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a b s t r a c t

This paper considers testing the equality of multiple high-dimensional mean vectors under
dependency. We propose a test that is based on a linear transformation of the data by
the precision matrix which incorporates the dependence structure of the variables. The
limiting null distribution of the test statistic is derived and is shown to be the extreme value
distribution of type I. The convergence to the limiting distribution is, however, slow when
the number of groups is relatively large. An intermediate correction factor is introduced
which significantly improves the accuracy of the test. It is shown that the test is particularly
powerful against sparse alternatives and enjoys certain optimality. A simulation study is
carried out to examine the numerical performance of the test and compare with other
tests given in the literature. The numerical results show that the proposed test significantly
outperforms those tests against sparse alternatives.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

An interesting testing problem in multivariate analysis is that of testing the equality of K population means µ1, . . . ,µK ,
based on K independent random samples, each from a distributionwithmeanµi and a common covariancematrix6, where
1 ≤ i ≤ K and K ≥ 2 is a fixed constant. This testing problem arises in many scientific applications, including genetics,

medical imaging and biology. See, for example, [21,14,17]. In the Gaussian setting where one observes {X i1, . . . ,X ini}
iid
∼

N(µi, 6) for 1 ≤ i ≤ K , the problem can be formulated as testing the hypotheses

H0 : µ1 = µ2 = · · · = µK versus H1 : µi ≠ µj for some i ≠ j.

A classical procedure is the likelihood ratio test with the test statistic given by

λ =

K
i=1

(X̄ i − X̄)T6−1
w (X̄ i − X̄), (1)

where X̄ i =
1
ni

ni
j=1 X ij, X̄ =

1
n

K
i=1
ni

j=1 X ij with n = n1 + · · · + nK and 6w =
K

i=1
ni

j=1(X ij − X̄ i)(X ij − X̄ i)
T is the

within-class sample covariancematrix up to a constant. The likelihood ratio test has beenwell studied. See, for example, [1].
In many contemporary applications, high dimensional data, whose dimension is often much larger than the sample size,

are commonly available. In such a setting, the classical methods which are designed for the low-dimensional case either

∗ Corresponding author.
E-mail addresses: tcai@wharton.upenn.edu (T.T. Cai), xiayin@email.unc.edu (Y. Xia).

http://dx.doi.org/10.1016/j.jmva.2014.07.002
0047-259X/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmva.2014.07.002
http://www.elsevier.com/locate/jmva
http://www.elsevier.com/locate/jmva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmva.2014.07.002&domain=pdf
mailto:tcai@wharton.upenn.edu
mailto:xiayin@email.unc.edu
http://dx.doi.org/10.1016/j.jmva.2014.07.002


T.T. Cai, Y. Xia / Journal of Multivariate Analysis 131 (2014) 174–196 175

perform poorly or are no longer applicable. For example, the likelihood ratio test is unsatisfactory when the dimension
is high relative to the sample sizes. The two-sample case, i.e. K = 2, has been relatively well studied recently in the
high-dimensional setting and several alternatives to the likelihood ratio test have been proposed. For example, Bai and
Saranadasa [2], Srivastava and Du [20], Srivastava [18], and Chen and Qin [9] proposed tests, which are based on the sum of
squares type statistics, that perform well under the dense alternatives where the difference of the two means spreads out.
But these tests are known to suffer from low power under the sparse alternatives where the two mean vectors differ only
in a small number of coordinates. Cai, Liu and Xia [7] introduced a test, which is based on the maximum type statistic, that
is shown to be particularly powerful against sparse alternatives and enjoys certain optimality.

In comparison, themultiple-sample case ismuch less studied in the high-dimensional setting, although several proposals
for correcting the likelihood ratio test have also been introduced. Fujikoshi, Himeno and Wakaki [11] considered the
Dempster trace test, which is based on the ratio of the trace of between-class sample covariance matrix 6b and the trace
of the within-class sample covariance matrix6w , where6b =

K
i=1 ni(X̄ i − X̄)(X̄ i − X̄)T . Instead of the ratio, Schott [16]

proposed a test statistic based on the difference of two traces. Srivastava [19] constructed a test statistic by replacing the
inverse of the within-class sample covariance matrix by its Moore–Penrose inverse. All of these test statistics are based
on an estimator of


1≤i≤K (µi − µ̄)TA(i)(µi − µ̄) for some positive definite matrices A(i). We call these sum of squares

type statistics as they all aim to estimate the squared Euclidean norm


1≤i≤K ∥(A(i))
1
2 (µi − µ̄)∥2

2. In genomics and many
other applications, the means of the populations are typically either identical or are quite similar in the sense that they only
possibly differ in a small number of coordinates. As in the two-sample case, the above mentioned sum of squares type tests
in the multiple-sample case suffer from low power under sparse alternatives.

The goal of the present paper is to develop a test that is powerful against sparse alternatives for multiple samples in the
high dimensional setting under dependency. To explore the sparsity in the mean differences and the dependence between
the variables, the test is based on the linear transformation of the observations by the precisionmatrix�: {�X i1, . . . , �X ini},
for 1 ≤ i ≤ K . The new test statistic is then defined to be the maximum of the sum of squares of all possible two sample
t-statistics of the transformed observations {�X i1, . . . , �X ini} and {�X j1, . . . , �X jnj} for 1 ≤ i < j ≤ K . The limiting null
distribution of the test statistic is derived and is shown to be the extreme value distribution of type I. The convergence of
the distribution of the test statistic under the null to the limiting distribution is, however, slow when the number of groups
is relatively large. We further introduced an intermediate correction factor which significantly improves the accuracy of the
test. Although the basic idea underlying the construction of the test statistic is similar to the one for the two-sample case
in [7], the techniques and the intermediate correction procedure are new and aremuchmore involved than the two-sample
case.

Both theoretical and numerical properties of the test are studied. It is shown that the test is particularly powerful against
sparse alternatives and enjoys certain optimality. A simulation study is carried out to examine the numerical performance of
the test and compare with other tests given in the literature. The numerical results show that the proposed test significantly
outperforms those tests against sparse alternatives. We also illustrate the improvement after using the correction factor
by comparing its cumulative distribution with the type I extreme value distribution as well as the empirical limiting
distribution. The limiting distribution after using the correction is amuch better approximation to the empirical distribution,
as illustrated in Fig. 2 in Section 3.2. As a direct consequence, numerical results show that the size of the resulting test is
close to the nominal level.

