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SUMMARY 15

Phylogenetic association analysis is an essential and powerful tool for studying the association
between microbial compositions and the outcome of interest in microbiome studies. However,
existing methods for testing such associations are more sensitive to a linear association in a high-
dimensional setting and the assumptions of confounding effects. Methods that are capable of
characterizing complex association, including non-monotonic association, are therefore needed. 20

This paper proposes a new phylogenetic association analysis framework to address these chal-
lenges. The new framework introduces conditional rank correlation as a measure of association
to detect a wide range of dependencies, which is robust to the outlier, accounts for confounders
in a fully nonparametric way. The new framework aggregates conditional rank correlations for
subtrees as the weighted sum and maximum to capture dense and sparse signals. To determine 25

the significance level, we calibrate the test statistics by a nearest neighbor bootstrapping method,
which is easy to use and can incorporate extra data sets when available. The practical merits of
the new framework are demonstrated by numerical experiments using both simulated and real
microbiome data sets.

Some key words: Compositional Data, Association Analysis, Phylogenetic Tree, Covariate Adjustment. 30

1. INTRODUCTION

The microbial communities inhabiting the human body play an essential role in human health
and are associated with many human diseases, such as obesity, inflammatory bowel disease,
and type II diabetes (Li, 2015). Understanding the association between human diseases and mi-
crobiotas can help discover diagnostic biomarkers and develop efficient treatments for diseases 35

(Pflughoeft & Versalovic, 2012). The recent advances in high throughput sequencing technolo-
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gies make it possible to characterize the microbial communities in a high resolution and thus
provide an opportunity for a more comprehensive understanding of the roles of microbial com-
munities in disease onset and progression.

One key step towards understanding the microbiome’s role in human health is to detect an40

association between the human microbiome and the outcome of interest after adjusting poten-
tial measured confounders. We can naturally formulate the association analysis as a conditional
independence hypothesis testing problem (or independence hypothesis testing problem when no
confounder is present) and apply some existing generic conditional independence tests (or inde-
pendence tests) to the microbiome data directly (Székely et al., 2007; Gretton et al., 2008; Lyons,45

2013; Wang et al., 2015; Azadkia & Chatterjee, 2019; Huang et al., 2020). However, this might
not be the most efficient strategy as microbiome data have several unique characteristics, includ-
ing prevalent zero counts (Wang, 2022), compositional data (Li, 2015), and a phylogenetic tree
structure among the microbes (Washburne et al., 2018; Wang, 2021). Many association analysis
methods are designed for the microbial compositional data set to account for these characteristics50

and incorporate a phylogenetic tree (McArdle & Anderson, 2001; Pan, 2011; Zhao et al., 2015;
Wu et al., 2016; Tang et al., 2016, 2017; Koh et al., 2017; Song et al., 2020). These methods
have been very successful in many human microbiome studies and helped decipher the role of
microbiota in different human diseases.

Most state-of-the-art microbiome association analysis methods are distance-based (kernel-55

based) methods or their generalization. The advantage of distance-based dependence metrics
is that they can detect any type of association between random vectors when the dimension of
the random vector is not very large (Székely et al., 2007). However, recent results suggest that
distance or kernel-based dependence metric mainly captures linear association under a high di-
mensional setting, which microbiome data usually fall into (El Karoui, 2010; Zhu et al., 2020).60

In addition, these association analysis methods usually adjust confounding variables by a para-
metric regression model, such as a linear model. It is not immediately clear if existing methods
can detect an association robustly when the parametric model is misspecified. This paper pro-
poses a new phylogenetic association analysis framework for detecting complex associations
in microbiome studies that is capable to detect a wide range of dependencies and accounts for65

confounders in a fully nonparametric way.
We first introduce a new phylogenetic independence test by incorporating the idea of rank cor-

relation (Weihs et al., 2018; Shi et al., 2020) and phylogenetic tree structure. Instead of evaluating
pairwise distance, the new phylogenetic independence test directly measures the association be-
tween the outcome of interest and the total microbial abundance in each lineage (subtree) by70

a rank correlation. Because of rank correlation, the new test is robust to the outlier, invariant
to monotonic transformation, and captures a wide range of associations. To detect global asso-
ciation, the new phylogenetic independence test aggregates the rank correlations for different
lineages in two ways: the weighted sum and the maximum. The power analysis shows that the
weighted sum aggregation is more sensitive to the dense dependence structure, while the maxi-75

mum aggregation is more powerful for the sparse dependency.
We then generalize the phylogenetic independence test to a phylogenetic conditional inde-

pendence test when confounder adjustment is needed. To adjust the confounders nonparamet-
rically, we introduce conditional rank correlation and its corresponding estimator based on the
idea of the nearest neighbor method. As a generalization of rank correlation, conditional rank80

correlation inherits many desired properties, including robustness to outliers and the ability of
detecting nonlinear association. Similar to the independence test, the new phylogenetic condi-
tional independence test also takes the weighted sum or maximum of the conditional rank cor-
relation for different lineages. We investigate the power of the new conditional independence
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test under the conditional randomization test (CRT) framework (Candes et al., 2018), where the 85

conditional distribution of outcome given covariates is assumed to be known. We show that its
performance is determined by the smoothness of the conditional distribution and the phyloge-
netic tree structure. In addition, we discuss several different test calibration methods, including a
nearest neighbor bootstrapping method for the new phylogenetic conditional independence test.
The method takes advantage of extra data sets when available and is easy to implement. All 90

newly introduced methods in this paper are implemented in the DAFOT package, available at
https://github.com/lakerwsl/DAFOT.

2. MODEL AND PHYLOGENETIC ASSOCIATION ANALYSIS

2.1. Model and Notation
Two of the most popular sequencing methods to quantify the abundance of different bacteria

in microbial communities are 16S rRNA sequencing and shotgun metagenomics sequencing.
The sequencing reads can be placed on a reference phylogenetic tree by phylogenetic placement
methods, such as pplacer (Matsen et al., 2010) or SEPP (Mirarab et al., 2012; Janssen et al.,
2018). More specifically, let T = (V,E) be the phylogenetic tree of microbe species, where V is
the collection of microbe species and their ancestors, and E represents the collection of edges of
the phylogenetic tree T . We assume the tree T is rooted at the node ρ, the common ancestor of
all microbe species. For each edge e, Le denotes the corresponding branch length. A toy example
of the phylogenetic tree is given in Figure 1. The relative abundance of a microbial community
can be represented by a discrete distribution on the nodes of tree T . More specifically, let pv be
the relative abundance of microbial taxon v and write all possible discrete distributions on T as

P =

{
P = {pv}v∈V :

∑
v∈V

pv = 1 and pv ≥ 0

}
.

v1 v2 v3 v4 v5

v6 v7

v8

v9

τ(e)

Pe = pv1 + pv2 + pv3 + pv6 + pv8

e

ρ

Fig. 1: A toy example of phylogenetic tree and relative abundance on subtree τ(e).

