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Summary. A common feature in large-scale scientific studies is that signals are sparse and it is

desirable to significantly narrow down the focus to a much smaller subset in a sequential manner.

In this paper, we consider two related data screening problems: One is to find the smallest subset

such that it virtually contains all signals and another is to find the largest subset such that it

essentially contains only signals. These screening problems are closely connected to but distinct

from the more conventional signal detection or multiple testing problems. We develop data-driven

screening procedures which control the error rates with near optimality properties and study how

to design the experiments efficiently to achieve the goals in data screening. A class of new phase

diagrams is developed to characterize the fundamental limitations in simultaneous inference. An

application to multistage high-throughput studies is given to illustrate the merits of the proposed

screening methods.
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1. Introduction

A challenging and important problem in large-scale scientific studies is to recover sparse
signals from massive amount of data. Multistage design provides a cost-effective way to
glean significance from data by adaptively reducing a large set of variables to a much smaller
subset in a sequential manner. The general strategy is to use information acquired from
the previous measurements to adjust the subsequent measurements and focus resources on
study units that are more likely to contain signals of interest. For example, Satagopan et al.
(2004) proposed a two-stage design for genome-wide association studies and showed that
the new design provides a substantial reduction in the study costs for a minimal loss of
power compared to single-stage approaches. Haupt et al. (2009, 2011) proposed the distilled
sensing method for large-scale signal processing problems. It was shown that with a fixed
study cost, the distilled sensing method requires remarkably weaker condition for reliable
recovery of sparse signals. In geostatistical analysis, Bloma et al. (2002) showed that a two-
stage adaptive sampling approach leads to great savings in study costs. In the context of
microarray, RNA-seq, and protein array experiments, Müller et al. (2004) and Rossell and
Müller (2013) proposed simulation-based algorithms for the design and analysis of multi-
stage experiments under a class of prespecified utility functions. Optimal stopping rules in
multi-stage experiments are also studied by Lai (2000); Bartroff (2007); Durrieu and Briollais
(2009) for various applications.

The analysis of large-scale multistage experiments poses new challenges that are not
present in conventional small-scale and single-stage analyses. One critical issue is the control
of decision errors at various stages in the screening process. At each stage of screening, both
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false positive and false negative decisions may occur: a high false positive rate will increase the
study costs in the next stage and may result in misleading scientific conclusions; meanwhile,
since undetected signals will not be revisited in subsequent analyses, a high false negative rate
may lead to an overall inefficient design and inevitable financial losses. To illustrate the key
issues, we discuss in detail an important application, the high-throughput screening (HTS)
of chemical compounds in drug discovery. The terms in HTS are adopted in later sections to
facilitate the presentation, but the discussions apply to more general settings.

HTS is a large-scale hierarchical process (Figure 1) that conducts millions of chemical
tests in multiple stages to identify active compounds and generate candidates for drug design
and development. In the initial primary screen, an integrated robot system is used to rapidly
collect data on a large library of chemical compounds. The compounds with desirable effect
size (labeled “hits”) will be followed up by a secondary screen which collects additional data
on the narrowed subset. The results are further refined by a careful analysis to confirm
their statistical significance and biological relevance. The confirmed hits with an established
biomedical activity are termed as “leads,” which may be developed into drug candidates
and used for clinical testing. The advances in robotics and parallel data processing technique
have dramatically increased the throughput, with more than 100,000 compounds sampled and
measured per day in some ultra high-throughput experiments (Agresti et al., 2010). However,
few analytical tools are available for dealing with such massive data sets, see Bleicher et al.
(2003); Malo et al. (2006); Birmingham et al. (2009); Zhang (2011) for reviews of statistical
methods currently used in the analysis of HTS. Moreover, the inferential process in most
HTS analyses is mainly based on informal “rules of thumb,” which are proposed for small
studies with only a few dozens chemical compounds. The overwhelming number of targets
in modern HTS has resulted in soaring costs in clinical testing and declined drug approval
rate (Dove et al., 2003). It is imperative to develop flexible and cost-effective strategies for
large-scale multi-stage inference problems to control the error rates accurately and optimize
the discovery process.
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Fig. 1. Flowchart for HTS and drug development process.
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Now we discuss two types of data screening problems which may arise at different stages of
HTS. In primary screens, the goal is to reduce the size of the library significantly to meet the
laboratory constraints such as capacity limitations in the more expensive secondary screens.
In the current practice of HTS, compounds are measured with one or more replicates and a
small fraction (say, top 1%) with highest activities are selected as “hits” to enter secondary
screens. The important tasks at this stage include: (i) to construct a subset with negligible
false negative rate (since undetected compounds will not be revisited); and (ii) to determine
the number of replicates to ensure that the subset achieves a significant size reduction. In
secondary screens, the goal is to confirm the “hits” selected by primary screens and use them
to generate “leads.” The far more complex and costly leads generation process calls for precise
control of the false positive rate. The current practice in HTS is to obtain the z-scores using
a few replicates and then threshold the z-scores at a pre-specified value (e.g. selecting cases
with |z| > 3, Malo et al., 2006). However, these ad-hoc rules with prefixed thresholds provide
no control of probabilistic error rates and can be either too conservative or too liberal. At
this stage, the important tasks include (i) to construct a subset with negligible false positive
rate; (ii) to determine the number of replicates to ensure that some useful signals can be
reliably identified for leads generation.

The statistical issues in HTS commonly exists in other large-scale multistage experiments.
In summary, the accurate and effective signal recovery via a multistage analysis requires the
study of two inter-related data screening problems:

(i) to find the smallest subset such that it nearly contains all signals; and

(ii) to find the largest subset such that it virtually contains only signals.

In both screening problems, we need to address two issues: how to control the decision errors
accurately and how to design the sample size efficiently.

The error control issue in multi-stage and sequential testing problems has been investi-
gated in Lin (2006), Dmitrienko et al. (2007), Benjamini and Heller (2007), Goeman and
Mansmann (2008), Yekutieli (2008), and Posch et al. (2009), among others. Blanchard and
Geman (2005), Meinshausen (2008) and Goeman and Solari (2010) considered the control
of family wise error rate in hierarchical variable selection/testing problems. However, these
works essentially focus on the control of the false positive rate, and in particular the ad-
justment of statistical significance in hierarchical inference. The control of the false negative
rate has not been considered and the issues on sample size design still remain unknown. Fan
and Lv (2008), Wasserman and Roeder (2009) and Ji and Jin (2012) proposed multi-stage
methods for high-dimensional regression problems. However, their settings are very different
from ours. In addition, the issues on decision error control, efficient design and optimal subset
construction have not been established by existing works.

The goals of this article include: (i) to develop data-driven screening procedures which
control the error rates with near optimality properties, and (ii) to study how the multistage
experiments can be designed efficiently to achieve the goals in data screening. We formulate
a decision-theoretic framework for large-scale inference problems and develop asymptotically
optimal data-driven screening procedures that control the false positive and false negative
rates, respectively. To address the related design problems, we employ the technique of phase
diagram (e.g. Donoho and Jin, 2004; Cai et al., 2007) to study the phase transition in optimal
screening. The resulting classification boundary, discovery boundary and screening boundary,
which characterize the precise conditions under which respective goals in data screening are
achievable, lead to useful formulae for calculating the minimum number of replicates needed
at different stages of HTS. We establish the optimality of the proposed data-driven procedures
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by showing that they successfully attain the respective phase transition boundaries in a two-
point normal mixture model. Compared to other popular screening schemes such as the
distilled sensing method, the proposed data-driven procedures can be implemented for a
more general class of mixture models and are capable of reducing the size of a large data
set in a much faster and more reliable way. The numerical results demonstrate that the
proposed methods control the error rates at the desired level with significantly improved
power compared to existing methods. An application to HTS is also given to illustrate the
merits of the proposed screening methods.

Under the two-component sparse mixture models, the study of optimality via phase tran-
sition has been limited to the global inference problems such as signal detection and sparsity
estimation. See, for example, Donoho and Jin (2004); Meinshausen and Rice (2006); Cai
et al. (2007); Cai and Wu (2014). This article develops new optimality theory for a class of
important and closely related simultaneous inference problems including classification, signal
discovery and data screening. Aiming to make many decisions at finer (individual) levels,
the analysis in simultaneous inference involves very different techniques compared to that in
global inference: one requires greater precision in decision making and needs to control the
inflation of both false positive and negative errors. The main theoretical contribution of our
work is the development of different phase diagrams, including the new classification, discov-
ery and screening boundaries, which together characterize the fundamental limitations and
hence the optimality benchmarks in simultaneous inference. The main methodological con-
tributions include new results on false negative rate control and rates of screening levels; we
show how the thresholding sequences may be chosen so that the phase transition boundaries
can be successfully attained.

The rest of the article is organized as follows. Section 2 develops oracle and data-driven
screening procedures for analysis of multistage experiments. Section 3 studies the phase
transition in optimal screening and derives the sample size formulae to address related design
problems in practice. We employ the phase transition theory to evaluate the effectiveness
of different screening strategies in Section 4. Simulation studies are conducted in Section 5
to investigate the numerical performance of the proposed methods. An application to HTS
is presented in Section 6 and a brief discussion is given in Section 7. The main theorems
are proved in Section 8 and the proofs of some additional technical results are given in the
supplemental material.

2. Optimal Screening: Theoretical Framework and Data-driven Procedures

We study the data screening problem in a decision theoretic framework. Let X1, · · · , Xn be
observations from a random mixture model

Xi|θi ∼ (1− θi)F0 + θiF1, (2.1)

where θ1, · · · , θn are independent Bernoulli(ǫn) random variables, and F0 and F1 are the null
and non-null distributions, respectively. Here θθθ = (θ1, · · · , θn) ∈ {0, 1}n denotes the true
states of nature, with θi = 0 indicating a null case and θi = 1 indicating a signal of interest.
The random mixture model (2.1) provides a powerful and convenient framework for large-
scale inference problems and has been widely used in the literature; see, for example, Efron
et al. (2001), Storey (2002), and Genovese and Wasserman (2002). There are two goals in
data screening: One is to find the smallest subset such that it virtually contains the set of all
signals and another is to find the largest subset such that it essentially contains only signals.
Intuitively, it is clear that the difficulty of achieving these goals depends on the “distance”
between the null distribution F0 and non-null distribution F1.
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An important special case of (2.1) is the following two-point normal mixture model:

Xi|θi ∼ (1 − θi)N(0, 1) + θiN(µn, σ
2), i = 1, · · · , n. (2.2)

This simple and more concrete model is suitable for many applications and has been ex-
tensively studied in the literature. It has played a fundamental role in understanding the
detection and classification problems in high-dimensional sparse inference; see, for example,
Ingster (1998), Donoho and Jin (2004, 2006) and Cai et al. (2007).

Our methodological and theoretical development is divided into two steps. We first con-
sider the general random mixture model (2.1) and propose oracle and data-driven screening
procedures for global error rate control and study their optimality properties in the rest of
this section. The focus is then turned to the efficient design of a multistage experiment under
the more concrete two-point normal mixture model (2.2) in Section 3, with the aim of find-
ing the minimum number of replicates with which it is possible to achieve the goals in data
screening. These two steps together give the complete solution and both are indispensable:
the conclusions would be invalid without effective error rate control, and the study would
not attain the desired power without a reasonable sample size. In practice, one can first use
the simple model (2.2) to determine the sample size, and then implement the screening pro-
cedures under the general model (2.1) to analyze the collected data without the parametric
assumptions. This framework will be illustrated in Section 6.

2.1. Problem formulation

Consider a decision rule δδδ = (δ1, · · · , δn) ∈ {0, 1}n, where δi = 1 if case i is selected as an
interesting case and δi = 0 otherwise. The index sets of true signals, null cases and selected
cases are denoted by I = {i : θi = 1}, N = {i : θi = 0} and Sδδδ = {i : δi = 1}, respectively.
Then the expected size of Sδδδ can be decomposed as

E[Card(Sδδδ)] = E[Card(I ∩ Sδδδ)] + E[Card(N ∩ Sδδδ)] = ETPδδδ + EFPδδδ,

where ETPδδδ and EFPδδδ represent the expected numbers of true positives and expected num-
bers of false positives of δδδ, respectively. Let αn and α′

n be two sequences of positive numbers
converging to 0 slowly. A decision rule δδδ is valid for false positive rate (FPR) control if

FPRδδδ = EFPδδδ/E[Card(Sδδδ)] ≤ αn, (2.3)

and valid for missed discovery rate (MDR, or non-discovery rate, NDR) control if

MDRδδδ = 1− ETPδδδ/E[Card(I)] ≤ α′
n. (2.4)

Remark 1. The FPR (also referred to as the marginal false discovery rate, mFDR)
is asymptotically equivalent to the well-known false discovery rate (FDR, Benjamini and
Hochberg, 1995) under independence (Genovese and Wasserman, 2002) and weak depen-
dence (Storey et al., 2004). The MDR, also called the “missed rate” (Taylor et al., 2005), is
equivalent to the non-discovery rate (NDR) in Haupt et al. (2011) under the random mixture
model (2.1). An alternative measure to the MDR is the false non-discovery rate or false
negative rate (FNR, Genovese and Wasserman, 2002; Sarkar, 2004). Under the sparse signal
settings, the FNR is close to zero and hence less sensitive. There is no essential difference
between the FPR and FDR in large-scale testing problems; the use of FPR is mainly for
technical considerations – its simplicity makes it possible to establish sharp optimality in
data screening via an equivalent weighted classification problem (see proof of Theorem 1).
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Let Dd,αn
and Ds,α′

n
denote the collections of all screening procedures fulfilling conditions

(2.3) and (2.4), respectively. We call a procedure valid if the FPR/MDR is controlled at
the nominal level, and optimal if it constructs the largest (smallest) subset among all valid
procedures. Following the standard notation in decision theory (e.g., Berger (1985)), we
denote the optimal FPR procedure by δδδπd (subscript “d” indicates “discovery” and superscript
“π” indicates “optimal”), which satisfies

δδδπd ∈ Dd,αn
and E{Card(Sδδδπ

d
)} ≥ E{Card(Sδδδ)} for all δδδ ∈ Dd,αn

. (2.5)

The optimal MDR procedure, denoted by δδδπs (subscript “s” indicates “screening”), satisfies

δδδπs ∈ Ds,α′
n
and E{Card(Sδδδπs

)} ≤ E{Card(Sδδδ)} for all δδδ ∈ Ds,α′
n
. (2.6)

Optimal FPR and MDR procedures will be derived in the next section.

Remark 2. The formulation of (2.5) and (2.6) naturally extends the optimality concepts
in single hypothesis testing, where the Neyman-Pearson lemma provides the most powerful
test at a given nominal level. A similar type of optimality theory is developed in the next
section, where test size and power in simple hypothesis testing are extended to the global
error rate (FPR or MDR) and the expected subset size in data screening correspondingly.