The rest of the paper is organized as follows. After reviewing basic notation and definitions, Section 2 introduces the new
test statistics. Theoretical properties of the proposed tests are investigated in Section 3. Limiting null distributions of the
test statistics and the power of the tests, both for the case the precision matrix � is known and the case � is unknown, are
analyzed. A simulation study is carried out in Section 4 to investigate the numerical performance of the tests. Discussions
of the results and other related work are given in Section 5. The proofs of main results are presented in Section 6.

2. Methodology

We first construct a testing procedure in the oracle setting in Section 2.1 where the covariance matrix 6 is assumed to
be known. In addition, another natural testing procedure is introduced in this setting. A data-driven procedure is given in
Section 2.2 for the general case of unknown covariance matrix 6.

We begin with basic notation and definitions. For a vector β = (β1, . . . , βp)
TT

∈ Rp, define the ℓq norm by |β|q =

(
p

i=1 |βi|
q)1/q for 1 ≤ q ≤ ∞with the usualmodification for q = ∞. A vectorβ is called k-sparse if it has atmost k nonzero

entries. For a matrix A = (aij)p×p, the matrix 1-norm is the maximum absolute column sum, ∥A∥L1 = max1≤j≤p
p

i=1 |aij|,
the matrix elementwise infinity norm is defined to be |A|∞ = max1≤i,j≤p |aij| and the elementwise ℓ1 norm is ∥A∥1 =p

i=1
p

j=1 |aij|. For a matrix A, we say A is k-sparse if each row/column has at most k nonzero entries. We shall denote

(


n1n2
n1+n2

(µ1i −µ2i),


n1n3
n1+n3

(µ1i −µ3i), . . . ,


nK−1nK
nK−1+nK

(µK−1i −µKi))
T

=: δi = (δ
(12)
i , . . . , δ

(K−1K)
i )T so the null hypothesis

can be equivalently written as H0 : |δi|2 = 0 for i = 1, . . . , p. Let δ(jl)
:= (δ

(jl)
1 , . . . , δ

(jl)
p )T =


njnl
nj+nl

(µj − µl), then the

alternative is called k-sparse if δ(jl) is k-sparse for all 1 ≤ j < l ≤ K . For two sequences of real numbers {an} and {bn},
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write an = O(bn) if there exists a constant C such that |an| ≤ C |bn| holds for all sufficiently large n, write an = o(bn) if
limn→∞ an/bn = 0, and write an ≍ bn if there are positive constants c and C such that c ≤ an/bn ≤ C for all n ≥ 1.

2.1. Oracle procedure

Suppose we observe independent p-dimensional random samples

X11, . . . ,X1n1 ∼ N(µ1, 6),X21, . . . ,X2n2 ∼ N(µ2, 6), . . . ,XK1, . . .XKnK ∼ N(µK , 6),

where the covariance matrix 6 := (σij) is known. In this case, the null hypothesis H0 : |δi|2 = 0, for i = 1, . . . , p, is
equivalent to H0 : |ηi|2 = 0, for i = 1, . . . , p, where ηi = ((Aδ(12))i, . . . , (Aδ(K−1K))i)

T for any p× p positive definite matrix
A := (aij). An unbiased estimator of ηi is the sample mean vector (


n1n2
n1+n2

(A(X̄1 − X̄2))i, . . . ,


nK−1nK
nK−1+nK

(A(X̄K−1 − X̄K ))i)
T ,

where (X̄j1, . . . , X̄jp) =: X̄ j =
1
nj

nj
t=1 X jt , 1 ≤ j ≤ K . For testing the null hypothesis H0 : |δi|2 = 0, for i = 1, . . . , p, a

natural class of test statistics is

MA = max
1≤i≤p


1≤j<l≤K

njnl

nj + nl

(A(X̄ j − X̄ l))
2
i

bii
, (2)

where (bij) =: B = A6A. In the present paper, we are particularly interested in the choice of A = 6−1
=: � := (ωij),

M� = max
1≤i≤p


1≤j<l≤K

njnl

nj + nl

(�(X̄ j − X̄ l))
2
i

ωii
. (3)

In the two-sample case, [7] showed that the choice of precision matrix works well and the resulting test enjoys certain
optimality against sparse alternatives. The motivation on the linear transformation of the data by the precision matrix
� in the multiple-sample case is similar as in [7]. Under a sparse alternative, the power of a test mainly depends on the
magnitudes of the signals (nonzero coordinates of (|δ1|2, . . . , |δp|2)

T ) and the number of the signals. It will be shown in
Section 6 that |ηi|2 is approximately equal to ωii|δi|2 for all i such that |δi|2 ≠ 0. The magnitudes of the nonzero signals

|δi|2 are then transformed to ω
1
2
ii |δi|2 after normalized by the standard deviation of the transformed variable (�X)i. In

comparison, the magnitudes of the signals in the original data are |δi|2/σ
1
2
ii . It can be seen from the inequality ωiiσii ≥ 1

for i = 1, . . . , p that ω
1
2
ii |δi|2 ≥ |δi|2/σ

1
2
ii . That is, such a linear transformation magnifies the signals and the number of the

signals due to the dependence in the data. The transformation thus helps to distinguish the null and alternative hypothesis.
The advantage of this linear transformation will be discussed in Section 5. Similar transformations are also studied in, for
example, the detection problem through the innovated higher criticism in [13]. A similar innovated thresholding method is
also considered in [10] for an optimal classification procedure.

A natural choice of A is A = I . That is, the test is directly based on the sample means X̄ j − X̄ l for 1 ≤ j < l ≤ K . Define
the test statistic

MI = max
1≤i≤p


1≤j<l≤K

njnl

nj + nl

(X̄ j − X̄ l)
2
i

σii
, (4)

where σii are the diagonal elements of 6. It will be shown in Section 5 that the test based onMI is uniformly outperformed
by the test based onM� for testing against sparse alternatives.

2.2. Data-driven procedure

We have so far focused on the oracle case in which the covariancematrix is known. For testing the hypothesis H0 : µ1 =

µ2 = · · · = µK in the case of unknown covariance matrix, motivated by the oracle procedure MA given in Section 2.1, the
general test statistic isMA, where Â is an estimator for A, defined by

MA = max
1≤i≤p


1≤j<l≤K

njnl

nj + nl

(A(X̄ j − X̄ l))
2
i

b̂ii
, (5)

where (b̂ij) =: B =
1K

l=1 nl−K
{
K

l=1
nl

t=1(
A(X lt − X̄ l))(A(X lt − X̄ l))

T
}. For the specific choice of A = �, we use the

constrained ℓ1 minimization method given in [6] to estimate �. Other good estimators of the precision matrix can also be
used. See more discussions in Remark 2 in Section 3.3.2. Then our final test statistic is

M� = max
1≤i≤p


1≤j<l≤K

njnl

nj + nl

(�(X̄ j − X̄ l))
2
i

b̂ii
, (6)
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with (b̂ij) =: B =
1K

l=1 nl−K
{
K

l=1
nl

t=1(
�(X lt − X̄ l))(�(X lt − X̄ l))

T
}. The simulation results in Section 4 show that the

numerical performance of the test based onM� is similar to that of the test based onM�.