In microbiome studies, we are interested in testing an association between microbial com- 95

munity composition and outcome of interest Y ∈ R, which can be naturally formulated as the
following independence hypothesis testing problem

H0 : P ⊥ Y vs H1 : P 6⊥ Y. (1)
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Besides the true relative abundance of different microbial taxa P and outcome of interest Y , we
usually also observe several covariates X ∈ Rd for each sample, which might be linked to both
P and Y . In the presence of the available covariates, we need to adjust potential confounding ef-100

fects from these observed covariates. The association analysis can be formulated as the following
conditional independence hypothesis in such a case

H0 : P ⊥ Y |X, ∀X vs H1 : P 6⊥ Y |X, ∃X. (2)

If there are no observed covariates (i.e., d = 0), hypothesis (2) is reduced to hypothesis (1).
In order to test the hypothesis in (1) or (2), n individuals/samples are independently drawn

from a given population. (Pi, Yi,Xi), i = 1, . . . , n represent their true relative abundance of
microbe taxa, the outcome of interest, and covariates. While the outcome of interest Y and co-
variates X are usually known exactly, the true relative abundance of different bacteria taxa P
cannot be observed directly. Sequencing techniques are usually applied to assess each sample’s
relative abundance of microbes. After phylogenetic placement,Ni,v reads are placed to node v in
the ith sample. The number of sequencing reads Ni,v is assumed to follow a Poisson distribution

Ni,v ∼ Pois(Nipi,v), v ∈ V and 1 ≤ i ≤ n,

where Ni is the total number of reads in the ith sample, and pi,v is the relative abundance of
microbe taxon v in the ith sample. We usually normalize the count data Ni,v as a relative abun-105

dance vector, that is, P̂i = {p̂i,v}v∈V , where p̂i,v = Ni,v/Ni. For simplicity, we always assume
N1 = . . . = Nn = N throughout the paper. The observed relative abundance P̂i can be seen as
an empirical version of true relative abundance Pi. The goal of association analysis is to test the
hypothesis in (1) or (2) based on the observed data (P̂i, Yi,Xi), i = 1, . . . , n.

2.2. Phylogenetic Association Analysis110

Most existing distance or kernel-based phylogenetic association analysis methods adopt a phy-
logenetic distance between two microbial communities. The phylogenetic distance is defined on
the phylogenetic tree structure and thus can reflect the evolution information among microbe
species. Commonly used phylogenetic distances include unweighted and weighted UniFrac dis-
tance (Lozupone & Knight, 2005; Lozupone et al., 2007) and their Zolotarev-type generalizations
(Evans & Matsen, 2012; Wang et al., 2021b). The weighted UniFrac distance is defined as

D(P ,Q) =
∑
e

Le|Pe −Qe|,

whereLe is the branch length of the edge e. Here,Pe =
∑

v∈τ(e) pv is the total relative abundance
on the subtree τ(e), and τ(e) is the subtree below the edge e. To illustrate the concepts, Figure 1
shows a typical example of τ(e) and Pe. As illustrated by Wang et al. (2021a), the phylogenetic
distance-based methods essentially consider each Pe, e ∈ E as the analysis unit instead of each
pv, v ∈ V and thus try to detect the dependency between the outcome of interest Y and each Pe,115

e ∈ E. Following the same idea, we will use Pe as our analysis unit for the rest of the paper.
The phylogenetic distance-based methods are designed to capture possible nonlinear depen-

dency between P̂ and Y when the dimension of P̂ is not very large. However, a recent result in
Zhu et al. (2020) shows that the distance-based dependence metric reflects linear association in
the high dimensional setting. This indicates that the phylogenetic distance-based methods might120

not be the most powerful for detecting nonlinear associations when the number of microbes is
large. To adjust the covariate X , most existing phylogenetic association analysis methods rely
on a parametric model, such as a linear model, and thus can only remove a particular type of
confounding effect. It is not immediately clear if the conditional independence hypothesis in (2)
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can still be tested consistently when such a parametric model is misspecified. We introduce a 125

new phylogenetic association analysis framework for the microbial compositional data. We first
discuss the independence testing problem in (1) and then extend the methods and results to the
conditional independence testing problem in (2).

3. PHYLOGENETIC INDEPENDENCE TEST WITH RANK CORRELATION

3.1. Rank Correlation 130

Testing independence between two real-valued random variables is a classical statistical prob-
lem, and many methods have been developed (Rényi, 1959; Breiman & Friedman, 1985; Hoeffd-
ing, 1948; Blum et al., 1961; Yanagimoto, 1970; Romano, 1988; Gretton et al., 2005; Székely
et al., 2007; Gretton et al., 2008; Székely & Rizzo, 2009; Reshef et al., 2011; Bergsma & Dassios,
2014; Weihs et al., 2018; Chatterjee, 2020). In order to capture a wide range of dependencies, 135

we focus on the following three consistent rank correlation measures: Hoeffding’s D (Hoeffd-
ing, 1948), Blum-Kiefer-Rosenblatt’sR (Blum et al., 1961), and Bergsma-Dassios-Yanagimoto’s
τ∗ (Bergsma & Dassios, 2014; Yanagimoto, 1970). These three rank correlation measures have
the following advantages: 1) they are zero if and only if the two random variables are inde-
pendent; 2) they can be estimated by a rank statistic, so they are invariant to any monotone 140

transformation and robust to potential outliers; 3) their estimator can be computed in O(n log n)
time when random variables are continuous (Even-Zohar, 2020). See more discussions in Weihs
et al. (2018); Shi et al. (2020). To present formal definitions of these rank correlation measures,
we focus on the association between outcome and abundance on a given subtree τ(e) and let
(P̂1,e, Y1), . . . , (P̂n,e, Yn) be independent copies of (P̂e, Y ). 145

DEFINITION 1 (HOEFFDING’S D). The Hoeffding’s correlation coefficient Dn between P̂e
and Y is defined as

Dn(P̂e, Y ) =

(
n

5

)−1 ∑
1≤i1<...<i5≤n

1

16
gD(P̂i1,e, . . . , P̂i5,e)gD(Yi1 , . . . , Yi5),

where gD(z1, . . . , z5) = (I(z1≤z5) − I(z2≤z5))(I(z3≤z5) − I(z4≤z5)).