2.2. Oracle and adaptive screening procedures

We begin by considering the random mixture model (2.1) in the oracle setting where all model
parameters are assumed to be known. Let f0 and f1 denote the null and non-null densities,

and f = (1 − ǫn)f0 + ǫnf1 the marginal density. Define T π
i = (1−ǫn)f0(Xi)

f(Xi)
[the local false

discovery rate (Lfdr, Efron et al., 2001)] and TTTπ = (T π
1 , · · · , T π

n ). Consider a decision rule of
the form δδδ(TTTπ, t) = [I(T π

1 < t), · · · , I(T π
n < t)].

Theorem 1. Consider model (2.1). Let FPRπ(t) and MDRπ(t) be the FPR and MDR
levels of decision rule δδδ(TTTπ, t). Then we have:

(i) The optimal FPR procedure is δδδπd = (δπd,1, · · · , δπd,n), where

δπd,i = I(T π
i < tπd ) and tπd = sup{t : FPRπ(t) = αn}, i = 1, · · · , n. (2.7)

(ii) The optimal MDR procedure is δδδπs = (δπs,1, · · · , δπs,n), where

δπs,i = I(T π
i < tπs ) and tπs = inf{t : MDRπ(t) = α′

n}, i = 1, · · · , n. (2.8)

Remark 3. A result on optimal FPR control has been obtained in Sun and Cai (2007).
Theorem 1 extends the result to the optimal screening problem defined by (2.5) and (2.6). In
contrast with the higher criticism (HC) method (Donoho and Jin, 2004) that tests a global
null hypothesis, the construction of a screening subset involves making many simultaneous
decisions at individual levels. This important difference is demonstrated by the phase tran-
sition theory developed in Section 4. The general strategy in constructing the subsets is to
first rank the observations from the most significant to the least significant and then choose
a cutoff along the rankings. Two important questions are: (i) What is the optimal ranking?
(ii) What is the optimal cutoff? Theorem 1 reveals that the optimal ranking is determined
by T π

i , with the optimal thresholds being given by tπd and tπs , respectively.
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The optimal thresholds can be obtained using stepwise procedures. The derivation involve
adaptive estimation of the FPR and MDR. More explicitly, to construct the desired subsets,
we first order T π

i from the smallest to the largest as T π
(1), · · · , T π

(n). The following method

was proposed in Sun and Cai (2007).

Procedure 1. FPR procedure at level αn. Let kd = max
{
j : 1

j

∑j
i=1 T

π
(i) ≤ αn

}
. Then

the discovery subset can be constructed as Ŝπ
d = {i : T π

i ≤ T π
(kd)

}.

Next we develop an MDR procedure, which constructs a subset via a “backward elimi-
nation” scheme. Specifically, the method starts with the full set, and leaves out one by one
the least significant observation in the subset until there is evidence that a non-negligible
proportion of signals have been missed.

Procedure 2. MDR procedure at level α′
n. Let ks = min

{
j :

∑j
i=n(1− T π

(i)) ≤ nǫnα
′
n

}
.

Then the screening subset can be constructed as Ŝπ
s = {i : T π

i ≤ T π
(ks)

}.

The next theorem shows that both procedures are valid for error rates control.

Theorem 2. Consider random mixture model (2.1). Let αn and α′
n be positive sequences

converging to zero slowly, say, at the rate (logn)−1. Denote by FPRd the FPR level of
Procedure 1 and MDRs the MDR level of Procedure 2. Then we have

FPRd ≤ αn and MDRs ≤ α′
n.

Remark 4. Theorem 2 also holds in a non-asymptotic setting with fixed αn = α and
α′
n = α′. To maintain notational consistency, we state the result with vanishing αn and

α′
n because both will be used in the next two sections for studying the phase transition

theory, which is formulated in an asymptotic setting. The convergence rates of αn and α′
n

are important and will be analyzed rigorously in later sections (see the proofs of Theorems
4 and 7). At present, we only give a practical recommendation. Roughly speaking, the rate
of αn = α′

n = (logn)−1 ensures that the optimality in phase transition can be attained with
high probability and hence serves as a suitable choice for many applications.

Our stepwise procedures can be easily implemented for the general mixture model (2.1).
Specifically, we can use the method in Jin and Cai (2007) to estimate the null density f0 and
non-null proportion ǫn, and a standard kernel method to estimate the marginal density f
(e.g., Silverman, 1986). The corresponding estimates are denoted by ǫ̂n, f̂0 and f̂ . Then the
oracle statistic T π

i can be estimated as

T̂ π
i = (1− ǫ̂n)f̂0/f̂ . (2.9)

Finally the plug-in estimates T̂ π
i and ǫ̂n are used in Procedures 1 and 2 to construct the

desired subsets. If the estimated non-null proportion ǫ̂n is consistent for a fixed ǫ > 0 (non-
vanishing), it can be shown that the plug-in procedures are asymptotically valid. The claim
follows similar arguments as those in Theorem 2.

Corollary 1. Consider the random mixture model (2.1). Let αn and α′
n be positive

sequences converging to zero slowly. Let ǫ̂n, f̂0, f̂ be estimates of ǫ, f0 and f such that

ǫ̂n
p−→ ǫ, E‖f̂ − f‖2 → 0 and E‖f̂0 − f0‖2 → 0. Denote by FPRd the FPR level of Procedure

1, and MDRs the MDR level of Procedure 2 with plug-in estimates T̂ π
i and ǫ̂n. Then we have

FPRd ≤ αn(1 + o(1)) and MDRs ≤ α′
n(1 + o(1)).
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3. Design of Multistage High-throughput Studies: Phase Transition and Sample Size

Calculation

Section 2 derives data screening procedures under the general random mixture model (2.1),
and establishes their optimality in the sense of (2.5) and (2.6). However, having the most
powerful test only provides a partial solution to the data screening problem. We also need
a sufficiently large sample size to attain the desired power. In this section, we consider the
closely related problem of optimal design, which involves finding the minimum number of
replicates such that the goals on error control and power can be achieved simultaneously.

Our analysis in the rest of this section is carried out for the two-point mixture model (2.2).
This makes it possible to give a simple and precise characterization of the phase transition
boundaries. We shall explain in Sections 3.1 and 4 that the result obtained under this simple
model is both practically relevant and theoretically important. Meanwhile, it is important to
point out that the FPR and MDR procedures proposed in Section 2 can be easily implemented
and enjoy desirable properties under the general model (2.1). Therefore the two-point model
(2.2) may not be viewed as a limitation of the proposed data screening procedures.

3.1. Sample size and phase transition in a two-point model

From a practical point of view, an efficient design of high-throughput experiments can greatly
improve the screening accuracy and lead to savings in study costs. However, most existing
design strategies are ad-hoc and can be highly inefficient. For example, in the common
practice of HTS, compounds are measured only once in primary screens and twice in secondary
screens. These arbitrary choices on sample size can be problematic. One major concern
is that a small number of replicates would yield a low signal to noise ratio (SNR). As a
consequence, the screening procedure may have a low power. To achieve the desired power,
one needs to increase the SNR by obtaining more replicates at each testing unit. Meanwhile,
the study costs will soar if too many replicates were obtained. The key issue in the design is
to find the “right” number of replicates. Motivated by this, we develop the theory on phase
transition in optimal screening to characterize the precise conditions under which the goals
on error control and power are simultaneously achievable. The theory yields formulae for
calculating the minimum sample sizes needed in the screening process. In Section 3.1, we
discuss general considerations on problem formulation. Sections 3.2 and 3.3 are devoted to
the design problems in primary and secondary screens, respectively.

To conceptualize the design issues properly, it is helpful to first closely examine the frame-
work under which the sample size problem is formulated in the context of single hypothesis
testing. Suppose we want to test the hypotheses H0 : µ = µ0 vs. H1 : µ = µ1. Then the
power of a rejection rule depends on the sample size, test size and effect size ∆µ = |µ1 − µ0|.
Consequently, given the test size and desired power, the sample size is determined by the pre-
specified ∆µ. Similarly, the sample size in data screening problems must be calculated with
regards to a fixed point alternative. Therefore it is natural to focus on the two-point normal
mixture model (2.2). Denote by ∆µ the biological meaningful effect that we wish to discover.
Let N be the number of replicates that we obtain for every testing unit i, i = 1, · · · , n. Then
the signal strength of interest can be expressed as µn =

√
N∆µ, which connects model (2.2)

to the sample size N . As in Donoho and Jin (2004) and Cai et al. (2007), we adopt the
calibration ǫn = n−β and µn =

√
2r logn in our theoretical analysis, with β and r denoting

the model sparsity and signal strength, respectively. This calibration enables us to describe
phase transition precisely, and yields simple sample size formulae.

We would like to comment here that the two-point model (2.2) is suitable to handle
the design problem in a more general random mixture model. In applications the signal
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strengths are likely to vary across different testing units. Suppose the alternative distribution
is a normal mixture with K-components: F1 =

∑K
k=1 pkN(µk, σ

2
k). Let µ

∗ be the biologically
meaningful effect size (set by the users) one wishes to discover. Then a sample size analysis
can be carried out for the two-point model (1−p)N(0, 1)+ θiN(µ∗, σ2). When implementing
the MDR procedure to the collected data under the general model (2.1), our choice of the
sample size guarantees that the signals from components with µk ≥ µ∗ can be identified
reliably (Theorem 4). Although the signals from components with µk < µ∗ are likely to be
missed by our MDR procedure, such missed findings are considered to be inconsequential.
Therefore, model (2.2) provides a useful practical guidance in design; we called (2.2) a working
model because it does not represent the true population distribution. (A similar situation
arises from the sample size problem in simple hypothesis testing, where the user-specified ∆µ
typically differs from the true effect size.)

3.2. Phase transition in data screening

In primary screens, the goal is to eliminate a large proportion of null cases to meet the
laboratory constraints such as capacity limitations in the more expensive and time-consuming
secondary screens. In the current practice of HTS, only a small fraction (say, top 1%) of
compounds with highest activities (“hits”) can be accommodated for further investigation.
To avoid a high MDR, it has been advocated that more replicates of measurements should be
obtained to increase the signal to noise ratio. The question of interest is: how many replicates
are sufficient so that it is possible to reduce the size of the compound library significantly
without losing many signals?

Suppose we wish to eliminate 100(1− γ−1
n )% null cases in the data set, where γn → ∞ is

the desired shrinkage level. The specific requirements in primary screens are:

(S1) δδδ keeps most of the signals with high probability. That is, P (|Sδδδ ∩I| ≥ (1− η)|I|) → 1
as n → ∞ for any η > 0.

(S2) δδδ eliminates a significant proportion of null cases with high probability. That is, P (|Sδδδ∩
N| ≤ γ−1

n |N |) → 1 as n → ∞.

Let γn = nκ with κ < 1/2. The next theorem gives the precise condition under which a
discovery subset with properties (S1) and (S2) can be constructed.

Theorem 3. Consider model (2.2) with ǫn = n−β and µn =
√
2r logn. Then the screen-

ing boundary is given by r = κ. Specifically, the boundary implies that

(i) If r > κ, then we can find a screening procedure which fulfills both (S1) and (S2).

(ii) If r < κ, it is impossible to find a screening procedure which fulfills both (S1) and (S2).

The screening boundary characterizes the optimality benchmark of all data screening
procedures. In fact, our result indicates that existing screening methods can be substantially
improved, and our new procedures promise to lead to great savings in study costs in multistage
experiments. See Section 5.5 for a detailed numerical analysis. The next theorem shows that
our sure screening procedure (Procedure 1) is fully efficient in the sense that it achieves the
screening boundary in phase transition.

Theorem 4. Consider model (2.2) with ǫn = n−β and µn =
√
2r log n. Let γn = nκ be

the desired shrinkage level in primary screens. Assume that the sure screening condition is
fulfilled, i.e. r > k. Let η0 be a positive constant satisfying

√
2η0 < min{√r − √

κ, 1−β
2 }.

Consider subset Sδδδ that is constructed by Procedure 2 at MDR level α′
n, where α′

n converges
to 0 slowly such that nη0α′

n → ∞. Then P (|Sδδδ ∩N| ≤ γ−1
n |N |) → 1.
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The screening boundary can be used to determine the sample size needed in primary
screens. Suppose that we wish to eliminate 100(1−γ−1

n )% null cases while keeping most active
compounds with effect size greater than or equal to ∆µ. Then it follows from µn =

√
N∆µ,

µn =
√
2r logn and Theorem 3 that the required sample size NS should satisfy

NS >
2κ logn

∆µ2
. (3.1)

This formula will be used in Section 6 for HTS design.

3.3. Phase transition in signal discovery

In secondary screens, the goal is to confirm the “hits” in primary screens and use the con-
firmed hits to generate “leads.” The complex leads generation process, which involves a
comprehensive assessment of chemical integrity, synthetic accessibility and structure-activity
relationship, calls for precise control of the false positive rate. In particular, when the number
of the testing units is overwhelming and the signals are weak and sparse, it is possible that
the highest activities are mostly noisy observations. In this case it is necessary to obtain more
replicates to reduce the noise level. The question of interest is: what is the minimum number
of replicates that is needed so that the true signals can be separated from noise reliably? This
is a nontrivial question in large-scale inference.

Let Sδδδ be a subset of “confirmed hits” constructed by δδδ. It is required that Sδδδ is signal-
dominant and ideally we hope that Sδδδ contains virtually all active compounds. The signals
and noises can be nearly perfectly classified into two subsets if

(D1) the FPR is vanishingly small, i.e. E(|Sδδδ ∩ N|)/E(|Sδδδ|) → 0; and

(D2) the MDR is vanishingly small, i.e. 1− E[Card(Sδδδ ∩ I)]/E[Card(I)] → 0 as n → ∞.

Now we derive the precise condition under which both (D1) and (D2) can be fulfilled. The
line in β-r plane which demarcates the possibility of achieving (D1) and (D2) is called the
classification boundary.

Theorem 5. Consider model (2.2). Define the misclassification rate L(θθθ,δδδ) = n−1
∑n

i=1{(1−
θi)δi + θi(1− δi)}. The classification boundary is given by r = β for all 0 < β ≤ 1 and σ > 0.
The boundary divides the β-r plane into two parts: the classifiable region (r > β) and unclas-
sifiable region (r < β). Specifically, we have

(i) In the classifiable region, minδδδ E[L(θθθ,δδδ)]/ǫn = o(1), and it is possible to find δδδ which
fulfills (D1) and (D2) simultaneously.

(ii) In the unclassifiable region, minδδδ E[L(θθθ,δδδ)]/ǫn = 1+ o(1), and it is impossible to find δδδ
which fulfills (D1) and (D2) simultaneously.

Remark 5. The classification boundary r = β in a two-point homoscedastic model has
been obtained in Haupt et al. (2011), and was stated informally in Donoho and Jin (2006)
and Meinshausen and Rice (2006) without proofs. Theorem 5 extends the result to a het-
eroscedastic model. It is well known that the heteroscedasticity has critical impacts on the
phase diagrams in signal detection and discovery problems. For example, Theorems 6 and
8, and Figures 3 and 4 show that the detection and discovery boundaries vary significantly
according to the value of σ. In contrast, Theorem 5 shows that the classification bound-
ary is always r = β for all σ. This observation reveals significant differences between the
classification problem and other related large-scale inference problems.
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Achieving the classification boundary often entails obtaining a very large number of repli-
cates at every testing unit, which can be unrealistic in practice. A less ambitious goal is to
ensure that we can separate some, if not all, useful compounds reliably, with which we can
carry out the next stage analysis. More precisely, we require (D1) and

(D3) A non-empty subset is constructed with high probability, i.e. P (|Sδδδ| ≥ 1) → 1.