3. Theoretical analysis

We now turn to the analysis of the properties ofM� andM� including the limiting null distribution and the power of the
corresponding tests. An intermediate correction for the limiting distribution is introduced. Wewill show that the test based
onM� enjoys certain optimalitywhen testing against sparse alternatives.Moreover, under suitable conditions the test based
on M� performs as well as that based on M� and thus shares the same optimality. The asymptotic null distribution of MI is
also derived.

3.1. Asymptotic distributions of the oracle test statistics

We first establish the asymptotic null distributions for the oracle test statistics M� and MI . Let D1 = diag(σ11, . . . , σpp)
and D2 = diag(ω11, . . . , ωpp), where σkk and ωkk are the diagonal entries of 6 and � respectively. The correlation matrix of
X is then Γ = (γij) = D−1/2

1 6D−1/2
1 and the correlation matrix of �X is R = (rij) = D−1/2

2 �D−1/2
2 . To obtain the limiting

null distributions, we assume that the eigenvalues of the covariance matrix 6 are bounded from above and below, and the
correlations in Γ and R are bounded away from −1 and 1. More specifically we assume the following:

(C1) : C−1
0 ≤ λmin(6) ≤ λmax(6) ≤ C0 for some constant C0 > 0;

(C2) : max1≤i<j≤p |γij| ≤ r1 < 1 for some constant 0 < r1 < 1;
(C3) : max1≤i<j≤p |rij| ≤ r2 < 1 for some constant 0 < r2 < 1.

Condition (C1) on the eigenvalues is a common assumption in the high-dimensional setting. Conditions (C2) and (C3) are
also mild. For example, if max1≤i<j≤p |rij| = 1, then 6 is singular.

Let Y i =
1
σii

(


n1n2
n1+n2

(X̄1 − X̄2)i,


n1n3
n1+n3

(X̄1 − X̄3)i, . . . ,


nK−1nK
nK−1+nK

(X̄K−1 − X̄K )i)
T , Let 60 be the b× b covariance matrix

of Y i := (Y1i, . . . , Ybi) for i = 1, . . . , p, where b =
K(K−1)

2 . Let σ 2 be the largest eigenvalue of 60 and d be the dimension of
the corresponding eigenspace. Let σ 2

i , 1 ≤ i < d′, be the positive eigenvalues of 60 arranged in a nonincreasing order and
taking into account the multiplicities. Further, if d′ < ∞, put σ 2

i = 0, i ≥ d′. Let H(6) :=


∞

i=d+1(1− σ 2
i /σ 2)−1/2. Then the

following theorem states the asymptotic null distributions for the oracle statisticsM� andMI .

Theorem 1. Let the test statistics M� and MI be defined as in (3) and (4), respectively.
(i) Suppose (C1) and (C3) hold. Then for any x ∈ R, as p → ∞,

PH0


M� − 2σ 2 log p − (d − 2)σ 2 log log p ≤ x


→ exp


−Γ −1


d
2


H(6) exp


−

x
2σ 2


where Γ (·) is the gamma function.

(ii) Suppose (C1) and (C2) hold. Then for any x ∈ R, as p → ∞,

P

MI − 2σ 2 log p − (d − 2)σ 2 log log p ≤ x


→ exp


−Γ −1


d
2


H(6) exp


−

x
2σ 2


.

When the sample sizes are equal, that is, n1 = n2 = · · · = nK , it is easy to check that σ 2
=

K
2 , d = K − 1 and H(6) = 1.

Thus, we have the following simple expression for the asymptotic limiting distribution.

Corollary 1. Let the test statistics M� and MI be defined as in (2) and (4), respectively.
(i) Suppose (C1) and (C3) hold and n1 = n2 = · · · = nK . Then for any x ∈ R, as p → ∞,

PH0


M� − K log p −

K(K − 3)
2

log log p ≤ x


→ exp


−Γ −1

K − 1

2


exp


−

x
K


.

(ii) Suppose (C1) and (C2) hold and n1 = n2 = · · · = nK . Then for any x ∈ R, as p → ∞,

P


MI − K log p −

K(K − 3)
2

log log p ≤ x


→ exp


−Γ −1

K − 1

2


exp


−

x
K


.

Theorem 1 holds for any fixed sample sizes nj for 1 ≤ j ≤ K and it shows thatM� andMI have the same asymptotic null
distribution. Based on the limiting null distribution, we propose the asymptotically α-level test

Φα(�) = I{M� ≥ 2σ 2 log p + (d − 2)σ 2 log log p + qα} (7)
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Fig. 1. Comparison of the empirical cumulative distribution and the limiting cumulative distributions with p = 200, n1 = · · · = n5 = 100 and K = 5.

where qα is the 1−α quantile of the type I extreme value distributionwith cumulative distribution function exp

−Γ −1

 d
2


H(6) exp


−

x
2σ 2


, i.e.,

qα = −2σ 2 log


Γ


d
2


+ 2σ 2 log(H(6)) − 2σ 2 log log(1 − α)−1.

The null hypothesis H0 is rejected if and only if Φα(·) = 1. Similarly, we define

Φα(I) = I{MI ≥ 2σ 2 log p + (d − 2)σ 2 log log p + qα}.

Although the asymptotic null distribution of the test statistics M� and MI are the same, the power of the tests Φα(�) and
Φα(I) are quite different. It is shown in Section 5 that the power of Φα(�) uniformly dominates the power of Φα(I) when
testing against sparse alternatives.

3.2. Intermediate correction factor for large K

When the number of groups is larger than 3, the test Φα(�) given in (7) based on the asymptotic distribution under
the null hypothesis summarized in Theorem 1 has serious size distortion because the convergence rate in distribution of
the extreme value type statistics is slow. See, for example, [12,15,4]. Fig. 1 illustrates the size distortion of the limiting
distribution in Theorem 1 by comparing its cumulative distribution with the empirical distribution when the data are
generated from N(0, I), with p = 200, n1 = · · · = nK = 100 and K = 5.