DEFINITION 2 (BLUM-KIEFER-ROSENBLATT’S R). Blum-Kiefer-Rosenblatt’s Rn between
P̂e and Y is defined as

Rn(P̂e, Y ) =

(
n

6

)−1 ∑
1≤i1<...<i6≤n

1

32
gR(P̂i1,e, . . . , P̂i4,e, P̂i5,e)gR(Yi1 , . . . , Yi4 , Yi6),

where gR(z1, . . . , z5) = (I(z1≤z5) − I(z2≤z5))(I(z3≤z5) − I(z4≤z5)).

DEFINITION 3 (BERGSMA-DASSIOS-YANAGIMOTO’S τ∗). Bergsma-Dassios-Yanagimoto’s
τ∗n between P̂e and Y is defined as

τ∗n(P̂e, Y ) =

(
n

4

)−1 ∑
1≤i1<...<i4≤n

1

16
gτ∗(P̂i1,e, . . . , P̂i4,e)gτ∗(Yi1 , . . . , Yi4),

where gτ∗(z1, . . . , z4) = I(z1,z3<z2,z4) + I(z2,z4<z1,z3) − I(z1,z4<z2,z3) − I(z2,z3<z1,z4).
Here, I(y1,y2<y3,y4) = I(y1<y3)I(y1<y4)I(y2<y3)I(y2<y4). As long as n ≥ 6, τ∗n(P̂e, Y ) =

12Dn(P̂e, Y ) + 24Rn(P̂e, Y ). 150
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All these statistics above can be written as U -statistic

ψn(P̂e, Y ) =

(
n

l

)−1 ∑
1≤i1<...<il≤n

hψ(Zi1,e, . . . , Zil,e),

where hψ is a symmetric bounded kernel depending on ψ ∈ {D,R, τ∗} and Ze = (P̂e, Y ).
These statistics are called rank correlation coefficients because ψn(P̂e, Y ) = ψn(r(P̂e), r(Y )),
where r(P̂e) and r(Y ) are the ranks of P̂e and Y . Based on ψn(P̂e, Y ), the corresponding
rank correlation measure is then defined as ψ(P̂e, Y ) = E(ψn(P̂e, Y )) = E(hψ(P̂e, Y )), where
hψ(P̂e, Y ) = hψ(Z1,e, . . . , Zl,e). When ψ ∈ {D,R, τ∗}, ψ(P̂e, Y ) is always larger than or equal
to 0, and ψ(P̂e, Y ) = 0 if and only if P̂e and Y are independent. The conditional expectations of
kernel hψ are defined as

h
(k)
ψ (z1, . . . , zk) = E (hψ(z1, . . . , zk, Zk+1, . . . , Zl)) , 1 ≤ k ≤ l.

When P̂e and Y are independent, hψ is mean zero and degenerate kernel, i.e., h(1)
ψ (z1) = 0

almost surely with respect to z1. For simplicity, we also write hψ(P̂e, Y ) = hψ(Z1,e, . . . , Zl,e)

and h(k)
ψ (P̂e, Y ) = hψ(Z1,e, . . . , Zk,e).

3.2. Phylogenetic Independence Test in the Absence of Covariates
In this section, we assume no observed covariate and focus on testing if the relative abundance

of different microbial species is independent of the outcome of interest. As noted in Section 2, ex-
isting phylogenetic independence tests are mainly designed to detect a linear association between
Y and Pe for each edge e in the high dimensional setting. To capture their possible nonlinear as-
sociations, the association between Y and Pe can be measured by a rank correlation ψn(P̂e, Y ),
where ψn ∈ {Dn, Rn, τ

∗
n}. To test the hypothesis in (1), we aggregate these rank correlation

ψn(P̂e, Y ) into a single test statistic. Depending on the forms of the alternative hypothesis, we
consider two different ways to integrate rank correlation over edges. If the outcome of interest Y
is associated with most microbial taxa, we consider the following weighted sum type test

Ψ1 = n
∑
e∈E

weψn(P̂e, Y ),

since the rank correlation measures are non-negative. There are multiple ways to choose the
weights we > 0 in Ψ1, e.g., we can choose we = Le. In practice, it is also possible that only a
small number of microbe species are associated with the outcome (Wu et al., 2016; Wang et al.,
2021a). In such a sparse case, we consider the following maximum type test

Ψ∞ = nmax
e∈E

ψn(P̂e, Y ).

Another advantage of such a maximum type test is that it provides a way of identifying the155

microbial lineage that is associated with the outcome when the null hypothesis is rejected.
To make the above test statistic as decision rules, we still need to choose appropriate critical

values or transform them into P -values. Due to the complex dependency structure among P̂e, it
is difficult to derive an asymptotic distribution for the above test. So we opt to adopt a resam-
pling method. More specifically, let An be the set of permutations on {1, . . . , n}, i.e., An = {φ :

{1, . . . , n} → {1, . . . , n}|φ(i) 6= φ(j) if i 6= j}. We write Ψ1(P̂ , φY ) and Ψ∞(P̂ , φY ) as test
statistics calculated on (P̂1, Yφ(1)), . . . , (P̂n, Yφ(n)) given a map φ ∈ An. When φ is an identity
map, we also write Ψ1(P̂ , φY ) and Ψ∞(P̂ , φY ) as Ψ1(P̂ , Y ) and Ψ∞(P̂ , Y ). Let φ1, . . . , φB
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be B maps drawn from An randomly. Then, the P -value can be calculated by

P̂ (Ψ) =
1 +

∑B
b=1 I(Ψ(P̂ ,φbY )≥Ψ(P̂ ,Y ))

1 +B
,

where Ψ is Ψ1 or Ψ∞ test. Here, if Ψ(P̂ , Y ) is a tie with some Ψ(P̂ , φbY ), the tie is broken
randomly. We then make the decision based on P -value, i.e., the null hypothesis is rejected when
P̂ (Ψ) ≤ α. Since Ψ(P̂ , φbY ) and Ψ(P̂ , Y ) have the same distribution under the null hypothesis,
the type I error can be controlled at the desired level, that is,

P
(
P̂ (Ψ) ≤ α

∣∣∣H0

)
≤ α.

3.3. Power Analysis for Phylogenetic Independence Test
We now investigate the power of the proposed phylogenetic independence tests. The test P̂ (Ψ)

is called consistent if

P
(
P̂ (Ψ) > α

)
→ 0.

