv − (uv)2}2

,

it can be shown that fn(u, v) is convex in uv. Therefore fn(uv) is maximized at the

boundary of Bn, on which either uv = 0, uv = 1, or u, v ∈ An. When uv < 1/n, mn = 0,

and limuv→0 fn(u, v) = 0. Similarly when uv > (n−1)/n, mn = 1, and limuv→1 fn(u, v) = 0

as well. Therefore

D̂′n = sup
u,v∈(0,1)

1

(log n)1/2
n1/2|Ĉn(u, v)− uv|

(uv − u2v2)1/2
.
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Intuitively, D̂′n should be close to Dn because Ĉn(u, v) should be close to the bivariate

uniform empirical process

Cn(u, v) = n−1
∑
i

I{FU ′(U ′i) ≤ u, FV ′(V
′
i ) ≤ v},

and with a change of variables Dn can be written as

Dn = sup
u,v∈(0,1)

n1/2

(log n)1/2
|Cn(u, v)− uv|
(uv − u2v2)1/2

.

To make this precise, by the triangle inequality

|D̂′n −Dn| ≤ sup
u,v∈(0,1)

n1/2

(log n)1/2
|Ĉn(u, v)− Cn(u, v)|

(uv − u2v2)1/2
≡ Rn.

Now let Zn be the event that

sup
u,v∈(0,1)

(log n)−1/2n1/2|Ĉn − Cn| = 0.

Therefore Rn = 0× I(Zn) +Rn × I(Zcn), and it remains to show that P (Zn)→ 1.

Bouzebda & Zari (2013) showed that if the bivariate copula function

C(u, v) = P{SU(Ui) ≤ u, SV (Vi) ≤ v}

is twice continuously differentiable on (0, 1)2 and its second-order partial derivatives are all

continuous on [0, 1]2, then

sup
u,v∈(0,1)

n|Ĉn − Cn|
a.s.
= K(u, v, n)−K(u, 1, n)

∂C(u, v)

∂u
−K(1, v, n)

∂C(u, v)

∂v
+

O{n1/2−1/8(log n)3/2}

for a suitably constructed Kiefer process K(u, v, t) = W(u, v, t) − C(u, v)W(1, 1, t), where

W is a particular Gaussian process. Under Assumption 1, the conditions on C(u, v) are

satisfied by the particular type of dependence (2) studied in this paper. Furthermore, the

law of the iterated logarithm for Kiefer processes (Finkelstein et al. 1971) states that there

is some constant C such that
K(u, v, n)

(2n log log n)1/2
a.s.→ C.

These facts imply that P (Zn)→ 1, proving the theorem.�
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