The next theorem derives the discovery boundary that characterizes the phase transition in
optimal discovery. The boundary gives the minimum condition under which we can achieve
(D1) and (D3) simultaneously.

Theorem 6. (Discovery boundary). Consider model (2.2). Denote by ρdis(β) the discov-
ery boundary,

• for σ = 1, let ρdis(β) = (1−√
1− β)2;

• for 0 < σ < 1, let ρdis(β) =

{
(1− σ

√
1− β)2 if 1− σ2 < β < 1

(1− σ2)β if 0 < β ≤ 1− σ2 ; and

• for σ > 1, let ρdis(β) =

{
(1 − σ

√
1− β)2 if 1− 1

σ2 < β < 1
0 if 0 < β ≤ 1− 1

σ2

.

The above discovery boundary divides the β-r plane into two parts:

(i) If r > ρdis(β), then it is possible to find δδδ which fulfills (D1) and (D3) simultaneously.

(ii) If r < ρdis(β), then it is impossible to find δδδ which fulfills (D1) and (D3) simultaneously.

Now we study the effectiveness of our data-driven procedure using the discovery bound-
ary as a theoretical measure of optimality. The next theorem shows that Procedure 1 is
fully efficient in the sense that it achieves the boundary in phase transition when applied at
appropriate screening levels.

Theorem 7. Consider model (2.2). Suppose we apply Procedure 1 at screening level
αn → 0 slowly (e.g. αn = (logn)−1). If r > ρdis(β), then both (D1) and (D3) hold.

Let NC and ND be the number of replicates needed to discover all signals and some useful
signals, respectively. Denote by n′ the number of testing units in secondary screens. It follows
from Theorems 5 and 6 that NC and ND should satisfy

NC >
2β log(n′)

∆µ2
and ND >

2 log(n′)
∆µ2

ρdis(β), (3.2)

respectively. As one would expect, the goal of discovering all signals is very ambitious and
NC is usually much larger than ND.

4. Large-scale Inference: Signal Detection, Classification and Screening

So far we have derived classification, discovery and screening boundaries to characterize
the benchmark performance of optimal data screening procedures. The boundaries are of
great importance from both practical and theoretical perspectives. Section 3 has shown that
the boundaries can be used in practice to determine the optimal sample size needed in the
screening process. This section further discusses how the boundaries can be employed as a
theoretical measure to assess the difficulty of related large-scale inference problems (Section
4.1) and to evaluate the effectiveness of existing screening procedures (Section 4.2).
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4.1. Detection, classification and discovery boundaries

In this section, we focus on the following two-point normal mixture model

Xi
i.i.d.∼ (1− ǫn)N(0, 1) + ǫnN(µn, 1), i = 1, · · · , n,

and consider a sequence of closely related large-scale inference problems: (i) Are there any
signals (signal detection)? (ii) Can any signals be separated from noise (signal discovery)?
(iii) Can all signals be separated from noise (classification)? It is clear that the task becomes
more and more challenging along this sequence of problems. The increased difficulty can be
conveniently illustrated by the varied boundaries in phase transition. A comparison of the
phase diagrams of signal detection, discovery and classification is given in Figure 2. The
rest of this section gives a detailed explanation of each boundary. Important insights and
interesting connections/distinctions of related concepts are provided along the discussion.

A

B

C

D

Fig. 2. Phase diagrams in a homoscedastic normal mixture model. The detection boundary ρdet(β),
classification boundary r = β and discovery boundary ρdis(β) divide the β-r plane into four parts:

(A) fully classifiable region; (B) partially classifiable and discoverable region; (C) undiscoverable but

detectable region; (D) undetectable region.

The detection boundary (Ingster, 1998; Donoho and Jin, 2004, dashed line), defined by

ρdet(β) =

{
β − 1/2 1/2 < β ≤ 3/4
(1−√

1− β)2 3/4 < β < 1
,

is concerned with the possibility of reliably detecting the existence of any signal. The detection
boundary divides the β-r plane into two parts: the undetectable region (region D in Fig. 2)



Optimal Screening 13

and detectable region. Specifically, let Hn
0 be the global null hypothesis that there is no

signal and Hn
1 its alternative. In the interior of the undetectable region, Hn

0 and Hn
1 merge

asymptotically and no statistical procedure would be successful in testing the global null
with negligible error rate. In the interior of the detectable region, Hn

0 and Hn
1 separate

asymptotically and the signals can be detected reliably with the sum of the Type I and
Type II error rates converging to 0. Moreover, in this region the non-null proportion ǫn can
be estimated consistently (Cai et al., 2007). The detection boundary provides an optimality
benchmark that characterizes the fundamental limitation on the performance of all statistical
procedures in testing the global hypotheses Hn

0 vs. Hn
1 . The higher criticism (HC, Donoho

and Jin, 2004) procedure achieves the detection boundary and is hence fully efficient for the
global testing problem.

The classification boundary ρcls(β) = β (Theorem 5), gives the precise condition under
which the observations can be separated into signals and noises with negligible misclassi-
fication rate. It divides the detectable region into two parts: classifiable region (region A
in Fig. 2) and partially classifiable region. In the interior of the classifiable region, we can
construct a subset with all signals and only signals (asymptotically); however in the partially
classifiable region, a clear-cut separation of signal and noise is impossible and we must suffer
from inflated false positive errors, or false negative errors, or both.

The discovery boundary (Theorem 6) further divides the region between the classification
boundary and detection boundary into two parts: the discoverable region and undiscoverable
region. In the region where ρdet(β) < r < ρdis(β) (detectable but undiscoverable, region C
in Fig. 2), we can detect the existence of signals reliably but it is impossible to separate any
individual signals from the noises. In the region where ρdis(β) < r < ρcls(β) (discoverable
but unclassifiable, region B in Fig. 2), we can identify some individual signals reliably with
probability tending to 1 but it is impossible to separate all signals from the noises with
negligible misclassification rate. The discovery boundary serves as a fundamental concept
in simultaneous inference by providing the minimum condition for separating any individual
signal from noise with high precision. Theorem 7 shows that this boundary is attained by
the proposed FPR procedure with slowly converging screening levels.

4.2. Heteroscedasticity and connection to multiple testing theory

Thresholding is a useful technique in significance testing and subset selection. This section
investigates, using the discovery boundary as a theoretical measure, the effectiveness of two
thresholding strategies which are respectively based on the p-value and Lfdr. Our theory
reveals that Lfdr thresholding is superior to p-value thresholding in large-scale inference.

In a two-point mixture model, define the p-value as pi = 1 − Φ(Xi), where Φ is the
cumulative distribution function of a standard normal variable. We consider two methods for
comparison: minP and minL. The former selects the case with the smallest p-value and the
latter selects the case with the smallest Lfdr value. Let ρδ(β) denote the effective discovery
boundary of a given thresholding procedure δ. Let Eδ

n be the event that at least one true
signal is identified by δ correctly. Then ρδ(β) divides the β-r plane into two regions: for
the region where r > ρδ(β), we have P (Eδ

n) → 1, and for the region where r < ρδ(β), we
have P (Eδ

n) → 0. The effective discovery boundaries for the minP and minL methods are
summarized in the next theorem.

Theorem 8. Consider normal mixture model (2.2). Denote by ρminP(β) and ρminL(β)
the effective discovery boundaries of the minP and minL methods, respectively. Then we have

• When σ = 1, ρminP(β) = ρminL(β) = ρdis(β) = (1 −√
1− β)2.
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• When 0 < σ < 1, ρminP(β) = (1 − σ
√
1− β)2 and

ρminL(β) = ρdis(β) =

{
(1 − σ

√
1− β)2 if 1− σ2 < β < 1

(1 − σ2)β if 0 < β ≤ 1− σ2 .

• When σ > 1,

ρminP(β) = ρminL(β) = ρdis(β) =

{
(1− σ

√
1− β)2 if 1− 1

σ2 < β < 1
0 if 0 < β ≤ 1− 1

σ2

.

Remark 6. The minL approach selects the entries with small component-wise likelihood
ratio (LR), whereas the minP approach picks the entries with large |Xi|. The two methods
are equivalent if σ ≥ 1 due to the monotonicity of the LR. However, this is no longer the
case when 0 < σ < 1. The minL procedure is fully efficient since it takes into account the
distribution of the alternative hypothesis. In contrast, such information is completely ignored
by the minP procedure. A more technical discussion of this point can be found in Section
9.8 of the supplemental material.
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(c). σ = 0.5
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(d). σ = 0.25

classification boundary
discovery boundary: minP
discovery boundary: minL
detection boundary

Discovery boundaries:
minP and minL

classification bounary

detection
boundary

Fig. 3. The detection boundary ρdet(β), classification boundary r = β and discovery boundaries in a

normal mixture model with σ < 1.

The situation with 0 < σ ≤ 1 is illustrated by Figure 3. We can see that when σ = 1, the
effective boundaries of the minP and minL methods, respectively denoted by ρminP(β) and
ρminL(β), overlap with the optimality benchmark ρdis(β). However, in the heteroscedastic
case with 0 < σ < 1, the effective boundaries of minP and minL differ dramatically. The
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minP method fails to achieve the discovery boundary whereas the minL method always works.
The loss of efficiency of the minP method becomes larger as the non-null distribution becomes
more concentrated (i.e. σ becomes smaller).

The boundaries for the case of σ > 1 are shown in Figure 4. We can see that ρminP(β)
and ρminL(β) always overlap with the discovery boundary ρdis(β); hence both the minP and
minL methods are fully efficient in the signal discovery problem when σ > 1. It is interesting
to note that the discovery boundary ρdis(β) approaches the detection boundary ρdet(β) as
σ approaches

√
2 from below. For σ ≥

√
2, all boundaries ρdet(β), ρminP(β), ρminL(β) and

ρdis(β) overlap completely with each other. The effective region (for signal detection and
discovery) expands as σ increases. Actually, for σ >

√
2, it is even possible to detect signals

with vanishingly small µn in the region where 0 < β < 1 − σ−2. An informal derivation of
ρdet(β) is given in Section 9.8 in the supplemental material.
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Fig. 4. The classification, detection and discovery boundaries when σ > 1. The discovery bound-

ary approaches the detection boundary as σ increases and completely overlaps with the detection

boundary when σ ≥
√
2.

5. Simulation Studies

We now investigate the empirical performance of different data screening procedures and
compare the result with that predicted by theory. The R code for implementing the methods
is available at http://www-bcf.usc.edu/~wenguans/Papers/Optimal-Screening.html.

5.1. Effective discovery boundaries: minP vs. minL

We conduct a simulation study to compare the minimum p-value (minP) and minimum Lfdr
(minL) methods for their effectiveness in separating sparse signals from noise. The data are
generated from the normal mixture model (2.2) with ǫn = n−β and µn =

√
2r log(n). We

set the parameter values as σ = 0.3, β = 0.3 and r = 0.4 to obtain a point in the region
ρminP(β) < r < ρminL(β). In view of the discovery boundary derived in Theorem 6 and also
the curves in Figure 3, we expect that the minP method will fail whereas the minL method
is likely to succeed in signal discovery. To get a sense of the rate of convergence, we vary
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the sample sizes from n = 103 to n = 106. We simulate 1000 data sets. The minP method
selects the location with largest |Xi| and the Lfdr method picks the location with smallest
Lfdr. The Lfdr is calculated using (2.9) as described in Section 2.2 without any parametric
assumptions, making it a suitable and fair comparison.

In each data set, we construct two discovery subsets (each with one observation), respec-
tively using the minP and minL methods, and then determine whether or not it is a true
signal. The probabilities of accurate signal discovery is computed by counting the proportion
of correct decisions among 1000 data sets. The results are summarized in Figure 5. We can
see that the success rate of the minL method dominates that of the minP method at all
sample sizes. As n → ∞, the success rates of the minP method and minL method converge
to 0 and 1, respectively. This is consistent with our theoretical prediction.

n=1e+3 n=1e+4 n=1e+5 n=1e+6
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Fig. 5. The success probabilities of the minP and minL methods in separating sparse signals from

noise when σ = 0.3, β = 0.3 and r = 0.4 for different sample sizes. As n → ∞, The success rates of

the minP method and minL method converge to 0 and 1, respectively.

5.2. Discovery of sparse signals and power analysis

We now turn to the performance of the FPR procedure (Procedure 1). It can be easily shown
that Procedure 1 controls both the FPR and FDR. We consider FDR in this subsection
and turn to FPR later (there is no essential difference between FDR and FPR in large-scale
testing problems). The FDR level is set at γ. Consider the normal mixture model (2.2)
and choose r = 0.5, β = 0.3, 0.5, 0.7. We apply the FPR procedure at level γ; the actual
missed discovery rate (MDR), FDR and expected set size (ESS) are plotted as functions of
γ. The results are summarized in Figure 6. It is clear that the sure discovery procedure
controls the FDR at level γ precisely. As expected, the ESS of the discovery subset increases
and the MDR decreases when the FDR level increases. The plot also suggests that a direct
construction of signal-dominant subset may be unrealistic. For example, when r = β = 0.5,
more than 90% signals can be missed at FDR level 0.05 in the homoscedastic model, and
almost all signals are missed in the heteroscedastic model. This can be predicted from our
theory on classification boundary. The result indicates that, in order to discover some useful
signals, it is necessary to either increase the signal strength (e.g. by collecting more replicates
at all testing units), or to reduce the original set to a much smaller subset (e.g. by applying
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a data screening procedure and following up with a second stage analysis).

0.05 0.15 0.25

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

(a)

γ

Fa
lse

 di
sc

ov
ery

 ra
te

0.05 0.15 0.25

0.2
0.4

0.6
0.8

(b)

γ

Mi
ss

ed
 di

sc
ov

ery
 ra

te

0.05 0.15 0.25

0
50

0
10

00
15

00
20

00
25

00

(c)

γ

Av
era

ge
 se

t s
ize

0.05 0.15 0.25

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

(d)

γ

Fa
lse

 di
sc

ov
ery

 ra
te

0.05 0.15 0.25

0.0
0.2

0.4
0.6

0.8
1.0

(e)

γ

Mi
ss

ed
 di

sc
ov

ery
 ra

te

0.05 0.15 0.25

0
50

0
10

00
15

00
20

00
25

00

(f)

γ

Av
era

ge
 se

t s
ize

Fig. 6. Properties of the discovery procedure at different FDR levels. The goal is to make sure that the

proportion of signals is at least 100(1−γ)%. The solid, dashed and dotted lines correspond to β = 0.7,

β = 0.5, and β = 0.3, respectively. Top row considers σ = 1 and the bottom row considers σ = 0.5.