The main difficulty in studying the behavior of Ψ1 or Ψ∞ is the strong and complex depen-
dence structure among ψn(P̂e, Y ) for different e ∈ E. Owing to the tree structure, there are only
two possibilities for a pair of different subtrees τ(e) and τ(e′): τ(e) ⊂ τ(e′) (τ(e′) ⊂ τ(e)) or 160

τ(e) ∩ τ(e′) = ∅. Here, we assume the dependence structure among ψn(P̂e, Y ) is mainly due to
the overlapping between subtrees τ(e). Specifically, we assume that if τ(e) ⊂ τ(e′), there are
constants c0 and α such that

E
(
hψ(P̂e, Y )− hψ(P̂e′ , Y )

)2
≤ c0

(
λ(τ(e′))− λ(τ(e))

λ(τ(e′))

)α
, (3)

where λ is a measure on the tree T to quantify the level of overlapping between two subtrees. For
example, λ(τ(e)) could be the total number of nodes or the total relative abundance in the subtree 165

τ(e). The assumption in (3) suggests that hψ(P̂e, Y ) and hψ(P̂e′ , Y ) are highly correlated if there
is large overlapping between corresponding subtrees. On the other hand, we assume that if there
is no overlapping between two subtrees, i.e., τ(e) ∩ τ(e′) = ∅, hψ(P̂e, Y ) and hψ(P̂e′ , Y ) are
almost uncorrelated, that is, there exists a constant ∆ such that

E(hψ(P̂e, P̂e′)) ≤ ∆ and
∣∣∣Cov

(
hψ(P̂e, Y ), hψ(P̂e′ , Y )

)∣∣∣ ≤ ∆. (4)

Here, ∆ reflects the level of dependence between hψ(P̂e, Y ) and hψ(P̂e′ , Y ). In particular, we 170

can choose ∆ = 0 if P̂e, P̂e′ , and Y are mutually independent. Besides the assumptions in (3)
and (4), we also need to make another assumption on h(1)

ψ (P̂e, Y ) when the distribution is under
the alternative hypothesis. Specifically, we assume there is a constant γ such that

Var
(
h

(1)
ψ (P̂e, Y )

)
≤ γE

(
hψ(P̂e, Y )

)
and

∣∣∣Corr
(
h

(1)
ψ (P̂e, Y ), h

(1)
ψ (P̂e′ , Y )

)∣∣∣ ≤ ∆.

(5)
A similar condition also appears in Drton et al. (2018), showing that Gaussian distribution satis-
fies such a condition. The following theorem characterizes the power of our proposed tests. 175

THEOREM 1. Suppose the weighted sum type test Ψ1 and the maximum type test Ψ∞ are
defined based on a kernel hψ and the number of permutations B →∞. If we assume (4), (5)
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hold, 1/M ≤ we ≤M for some fixed constant M and∑
e∈E

weψ(P̂e, Y )�
√
DT |E|+ ∆|E|2

n
, (6)

then the weighted sum type test Ψ1 is consistent. In addition, if (3), (5) hold, log4 |E| � n and

max
e∈E

ψ(P̂e, Y )� logST
n

,

then the maximum type test Ψ∞ is a consistent test. ST is a quantity depending on the measure
λ and tree structure T , which is defined in Appendix.180

Theorem 1 suggests Ψ1 is more sensitive to weak and dense dependence between outcome
and subtree, and Ψ∞ is designed to capture strong but sparse dependence. In practice, we usu-
ally have no access to the sparsity level of dependence. In order to capture both dense and sparse
dependence for robustness, the natural idea is to combine the weighted sum type test and maxi-
mum type test, e.g., taking the smallest P -value

P̂ = min
(
P̂ (Ψ1), P̂ (Ψ∞)

)
.

In addition, Theorem 1 also helps characterize the effect of a strong dependency structure among
subtrees for both tests. Specifically, the power of the weighted sum type test is reduced because of
dependence among P̂e, while the power of the maximum type test increases. The required signal
strength in Theorem 1 relies on assumptions (3) and (4). Without such assumptions, sufficient
signal strength conditions for consistent tests are∑

e∈E
weψ(P̂e, Y )� |E|

n
and max

e∈E
ψ(P̂e, Y )� log |E|

n
.

4. PHYLOGENETIC CONDITIONAL INDEPENDENCE TEST WITH CONDITIONAL RANK
CORRELATION

4.1. Conditional Rank Correlation
The previous section shows that rank correlation can detect a nonlinear association between

the outcome of interest and microbial composition. This section mainly focuses on adjusting po-
tential confounding effects from the observed covariates. Recall that the rank correlation measure
between P̂e and Y is defined as

ψ(P̂e, Y ) = E(hψ(P̂e, Y )),

where the expectation is with respect to the joint distribution of P̂e and Y . Following this nota-
tion, we can naturally define the local conditional rank correlation measure

ψ(P̂e, Y |X) = E(hψ(P̂e, Y )|X),

where the expectation is with respect to the conditional joint distribution of P̂e and Y given X .
We can show that ψ(P̂e, Y |X) = 0 if and only if P̂e ⊥ Y |X . In order to test P̂e ⊥ Y |X for all
possibleX , we define the global conditional rank correlation measure as

ψΛ(P̂e, Y ) =

∫
ψ(P̂e, Y |X)Λ(X)dX
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for some measure Λ(X). A natural choice of Λ(X) is the probability density function of X .
The following proposition suggests that ψΛ(P̂e, Y ) can measure conditional independence. 185

PROPOSITION 1. If we assume Λ(X) has the same support as probability density function
of X , then ψΛ(P̂e, Y ) = 0 if and only if P̂e ⊥ Y |X almost surely. In addition, ψΛ(P̂e, Y ) =

ψΛ(f(P̂e), g(Y )) for any strictly increasing functions f and g.

In order to estimate ψΛ(P̂e, Y ), we adopt an idea from the nearest neighbor method (Biau &
Devroye, 2015). Specifically, let (P(1),i, Y(1),i,X(1),i), . . . , (P(n),i, Y(n),i,X(n),i) be a permuta-
tion of (P1, Y1,X1), . . . , (Pn, Yn,Xn) such that ‖X(1),i −Xi‖ ≤ . . . ≤ ‖X(n),i −Xi‖. The
level of local conditional rank correlation atXi can be estimated by its k nearest neighbors

ψk(P̂e, Y |Xi) =

(
k

l

)−1 ∑
1≤i1<...<il≤k

hψ(Z(i1),i,e, . . . , Z(il),i,e).

A natural estimator for the global conditional rank correlation coefficient is then given by

ψΛ,n(P̂e, Y ) =
1

n

n∑
i=1

ψk(P̂e, Y |Xi).

We call this estimator the nearest neighbor conditional rank correlation coefficient. Another po-
tential choice of the estimator for ψΛ(P̂e, Y ) is a kernel-based estimator. For example, a kernel- 190

based conditional distance correlation is proposed in Wang et al. (2015). The nearest neighbor-
based estimator is more computationally efficient compared with the kernel-based estimator.
Specifically, the computational complexity of ψΛ,n(P̂e, Y ) is almost linear, i.e., O(n log n). We
now investigate the statistical properties of this estimator.