It can be seen from Fig. 1 that there is a noticeable difference between the two cumulative distributions, and directly
applying the limiting distribution in Theorem 1 would lead to a test whose true size is significantly different from the
nominal level. This distortion mainly comes from the accumulation of the normal approximation error when K is relatively
large. Thus, instead of directly calculating the approximated normal tails, we derive the following intermediate correction
for the asymptotic limiting null distribution.

Proposition 1. Define the test statistics M� and MI as in (3) and (4), respectively.
(i) Suppose (C1) and (C3) hold. Then for any x ∈ R,

PH0


M� ≤ xp


/ exp


−p · P(∥Y∥

2
2 ≥ xp)


→ 1

as p → ∞, where xp = 2σ 2 log p+ (d−2)σ 2 log log p+ x and Y is a Gaussian random variable with mean zero and covariance
matrix 60, where 60 is the b × b covariance matrix as defined in Section 3.1.

(ii) Suppose (C1) and (C2) hold. Then for any x ∈ R

PH0


MI ≤ xp


/ exp


−p · P(∥Y∥

2
2 ≥ xp)


→ 1

as p → ∞, where xp = 2σ 2 log p+ (d−2)σ 2 log log p+ x and Y is a Gaussian random variable with mean zero and covariance
matrix 60.

In light of the results given in Proposition 1, for any p×p positive definite matrix A, based on the test statisticMA given in
(2), a corrected α-level test can be defined by Ψα(A) = I{MA ≥ tα,p}, where tα,p satisfies P(∥Y∥2 ≥ tα,p) = −1/p log(1−α)
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Fig. 2. Comparison of three cumulative distributions with p = 200, n1 = · · · = n5 = 100 and K = 5.

and Y is a Gaussian random variable with mean zero and covariance matrix 60. In particular, we propose the corrected
α-level test

Ψα(�) = I{M� ≥ tα,p}. (8)

Similarly, we define Ψα(I) = I{MI ≥ tα,p}.

As an illustration of the accuracy of the corrected distribution in Proposition 1, we compare its cumulative distribution
with the empirical distribution under the same setting as in Fig. 1, as well as the limiting distribution derived in Theorem 1.
We can see from Fig. 2 that the corrected asymptotic distribution is much closer to the empirical distribution and as a result
will provide a muchmore precise cutoff value for a given nominal level. Simulation results in Section 4 show that the actual
size of Ψα(�) is close to the pre-specified nominal level. We recommend to use the test Φα(�) given in (7) for K ≤ 3 and
use the test Ψα(�) given in (8) for K ≥ 4.

3.3. The asymptotic properties of Φα(�) and Φα(�)

In this section, we analyze the asymptotic power of the test Φα(�) and show that it is minimax rate optimal against
sparse alternatives. For a given positive definite matrix A, the corrected testΨα(A) shares the same asymptotic properties as
Φα(A) since it is derived from the intermediate correction term of the limiting distribution in Theorem 1 instead of directly
calculating the tail probability. Thus in this section we focus the discussion on the asymptotic properties of Φα(A).

In practice, � is unknown and the test statisticM� should be used instead ofM�. Define the set of kp-sparse vectors by

S(kp) =


δ(jl), 1 ≤ j < l ≤ K : max

1≤j<l≤K

p
i=1

I{δ(jl)
i ≠ 0} ≤ kp


,

where δ(jl)
=


njnl
nj+nl

(µj − µl). Throughout the section, we analyze the power ofM� and M� under the alternative

H1 : {δ(jl), 1 ≤ j < l ≤ K} ∈ S(kp) with kp = pr and the nonzero locations of δ(jl),
for every 1 ≤ j < l ≤ K , are randomly uniformly drawn from {1, . . . , p}.

As discussed in [7], the condition on the nonzero coordinates in H1 is mild. The same condition has been imposed in [13].
We show that, under some suitable assumptions, Φα(�) performs as well as Φα(�) asymptotically.

3.3.1. The asymptotic power of Φα(�) and its optimality
The asymptotic power of Φα(�) is analyzed under certain conditions on the separation among µj and µl for 1 ≤ j < l ≤

K . Furthermore, a lower bound is derived to show that this condition is minimax rate optimal in order to distinguish H1 and
H0 with probability tending to 1.

Theorem 2. Suppose that (C1) holds. If r < 1/4 and maxi |δi|2/σ
1
2
ii ≥


2σ 2β log p with β ≥ 1/(mini σiiωii) + ε for some

constant ε > 0, then we have, as p → ∞,

PH1 (Φα(�) = 1) → 1.
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We shall show that the condition maxi |δi|2/σ
1
2
ii ≥


2σ 2β log p is minimax rate optimal for testing against sparse alterna-

tives, which is a direct result of Theorem 3 in [7]. First we introduce some conditions as in [7].

(C4) kp = pr for some r < 1/2 and � = 6−1 is sp-sparse with sp = O((p/k2p)
γ ) for some 0 < γ < 1.

(C4′) kp = pr for some r < 1/4.
(C5) ∥�∥L1 ≤ M for some constantM > 0.

Define the class of α-level tests by

Tα = {Φα : PH0 (Φα = 1) ≤ α}.

Let Aδ,c = S(kp) ∩ {max1≤i≤p |δi|2 ≥ c
√
log p} be a set of kp-sparse vectors {δ(jl), 1 ≤ j < l ≤ K} with the ℓ∞ norm of

(|δ1|2, . . . , |δp|2) having the magnitude greater than or equal to c
√
log p for some constant c > 0. The following theorem

shows that the condition maxi |δi|2/σ
1
2
ii ≥


2σ 2β log p is minimax rate optimal.

Theorem 3. Assume that (C4) (or (C4′)) and (C5) hold. Let α, ν > 0 and α + ν < 1. Then there exists a constant c > 0 such
that for all sufficiently large ni and p, i = 1, . . . , K,

inf
{δ(jl),1≤j<l≤K}∈Aδ,c

sup
Φα∈Tα

P(Φα = 1) ≤ 1 − ν.

Remark 1. The lower bound result follows directly from Theorem 3 in [7]. We construct µ1 and µ2 exactly the same as
the worst case in the proof of lower bound result in [7] and let µj = 0 for j = 3, . . . , K . Then the result of above theorem
follows.

3.3.2. The asymptotic properties of Φα(�) and its optimality
We now analyze the properties of M� and the corresponding test including the limiting null distribution and the

asymptotic power. We shall show that M� has the same limiting null distribution as M� and define the corresponding
test Φα(�) by

Φα(�) = I{M� ≥ 2σ 2 log p + (d − 2)σ 2 log log p + qα}.