5.3. Data screening with sparse signals and power analysis

In the third simulation study we investigate the performance of MDR procedure (Procedure
2). The goal is to include at least 100(1−α)% signals while trying to eliminate as many noises
as possible. We set the original set size to be n = 50, 000 and generate observations from
the normal mixture model (2.2). The screening subset is constructed at different screening
levels. The actual MDR, FDR and ESS are plotted as functions of the nominal screening
level α. The results are summarized in Figure 7, where the top and bottom rows consider
homoscedastic case (σ = 1) and heteroscedastic case (σ = 0.5), respectively. We choose
r = 0.5 and consider different sparsity levels β = 0.3, 0.5 and 0.7, which correspond to the
solid, dashed and dotted lines in the plot, respectively. We can see that the MDR is controlled
at level α precisely in all settings by the sure screening procedure. The FDR decreases with
the screening level α. As the signals become sparser, we can achieve greater set size reduction
and the corresponding FPR is also lower at the same screening level. The benefit of screening
is clear; for example, when r = β = 0.5 and σ = 0.5, we can reduce the set size by more than
100 times (from n = 50, 000 to n < 500) while only loosing about 5% signals.

5.4. FPR and MDR control under Gaussian and non-Gaussian alternative distributions
This section studies the effectiveness of our data-driven procedures for FPR and MDR control.
Our methodology is essentially nonparametric and works well in the general mixture model
(2.1). We illustrate this point by considering several simulation settings including models
with departures from normality.

In our simulation the true effect sizes µi are observed with error εi:

xi = µi + ei, i = 1, · · · , n.
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Fig. 7. Properties of the adaptive set SU at different screening levels. The goal is to include at least

100(1− α)% signals. The solid, dashed and dotted lines correspond to β = 0.7, β = 0.5, and β = 0.3,

respectively. Top row considers σ = 1 and the bottom row considers σ = 0.5.

We assume that µi’s have a density function with a point mass at zero

fµ(·) = (1 − ǫn)δ0(·) + ǫng(·),
where ǫn is the proportion of non-null cases as defined before, δ0 is the dirac delta function
and g is a continuous density function. Both g and the density function of ei, denoted by fe,
will be specified later. We consider the following three models:

Model I: g is the density of Y = 2 + 1.5|Z| where Z ∼ N(0, 1), and fε is the standard
Gaussian density.

Model II: g is the density of Uniform(2, 4) and fe is the standard Gaussian density.

Model III: g is the density of Uniform(2, 4) and fe is the t density with df = 6.

The FPR and MDR procedures in Section 2 are implemented with estimated Lfdr statis-
tics. The estimation method is described by (2.9) in Section 2.2, with ǫn being estimated
using the method in Jin and Cai (2007), f0 being the density of a standard normal variable

and f̂ being a kernel density estimator with bandwidth chosen by cross validation. We vary
the number of tests and sparsity levels and apply the FPR and MDR procedures at nominal
level αn = α′

n = 0.05. In each setting, the actual FPR and MDR levels are computed by
averaging over 500 replications. The simulation results are summarized in Table 1. We can
see that the FPR is controlled very well in all settings. In particular, the control is quite
precise when n is large. The MDR control is more effective when n is large. This is consistent
with our intuition since the MDR method relies on the accuracy of the estimators ǫ̂n and
f̂ , and the precision of these estimators would improve in higher dimensions. The control
become less effective in lower dimensional settings (n = 103), but the actual MDR levels
are still acceptable. In both FPR and MDR control problems, the departure from Gaussian
distributions seems to have little effect on the testing results.
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Table 1. FPR and MDR control in Gaussian and non-Gaussian models

FPR Control MDR Control

Model I Model II Model III Model I Model II Model III
n = 103, β = 0.3 0.051 0.053 0.054 0.057 0.052 0.050
n = 103, β = 0.4 0.053 0.052 0.053 0.064 0.056 0.057
n = 104, β = 0.3 0.052 0.050 0.051 0.049 0.045 0.045
n = 104, β = 0.4 0.051 0.051 0.052 0.061 0.052 0.056

5.5. Comparison with distilled sensing

We now compare our sure screening procedure with the distilled sensing (DS) method which
was proposed by Haupt et al. (2011) under a homoscedastic normal mixture model. At each
distillation step, the distilled sensing method keeps locations with positive observations and
then obtain new observations for these locations. Due to the symmetry of a standard normal
distribution and the sparsity of signals, DS eliminates roughly half of the noises in each
distillation step. Interestingly, our theoretical result indicates that a much greater amount of
shrinkage can be achieved. For example, when n = 107 and µn = 4, we have r ≈ 1/2. The DS
method would keep about n/2 = 5 · 106 locations for the next stage. In contrast, our theory
suggests we can potentially shrink the data set down to a size as small as n1/2 ≈ 3, 000, more
than a thousand times smaller than that of the DS method, and virtually without loosing
more signals. Our result indicates that the DS method can be substantially improved. The
other limitation of the DS method is that the MDR can be high if the signals are weak.

In our simulation we consider the following normal mixture model X1, · · · , Xn ∼ (1 −
ǫn)N(0, 1)+ ǫnN(3, 1) and apply the MDR procedure and the DS method for different n and
at various sparsity levels. The results for the first two stages of screening are summarized in
Table 2. For our MDR procedure, we set the nominal MDR level at α′

n = 0.02. The Lfdr is

estimated as L̂fdr = (1− ǫ̂n)f0/f̂ as described in the previous subsection.

The following observations can be made: (i) our MDR method is more effective in reducing
the size of ultra large data sets. For example, when n = 106 and β = 0.3, our MDR procedure
shrinks the size of the data set down to about 30K in a single screening stage. In contrast,
the DS method can only reduce the size to around 500K. (ii) The data reduction process
of the MDR procedure is more dynamic, with high shrinkage level in the first stage and
relatively low shrinkage level at the second stage. In contrast, the DS method has roughly
the same shrinkage level at every screening stage. (iii) The MDR procedure controls the
error rate at the nominal level more precisely. Note that with α = 0.02, the actual MDR
levels in the two stages are 0.98 and 0.96, respectively, which are quite close to our simulation
results. In contrast, the DS method always has a very low false negative rate, but at the
price of more measurements and hence higher study costs. Our theoretical analysis of the
screening boundary shows that if the signal strength µn diverges at order O((log n)ν) with
0 < ν < 1/2, then the shrinkage rate of the DS method is asymptotically optimal and hence
agrees with our MDR procedure. However, if µn diverges to infinity at a faster rate, then
only eliminating half of the observations is too conservative and the DS method can be much
improved. Finally, we want to point out that the MDR method relies on the accuracy of
the estimators ǫ̂n and f̂ , and tends to work better in higher dimensions. We recommend
applying the SS method when n is ultra large and switching to more stable method (such as
DS method) at later stages of screening.



20 Cai & Sun

Table 2. Comparison of DS and SS methods. The first and second number in the parenthesis

correspond to the results in the first and second stages, respectively.

Size Sparsity Card(ŜSS) Card(ŜDS) FNRSS FNRDS

n = 106 β = 0.2 (98379, 61850) (531999, 297350) (0.97, 0.95) (0.99, 0.99)
β = 0.3 (29597, 15160) (507715, 261756) (0.95, 0.93) (0.99, 0.99)

n = 105 β = 0.2 (13337, 9827) (54936, 32617) (0.98, 0.96) (0.99, 0.99)
β = 0.3 (7150, 3142) (51645, 27435) (0.98, 0.95) (0.99, 0.99)

n = 104 β = 0.2 (1774, 1523) (5702, 3691) (0.97, 0.96) (0.99, 0.99)
β = 0.3 (1178, 612) (5284, 2923) (0.98, 0.95) (0.99, 0.99)

6. Application

Alzheimer’s disease (AD) is a progressive brain disorder with no effective treatments. Cur-
rently it is affecting six million Americans and is predicted to affect 1 in 85 people globally
by 2050. The identification of small-molecule modulators of protein function, and the process
of transforming these into informative leads for drug discovery, provide a promising direction
towards the cure of AD. The HTS study has become a standard tool for improving the ef-
ficiency and speed of the identification process. To illustrate how our methodology can be
implemented, we describe and analyze the HTS study conducted by McKoy et al. (2012). The
goal of the study is to identify novel inhibitors of the amyloid beta peptide (Aβ), whose ag-
gregation is believed to be a major underlying molecular culprit in AD. The inexpensive and
effective isolation of novel inhibitors could lead to better molecular scaffolds for AD’s ther-
apy. In the study, 90 microplates are prepared, each with 24 by 24 wells containing carefully
catalogued compounds to be tested. The size of the compound library is n = 51, 840. The
data set contains three z-scores for each compound, which are obtained from the raw data
by respectively standardizing the three replicated measurements against the background. In
the analysis, the informal “rule of three” was used to select candidate compounds. However,
the prefixed threshold fails to control the probabilistic error rates: if we directly apply the
rule of three to the first set of z-values, then both the FPR and MDR can be quite high;
if we apply the rule of three repeatedly three times to the three sets of z-values, then only
one compound would survive after three stages. In addition, the study design, which obtains
three replicates for all compounds, can be highly inefficient.

In this section, we first implement our data screening procedures to analyze the HTS
data, then discuss how to use the collected data set as a pilot data set to design a more
effective multistage experiment. It is important to note that the general mixture model (2.1)
is assumed when implementing our screening procedures to analyze the data sets, and the
two-point model (2.2) is only used for the sample size calculation.

6.1. Data screening

To control the decision errors effectively, we adopt a three-stage “screen-clean” strategy in
analysis, where the first two sets of z-values are used for “screening” and the last set of z-
values are used for “cleaning.” More explicitly, we first repeatedly apply the sure screening
procedure at level 0.1 in the first two stages to reduce the size of the compound library, and
then apply the sure discovery procedure at level 0.1 in the final stage to further eliminate
the false positives. At the second and third stages, we only conduct analysis on testing units
that are selected from the previous stage.

The implementation of our data screening procedures requires the estimation of unknown
model parameters. We take the approach in Jin and Cai (2007) to estimate the empirical
null distribution as N(µ̂0, σ̂

2
0), where µ̂0 = 0.257 and σ̂0 = 0.76. See Efron (2004) for more
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Table 3. Summary of a three-stage analysis of the HTS data

Lfdr Threshold Subset size Estimated FDR Estimated MDR
Stage 1 (screen) 0.95 30,141 0.75 0.08
Stage 2 (screen) 0.95 21,311 0.75 0.12
Stage 3 (clean) 0.29 67 0.098 0.87

discussions on why the empirical null is superior to the theoretical null N(0, 1) in large-scale
inference. We then proceed to estimate the proportion of the non-nulls as ǫ̂n = 0.0087 based
on the estimated empirical null. The marginal density f is estimated using a kernel density
estimator f̂ with the bandwidth chosen by cross validation. The test statistics T̂ π

i are then
calculated based on (2.8). Finally we apply the three-stage “screen and clean” procedure
with estimated T̂ π

i . The results are summarized in Table 3.
We can see that after two stages of screening at level 0.1, the approximate size of the

compound library is reduced from 50K to 20K. The estimated FPR and MDR are 0.75 and
0.12, respectively. In the last stage we eliminate the noises at FPR level 0.10. While the
FPR is controlled at the desired level, most signals seem to have been missed (the estimated
MDR is 0.87). It is clear that the statistical power is very low in this multistage analysis from
two perspectives: (i) in the first two “screening” stages, while the MDR can be controlled
effectively, we fail to achieve a significant size reduction for the compound library; (ii) in the
final “cleaning” stage, while the FPR can be controlled precisely, a substantial percentage of
signals have been missed. To increase the power, we need to increase the signal to noise ratio
(SNR) by obtaining more replicates at each stage. Currently only one replicate is used to
obtain the z-value, and our result indicates that the sample size is inadequate. In the next
section, we use the observed data set as a pilot data set and discuss how to determine the
sample sizes at different stages to achieve the desired power.

6.2. HTS design

We first consider the sample size problem in primary screens. In the previous section, it was
estimated that 451 compounds in the data set are signals. Suppose that the lab capacity
only allows ñ = 4, 000 compounds to enter the more expensive second screens. The goal is to
construct a subset which fulfills the size constraint while keeping most signals in the subset.
The required shrinkage level is κ = 1− log(ñ)/log(n) = 0.236. The formula (3.1) can be used
for sample size calculation. For example, if the goal is to keep all signals with effect sizes
∆µ ≥ 1.5σ̂0, then the required sample size is 2.28 (rounded up to 3); if the goal is to keep in
the subset all signals with ∆µ ≥ σ̂0, then the required sample size is 5.12 (rounded up to 6).

Now suppose that we have reduced the size of the compound library to ñ = 4, 000 and
the primary screens have been successful in retaining most signals in the subset. Then the
proportion of non-nulls in the subset is ǫ̂∗ = 0.11 and the sparsity parameter β∗ = 0.266. The
goal in secondary screens is to construct a subset with only signals. If we wish to include in
the discovery subset all signals with effect size ∆µ ≥ σ̂0, then according to (3.2), the required
sample size is 4.4 (rounded up to 5). If we only want to construct a nonempty discovery
subset, then the discovery boundary is ρdis(β) = 0.02, and the required sample size is 0.33
(rounded up to 1).

In practice the sample size problem is complicated and it is not recommended to simply
give a blind solution. We suggest that the investigators may use our sample size formulae to
explore the efficacy of various designs. One possible approach is to utilize the information
in a pilot study and create a table or a plot for decision support. For example, in Table 4,
we summarize the estimates of respective study costs for various combinations of screening
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Table 4. A summary of number of replicates and study budgets for decision support,

with different combinations of lab capacities and effect sizes. N1 is the minimum

number of replicates needed to reduce the size from n to ñ without losing important

signals with effect size ∆µ. N2 is the minimum number of replicates needed to

discover most important signals with effect sizes ∆µ. c1 and c2 are the costs for

obtaining one replicate in primary screens and secondary screens, respectively.

The table is created using the HTS data set in McCoy et al. (2012) as a pilot data

set. The situation ñ = n corresponds to a single stage analysis.

∆µ ≥ σ̂0 ∆µ ≥ 1.5σ̂0

N1 N2 Cost N1 N2 Cost
ñ = n 0 9.4 c1N1n+ c2N2ñ 0 4.2 c1N1n+ c2N2ñ

ñ = 10K 3.3 6.2 c1N1n+ c2N2ñ 1.5 2.8 c1N1n+ c2N2ñ

ñ = 4K 5.1 4.4 c1N1n+ c2N2ñ 2.3 1.9 c1N1n+ c2N2ñ

ñ = 1K 7.9 1.6 c1N1n+ c2N2ñ 3.5 0.7 c1N1n+ c2N2ñ

levels and effect sizes. Then the investigators can decide the best sample size carefully based
on their experiences, budget constraints and biological insights.

7. Discussion

The present paper develops phase transition theory in optimal screening to characterize nec-
essary conditions under which the goals on error control and power are simultaneously achiev-
able in data screening problems. It was shown that our procedures achieve the boundaries in
phase transition, implying that the conditions are also sufficient. The methods can be used in
practice to calculate the optimal sample sizes at different stages of screening. The discovery
boundary ρdet(β), derived as a part of our phase transition theory, lies in between the detec-
tion and classification boundaries (Figure 2). The discovery boundary can also be used as an
optimality criterion to evaluate the effectiveness of different thresholding methods. We show
that the Lfdr thresholding is fully efficient for signal discovery whereas p-value thresholding
is inefficient in a heteroscedastic model with 0 < σ < 1.