THEOREM 2. Suppose P(‖X‖ ≥ t) ≤ C1e
−c1t for some constants c1 and C1 and there exists 195

β, γ and C such that

|FP,Y (t, s|X1)− FP,Y (t, s|X2)| ≤ C (1 + (‖X1‖+ ‖X2‖)γ) ‖X1 −X2‖β, (7)

where FP,Y (t, s|X) is the conditional cumulative distribution function of P̂e, Y givenX . Then,

∣∣∣E(ψΛ,n(P̂e, Y ))− ψΛ(P̂e, Y )
∣∣∣ = O

(√
ψΛ(P̂e, Y )

logβ(d+2) n

nβ/d
+

log2β(d+2) n

n2β/d

)
,

and ∣∣∣ψΛ,n(P̂e, Y )− E(ψΛ,n(P̂e, Y ))
∣∣∣ = Op

(
n−1/2

)
.

Theorem 2 suggests that the error of the nearest neighbor conditional rank correlation co-
efficient is mainly dominated by bias when the dimension of covariate d is high. Here, we also
briefly compare ψΛ,n(P̂e, Y ) with the other nearest neighbor-based conditional independence co-
efficient proposed in Azadkia & Chatterjee (2019); Huang et al. (2020). Compared with Azadkia 200

& Chatterjee (2019), ψΛ,n(P̂e, Y ) cannot capture the function relationship between variables but
is designed to detect more subtle conditional dependency. In particular, the bias of ψΛ,n(P̂e, Y )

only depends on the dimension of X , but not the dimension of Y or P̂e, while the bias of the
coefficient of Azadkia & Chatterjee (2019) depends on the sum of the dimensions ofX and Y .
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4.2. Phylogenetic Conditional Independence Test in the Presence of Covariates205

Following a similar idea in the phylogenetic independence test, we can test hypothesis (2) by
aggregating conditional rank correlation over different edges of the phylogenetic tree. Specifi-
cally, we still consider the weighted sum type test

ΨΛ,1 =
∑
e∈E

weψΛ,n(P̂e, Y ),

and maximum type test

ΨΛ,∞ = max
e∈E

ψΛ,n(P̂e, Y ).

The weighted sum type test is more powerful for dense alternatives, while the maximum type
test is more suitable for sparse alternatives.

To make the decision based on the above test statistics ΨΛ,1 and ΨΛ,∞, we adopt the con-
ditional randomization test (CRT) framework proposed in Candes et al. (2018). The condi-
tional distribution P(Y |X) is assumed to be known in the CRT framework. Given the condi-
tional distribution P(Y |X), independent samples Y (1)

i are drawn from P(·|Xi) for i = 1, . . . , n.
The intuition behind the CRT framework is that (P̂i, Y

(1)
i ,Xi) follows the same distribution as

(P̂i, Yi,Xi) under the null hypothesis H0 in (2), and the difference between (P̂i, Y
(1)
i ,Xi) and

(P̂i, Yi,Xi) can be seen as evidence against the null hypothesis. To implement this idea, we draw
independent samples from P(·|Xi) B times, that is,

Y
(b)
i ∼ P(·|Xi), b = 1, . . . , B and i = 1, . . . , n.

Given (P̂i, Y
(b)
i ,Xi), b = 1, . . . , B, we evaluate test statistics and write them as ΨΛ,1(P̂ , Y (b))

and ΨΛ,∞(P̂ , Y (b)). Similarly, the test statistics evaluated on (P̂i, Yi,Xi) are written as
ΨΛ,1(P̂ , Y ) and ΨΛ,∞(P̂ , Y ). Then, the P -value can be calculated by

P̂ (ΨΛ) =
1 +

∑B
b=1 I(ΨΛ(P̂ ,Y (b))≥ΨΛ(P̂ ,Y ))

1 +B
,

where ΨΛ is ΨΛ,1 or ΨΛ,∞, and the tie is broken randomly. We reject the null when P̂ (ΨΛ) ≤ α.

4.3. Power Analysis for Phylogenetic Conditional Independence Test
This section focuses on the power analysis for the phylogenetic conditional independence test.210

Similar to the power analysis for the phylogenetic independence test, we assume that the overlap-
ping between subtrees τ(e) is the main source of the dependence structure among ψΛ,n(P̂e, Y ).
More concretely, if τ(e) ⊂ τ(e′), there exists a measure λ defined on tree T such that

E
(
ψ̃k(P̂e, Y

(1)|Xi)− ψ̃k(P̂e′ , Y (1)|Xi)
∣∣∣X1 . . . ,Xn

)2
≤ c0

(
λ(τ(e′))− λ(τ(e))

λ(τ(e′))

)α
(8)

for some constant c0 and α. Here, we define ψ̃k(P̂e, Y |Xi) = ψk(P̂e, Y |Xi)−
E(ψk(P̂e, Y |Xi)). Moreover, if τ(e) ∩ τ(e′) = ∅, then there is a constant ∆Λ such that215 ∣∣∣Cov

(
ψk(P̂e1 , Ỹ |Xj), ψk(P̂e2 , Ỹ |Xj)

∣∣∣X1 . . . ,Xn

)∣∣∣ ≤ ∆Λ, (9)

where Ỹ is Y or Y (1). Besides these two assumptions, we also assume that the conditional
distribution of (P̂e, Y ) given X is smooth in the sense of (7). We characterize the power of the
proposed test in the following theorem.
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THEOREM 3. Suppose the number of permutations B →∞ and the number of neighbors k is
upper bounded. If (7)and (9) hold, 1/M ≤ we ≤M for some fixed constant M and 220∑

e∈E
weψΛ(P̂e, Y )�

√
DT |E|+ |E|2∆Λ

n
+ |E| logβ(d+2) n

nβ/d
, (10)

then the weighted sum type test ΨΛ,1 is consistent. In addition, if (7)-(8) hold, log4 |E| � n and

max
e∈E

ψΛ(P̂e, Y )�
√

logST
n

+
logβ(d+2) n

nβ/d
,

then the maximum type test ΨΛ,∞ is a consistent test. ST is a quantity depending on the measure
λ, which is defined in Appendix.

Similar to the phylogenetic independence test, Theorem 3 suggests that ΨΛ,1 is more powerful
when Y is associated with most P̂e; ΨΛ,∞ is more suitable when Y is associated with a few P̂e.
We can still combine these two types of tests if we would like to capture both dense and sparse
signals. The results in Theorem 3 rely on the assumptions on dependency structure, that is, (8)
and (9). When such assumptions are not satisfied in practice, the sufficient signal strength is∑
e∈E

weψΛ(P̂e, Y )� |E|

(
1√
n

+
logβ(d+2) n

nβ/d

)
and max

e∈E
ψΛ(P̂e, Y )�

√
log |E|
n

+
logβ(d+2) n

nβ/d
.