Under some suitable assumptions, the asymptotic properties of Φα(�) are similar to those of Φα(�). Define the following
class of matrices that belong to an ℓq ball with 0 ≤ q < 1:

Uq(sp,Mp) =


� ≻ 0 : ∥�∥L1 ≤ Mp, max

1≤j≤p

p
i=1

|ωij|
q
≤ sp


.

We assume that � ∈ Uq(sp,Mp) so � can be well estimated by the CLIME estimator� under some conditions on sp andMp;
see [6].

Theorem 4. Suppose that (C1) and (C3) hold and � ∈ Uq(sp,Mp) with

sp = o


n(1−q)/2

M1−q
p (log p)(3−q)/2


. (9)

(i)Then under the null hypothesis H0, for any x ∈ R,

PH0


M� − 2σ 2 log p − (d − 2)σ 2 log log p ≤ x


→ exp


−Γ −1


d
2


H(60) exp


−

x
K


,

as nj, p → ∞ for j = 1, . . . , K. Furthermore, for any x ∈ R,

PH0


M� ≤ xp


/ exp


−p · P(∥Y∥

2
2 ≥ xp)


→ 1

as nj, p → ∞, where xp = 2σ 2 log p + (d − 2)σ 2 log log p + x and Y is a Gaussian mean zero r.v. with covariance matrix 60.
(ii)Under the alternative hypothesis H1 with r < 1/6, we have

PH1


Φα(�) = 1


PH1 (Φα(�) = 1)

→ 1,

as nj, p → ∞ for j = 1, . . . , K. Furthermore, if maxi |δi|2/σ
1
2
ii ≥


2σ 2β log p with β ≥ 1/(mini σiiωii) + ε for some constant

ε > 0, then we have, for j = 1, . . . , K ,

PH1


Φα(�) = 1


→ 1, as nj, p → ∞.
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By Theorem 4, we see that M� and M� have the same asymptotic distribution and power, and so the test Φα(�) is also
minimax rate optimal.

Remark 2. The CLIME estimator in [6] is considered in this section. As in the two-sample case, other ‘‘good’’ estimators of
the precision matrix can also be used. In general, Theorem 4 still holds if log p = o(n) and the estimator � satisfies the
following conditions:

∥� − �∥L1 = oP


1

log p


and max

1≤i≤p
|b̂ii − bii| = oP


1

log p


, (10)

where (bij) =: B = �6� and (b̂ij) =:B = �6�.

3.3.3. Comparison with Φα(I)
It is interesting to compare the power of the new test with the maximum test based on the original observations. More

specifically, we compare the power of the test Φα(�) with that of Φα(I) under the same alternative H1 as in Section 3.3.2.
We show in the following Proposition that the power of Φα(�) dominates the power of Φα(I) under suitable conditions.

Proposition 2. Suppose (C1)–(C3) hold. Then under H1 with r < 1/6, we have

lim inf
p→∞

PH1(Φα(�) = 1)
PH1(Φα(I) = 1)

≥ 1. (11)

Proposition 2 shows that, under some sparsity conditions on {δ(jl), 1 ≤ j < l ≤ K}, Φα(�) is uniformly at least as powerful
as Φα(I). The test Φα(�) can be strictly more powerful than Φα(I). Assume that

H ′

1 : max
1≤j<l≤K

p
i=1

I{δ(jl)
i ≠ 0} = kp = pr , r <

1
2
,

with nonzero elements

2σ 2β0 log p ≤

|δi|2
√

σii
≤


2σ 2β1 log p. (12)

The nonzero locations of δ(jl), for every 1 ≤ j < l ≤ K , are randomly and uniformly drawn from {1, . . . , p}.

Proposition 3. Suppose that (C1)–(C3) hold andmin1≤i≤p σiiωii ≥ 1 + ε1 for some ε1 > 0. Then, under H ′

1 with

(1 −
√
r)2

min
1≤i≤p

σiiωii
+ ϵ ≤ β0 < β1 < (1 −

√
r)2

for some ϵ > 0, we have

lim
p→∞

PH ′
1
(Φα(�) = 1) = 1

and

lim sup
p→∞

PH ′
1
(Φα(I) = 1) ≤ α.

When the variables are correlated, ωii can be strictly larger than 1/σii. For example, let 6 = (φ|i−j|) with |φ| < 1. Then
min1≤i≤p σiiωii ≥ (1 − φ2)−1 > 1. That is, Φα(�) is strictly more powerful than Φα(I) under H ′

1. For reasons of space, we
omit the proofs of these two propositions.

4. Simulation study

In this section, we consider the numerical performance of the tests Φα(�) and Φα(�) and compare these tests with a
number of other tests, including the oracle testΦα(I), the tests based on the sum of squares type statistics in [11,16,19], and
the commonly used likelihood ratio test. These last four tests are denoted respectively by FHW, Sc, Sr and LRT respectively
in the tables below.

In the simulations, we consider two settings on the number of the groups: K = 3 and K = 5.We follow the recommenda-
tions made in Section 3.2 by using the test Φα(�) given in (7) for K = 3 and using the test Ψα(�) given in (8) for K = 5. We
shall always take µ1 = 0. Under the null hypothesis, µ2 = · · · = µK = 0, while under the alternative hypothesis, we take
µi = (µi1, . . . , µip)

T , for i = 2, . . . , K , to have m nonzero entries with the support Si = {l1i, . . . , lim : li1 < li2 < · · · < lim}
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uniformly and randomly drawn from {1, . . . , p}. For any lij ∈ Si, µilij has magnitude randomly uniformly drawn from the
interval [−

√
2 log p/n,

√
2 log p/n]. We take µik = 0 for k ∈ Sci .

For both K = 3 and K = 5, we consider three different values of m: the extreme sparse alternative, moderate sparse
alternative and non-sparse alternative. In this simulation study, the dimension p takes values 50, 100, 200 and 400, and the
corresponding values of m for each dimension are as follows. Under the extreme sparse alternative, let m = 2 for p = 50
and 100 and m = 5 for p = 200 and 400. We select m = 5 for p = 50, m = 10 for p = 100, m = 15 for p = 200 and
m = 20 for p = 400 when the alternative is moderate sparse. In the scenario when the alternative is non-sparse, we choose
m = 20 for p = 50,m = 30 for p = 100,m = 40 for p = 200 andm = 50 for p = 400.We considerm = 50 as a non-sparse
alternative when p = 400, because in this case the number of nonzero entries of the difference of any pair of mean vectors
can be as large as 100, and the value kp as defined in Section 3.3 is equal to 150 when K = 3 and is equal to 250 when K = 5.