It is helpful to explain at intuitive levels why various phase diagrams differ so dramati-
cally. The discussion would provide interesting insights on existing theories. More technical
details are given in Section 9.8 in the supplemental material. The insights are that the most
informative part of the sample depends on the goals in large-scale inference. To illustrate,
consider the probability P (Xi >

√
2q logn), where 0 < q ≤ 1 is a constant. For a given test-

ing procedure δ, let qδ denote the threshold for which the test has the largest power to reject
the null (i.e. the most informative part of the sample). The key observation is that differ-
ent thresholding procedures would yield different qδ’s. Specifically, the thresholding methods
based on p-values always choose qpv = 1, a scheme which virtually looks for non-nulls in the
tail areas of the mixture density. In contrast, the screening procedures developed in Section
2, which are based on thresholding the Lfdr statistic, makes simultaneous decisions at indi-
vidual levels by choosing qlf that maximizes the likelihood ratio. In other words, the Lfdr
looks for non-nulls in areas where the largest ratio of the non-null density and the null density
occurs. The p-value method suffers from severe loss of power because the tail areas are not
always the most informative parts of the sample when 0 < σ < 1. In particular, as revealed
by the analysis in the proof of Theorem 6, the most informative part of the sample for signal
discovery is in the middle, not the tail areas of the mixture density. For testing the global
null, the HC statistic uses threshold qhc, which is chosen to maximize a normalized uniform
empirical process (NUEP); hence HC looks for information where the values of the NUEP
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under the global null and its alternative have the largest difference. In contrast with the
popular tail thresholding methods which always choose qδ = 1, qhc is adaptive to the sparsity
level β and is not equal to 1 when 0 < β < 3

4 , which indicates that the most informative
part of the sample for testing global null may not be the tail areas. This phenomena, which
has been observed in Donoho and Jin (2004), explains why the extreme value methods are
inefficient in detection problems when the signals are weak and moderately sparse.

Under the setting of univariate thresholding, the main advantage of a multistage design
is in the savings in study costs. Our analysis only provides a starting point for the optimal
design of multistage experiments. Important open problems include: (i) optimization with a
diverging number of distillation stages subject to a fixed budget constraints (as considered in
Zehetmayer et al., 2008; Haupt et al., 2011); (ii) generalization of the sample size formulae to
the non-Gaussian case; and (iii) development of phase transition theory under a more general
setting.

8. Proofs of Main Theorems

In this section, we prove the main results of the paper. We first state a lemma, which is used
in the proof of Theorem 1. The proof of the lemma is given in the supplemental material.

Lemma 1. Consider a weighted classification problem with loss function

Lλ(θθθ,δδδ) = λ
n∑

i=1

(1 − θi)δi +
n∑

i=1

θi(1− δi), (8.1)

where λ is the inference loss of a false positive decision and δδδ = (δ1, δ2, · · · , δn) ∈ {0, 1}n is a
binary decision rule. Then the optimal rule which minimizes the classification risk r(λ,δδδ) =

E{Lλ(θθθ,δδδ)} is δδδπ,λ = {δπ,λ1 , · · · , δπ,λn }, where
δπ,λi = I{T π

i < (1 + λ)−1}, i = 1, · · · , n. (8.2)

8.1. Proof of Theorem 1

Let EFPδδδ = E{∑n
i=1(1 − θi)δi} and ETPδδδ = E(

∑n
i=1 θiδi) be the expected number of false

positives and expected number of true positives when applying δδδ. Then we have r(λ,δδδ) =

nǫn + λEFPδδδ − ETPδδδ. According to Lemma 1, the optimal rule is δπ,λi = I{T π
i < (1 +

λ)−1}, i = 1, · · · , n.
Let δδδπ(t) = {δπ1 (t), · · · , δπn(t)} be a thresholding rule, where δπi (t) = I(T π

i < t), i =
1, · · · , n. Denote by FPRπ(t), MDRπ(t), ETPπ(t) and EFPπ(t) the FPR, MDR, ETP and
EFP of δδδπ(t). Define tπd = sup{t : FPRπ(t) = αn} and tπs = inf{t : MDRπ(t) = γn}. The
goal is to show that δδδπ(tπd ) satisfies (2.5) and δδδπ(tπd ) satisfies (2.6). Now take λd = 1/tπd − 1
and consider a weighted classification problem with loss function Lλd

(θθθ,δδδ). Then according
to (8.2), the classification risk is minimized by δδδπ(tπd ) = {I(T π

i < tπd ) : i = 1, · · · , n}. The
minimum Bayes risk is

r{λd, δδδ
π(tπd )} = nǫn +

(
αλd

1− α
− 1

)
ETPπ(tπd ).

We claim
(

αλd

1−α − 1
)
≤ 0 since the following decision rule “δi = 0 for all i” must have a higher

risk than δδδπ(tπd ). Consider an arbitrary decision rule δ∗ ∈ Dd,αn
. The corresponding FPR,

ETP and EFP are denoted by FPR∗, ETP∗, and EFP∗. It is easy to argue by contradiction
that if ETP∗ > ETPπ(tπd ), then we must have FPR∗ > αn. Therefore δδδπ(tπd ) satisfies (2.5).
Similarly we can show that δδδπ(tπs ) satisfies (2.6). 2
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8.2. Proof of Theorem 2

Let δδδd and δδδs denote the stepwise sure discovery and screening procedures, respectively.
Then the EFP of δδδd is EFPδδδd = E

{∑n
i=1(1− θi)δ

d
i

}
= E

{
Q(δδδd) · kd

}
, where Q(δδδd) =

k−1
d

∑kd

i=1 T
π
(i). The operation of δδδd guarantees that Q(δδδd) ≤ αn for all realizations of

{X1, · · · , Xn}. Hence EFPδδδd ≤ αnE{Card(Sδδδd)}. It follows that FPRδδδd ≤ αn.
Next, the MDR of δδδs is MDRδδδs = E{∑n

i=1 θi(1− δsi )}/(nǫn) = E{Q̃(δδδs)}, where Q̃(δδδs) =

(nǫn)
−1

∑j
i=n

(
1− T π

(i)

)
. The operation of δδδs guarantees that Q̃(δδδs) ≤ α′

n for all realizations

of {X1, · · · , Xn}. It follows that MDRδδδs ≤ α′
n. 2

8.3. Proof of Theorem 3

Proof of Part (i). Consider threshold tn =
√
2κ logn and subset Sδδδ = {i : Xi > tn}. We

will show that both Conditions (S1) and (S2) are fulfilled by Sδδδ if r > κ. First, according
to the standard bound on Gaussian tail, we have qn = P (Zi > tn) ≤ 1

2
√
πκ logn

n−κ. Then

γ−1
n − qn = n−κ(1 + o(1)). Next note that |I| = n1−β and |N | = n(1 + o(1)), it follows from

Hoeffding’s inequality that

P

{
Card(Sδδδ ∩ N )

Card(N )
> γ−1

n

}
= P

[
Card(N )−1

∑

i∈N
{I(Xi > tn)− qn} > γ−1

n − qn

]

= P
[√

Card(N ) {Avei∈N I(Xi > tn)− qn} > n
1
2−κ(1 + o(1))

]

≤ exp{−2n1−2κ(1 + o(1))} → 0.

Hence Condition (S1) is fulfilled.
Next, consider Yi ∼ N(µn, σ

2) and define q′n = P (Yi < tn). Then we have

q′n = P

{
Zi >

(
√
r −

√
k)
√
2 logn

σ

}
≤ 1

2

√
π logn(

√
r −

√
k)

n−−(
√

r−
√

k)2

σ2 .

Applying Hoeffding’s inequality again we have

P (Card(Sδδδ ∩ I) < (1− ǫ)Card(I)|)
= P

[√
Card(I) {Avei∈II(Xi > tn)− (1 − q′n)} < −ǫn

1
2 (1−β)(1 + o(1))

]

≤ exp{−2ǫ2n1−β(1 + o(1))} → 0.

Hence Condition (S2) is fulfilled.
Proof of Part (ii). We focus on subsets of the form Sδδδ = {i : Xi > tn} and show that
there does not exist a threshold tn such that both Conditions (S1) and (S2) are fulfilled. We
consider the following threshold tn =

√
2r logn and check condition (S2).

P

{
(
1

2
− η)Card(I) < Card(Sδδδ ∩ I) < (

1

2
+ η)Card(I)

}

= P

[∣∣∣∣∣
∑

i∈I
I(Xi > tn)−

1

2
Card(I)

∣∣∣∣∣ > ηn1−β(1 + o(1))

]

≤ 2 exp{−2η2n1−β(1 + o(1))} → 0.
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We let η → 0. The result indicates that with high probability, around half of the signals
will be missed by the screening procedure and condition (S2) is violated. Therefore we must
decrease tn in order to include more signals in the screening set. However, tn cannot be
further decreased because we have already got too many noises even at this threshold level.
Specifically, define qn = P (Zi > tn) ≤ 1

2
√
πr logn

n−r, then we have

P

{ |Card(Sδδδ ∩ N )− Card(N )qn|
Card(N )

> n−r

}
= P

{∣∣∑
i∈N I(Xi > tn)− qn

∣∣
Card(N )

> n−r

}

≤ exp{−2n1−2r(1 + o(1))} → 0.

Hence with overwhelming probability we have Card(Sδδδ ∩N )/Card(N ) > qn+n−r = n−r(1+
o(1)) > n−κ for large n. Therefore Condition (S1) is violated. Therefore it is impossible to
find a threshold which fulfill both Conditions (S1) and (S2) simultaneously. 2

8.4. Proof of Theorem 4

We first state two lemmas. The first lemma summarizes the Bayes classification rule in
a two point normal mixture model. The proof of the lemma follows some straightforward
calculations and is omitted.

Lemma 2. Let θi, i = 1, . . . , n, be independent Bernoulli(pn) random variables. Xi are
independent with Xi|θi = 0 ∼ N(0, 1) and Xi|θi = 1 ∼ N(µn, σ

2). For a classification rule δδδ
let the weighted misclassification rate be

L(θθθ,δδδ) = n−1
n∑

i=1

{θi(1− δi) + λ(1− θi)δi}. (8.3)

The optimal classification rule is summarized as follows.

(i) 0 < σ < 1. If µ2
n ≤ 2(1 − σ2) log σλ(1−ǫn)

ǫn
, then the Bayes rule is δπi ≡ 0. If µ2

n >

2(1− σ2) log σλ(1−ǫn)
ǫn

, then the Bayes rule is δπi = I(tL < Xi < tU ), where

tL =
µn − σ

√
µ2
n − 2(1− σ2) log σλ(1−ǫn)

ǫn

1− σ2
and tU =

µn + σ
√

µ2
n − 2(1− σ2) log σλ(1−ǫn)

ǫn
)

1− σ2
.

(ii) σ = 1. The Bayes rule is δπi = I
(
Xi >

µn

2 + 1
µn

log λ(1−ǫn)
ǫn

)
.

(iii) σ > 1. The Bayes rule is δπi = I (Xi < tL) + I (Xi > tU ) , where

tL =
−µn − σ

√
µ2
n + 2(σ2 − 1) log σλ(1−ǫn)

ǫn

σ2 − 1
and tU =

−µn + σ
√
µ2
n + 2(σ2 − 1) log σλ(1−ǫn)

ǫn

σ2 − 1
.

Lemma 2 shows that the optimal classification rule has three possible forms: (a) δi =
I(tL < Xi < tU ) when 0 < σ < 1; (b) δi = I(Xi > t) when σ = 1; (c) δi = I(Xi <
tL) + I(Xi > tU ) when σ > 1. The next lemma is proved in Section 9.

Lemma 3. Consider the homoscedastic case σ = 1. Let t̂πs be the threshold of Procedure

2 at screening level α′
n = n−η0 , where

√
2η0 < min{√r − √

κ,
√

1−β
2 }. Then t̂πs is bounded

below by a constant with probability tending to 1, i.e. P (t̂πs > (
√
r −√

η0)
√
2 logn) → 1.
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Proof of Theorem 4. Some calculations reveal that, with the threshold adaptively cho-
sen by Procedure 2, the optimal classification rule is asymptotically equivalent to a simple
thresholding rule δi = I(Xi > t). It follows from Lemma 2 that we only need to focus on the
homoscedastic case σ = 1. The heteroscedastic case σ 6= 1 can be proved similarly. Consider
t̂πs defined in Lemma 3. The probability of interest is

P (|Sδδδ ∩ N| > γ−1
n |N |) = P (Avei∈N I(Xi > t̂πs ) > γ−1

n )

≤ P
[
Avei∈N I

{
Xi > (

√
r −√

η0)
√
2 logn

}
> γ−1

n

]
+ P (t̂πs ≤ (

√
r −√

η0)
√
2 logn)

Applying the Hoeffding’s inequality to the first term we have

P
[
Avei∈N I

{
Xi > (

√
r −√

η0)
√
2 logn

}
> γ−1

n

]
≤ e−2n1−2κ(1+o(1)) → 0.

The second term goes to 0 as n → ∞ according to Lemma 3. Then the desired result follows.
2

8.5. Proof of Theorem 5

We first state two lemmas, which are proved in Section 9.

Lemma 4. Consider a classification problem in the two-point normal mixture model (2.2).

(i) If σ = 1, then the minimum expected misclassification rate satisfies

inf
δδδ
E[L(θθθ,δδδ)] =





2r
√
r

(r2−β2)
√
π logn

n− (r+β)2

4r (1 + o(1)). for r > β
1
2ǫn(1 + o(1)) for r = β
ǫn(1 + o(1)) for r < β

.

(ii) If σ 6= 1, then the minimum expected misclassification rate satisfies

inf
δδδ
E[L(θθθ,δδδ)] =





c(r, β, σ) · (logn)− 1
2n

− (
√

r+(σ2−1)β−σ
√

r)2

(σ2−1)2 ǫn(1 + o(1)) for r > β
1
2ǫn(1 + o(1)) for r = β
ǫn(1 + o(1)) for r ≤ β

,

where c(r, β, σ) =
(1 − σ2)(1 − σ)(

√
r +

√
r − (1 − σ2)β)

2
√
π(
√
r − σ

√
r − (1 − σ2)β)(

√
r − (1− σ2)β − σ

√
r)
. (8.4)

Lemma 5. Consider model (2.2) and a screening subset Sδδδ.

(i) If σ = 1, then the expected size of the discovery set Sδδδ can be decomposed as E[Card(Sδδδ)] =
ETP + EFP with

EFP =

√
r

(r + β)
√
π logn

n1− (r+β)2

4r (1 + o(1)), and

ETP =





nǫn(1 + o(1)) when r > β
1
2nǫn(1 + o(1)) when r = β

√
r

(β−r)
√
π log n

n1− (r+β)2

4r (1 + o(1)) when r < β

.
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(ii) If σ 6= 1, then the expected size of the discovery set Sδδδ can be decomposed as E[Card(Sδδδ)] =
ETP + EFP with

EFP =
σ2 − 1

2
√
π logn(σ

√
r + (σ2 − 1)β −√

r)
n
1− (σ

√
r+(σ2−1)β−

√
r)2

(σ2−1)2 (1 + o(1)), and

ETP =





nǫn(1 + o(1)) when r > β
1
2nǫn(1 + o(1)) when r = β

σ2−1

2
√
π logn(

√
r+(σ2−1)β−σ

√
r)

· n1− (σ
√

r+(σ2−1)β−
√

r)2

(σ2−1)2 (1 + o(1)) when r < β

.