Unlike the phylogenetic independence test, the required signal in phylogenetic association anal-
ysis is mainly dominated by the bias in the test statistics when the dimension is high.

4.4. Practical Consideration for Phylogenetic Conditional Independence Test 225

The phylogenetic conditional independence tests are previous discussed in the conditional ran-
domization test framework where a key assumption is that the conditional distribution P(Y |X) is
known or can be estimated accurately. In some microbiome studies, the conditional distribution
P(Y |X) can be estimated from an extra-large data set of (Y,X). For example, the covariatesX
usually include demographic variables, such as age, gender, and smoking status, and the variable 230

of interest Y is also observed easily, such as body mass index (BMI). In such a case, a much
larger data set of (Y,X) is usually available, e.g., in census data, although microbial composi-
tional data is scarce. When such a large data set of (Y,X) is available, the conditional distribution
P(Y |X) can be estimated, and Y (b)

i is drawn from the estimated conditional distribution.
In some microbiome studies, it is not always easy to estimate the conditional distribution 235

accurately due to the lack of a much larger extra data set or an efficient conditional distribution
estimator. In such cases, we also introduce two other ways to make the decision based on test
statistics ΨΛ,1 and ΨΛ,∞: the asymptotic method and the nearest neighbor bootstrapping method.
The proof of Theorem 3 also suggests theoretical critical values for ΨΛ,1 and ΨΛ,∞ when (7)
holds for β = 1. Specifically, we can reject the null hypothesis when 240

ΨΛ,1 ≥ s|E|

(
1√
n

+
log(d+2) n

n1/d

)
and ΨΛ,∞ ≥ s

(√
log |E|
n

+
log(d+2) n

n1/d

)
, (11)

where s is any sequence going to infinity, e.g., s = log log n. These choices of critical values rely
on the assumption in (7) and can also be conservative in practice. However, these critical values
are easy to calculate practically, and they provide an alternative and asymptotically valid way to
test the conditional independence hypothesis in (2) when estimating the conditional distribution
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P(Y |X) is not easy. Such an asymptotic method is also used in other conditional independence245

tests (Su & White, 2008; Wang et al., 2015; Zhou et al., 2020; Shah & Peters, 2020).
Besides the asymptotic method, we introduce a nearest neighbor bootstrapping (NNB) method

for ΨΛ,1 and ΨΛ,∞. The key idea of the CRT framework is to draw random samples from the
conditional distribution P(Y |X). When P(Y |X) is unavailable, we can randomly draw Y from
the neighbors ofX by combining ideas in the nearest neighbor method and bootstrapping. To be250

specific, let (Ỹi, X̃i), i = 1, . . . , ñ be a data set of (Y,X), which can come from (Pi, Yi,Xi),
i = 1, . . . , n or an extra data set. We permute the data as (Ỹ(1),i, X̃(1),i), . . . , (Ỹ(ñ),i, X̃(ñ),i)

such that ‖X̃(1),i −Xi‖ ≤ . . . ≤ ‖X̃(ñ),i −Xi‖. Then, we can draw Y
(b)
i randomly from the

k̃-nearest neighbors {Ỹ(1),i, . . . , Ỹ(k̃),i}. After we have Y (b)
i , b = 1, . . . , B and i = 1, . . . , n, we

can follow the same procedure in the CRT framework. The main difference between the NNB255

method and CRT framework is that we use the empirical distribution of {Ỹ(1),i, . . . , Ỹ(k̃),i} to
approximate unknown P(Y |Xi) and do not need to estimate the conditional distribution. The
NNB method shares many similarities with the local permutation method (Doran et al., 2014;
Sen et al., 2017; Kim et al., 2021), where Y is permuted locally within the small bins divided
based onX . Compared with the local permutation method, the NNB method has two advantages:260

finding the k̃-nearest neighbor is usually much simpler than bins construction; the NNB method
can take advantage of the extra data set of (Y,X) when available.

In summary, this section discusses three ways to calibrate test statistics ΨΛ,1 and ΨΛ,∞: CRT
framework, asymptotic method, and NNB method. Among these three, we recommend the NNB
method as it is easy to use and can incorporate data sets from other studies.265

5. NUMERICAL EXPERIMENTS

5.1. Simulation Studies
We now investigate the properties of the proposed independence and conditional indepen-

dence tests through simulation studies. We consider a phylogenetic tree of microbes within the
class Gammaproteobacteria as the underlying tree T . This phylogenetic tree is a subtree from a270

commonly used reference tree of Greengenes 16S rRNA database version 13.8 clustered at 85%
similarity. There are 247 leaves, 246 internal nodes, and 492 edges in tree T , shown in Figure 2.

To simulate compositional/relative abundance data, we consider the Dirichlet-multinomial
model in this section. Specifically, given a non-negative vector α = {αv}v∈V , the true relative
abundance P is drawn from a Dirichlet distribution indexed by α. The count data of each type275

of microbes N = {Nv}v∈V are drawn from a multinomial distribution with respect to the true
relative abundance P . Then, we normalize the count data N as empirical relative abundance
data P̂ . Given the above model, we only need to specify α, Y , and X in simulation studies of
independence and conditional independence test.

Independence Test In the simulation experiments of the independence test, we first draw Y
from a uniform distribution between 0 and 1. Given Y and two clades S1 and S2 of tree T , we
choose α in the following way

αv =


1 + f(Y ), v ∈ S1

1− f(Y ), v ∈ S2

1, v ∈ VL \ (S1 ∪ S2)

0, v ∈ VI

.
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Fig. 2: The phylogenetic tree of microbes within the class Gammaproteobacteria. The leaf nodes
are labeled by numbers and clade used in simulation studies are highlighted by different colors.

Here, f : R→ R is a link function, VI is the collection of internal nodes of tree T , and VL is the 280

collection of leaves of tree T . We can choose different combinations of f , S1, and S2 to study
different aspects of our proposed independence tests. We compare eight tests in the simulation
experiments of the independence test. In particular, we consider six rank-based phylogenetic
independence tests proposed in Section 3: Ψ1(Dn), Ψ1(τ∗n), Ψ1(Rn), Ψ∞(Dn), Ψ∞(τ∗n), and
Ψ∞(Rn). We also consider one of the most popular distance-based association analysis methods, 285

PERMANOVA (implemented in R package vegan), equipped with weighted Unifrac distance,
its L2 Zolotarev-type generalization, generalized UniFrac distances (α = 0, 0.5 in Chen et al.
(2012)) and Bray-Curtis distance, denoted by PL1, PL2, PLG,0, PLG,0.5 and PLBC , respec-
tively. We adopt the permutation test in all eight tests and reject the null when the P -value is
smaller than 0.05. 290

The first set of simulation experiments is designed to study the performance of differ-
ent independence tests when the dependence structure between P̂ and Y is linear or non-
linear. More concretely, we consider the clade S1 = {224, 228, 229, 225, 226, 227}, S2 =
{139, 135, 136, 137, 138, 129, 130, 131, 132, 133, 134}, and three different link functions:

(a) M1: f(Y ) = 3/4− δY ; 295

(b) M2: f(Y ) = δ sin(πY );
(c) M3: f(Y ) = δ sin(2πY ).