Three different settings of the precisionmatrix� are considered in the simulation:� is known,� is unknown but sparse
and the case where the covariance matrix 6 is unknown but sparse. In the case when � is known, we compare the oracle
performance of the three tests based on the maximum-type statistics with the tests based on the sum of squares type
statistics. When � is unknown, we use the CLIME estimator in [6] to estimate it when � is sparse, while the inverse of
the adaptive thresholding estimator in [5] is used to estimate when 6 is sparse.

Let D = (dij) be a diagonal matrix with diagonal elements dii = Unif(1, 3) for i = 1, . . . , p. Denote by λmin(A) the
minimum eigenvalue of a symmetric matrix A. In the case when the precision matrix � is known, the following twomodels
for 6 are considered:

• Model 1: 6∗
= (σ ∗

ij ) where σ ∗

ii = 1, σ ∗

ij = 0.5 for i ≠ j. 6 = D1/26∗D1/2.
• Model 2: 6∗

= (σ ∗

ij ) where σ ∗

ii = 1, σ ∗

ij = Unif(0, 1) for i < j and σ ∗

ji = σ ∗

ij . 6 = D1/2(6∗
+ δI)/(1 + δ)D1/2 with

δ = |λmin(6
∗)| + 0.05.

In the case when the precision matrix � is sparse, we consider the following two models:

• Model 3:6 = (σij)where σii = 1, σij = 0.8 for 2(k−1)+1 ≤ i ≠ j ≤ 2k, where k = 1, . . . , [p/2] and σij = 0 otherwise.
• Model 4: 6 = (σij) where σij = 0.6|i−j| for 1 ≤ i, j ≤ p.

The following two models are considered when the covariance matrix 6 is sparse:

• Model 5: 6∗
= (σ ∗

ij ) where σ ∗

ii = 1, σ ∗

ij = 0.8 for 2(k − 1) + 1 ≤ i ≠ j ≤ 2k, where k = 1, . . . , [p/2] and σ ∗

ij = 0
otherwise. 6 = D1/26∗D1/2.

• Model 6: � = (ωij) where ωij = 0.6|i−j| for 1 ≤ i, j ≤ p. 6 = D1/2�−1D1/2.

Under each model, two independent random samples {X k} and {Y l} are generated with the same sample size n = 100
and n = 60 for K = 3 and K = 5 respectively from two multivariate normal distributions with the means µ1 and µ2
respectively and a common covariance matrix 6. The size and power are calculated from 1000 replications. The numerical
results are summarized in Tables 1–4.

It can be seen from Table 1 that the estimated sizes are close to the nominal level 0.05 for all the tests. Tables 2–4
summarize the power results under various alternatives. Under the extreme sparsity alternative, Table 2 shows that the
tests based on the sum of squares test statistics have trivial power, while the oracle test Φα(�) has the highest power
in all six models over all dimensions ranging from 50 to 400, and the performance of the test Φα(�) based on either the
CLIME estimator or the inverse of the adaptive thresholding estimator is close to that of the oracle test Φα(�) in Models
3–6. Under themoderate sparsity alternative, similar phenomena are observed, the testsΦα(�) andΦα(�) are significantly
more powerful in comparison to the other tests.

When the number of nonzero entries increases, the powers of all tests increase as well. Under the non-sparse alternative,
as can be seen from Table 4, the sum of squares type tests also enjoy high power in Models 3 and 4. In other models, the
tests Φα(�) and Φα(�) still significantly outperform the other tests though the alternative is non-sparse. In summary, The
tests Ψα(�) and Ψα(�) perform similarly and significantly outperform the other tests against a full range of alternatives in
the simulation study. Similar phenomena are observed for the corrected tests as shown in Tables 2–4.

As a graphical illustration, we also summarize the power comparison results in Fig. 3 for K = 3 and p = 400. The
horizontal axis represents each model and the vertical axis represents the powers of the four tests. We do not include LRT,
Sr and Φα(�) because, when p = 400 LRT is not well defined and Sr has trivial power, and Φα(�) has similar power as
Φα(�). It can be easily seen from Fig. 3 that the test Φα(�) significantly outperforms the other tests.

5. Discussion

We introduced in this paper the data-driven testing procedure Φα(�̂) and showed that it performs particularly well
against sparse alternatives. This procedure requires a good estimate of the precision matrix �. We have mainly focused in
this paper on the sparse precision matrices for which the CLIME estimator is known to perform well. The test Φα(�̂) can be
used with a much wider range of covariance/precision matrices. As mentioned in Section 3.3, one only needs an estimate �̂

satisfying the ℓ1 condition (10) and then the result given in Theorem 4 extends directly. For example, when the covariance
matrix 6 is either sparse or bandable, Condition (10) can be achieved by inverting thresholding or tapering estimators of
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Table 1
Empirical sizes of tests with α = 0.05. n = 100 when K = 3 and n = 60 when K = 5. Based on 1000 replications.

p 50 100 200 400 50 100 200 400 50 100 200 400 50 100 200 400 50 100 200 400 50 100 200 400

K = 3
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

LRT 0.06 0.05 0.05 – 0.05 0.05 0.06 – 0.06 0.06 0.06 – 0.04 0.06 0.06 – 0.05 0.06 0.07 – 0.06 0.06 0.06 –
FHW 0.09 0.06 0.07 0.06 0.06 0.05 0.05 0.02 0.04 0.04 0.03 0.02 0.06 0.06 0.03 0.02 0.05 0.05 0.03 0.02 0.05 0.05 0.03 0.01
Sc 0.09 0.06 0.08 0.06 0.06 0.06 0.07 0.05 0.05 0.05 0.05 0.05 0.06 0.07 0.06 0.06 0.06 0.06 0.05 0.06 0.06 0.06 0.06 0.06
Sr 0.06 0.05 0.05 0.00 0.05 0.05 0.06 0.00 0.06 0.06 0.06 0.00 0.04 0.06 0.06 0.00 0.05 0.06 0.07 0.00 0.06 0.06 0.06 0.00
Φα(I) 0.03 0.03 0.03 0.02 0.04 0.05 0.04 0.06 0.04 0.04 0.04 0.03 0.05 0.04 0.05 0.05 0.04 0.06 0.04 0.03 0.04 0.05 0.05 0.05
Φα(�) 0.05 0.06 0.04 0.05 0.04 0.03 0.05 0.03 0.04 0.04 0.06 0.05 0.05 0.05 0.05 0.06 0.04 0.05 0.04 0.05 0.05 0.04 0.06 0.05
Φα(�) – – – – – – – – 0.06 0.06 0.07 0.07 0.06 0.07 0.07 0.08 0.05 0.05 0.05 0.06 0.06 0.04 0.06 0.06