Proof of Theorem 5 (i). It follows from Lemma 4 that, when r > β,

infδδδ E[L(θθθ,δδδ)]

ǫn
=





O(n− (r−β)2

4r ) if σ = 1

O(n
− (

√
r+(σ2−1)β−σ

√
r)2

(σ2−1)2 ) if σ 6= 1
.

In both cases we have infδδδ E[L(θθθ,δδδ)]/ǫn → 0; hence the expected misclassification rate is negli-

gible. Next, it follows from Lemma 5 and the equality n
−(σ

√
r+(σ2−1)β−

√
r)2

(σ2−1)2 = n
−(

√
r+(σ2−1)β−σ

√
r)2

(σ2−1)2 ǫn
that, when r > β,

EFP

ETP
=





O(n− (r−β)2

4r ) if σ = 1

O(n
− (

√
r+(σ2−1)β−σ

√
r)2

(σ2−1)2 ) if σ 6= 1
.

This ratio is of the same order of magnitude of the previous ratio (but with different con-
stants). For all σ > 0 we always have EFP/ETP → 0; hence the signals are dominant in Sδδδ

and the sure discovery property is established. Next, it again follows from Lemma 5 that,
when r > β, ETP/(nǫn) = 1 + o(1) for all σ > 0 and 0 < β ≤ 1. Therefore virtually all
signals are included in Ŝ and the sure screening property is established.
Proof of Theorem 5 (ii). We first consider the case of σ = 1. In Lemma 5 we show that
when r < β, the minimum expected misclassification rate is of the order ǫn(1+o(1)); which is
not negligible. Next, the Bayes threshold is shown to be tB = r+β√

2r

√
logn. The corresponding

decision rule δi = I(Xi > tB) yields a subset Sδδδ such that EFP
ETP → β−r

β+r , as n → ∞; hence the
sure discovery property is violated. In order to construct a subset where the ETP dominates
the EFP, we must choose a new threshold t∗ > tB. However, even with threshold tB, the sure

screening property is violated since ETP/Card(I) = O(n− (β−r)2

4r ) → 0, and choosing a higher
threshold implies losing even more signals. Hence it is impossible to construct a subset with
both Properties (D1) and (D2).

Next we consider the heteroscedastic case. First it follows from Lemma 4 that the mini-
mum misclassification rate must be of the order of ǫn(1+o(1)); hence there is no classification
rule yielding a negligible risk. It follows from Lemma 5 that the EFP and ETP are of the

same order and EFP
ETP →

√
r+(σ2−1)β−σ

√
r

σ
√

r+(σ2−1)β−√
r
, as n → ∞. Hence we must alter the threshold

so that the sure discovery property can be fulfilled. Take for example when σ > 1. Define

Tu =
−µn+σ

√

µ2
n+2(σ2−1) log σ(1−ǫn)

ǫn

σ2−1 . The dominant parts of the ETP and EFP come from the

following terms n(1− ǫn)Φ (−Tu) and nǫnΦ
(
−Tu−µn

σ

)
, respectively. Thus we must increase

Tu to fulfill condition (D1). However, a higher threshold implies that condition (D2) will be
violated. Hence it is impossible to construct a subset with both properties (D1) and (D2).
This completes the proof. 2
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8.6. Proof of Theorem 6

We prove the most complicated case with 0 < σ < 1. The proofs for cases with σ = 1 and
σ > 1 are provided in Section 9. We need to show that (i) when r > ρdis(β), then we can
construct a subset which fulfills conditions (D1) and (D2); and (ii) when r < ρdis(β), then it
is impossible construct a subset which fulfills both conditions (D1) and (D2). We first state
a few lemmas, which are also proved in Section 9.

Lemma 6. For all 0 < β < 1 and 0 < σ < 1, we have (1− σ
√
1− β)2 ≥ β(1 − σ2).

Lemma 7. Consider the discovery boundary defined in Theorem 6 for the case of 0 < σ <

1. If r > ρdis(β), then β +

{
σ
√
r−

√
r−(1−σ2)β

1−σ2

}2

< 1.

Proof of part (i). The discovery boundary ρdis(β) and Lemma 6 together imply that if
r > ρdis(β) then r > (1− σ2)β. Therefore the following threshold

t∗ =

{√
r − σ

√
r − β(1 − σ2) + σǫ0
1− σ2

}
√
2 logn

is always well-defined when we consider the region above the discovery boundary. Consider
decision rule δi = I(Xi > t∗). It is easy to show that t∗ >

√
2r logn; hence the ETP and

EFP can be calculated as

ETP =
1− σ2

2
√
π logn{σ√r + ǫ0 −

√
r − (1− σ2)β}

n
−β−

{

σ
√

r+ǫ0−
√

r−(1−σ2)β

1−σ2

}2

(1 + o(1)) and

EFP =
1− σ2

2
√
π logn{√r + σǫ0 − σ

√
r − β(1− σ2)}

n
−
{√

r+σǫ0−σ
√

r−β(1−σ2)

1−σ2

}2

(1 + o(1)),

respectively. Note that

β +

{
σ
√
r −

√
r − (1 − σ2)β

1− σ2

}2

=

{√
r − σ

√
r − β(1− σ2)

1− σ2

}2

.

It follows from some algebra that

ETP

EFP
=

√
r + σǫ0 − σ

√
r − β(1 − σ2)

σ
√
r + ǫ0 −

√
r − (1− σ2)β

n
ǫ0

{

2
√

r−(1−σ2)β−ǫ0
}

→ ∞.

Hence we can find ǫ0 < 2
√
r − (1− σ2)β such that the signal is dominant in the discovery

set and condition (D1) is fulfilled.
To show that condition (D2) is fulfilled we need to show there exists a small ǫ0 such that

the discovery set is nonempty with probability tending to 1. Define ζn = P (Xi > t∗). The
above arguments imply that

ζn =
1− σ2

2
√
π log n{σ√r + ǫ0 −

√
r − (1 − σ2)β}

n
−β−

{

σ
√

r+ǫ0−
√

r−(1−σ2)β

1−σ2

}2

(1 + o(1)).

Lemma 7 shows r > ρdis(β) always implies that β +

{
σ
√
r−

√
r−(1−σ2)β

1−σ2

}2

< 1. Therefore we

can find 0 < ǫ0 < 2
√
r − (1− σ2)β and κ > 0 such that

β +

{
σ
√
r + ǫ0 −

√
r − (1− σ2)β

1− σ2

}2

+ κ ≤ 1.
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Then with threshold t∗, the probability of having an non-empty discovery set is

P{|Sδδδ| ≥ 1} = 1− (1− ζn)
n = 1− e−cnn

−κ

(1 + o(1)) → 0.

Therefore condition (D2) holds.
Proof of part (ii). If r < (1 − σ2)β, pick a q such that r < q < 1. The corresponding
threshold is

√
2q logn. Consider the ratio

λn =
n1−βP{N(µn, σ

2) >
√
2q logn}

(n− n1−β)P{N(0, 1) >
√
2q logn} =

σ
√
q

√
q −√

r
nq−β− (

√
q−

√
r)2

σ2 (1 + o(1)).

Now for the growth rate of the ratio we have

f(q) = q − β − (
√
q −√

r)2

σ2
= −1− σ2

σ2

(√
q −

√
r

1− σ2

)2

+
r

1− σ2
− β.

It follows that λn → 0 if r < (1 − σ2)β for all values of 0 < q < 1 (note that the case of
0 < q ≤ r is trivial), i.e. the noises are dominant everywhere. Therefore if r < (1 − σ2)β,
then it is impossible to construct a subset fulfills condition (D1).

Hence it is sufficient to only consider the case where r > (1− σ2)β. The optimal decision
rule must be of the form

δi = I(tL < Xi < tU ) (8.5)

with the center of the interval tC =
√
r

1−σ2

√
2 logn. We first argue that the lower limit tL

should be at least as large as

t∗ =

{√
r − σ

√
r − β(1 − σ2)

1− σ2

}
√
2 logn

in order for the signals to be dominant. As tL = t∗, a rejection region of the form (8.5) satisfy

ETP =
1− σ2

2
√
π logn{σ√r −

√
r − (1− σ2)β}

n
−β−

{

σ
√

r−
√

r−(1−σ2)β

1−σ2

}2

(1 + o(1)), and

EFP =
1− σ2

2
√
π logn{√r − σ

√
r − β(1− σ2)}

n
−
{√

r−σ
√

r−β(1−σ2)

1−σ2

}2

(1 + o(1)),

respectively. It follows that

ETP

EFP
=

√
r − σ

√
r − β(1− σ2)

σ
√
r −

√
r − (1− σ2)β

,

and hence Condition (D1) is violated. As tL < t∗, a rejection region of the form (8.5) would
have a even lower ratio of ETP/EFP. Therefore we must have tL > t∗.

According to the definition of the discovery boundary, we only need to show that if
1 − σ2 < β < 1 and

√
r + σ

√
1− β < 1, the choice of any tL > t∗ would lead to an empty

discovery set with probability tending to 1. Note that if
√
r+σ

√
1− β < 1 and 1−σ2 < β < 1,

then we have

√
r + σ

√
1− β < 1 ⇐⇒ r − 2

√
r + 1 > σ2(1− β)

⇐⇒ (1− σ2)2 − 2
√
r(1− σ2) + r > σ2{r − β(1− σ2)}

⇐⇒ {r − (1 − σ2)}2 > (σ
√

r − β(1 − σ2))2
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Therefore we can find κ > 0 such that
{√r−σ

√
r−β(1−σ2)}2

(1−σ2)2 = 1+κ. Define ζn = P (tL < Xi <

tU ). Then we have ζn < P (Xi > t∗) = c(r, β, σ)n
−{√

r−σ
√

r−β(1−σ2)}2

(1−σ2)2 (1 + o(1)), where

c(r, β, σ) =
(1 − σ2)(1 + σ)(

√
r −

√
r − (1− σ2)β)

2
√
π logn(

√
r − σ

√
r − β(1 − σ2))(σ

√
r −

√
r − β(1 − σ2))

.

Let Sδδδ be the discovery set. Then

P (Card(Sδδδ) ≥ 1) ≤ 1− exp{−cnn
−κ}(1 + o(1)) → 0.

The desired result follows by combining (i) and (ii). 2

8.7. Proof of Theorem 7

Consider the decision rule of the form δi = I(Lfdri < αn). The goal is to show that the minL
method is fully efficient in constructing a signal-dominant subset when r > ρdis(β). Define
the discovery set Ŝ = {i : Lfdri < αn}. Let ζn = P (Lfdri < αn). Note that Lfdri < αn

implies that

(1− ǫn)e
−X2

i /2 < αn

{
(1− ǫn)e

−X2
i /2 +

ǫn
σ
e−(Xi−µn)

2/(2σ2)
}
.

This further implies that

1− σ2

2σ2
X2

i − µn

σ2
Xi +

µ2
n

2σ2
+ log σ + log

1− ǫn
ǫn

+ log
1− αn

αn
< 0.

Let αn = n−η0 . We shall specify the range of η0 at a later time. For the present we take it
as a small positive constant. It can be show that the above equation can be simplified as

{
1− σ2

2σ2

(
Xi −

µn

1− σ2

)2

+

(
β + η0 −

r

1− σ2

)
logn

}
(1 + o(1)) < 0. (8.6)

We have shown that
√
r + σ

√
1− β > 1 implies that r > (1 − σ2)β (Lemma 6). Hence we

shall choose an η0 such that r > (1 − σ2)(β + η0). Let d0 = r − (1 − σ2)(β + η0). Then the
above equation can be solved and it follows from the solution that

ζn = P

[√
2 logn{√r − σ

√
d0}

1− σ2
< Xi <

√
2 logn{√r + σ

√
d0}

1− σ2

]
(1 + o(1))

= P

[
Xi >

√
2 logn{√r − σ

√
d0}

1− σ2

]
(1 + o(1))

=
1− σ2

2
√
π logn(

√
r − σ

√
d0)

n
−{√

r−σ
√

d0}2

(1−σ2)2 (1 + o(1))

+
1− σ2

2
√
π logn{σ√r −

√
d0}

n
−β−{σ

√
r−

√
d0}2

(1−σ2)2 (1 + o(1))

=
1− σ2

2
√
π logn{σ√r −

√
d0}

n
−β−{σ

√
r−

√
d0}2

(1−σ2)2 (1 + o(1)).
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The last equation holds since β +
{σ√r−

√
d0}2

(1−σ2)2 − {√r−σ
√
d0}2

(1−σ2)2 = − η0

1−σ2 < 0. Consider the

regions of 1 − σ2 < β < 1 and 0 < β ≤ 1 − σ2, respectively. Similar as before, we can

show that r > ρdis(β) ⇐⇒ {√r−σ
√

r−β(1−σ2)}2

(1−σ2)2 < 1 in both regions. Therefore we can choose

η0 > 0 such that both equations r > (1 − σ2)(β + η0) and
{√r−σ

√
r−(β+η0)(1−σ2)}2

(1−σ2)2 < 1 are

satisfied. Let αn = n−η0 and consider the thresholding rule δi = I(Lfdri < αn). Denote by
Ŝ the discovery set. We need to establish the following results: (i) P (Card(Ŝ) ≥ 1) → 1;

and (ii) ETP/EFP → ∞. To show (i), define
{√r−σ

√
r−β(1−σ2)}2

(1−σ2)2 = 1 − κ, then κ > 0 and

it follows that P{Card(Ŝ) ≥ 1} = 1 − exp{−c(r, β, σ)nκ}(1 + o(1)) → 1. To show (ii), we
calculate the ETP and EFP of the discovery set:

EFP =
1− σ2

2
√
π logn(

√
r − σ

√
d0)

n
1−{√

r−σ
√

d0}2

(1−σ2)2 (1 + o(1)),

ETP =
1− σ2

2
√
π logn{σ√r −√

d0}
n
1−β−{σ

√
r−

√
d0}2

(1−σ2)2 (1 + o(1)).

It follows that ETP
EFP =

√
r−σ

√
d0

σ
√
r−

√
d0
nη0/(1−σ2) → ∞. The desired result follows (i) and (ii). 2

8.8. Proof of Theorem 8

The boundary for minL method follows Theorem 7. To establish the screening boundary for
the minP method, we need to show the following

(i) If
√
r + σ

√
1− β < 1, then we can find a threshold tn and corresponding decision rule

δi = I(pi < tn) such that P (|S| ≥ 1) → 1 and P
(
min{i:θi=1} pi ≤ tn

)
→ 0. This shows

that the most significant observations are from the null distribution with probability
tending to 1. Hence if we select the signals according to the ranking given by the p-
values, then we will almost always start with a subset which only contains observations
from the null distribution.