Here, δ is a number between 0 and 1 to characterize the strength of the dependency. There is a
stronger dependency between P̂ and Y when δ is larger. The dependence structure between P̂
and Y is linear under M1 and nonlinear under M2 and M3. To investigate the effect of sample 300

size n and signal strength δ, we choose n = 50, 100, and δ = 0.2, 0.4, 0.6, 0.8, 1 in the simu-
lation experiments. We repeat the simulation experiments 500 times for each combination of
f , n, and δ. The performance of different tests is evaluated by the power of the test, that is,
the probability of rejecting the null hypothesis. The experiment results are summarized in Ta-
ble S1. Table S1 shows that rank-based phylogenetic independence tests achieve similar power 305

with PERMANOVA when the association between P̂ and Y is linear (M1), especially when the
sample size is small. However, for non-linear associations (M1 and M2), Table S1 shows that the
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proposed rank-based phylogenetic independence tests are in general more or equally powerful
than the distance-based method PERMANOVA.

In the second set of simulation studies, we mainly investigate the effect on the signal’s sparsity310

level. In particular, we consider the link function f(Y ) = δ sin(3πY ), where δ is signal strength
and three choices of the clade

(a) C1: S1 = {169}, S2 = {170};
(b) C2: S1 = {224, 228, 229, 225, 226, 227}, S2 = {139, 135, 136, 137, 138, 129, 130, 131,

132, 133, 134};315

(c) C3: S1 = {147, 146, 94, 93, 128, 91, 92, 145, 121, 142, 143, 144, 95, 139, 140, 141, 96,
112, 120, 122, 123, 135, 136, 137, 138, 101, 119, 124, 125, 126, 127, 129, 130, 97, 98, 99,
100, 102, 118, 131, 132, 133, 134, 103, 117, 111, 113, 114, 106, 107, 115, 116, 104, 105,
110, 108, 109}, S2 = {162, 160, 161, 178, 165, 168, 163, 164, 166, 167, 176, 177, 172,
173, 171, 174, 175, 169, 170}.320

These three choices of the clade are highlighted in Figure 2. In these three choices of the clade,
C1 represents the sparsest setting, and C3 represents the densest setting. We set n = 100, 200 and
δ = 0.2, 0.4, 0.6, 0.8, 1 in the simulation experiments and still repeat the simulation experiments
500 times for each combination of S1, S2, n, and δ. We summarize the power of the eight tests
in Table S2. Table S2 suggests that the maximum type test Ψ∞ can capture the dependency325

more efficiently than the weighted sum type test Ψ1 when the signal is sparse, while Ψ1 is
more powerful than Ψ∞ when the signal is dense. However, under the non-linear link function,
PERMANOVA has almost no power in detecting the dependency structure.

Conditional Independence Test In the conditional independence test simulation experiments,
we choose d = 5 and draw each entry ofX = (X1, . . . , Xd) from a uniform distribution between
0 and 1. Given X , we draw Y ∼ N (µ(X), 1). Given X , Y , and two clades S1 and S2 of tree
T , we choose α in the following way

αv =


1 + g(X, Y ), v ∈ S1

1− g(X, Y ), v ∈ S2

1, v ∈ VL \ (S1 ∪ S2)

0, v ∈ VI

,

where g(X, Y ) is a link function. In the following simulation experiments, we can choose dif-
ferent combinations of µ(·), g(·, ·), S1, and S2.330

We first investigate if different conditional independence tests can control the type
I error under the null hypothesis. We choose S1 = {224, 228, 229, 225, 226, 227}, S2 =
{139, 135, 136, 137, 138, 129, 130, 131, 132, 133, 134}, µ(X) = dg(X, Y ) = h(X) for func-
tion h. In particular, we consider four different choices of h:

(a) M1: h(X) =
∑d

i=1Xi;335

(b) M2: h(X) =
∑d

i=1 sin(πXi);
(c) M3: h(X) =

∑d
i=1 sin(2πXi);

(d) M4: h(X) =
∑d

i=1 sin(3πXi).

In these four choices of h(X), the degree of nonlinear increases from M1 to M4. Under these
settings, we have P ⊥ Y |X for any X . Based on the simulation independence test results, we340

consider the phylogenetic association analysis methods defined by Blum-Kiefer-Rosenblatt’s R:
ΨΛ,1(Rn) and ΨΛ,∞(Rn). We consider two ways of making decisions: the CRT framework and
the NNB method. We compare the newly proposed method with two state-of-the-art association
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analysis methods: PERMANOVA and MiRKAT (both can adjust the confounding effect in X).
Here we construct a distance matrix by weighted Unifrac distance and its L2 Zolotarev-type gen- 345

eralization in PERMANOVA and MiRKAT. To compare different association analysis methods,
we set n = 100, the significance level as 0.05, and estimate type I error from 300 times sim-
ulation experiments. The simulation results are summarized in Table 1. In Table 1, only CRT
can control type I error in all settings as we know the exact conditional distribution P(Y |X).
When the confounding effect is linear, all methods can adjust the confounding effect very well. 350

In the absence of knowledge on P(Y |X), NNB can help better control false discoveries than
PERMANOVA and MiRKAT when the confounding effect is highly nonlinear.

Table 1: Comparison of type I error control by different conditional independence test methods.

M1 M2 M3 M4
ΨΛ,∞(Rn) 0.047 0.053 0.050 0.063

NNB ΨΛ,1(Rn) 0.070 0.066 0.113 0.246
ΨΛ,∞(Rn) 0.043 0.076 0.223 0.485

PERMANOVA L1 0.080 0.405 0.748 1.000
L2 0.070 0.306 0.731 1.000

MiRKAT L1 0.080 0.405 0.767 1.000
L2 0.073 0.319 0.757 1.000

The next simulation experiment studies the effect of sample size ñ and the number of neigh-
borhood k̃ in the NNB method. We adopt the same setting as in the last simulation experi-
ment and only focus on two choices of h: M2 and M3. We choose ñ = 100, 1000, 10000 and 355

k̃ = 10, 30, 100 in NNB method. The type I errors estimated from 300 repeated simulation ex-
periments is summarized in Table 2. Table 2 suggests a large extra data set is helpful for type I
error control, and we shall not choose the number of the neighborhood too large.