K = 5
LRT 0.06 0.06 0.07 – 0.05 0.06 0.08 – 0.06 0.06 0.05 – 0.06 0.06 0.06 – 0.05 0.05 0.08 – 0.07 0.06 0.05 –
FHW 0.09 0.08 0.07 0.06 0.06 0.06 0.05 0.03 0.05 0.06 0.03 0.02 0.06 0.06 0.04 0.01 0.05 0.04 0.03 0.03 0.05 0.04 0.02 0.01
Sc 0.09 0.08 0.07 0.06 0.07 0.06 0.06 0.06 0.06 0.07 0.06 0.05 0.06 0.07 0.06 0.04 0.06 0.05 0.05 0.06 0.06 0.06 0.05 0.05
Sr 0.06 0.06 0.07 0.00 0.05 0.06 0.08 0.00 0.06 0.06 0.05 0.00 0.06 0.06 0.06 0.00 0.05 0.05 0.08 0.00 0.07 0.06 0.05 0.00
Ψα(I) 0.04 0.03 0.03 0.03 0.05 0.04 0.05 0.05 0.04 0.06 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.04 0.05 0.04 0.05 0.05 0.05 0.05
Ψα(�) 0.04 0.06 0.05 0.04 0.04 0.05 0.06 0.04 0.03 0.05 0.05 0.06 0.05 0.06 0.06 0.04 0.06 0.05 0.05 0.05 0.05 0.05 0.04 0.05
Ψα(�) – – – – – – – – 0.06 0.07 0.07 0.08 0.06 0.06 0.06 0.07 0.05 0.07 0.07 0.07 0.06 0.06 0.06 0.06

Table 2
Powers of tests under extreme sparse alternative with α = 0.05. Based on 1000 replications.

p 50 100 200 400 50 100 200 400 50 100 200 400 50 100 200 400 50 100 200 400 50 100 200 400

K = 3 with extreme sparse alternative
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

LRT 0.11 0.06 0.28 – 0.23 0.14 0.15 – 0.26 0.34 0.34 – 0.26 0.22 0.33 – 0.19 0.14 0.21 – 0.04 0.08 0.11 –
FHW 0.08 0.11 0.05 0.04 0.14 0.06 0.09 0.09 0.18 0.10 0.11 0.19 0.08 0.12 0.19 0.12 0.13 0.05 0.08 0.08 0.00 0.05 0.12 0.09
Sc 0.11 0.11 0.05 0.04 0.14 0.06 0.05 0.04 0.16 0.10 0.11 0.16 0.08 0.11 0.19 0.07 0.13 0.03 0.06 0.03 0.00 0.05 0.07 0.05
Sr 0.11 0.06 0.28 0.00 0.23 0.14 0.15 0.00 0.26 0.34 0.34 0.00 0.26 0.22 0.33 0.00 0.19 0.14 0.21 0.00 0.04 0.08 0.11 0.00
Φα(I) 0.07 0.05 0.11 0.06 0.16 0.07 0.09 0.09 0.14 0.13 0.26 0.27 0.17 0.16 0.25 0.14 0.08 0.07 0.11 0.09 0.05 0.09 0.11 0.04
Φα(�) 0.07 0.12 0.48 0.27 0.29 0.15 0.45 0.73 0.48 0.78 0.82 1.00 0.28 0.43 0.69 0.59 0.19 0.17 0.45 0.49 0.12 0.11 0.18 0.12
Φα(�) – – – – – – – – 0.47 0.80 0.84 0.99 0.32 0.44 0.72 0.60 0.19 0.19 0.47 0.48 0.14 0.11 0.21 0.13

K = 5 with extreme sparse alternative
LRT 0.07 0.32 0.33 – 0.54 0.15 0.52 – 0.79 0.72 0.71 – 0.44 0.36 0.19 – 0.21 0.35 0.28 – 0.29 0.13 0.13 –
FHW 0.09 0.13 0.07 0.07 0.10 0.09 0.08 0.10 0.18 0.14 0.27 0.25 0.26 0.20 0.11 0.21 0.11 0.14 0.12 0.13 0.18 0.11 0.09 0.11
Sc 0.09 0.13 0.07 0.08 0.08 0.07 0.07 0.05 0.18 0.11 0.21 0.22 0.26 0.20 0.10 0.13 0.11 0.13 0.07 0.08 0.18 0.09 0.07 0.02
Sr 0.07 0.32 0.33 0.00 0.54 0.15 0.52 0.00 0.79 0.72 0.71 0.00 0.44 0.36 0.19 0.00 0.21 0.35 0.28 0.00 0.29 0.13 0.13 0.00
Φα(I) 0.06 0.26 0.11 0.18 0.17 0.14 0.19 0.18 0.34 0.24 0.43 0.21 0.26 0.26 0.17 0.31 0.03 0.11 0.10 0.15 0.13 0.06 0.07 0.05
Φα(�) 0.12 0.57 0.59 0.74 0.89 0.34 1.00 1.00 0.86 0.94 0.98 1.00 0.56 0.75 0.53 0.92 0.28 0.43 0.65 0.79 0.25 0.09 0.19 0.23
Φα(�) – – – – – – – – 0.85 0.96 0.98 1.00 0.58 0.75 0.54 0.93 0.30 0.42 0.66 0.81 0.25 0.11 0.17 0.27

Table 3
Powers of tests under moderate sparse alternative with α = 0.05. Based on 1000 replications.

p 50 100 200 400 50 100 200 400 50 100 200 400 50 100 200 400 50 100 200 400 50 100 200 400

K = 3 with moderate sparse alternative
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