(ii) If
√
r + σ

√
1− β > 1, then we can find a τ > 1 such that

√
r + σ

√
1− β >

√
τ . Define

N1(τ) = #{i : Xi ≥
√
2(1 + τ) log n} and N2(τ) = #{i : Xi ≥

√
2(1 + τ) log n & θi =

0}. Then we can show that P{N1(τ) ≥ 1} → 1 and P{N2(τ) = 0} → 1. Hence the
smallest p-value comes from the non-null distribution with probability tending to 1.

Proof of (i). Let τ1 and τ2 be constants such that
√
r+σ

√
τ1 − β <

√
r+σ

√
1− β <

√
τ2 <√

τ1 < 1. If a non-null case Xi ≤
√
τ2 logn, then pi ≥ P{Xi >

√
2τ2 logn} ≥ n−τ1 . Hence

Pθi=1(pi < n−τ1) ≤ Pθi=1(Xi >
√
2τ2 logn)

=
σ

2
√
π logn(

√
τ2 −

√
r)
n−(

√
τ2−

√
r)2/σ2

(1 + o(1)).
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Let κ = (
√
τ2 −

√
r)2/σ2 − (1− β), then κ > 0. Therefore

P ( min
{i:θi=1}

pi ≤ n−τ1) = 1−
∏

{i:θi=1}
{1− Pθi=1(pi < n−τ1)}

= 1− exp
{
n1−β log{1− Pθi=1(pi < n−τ1)}

}

= 1− exp
{
−n1−βPθi=1(pi < n−τ

1 )}(1 + o(1))
}

≤ 1− exp
{
−cnn

1−β−(
√
τ2−

√
r)2/σ2

(1 + o(1))
}

= 1− exp{−cnn
−κ(1 + o(1))} → 0.

Meanwhile, it follows from
√
r + σ

√
τ1 − β <

√
τ1 < 1 that

P (Xi >
√
2τ1 logn)

=
1

2
√
πτ1 logn

n−τ1(1 + o(1)) +
σ

2
√
πτ1 logn(

√
τ1 −

√
r)
n−β−(

√
τ1−

√
r)2/σ2

(1 + o(1))

=
1

2
√
πτ1 logn

n−τ1(1 + o(1)).

It is easy to show that P (|S| ≥ 1) → 1. Therefore the threshold n−τ1 for the p-value would
yield a nonempty subset with all observations coming from the null distribution.

Proof of (ii). First it is important to note that the non-nulls are dominant at
√
(1 + τ) log n

for τ > 1. Specifically, define f(x) = 1− β − (
√
1+x−

√
2r)2

2σ2 . Since f(1) = 1− β − (1−√
r)2

σ2 > 0

(by assumption), we can find τ > 1 such that f(τ) > 0. If Xi >
√
(1 + τ) log n, then

p(Xi) < P{N(0, 1) >
√
(1 + τ) log n} < α/n. It follows that

P (pi < α/n) > P (Xi >
√
(1 + τ) log n)

=
σ√

2π logn(
√
1 + τ −

√
2r)

n−β− (
√

1+τ−
√

2r)2

2σ2 (1 + o(1))

+
1√

2π(1 + τ) log n
n− 1+τ

2 (1 + o(1))

=
σ√

2π logn(
√
1 + τ −

√
2r)

n−β− (
√

1+τ−
√

2r)2

2σ2 (1 + o(1))

> n−β− (
√

τ−
√

r)2

σ2 .

The last equality holds by noting that β+ (
√
1+τ−

√
2r)2

2σ2 < 1 < 1+τ
2 . Let κ = 1−β− (

√
τ−√

r)2

σ2 >
0. Then we have P (pi < α/n) > n−1+κ. Note that

P (p(1) < αn) = 1−
{
1− P

(
pi <

α

n

)}n

> 1− (1− n−1+κ)n

= 1− exp(−nκ)(1 + o(1)),

we have P (p(1) < αn) → 1. It is easy to show that P{N1(τ) ≥ 1} → 1 and P{N2(τ) = 0} → 1.
Hence the smallest p-value comes from the non-null distribution with probability 1. Hence
the BH procedure rejects a non-null with probability tending to 1 if

√
r + σ

√
1− β > 1. 2
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9. Supplemental Materials: Proof of Other Results

9.1. Proof of Lemma 1

The Lemma is a restatement of Theorem 2 in Sun and Cai (2007). We provide the proof here
for completeness. The joint distribution of θθθ = (θ1, · · · , θn) is π(θθθ) =

∏
i(1− ǫn)

1−θiǫθin . The
posterior distribution of θθθ given x can be calculated as Pθθθ|X(θθθ|x) = ∏

i Pθi|Xi
(θi|xi), where

Pθi|Xi
(θi|xi) =

I(θi = 0)(1− ǫn)f0(xi) + I(θi = 1)ǫnf1(xi)

(1− ǫn)f0(xi) + ǫnf1(xi)
.

The posterior risk is then given by

Eθθθ|XL(θθθ,δδδ) = n−1
∑

i

ǫnf1(xi)

f(xi)
+ n−1

∑

i

λ(1 − ǫn)f0(xi)− ǫnf1(xi)

f(xi)
δi.

Then the Bayes classification rule is δδδπ,λ = (δπ,λ1 , · · · , δπ,λn ), where

δπ,λi = I{λ(1− ǫn)f0 < ǫnf1}

and (8.2) follows.

9.2. Proof of Lemma 3

Let Q(t) denote the MDR level of the thresholding rule I(Xi > t). We argue by contradiction.
Assume that there exists a ε > 0 such that P (t̂πs ≤ (

√
r − √

η0)
√
2 logn) ≥ ε for all n. Let

An denote the event. It follows that on event An,

Q(t̂πs ) ≤ Q
(
(
√
r −√

η0)
√
2 logn

)

= Pf1

{
Xi < (

√
r −√

η0)
√
2 logn

}

=
1

2
√
πη0 logn

n−η0(1 + o(1))

Then on event An such that P (An) ≥ ε,

α′
n −Q(t̂πs ) =

(
1− 1

2
√
πη0 logn

)
n−η0(1 + o(1)) ≥ 1

2
n−η0 (9.1)

for large n. Define Q̂(t) be the estimated MDR of thresholding rule I(Xi > t). Then

Q̂(t̂πs ) = (nǫn)
−1

∑

i

I(Xi < t̂πs )(1 − T π
i ) = Q(t̂πs ) +Op

(
n− 1−β

2

)
. (9.2)

According to the definition of Q̂(t̂πs ) and the operation of Procedure 2, we always have

α′
n − 1

nǫn
≤ Q̂(t̂πs ) ≤ α′

n. (9.3)

Combining (9.2) and (9.3) we conclude that n2η0 |α′
n−Q(t̂πs )| = Op(1). This is a contradiction

to (9.1). Hence the lemma is proved. 2
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9.3. Proof of Lemma 4

We first state a lemma, which will be used as the main technical tool in the proof of other
lemmas. We omit the proof, which follows some standard calculations of the Bayes risk in a
classification problem.

Lemma 8. Let θi, i = 1, . . . , n, be independent Bernoulli(ǫn) random variables. Xi are
independent observations from model Xi|θi = 0 ∼ N(0, 1) and Xi|θi = 1 ∼ N(µn, σ

2). For a
classification rule δδδ based on X let the misclassification rate be L(θθθ,δδδ) = n−1

∑n
i=1 I(θi 6= δi).

Let Φ(·) is the cumulative distribution function for the standard normal distribution. Then
the minimum expected misclassification rate satisfies:

(i) For σ = 1, infδδδ E(L(θθθ,δδδ)) = (1− ǫn)Φ(−µn

2σ − σ
µn

log 1−ǫn
ǫn

) + ǫnΦ(−µn

2σ + σ
µn

log 1−ǫn
ǫn

).

(ii) For 0 < σ < 1, if µ2
n ≤ 2(1 − σ2) log σ(1−ǫn)

ǫn
, infδδδ E(L(θθθ,δδδ)) = ǫn; if µ2

n > 2(1 −
σ2) log σ(1−ǫn)

ǫn
,

inf
δδδ

E(L(θθθ,δδδ))

= (1− ǫn)



Φ(
µn + σ

√

µ2
n − 2(1− σ2) log σ(1−ǫn)

ǫn

1− σ2
)− Φ(

µn − σ

√

µ2
n − 2(1− σ2) log σ(1−ǫn)

ǫn

1− σ2
)





+ ǫn



Φ(
σµn −

√

µ2
n − 2(1− σ2) log σ(1−ǫn)

ǫn

1− σ2
) + Φ(

−σµn −
√

µ2
n − 2(1− σ2) log σ(1−ǫn)

ǫn

1− σ2
)



 .

(iii) For σ > 1,

inf
δδδ

E(L(θθθ,δδδ)) =

(1− ǫn)







Φ(
−µn − σ

√

µ2
n + 2(σ2 − 1) log σ(1−ǫn)

ǫn

σ2 − 1
) + Φ(

µn − σ

√

µ2
n + 2(σ2 − 1) log σ(1−ǫn)

ǫn

σ2 − 1
)







+ ǫn







Φ(
−σµn +

√

µ2
n + 2(σ2 − 1) log σ(1−ǫn)

ǫn

σ2 − 1
)− Φ(

−σµn −
√

µ2
n + 2(σ2 − 1) log σ(1−ǫn)

ǫn

σ2 − 1
)







.

Proof of Lemma 4 (i). We shall only consider the case r > β. The other two cases follow
similar but simpler arguments. By plugging in ǫn = n−β and µn =

√
2r log n into the result

in part (i) of Lemma 8, we have

inf
δδδ
E(L(θθθ,δδδ)) = (1− ǫn)Φ(−

r + β√
2r

√
logn) + ǫnΦ(−

r − β√
2r

√
logn).

It then follows the standard approximation for the Gaussian tail probability, Φ(−x) =
1√
2πx

e−
1
2x

2

(1 + o(1)) as x → ∞, that

inf
δδδ
E(L(θθθ,δδδ)) =

√
r

(r + β)
√
π log n

n− (r+β)2

4r (1 + o(1)) +

√
r

(r − β)
√
π logn

n− (r+β)2

4r (1 + o(1))

=
2r
√
r

(r2 − β2)
√
π logn

n− (r+β)2

4r (1 + o(1)).
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Proof of Lemma 4 (ii). We shall only consider the case 0 < σ < 1 and r > (1− σ2)β. The
case for σ > 1 can be proved similarly. By plugging in ǫn = n−β and µn =

√
2r logn into the

result in part (ii) of Lemma 8, we have

inf
δδδ

E(L(θθθ,δδδ)) = Φ(−
√
r − σ

√
r − (1 − σ2)β

1− σ2

√
2 logn)(1 + o(1))

+ ǫnΦ(−
√
r − (1− σ2)β − σ

√
r

1− σ2

√
2 logn)(1 + o(1)).

It follows that infδδδ E(L(θθθ,δδδ)) = 1
2 ǫn(1 + o(1)) when r = β and infδδδ E(L(θθθ,δδδ)) = ǫn(1 + o(1))

when r < β. For r > β the standard approximation for the Gaussian tail probability yields

inf
δδδ

E(L(θθθ,δδδ)) =
1− σ2

2
√
π(
√
r − σ

√
r − (1 − σ2)β)

(log n)−
1
2n

− (
√

r−σ
√

r−(1−σ2)β)2

(1−σ2)2 (1 + o(1))

+
1− σ2

2
√
π(
√
r − (1− σ2)β − σ

√
r)
(logn)−

1
2n

− (
√

r−(1−σ2)β−σ
√

r)2

(1−σ2)2 ǫn(1 + o(1))

= c(r, β, σ) · (log n)− 1
2n

− (
√

r−(1−σ2)β−σ
√

r)2

(1−σ2)2 ǫn(1 + o(1)),

where c(r, β, σ) is given by (8.4). Note that in the last step we have used the fact that

n
−(σ

√
r+(σ2−1)β−

√
r)2

(σ2−1)2 = n
−(

√
r+(σ2−1)β−σ

√
r)2

(σ2−1)2 ǫn. 2

9.4. Proof of Lemma 5

Part (i). The threshold in the Bayes rule is tB = µn

2 + σ2

µn
log 1−ǫn

ǫn
= r+β√

2r

√
logn. Then

E[Card(Sδδδ))] = nP (Xi > tB) = nǫnP (Xi > TB|θi = 1) + n(1− ǫn)P (Xi > TB|θi = 0)

= nǫnΦ(
r − β√

2r

√
logn) + n(1− ǫn)Φ(−

r + β√
2r

√
logn)

≡ ETP + EFP.

The result follows from straightforward calculations using Gaussian tail approximation.
Part (ii). We only consider the case σ > 1. Set

Tl =
−µn − σ

√
µ2
n + 2(σ2 − 1) log σ(1−ǫn)

ǫn

σ2 − 1

and

Tu =
−µn + σ

√
µ2
n + 2(σ2 − 1) log σ(1−ǫn)

ǫn

σ2 − 1
,

then the expected size of the discovery set is

E[Card(Sδδδ)] = n(P (Xi < Tl) + P (Xi > Tu))

= nǫn {P (Xi < Tl|θi = 1) + P (Xi > Tu|θi = 1)}
+ n(1− ǫn) {P (Xi < Tl|θi = 0) + P (Xi > Tu|θi = 0)}

= nǫn

{
Φ(

Tl − µn

σ
) + Φ(−Tu − µn

σ
)

}
+ n(1− ǫn)(Φ(Tl) + Φ(−Tu))

≡ ETP + EFP.

The rest of the proof follows similar arguments as in the proof of Part (i). 2
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9.5. Proof of Lemma 6

Consider function f(β) = (1−σ
√
1− β)2−β(1−σ2). It is easy to show that f ′(β) = σ√

1−β
−1.

We claim that f(β) achieves its minimum value at 1 − σ2 since f ′(β) > 0 if 1 − σ2 < β < 1
and f ′(β) < 0 if 0 < β < 1− σ2. The desired result follows by noting that f(β)|β=1−σ2 = 0.

2

9.6. Proof of Lemma 7

(i). Consider the region
√
r + σ

√
1− β > 1 and 1− σ2 < β < 1. Then we have

√
r + σ

√
1− β > 1 ⇐⇒ r − 2

√
r + 1 < σ2(1− β)

⇐⇒ (1− σ2)2 − 2
√
r(1− σ2) + r < σ2{r − β(1− σ2)}

⇐⇒ {r − (1 − σ2)}2 < (σ
√

r − β(1 − σ2))2

The result follows from the fact that β +

{
σ
√
r−

√
r−(1−σ2)β

1−σ2

}2

=

{√
r−σ

√
r−β(1−σ2)

1−σ2

}2

.

(ii). In the region r > (1− σ2)β and 0 < β < 1− σ2, consider two situations:

(a)
√
r ≤ 1− σ2. It follows that

√
r − (1− σ2) < σ

√
r − (1 − σ2)β

⇐⇒ √
r − σ

√
r − (1− σ2)β < (1− σ2)

⇐⇒ {√r − σ
√

r − β(1 − σ2)}2
(1− σ2)2

< 1.