Table 2: Comparison of type I error control by different choices of parameters in NNB.

ΨΛ,1(Rn) ΨΛ,∞(Rn)

ñ k̃ = 10 k̃ = 30 k̃ = 100 k̃ = 10 k̃ = 30 k̃ = 100

M2
100 0.070 0.076 0.066 0.070 0.047 0.033
1000 0.073 0.073 0.076 0.100 0.093 0.063
10000 0.063 0.076 0.063 0.080 0.090 0.083

M3
100 0.316 0.375 0.385 0.708 0.684 0.691
1000 0.193 0.269 0.312 0.515 0.618 0.674
10000 0.106 0.126 0.163 0.233 0.322 0.458

We now investigate the performance of different methods when there is a highly nonlinear
conditional association. We still choose S1 and S2 as the previous two simulation experiments.
To construct a highly nonlinear case, we choose µ(X) =

∑d
i=1 sin(2πXi) and

g(X, Y ) = (1− δ)
∑d

i=1 cos(2πXi)

d
+ δ cos(πY/3)

for some 0 < δ < 1. These choices suggest P 6⊥ Y |X for some X , and the conditional de-
pendency is stronger when δ is larger in this setting. We still compare the same eight phyloge- 360

netic conditional independence tests as we did in the previous simulation experiments and chose
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n = 100, the significance level as 0.05. Here, we compare the power of different methods esti-
mated by 300 times simulation experiments. Table 3 summarizes different methods’ power when
δ = 0.2, 0.4, 0.6, 0.8, 1. From Table 3, we can conclude that the newly proposed tests are more
sensitive to the nonlinear conditional association than existing methods.365

Table 3: Power comparison when the conditional association is highly nonlinear.

δ = 1 δ = 0.8 δ = 0.6 δ = 0.4 δ = 0.2

CRT ΨΛ,1(Rn) 1.000 0.977 0.854 0.336 0.113
ΨΛ,∞(Rn) 1.000 1.000 0.977 0.558 0.076

NNB ΨΛ,1(Rn) 1.000 0.990 0.894 0.355 0.103
ΨΛ,∞(Rn) 1.000 1.000 0.980 0.575 0.076

PERMANOVA L1 0.033 0.053 0.063 0.037 0.086
L2 0.037 0.063 0.060 0.040 0.076

MiRKAT L1 0.033 0.056 0.060 0.043 0.090
L2 0.043 0.060 0.066 0.037 0.073

5.2. Analysis of Real Data
To demonstrate its practical merit, we apply the proposed method to a gut microbiome data

set of 7009 samples collected in the Guangdong Gut Microbiome Project (He et al., 2018). The
raw sequence reads are denoised and placed on a reference phylogenic tree from the Greengenes
database. The resulting data sets, including 37532 ASVs and a corresponding phylogenetic tree,370

can be downloaded from Qiita (https://qiita.ucsd.edu/) under study ID 11757. In this section,
we focus on the investigation of the association between the human gut microbiome and the
host’s diet, including red wine and salt consumption. In the association study, we also adjust the
potential confounding effect of age, as middle-aged people have higher salt diets and drink more
red wine than other age levels (Figure 3).375

Fig. 3: Scatter plot of red wine and salt consumption against age. Left figure is age vs red wine
and right figure is age vs salt.

To test the association between the human gut microbiome and the host’s diet, we consider the
six rank-based phylogenetic conditional independence tests: ΨΛ,1(Dn), ΨΛ,1(τ∗n), ΨΛ,1(Rn),
ΨΛ,∞(Dn), ΨΛ,∞(τ∗n), and ΨΛ,∞(Rn), and MiRKAT equipped with weighted Unifrac distance
and its L2 Zolotarev-type generalization. The P -values in rank-based phylogenetic conditional
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independence tests are calculated using 200 permutations. To compare the performance in dif- 380

ferent sample size, we consider three different data set: 1) 2000 randomly selected samples, 2)
4000 randomly selected samples, and 3) all samples. Table 4 summarizes the resulting P -values.

Table 4: The P -values for association analysis using different methods.

Method Red Wine Salt
n = 2000 n = 4000 All n = 2000 n = 4000 All

ΨΛ,1(Dn) 0.1940 0.0149 0.0050 0.0647 0.0050 0.0050
ΨΛ,∞(Dn) 0.6269 0.1393 0.1244 0.8856 0.6269 0.6070
ΨΛ,1(Rn) 0.1294 0.0100 0.0050 0.0050 0.0050 0.0050
ΨΛ,∞(Rn) 0.6418 0.0597 0.1244 0.7662 0.5373 0.1940
ΨΛ,1(Tn) 0.0896 0.0100 0.0050 0.0299 0.0050 0.0050
ΨΛ,∞(Tn) 0.5871 0.1194 0.1343 0.8507 0.5572 0.3134

MiRKAT (L1) 0.4049 0.3146 0.4690 0.5934 0.0580 0.0002
MiRKAT (L2) 0.3208 0.1970 0.4148 0.6277 0.0691 0.0003

When all samples are used in the analysis, all sum type rank-based phylogenetic conditional in-
dependence tests and MiRKAT indicate an association between salt diet and the gut microbiome,
which is consistent with previous findings that gut microbial composition can be reshaped by a 385

high-salt diet and is a key linkage in the relationship between high blood pressure and sodium
intake (Smiljanec & Lennon, 2019; Jama & Marques, 2020; Yan et al., 2020; Chen et al., 2020).
However, if the sample size is reduced to 2000 or 4000, only rank-based tests can identify the
association between sodium intake and gut microbiome, while MiRKAT does not detect such a
nonlinear association (Figure 4). Besides the salt dietary’s effect, the rank-based tests also iden- 390

tify an association between red wine consumption and gut microbiome when the sample size
is larger than 4000. The red wine’s effect on the gut microbiome has been well studied, and it
is believed that red wine polyphenols are related to several beneficial and pathogenic bacteria
(Cardona et al., 2013; Nash et al., 2018; Le Roy et al., 2020). Nevertheless, the MiRKAT does
not report such an association as the relationship between red wine consumption and the gut mi- 395

crobiome is highly nonlinear (Figure 4). The results in Table 4 suggest that the proposed method
is more powerful in detecting nonlinear association and can potentially lead to more scientific
discoveries in microbiome studies.

Fig. 4: Scatter plot of red wine and salt consumption against the relative abundance of the most
significant subtree. Left figure is red wine and right figure is salt.
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