(b)
√
r > 1 − σ2. Note that 0 < β ≤ 1 − σ2 implies that 1− β ≥ σ2, we have σ2(1 − β) ≥

σ4 > (1 −√
r)2. Finally, note that

σ2(1− β) > (1 −√
r)2

⇐⇒ {√r − (1− σ2)}2 < {σ
√
r − β(1 − σ2)}2

⇐⇒ √
r − σ

√
r − β(1 − σ2) < 1− σ2

⇐⇒ {√r − σ
√

r − β(1− σ2)}2
(1− σ2)2

< 1.

The result follows by combining (i) and (ii). 2

9.7. Proof of Theorem 6: other cases

We will need the following lemmas in the proof.

Lemma 9. Let X1, · · · , Xn be iid rv with 0 ≤ Xi ≤ 1 and E(Xi) = µi, for i = 1, · · · , n.
Let µ̄ = n−1

∑
i µi. Then for 0 < µ̄ < 1/2,

P{√n(X̄ − µ̄) ≥ λ} ≤ e−2λ2

.

This is standard Hoeffding’s inequality and the proof is omitted.

Lemma 10. Consider the discovery boundary defined in Theorem 6 for the case of σ > 1.

If r > ρdis(β), then β +

{√
r+(σ2−1)β−σ

√
r

σ2−1

}2

< 1.
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Proof of Lemma 10: Consider the region 0 < β ≤ 1− σ−2. It is easy to see that

√
r + σ

√
1− β >

√
r + σ

√
1− (1− σ−2) > 1.

Next consider the region 1 − σ−2 < β < 1, if r > ρdis(β), then we have
√
r + σ

√
1− β > 1.

The rest of the proof follows similar lines of that of Lemma 7.

Lemma 11. If
√
r +

√
1− β < 1, then q < β + (

√
q −√

r)2 for all β < q < 1.

Proof of Lemma 11: Define f(x) =
√
x−√

x− β −√
r for β < x < 1. Then

f ′(x) =
1

2
√
x
− 1

2
√
x− β

< 0.

Therefore for all β < q < 1 we have

f(q) =
√
q −

√
q − β −√

r > f(1) = 1−
√
1− β −√

r > 0

and the result follows. 2

9.7.1. Proof of the homoscedastic case: σ = 1
First we note that it is sufficient to only consider the case where r < β since if r > β the
signals and noises can be nearly perfectly separated.

(i) When r > ρdis(β) = (1 − √
1− β)2, we have (r + β)2/4r < 1. Therefore we can find

ǫ0 > 0 such that (r+β+ ǫ0)
2/4r < 1. Consider the threshold t∗ = (β+r+ǫ0)

√
logn√

2r
. The goal is

to show that both properties (D1) and (D2) are fulfilled by the decision rule δδδ = (δ1, · · · , δn),
where δi = I(Xi > t∗). Let Sδδδ = {i : δi = 1} be the discovery set and define ζn = P (Xi > t∗).
When r < β, we have

ζn =

√
r

(β + r + ǫ0)
√
π log(n)

n− (β+r+ǫ0)2

4r (1 + o(1)) +

√
r

(β − r + ǫ0)
√

π log(n)
n−β− (β−r+ǫ0)2

4r (1 + o(1))

=
2
√
r

(β − r + ǫ0)
√
π log(n)

n− (r+β+ǫ0)2

4r +ǫ0(1 + o(1)).

Let cn = 2
√
r

(β−r+ǫ0)
√

π log(n)
. It follows, by the choice of ǫ0, that

P{Card(Sδδδ) ≥ 1} = 1− (1− ζn)
n

≥ 1− {1− cnn
−1+ǫ0(1 + o(1))}n

= 1− e−cnn
ǫ0
(1 + o(1)) → 1.

Hence Condition (A) is fulfilled. Next note that in the discovery set S, the ratio of the
expected numbers of true positives and false positives can be calculated as

ETP

EFP
=

β + r + ǫ0
β − r + ǫ0

nǫ0(1 + o(1)) → ∞.

Hence the signals are dominant and Condition (B) is fulfilled.
(ii) When r > ρdis(β) = (1 − √

1− β)2, the goal is to show that there does not exist a
threshold such that both conditions (A) and (B) are fulfilled. We first argue that the threshold
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cannot be smaller than t∗ = β+r√
2r

√
logn. As before we define ζn = P (Xi > t∗). It can be

shown that the ratio of the ETP and EFP can be calculated as ETP
EFP = β+r

β−r (1 + o(1)) when
t∗ is chosen. In order for the signals to be dominant in the discovery set, we must choose a
threshold that is greater than t∗. However, the assumption that r < ρdis(β) indicates that any
threshold that is great than t∗ would result in an empty discovery set with probability tending
to 1. Specifically, if r < ρdis(β), then (r + β)2/4r > 1. Define κ = (r + β)2/4r − 1. Then
κ > 0, and with the most conservative threshold t∗, the probability of having an non-empty
discovery set is

P{|Sδδδ| ≥ 1} = 1− (1− ζn)
n

= 1− {1− cnn
−1−κ(1 + o(1))}n

= 1− e−cnn
−κ

(1 + o(1)) → 0,

and we end up with an empty subset with high probability. Therefore we conclude that
conditions (A) and (B) cannot be fulfilled simultaneously when r < ρdis(β). The desired
result follows by combining (i) and (ii). 2

9.7.2. Heteroscedastic case: σ > 1
Since much of the proof is similar to that of the case of 0 < σ < 1, we shall only outline the
main steps.

(i) According to Lemma 10, if r > ρdis(β), then there exists ǫ0 > 0 such that β +{√
r+(σ2−1)β+ǫ0−σ

√
r

σ2−1

}2

< 1. Correspondingly we can choose the following threshold t∗ =

σ
√

r+(σ2−1)β−√
r+σǫ0

σ2−1 . The goal is to show that the decision rule δi = I(Xi > t∗) fulfills both
Conditions (A) and (B). First, note that t∗ >

√
r, the ETP and EFP can be calculated as

Gaussian tail probabilities:

ETP =
σ2 − 1

2
√
π logn{

√
r + (σ2 − 1)β + ǫ0 − σ

√
r}

n
−β−

{√
r+(σ2−1)β+ǫ0−σ

√
r

σ2−1

}2

(1 + o(1)),

EFP =
σ2 − 1

2
√
π logn

{
σ
√
r + (σ2 − 1)β + σǫ0 −

√
r
}n

−
{

σ
√

r+(σ2−1)β+σǫ0−
√

r

σ2−1

}2

(1 + o(1)).

It follows from β +

{√
r+(σ2−1)β−σ

√
r
}2

(σ2−1)2 =

{

σ
√

r+β(σ2−1)−√
r
}2

(σ2−1)2 that

ETP

EFP
=

σ
√
r + (σ2 − 1)β + σǫ0 −

√
r√

r + (σ2 − 1)β + ǫ0 − σ
√
r
n

σ2ǫ0{ǫ0+2
√

r+(σ2−1)β}
(σ2−1)2 → ∞.

Therefore Condition (A) is fulfilled. It can be shown similarly as the case of 0 < σ < 1 that
the choice of ǫ0 ensures that P (Card(Sδδδ) ≥ 1) → 1; hence Condition (B) is fulfilled.

(ii) It is sufficient to consider the case where 1− σ−2 < β < 1. The optimal decision rule
is of the form δi = I(Xi < tL)+ I(Xi > tU ). We shall show that tU would be at least as large

as t∗ =
σ
√

r+(σ2−1)β−√
r

σ2−1 . Otherwise the noises will be dominant. However, it can be shown

similarly as before that, when
√
r+σ

√
1− β < 1, even with the conservative threshold t∗, we

will essentially end up with an empty discovery set with probability tending to 1. The details
of the arguments are omitted. Therefore both Conditions (A) and (B) cannot be fulfilled
simultaneously. The desired result follows by combining (i) and (ii). 2
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9.8. The most informative part of the sample

In this section, we provide more details for the results in Section 7. The following three test
statistics will be discussed in turn: the p-value, the Lfdr statistic, and the HC statistic.
(1). The p-value (PV) procedure. Consider 0 < q ≤ 1. Let µn =

√
2r log n. It is easy to

show that the numbers of nulls and non-nulls on the right hand side of
√
2q logn are

n · P
{
N(0, 1) >

√
2q logn

}
=

1

2
√
qπ logn

n1−q(1 + o(1)), and

n1−β · P
{
N(µn, σ

2) >
√
2q logn

}
=

σ

2
√
π logn(

√
q −√

r)
n1−β−(

√
q−√

r)2/σ2

(1 + o(1)),

respectively. The PV procedure rejects a non-null with probability 1 if the number of non-
nulls grows to ∞ and if the non-nulls are dominant in the tails. Equivalently, the following
two conditions

(i) 1− β − (
√
q−√

r)2

σ2 > 0; and

(ii) 1− q < 1− β − (
√
q−√

r)2

σ2 are satisfied simultaneously for q = 1.

The second condition is implied by the first condition if 0 < q ≤ 1. Hence when q = 1, the
conditions reduce to

√
r > 1− σ

√
1− β, for all σ > 0. Therefore

• For 0 < σ < 1, the PV rejection boundary is ρPV (β) = (1− σ
√
1− β)2.

• For σ > 1, the PV rejection boundary is ρPV (β) =

{
(1− σ

√
1− β)2 if 1− 1

σ2 < β < 1
0 if 0 < β ≤ 1− 1

σ2

.

(2). The Lfdr procedure. In order for Lfdr method to work, we require that the number
of non-nulls grows to ∞ and the non-nulls are dominant. First we need to find the most
informative q that optimizes the growth rate of the ratio

λn =
n1−β · P

{
N(µn, σ

2) >
√
2q logn

}

n · P
{
N(0, 1) >

√
2q logn

} =
σ
√
q

√
q −√

r
nq−β− (

√
q−

√
r)2

σ2 (1 + o(1)).

Let f(q) = q − β − (
√
q−√

r)2

σ2 .

(a) If 0 < σ < 1, then f(q) = − 1−σ2

σ2

(√
q −

√
r

1−σ2

)2

+ r
1−σ2 − β.

(i) If
√
r ≤ 1 − σ2, then the growth rate of the ratio is optimized at qLfdr =

r
(1−σ2)2 .

It is easy to see that if r
1−σ2 − β > 0, then the number of non-nulls goes to ∞ and

are dominant at qLfdr. We can solve β from the following equation

1− σ2 = 1− σ
√
1− β

to obtain the changing point is 1 − σ2. Therefore the rejection boundary is
ρLfdr(β) = (1− σ2)β for 0 < β < 1− σ2.

(ii) If
√
r > 1 − σ2, we only require f(1) = 1 − β − (1−√

r)2

σ2 > 0 so that the number
of non-nulls goes to ∞ and are dominant at q = 1. Therefore the Lfdr rejection
boundary is ρLfdr(β) = (1− σ

√
1− β)2 for 1− σ2 < β < 1.
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(b) Next we consider σ > 1. Note that now f(q) can be written as

f(q) =
σ2 − 1

σ2

(√
q −

√
r

1− σ2

)2

+
r

1− σ2
− β.

We only require f(1) = 1 − β − (1−√
r)2

σ2 > 0 so that the number of non-nulls goes to
∞ and are dominant at q = 1, where the conditions reduce to

√
r > 1 − σ

√
1− β.

Therefore the Lfdr rejection boundary is

ρLfdr(β) =

{
(1 − σ

√
1− β)2 if 1− 1

σ2 < β < 1
0 if 0 < β ≤ 1− 1

σ2

.

The Lfdr rejection boundary is overlapped with the PV rejection boundary.

(3). The HC procedure. First we need to find the most informative q that optimizes the
growth rate of the normalized uniform empirical process

Wn = Lnn
(1+q)/2−β−(

√
q−√

r)2/σ2

(1 + o(1)).

Let f(q) = (1 + q)/2− β − (
√
q −√

r)2/σ2.

(a) We first consider 0 < σ <
√
2. It is easy to show that

f(q) = −2− σ2

2σ2

(√
q − 2

√
r

2− σ2

)2

+
r

2− σ2
+

1

2
− β.

(i) If
√
r ≤ 1−σ2/2, then the growth rate of the ratio is optimized at qHC = 4r

(1−σ2/2)2 .

It is easy to see that if 2
√
r

2−σ2 + 1/2− β > 0, then the number of non-nulls goes to
∞ and are dominant at qHC. The changing point of β can be solved from

(1− σ
√
1− β)2 = (1− σ2/2)2.

Therefore the rejection boundary is ρHC(β) = 0 if 0 < β ≤ 1/2, and ρHC(β) =
(2− σ2)(β − 1/2) if 1/2 < β ≤ 1− σ2/4.

(ii) If
√
r > 1 − σ2/2 (or equivalently, 1 − σ2/4 < β < 1), the most informative q is

qHC = 1. We only require that f(1) = 1 − β − (1−√
r)2

σ2 > 0 so that the number
of non-nulls goes to ∞ and are dominant at q = 1. Therefore the HC detection
boundary is ρHC(β) = (1− σ

√
1− β)2 for 1− σ2/4 < β < 1.

(b) Next we consider σ =
√
2. Note that f(q) can be written as f(q) =

√
rq + 1−r

2 − β.

Obviously the most informative q is qHC = 1. We only require f(1) = 1−β− (1−√
r)2

2 > 0
so that the number of non-nulls goes to ∞ and are dominant at q = 1. Therefore the
HC detection boundary is ρHC(β) = {1 −

√
2(1− β)}2 for all 0 < β < 1. The HC

detection boundary is overlapped with the PV/Lfdr boundary.
(c) Finally we consider σ >

√
2. Note that now f(q) can be written as

f(q) =
σ2 − 2

2σ2

(√
q − 2

√
r

2− σ2

)2

+
r

2− σ2
+

1

2
− β.
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Again, the most informative q is qHC = 1. We only require f(1) = 1− β − (1−√
r)2

σ2 > 0
so that the number of non-nulls goes to ∞ and are dominant at q = 1. The conditions
reduce to

√
r > 1− σ

√
1− β. Therefore the HC rejection boundary is

ρHC(β) =

{
(1− σ

√
1− β)2 if 1− 1

σ2 < β < 1
0 if 0 < β ≤ 1− 1

σ2

.

Again, the HC detection boundary is overlapped with the PV/Lfdr discovery boundary.
The reason is that all procedures look for non-nulls at the tail area.

• For 0 < σ <
√
2, we have ρHC(β) =





0 if 0 < β ≤ 1
2

(2− σ2)(β − 1
2 ) if 1

2 < β ≤ 1− σ2

4

(1− σ
√
1− β)2 if 1− σ2

4 < β < 1

.

• For σ =
√
2, we have ρHC(β) =

{
0 if 0 < β ≤ 1

2

{1−
√
2(1− β)}2 if 1

2 < β < 1
.

• For σ >
√
2, the detection boundary is ρHC(β) =

{
(1 − σ

√
1− β)2 if 1− 1

σ2 < β < 1
0 if 0 < β ≤ 1− 1

σ2

.