LRT 0.36 0.37 0.28 – 0.54 0.79 0.69 – 0.81 1.00 1.00 – 0.70 0.83 0.68 – 0.65 0.78 0.76 – 0.35 0.22 0.21 –
FHW 0.15 0.08 0.11 0.10 0.05 0.20 0.13 0.15 0.40 0.61 0.68 0.48 0.28 0.42 0.41 0.40 0.15 0.36 0.32 0.28 0.11 0.09 0.09 0.14
Sc 0.15 0.08 0.11 0.10 0.05 0.19 0.10 0.12 0.40 0.58 0.59 0.34 0.28 0.38 0.32 0.22 0.15 0.32 0.21 0.15 0.10 0.08 0.05 0.05
Sr 0.36 0.37 0.28 0.00 0.54 0.79 0.69 0.00 0.81 1.00 1.00 0.00 0.70 0.83 0.68 0.00 0.65 0.78 0.76 0.00 0.35 0.22 0.21 0.00
Ψα(I) 0.19 0.04 0.17 0.18 0.11 0.15 0.17 0.23 0.28 0.52 0.54 0.40 0.34 0.44 0.38 0.58 0.13 0.26 0.27 0.17 0.06 0.11 0.07 0.11
Ψα(�) 0.25 0.32 0.53 0.69 0.91 1.00 1.00 0.96 0.85 1.00 1.00 1.00 0.76 0.88 0.87 0.96 0.57 0.81 0.95 0.98 0.38 0.23 0.22 0.47
Ψα(�) – – – – – – – – 0.84 1.00 1.00 1.00 0.78 0.87 0.91 0.96 0.57 0.82 0.95 0.99 0.37 0.24 0.25 0.49

K = 5 with moderate sparse alternative
LRT 0.91 0.61 0.76 – 0.97 0.96 0.93 – 1.00 1.00 1.00 – 0.86 0.79 0.52 – 0.93 0.99 0.96 – 0.31 0.83 0.29 –
FHW 0.12 0.10 0.09 0.08 0.17 0.21 0.37 0.53 0.56 0.96 0.86 0.95 0.31 0.26 0.20 0.85 0.22 0.35 0.53 0.51 0.16 0.34 0.19 0.17
Sc 0.12 0.10 0.09 0.08 0.16 0.16 0.31 0.32 0.56 0.94 0.82 0.92 0.30 0.26 0.20 0.82 0.19 0.31 0.45 0.33 0.15 0.29 0.11 0.07
Sr 0.91 0.61 0.76 0.00 0.97 0.96 0.93 0.00 1.00 1.00 1.00 0.00 0.86 0.79 0.52 0.00 0.93 0.99 0.96 0.00 0.31 0.83 0.29 0.00
Ψα(I) 0.15 0.20 0.26 0.43 0.18 0.12 0.45 0.28 0.54 0.78 0.68 0.74 0.36 0.37 0.40 0.76 0.20 0.37 0.33 0.19 0.11 0.24 0.13 0.13
Ψα(�) 0.65 0.63 0.81 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.92 0.94 1.00 0.80 1.00 1.00 1.00 0.32 0.66 0.28 0.36
Ψα(�) – – – – – – – – 1.00 1.00 1.00 1.00 0.96 0.93 0.92 1.00 0.81 1.00 1.00 1.00 0.36 0.68 0.27 0.37
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Table 4
Powers of tests under non-sparse alternative with α = 0.05. Based on 1000 replications.

p 50 100 200 400 50 100 200 400 50 100 200 400 50 100 200 400 50 100 200 400 50 100 200 400

K = 3 with non-sparse alternative
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

LRT 0.99 0.99 1.00 – 1.00 1.00 0.99 – 1.00 1.00 1.00 – 1.00 1.00 1.00 – 1.00 1.00 0.93 – 0.69 0.71 0.71 –
FHW 0.17 0.12 0.15 0.06 0.42 0.63 0.62 0.69 0.94 0.98 1.00 1.00 0.82 0.96 1.00 0.98 0.41 0.63 0.65 0.84 0.30 0.43 0.38 0.41
Sc 0.16 0.12 0.14 0.06 0.38 0.57 0.52 0.54 0.94 0.98 0.98 1.00 0.82 0.96 1.00 0.92 0.41 0.55 0.54 0.71 0.30 0.37 0.28 0.21
Sr 0.99 0.99 1.00 0.00 1.00 1.00 0.99 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 0.93 0.00 0.69 0.71 0.71 0.00
Ψα(I) 0.34 0.35 0.47 0.54 0.38 0.39 0.44 0.52 0.74 0.64 0.86 0.86 0.68 0.66 0.84 0.84 0.31 0.34 0.42 0.48 0.22 0.17 0.24 0.21
Ψα(�) 0.88 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.73 0.73 0.88 0.69
Ψα(�) – – – – – – – – 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.77 0.72 0.90 0.75

K = 5 with non-sparse alternative
LRT 1.00 1.00 1.00 – 1.00 1.00 1.00 – 1.00 1.00 1.00 – 1.00 1.00 1.00 – 1.00 1.00 1.00 – 0.95 0.96 0.92 –
FHW 0.59 0.21 0.27 0.10 0.93 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 1.00 0.94 1.00 0.99 1.00 0.46 0.53 0.66 0.69
Sc 0.59 0.21 0.27 0.10 0.91 0.96 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.96 1.00 0.93 1.00 0.97 0.97 0.41 0.50 0.54 0.47
Sr 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 0.95 0.96 0.92 0.00
Ψα(I) 0.83 0.45 0.63 0.62 0.59 0.66 0.87 0.75 1.00 0.98 0.98 1.00 0.84 0.82 0.86 0.94 0.59 0.78 0.73 0.85 0.23 0.30 0.26 0.21
Ψα(�) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.88 0.87 0.97 0.87
Ψα(�) – – – – – – – – 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 0.88 0.97 0.86

(a) Extreme sparse. (b) Moderate sparse. (c) Non-sparse.

Fig. 3. Plots of the comparisons of powers for all models.

the covariance matrix 6. The simulation results showed that the data-driven test Φα(�̂) performs well when 6 is sparse.
See [8] for further details on estimating covariance matrices and their inverse under the matrix ℓ1 norm.

In the present paper, it is shown that the testΦα(�) outperformsΦα(I)when testing against sparse alternatives. Similar
comparison can bemade betweenΦα(�) andΦα(�1/2) as in [7]. The power ofΦα(�) can be proved to dominate the power
of Φα(�1/2) as in Proposition 2, but under stronger conditions. For reasons of space, we omit the discussion in this paper.

We have focused on the Gaussian case in this paper. The results can be extended to non-Gaussian distributions. Let X j,
j = 1, . . . , K , be p-dimensional random vectors satisfying

X j = µj + U j,

where U1, . . . ,UK are independent and identical distributed random vectors with mean zero and covariance matrix
6 = (σij)p×p. Let V j = �U j =: (V1j, . . . , Vpj)

T for j = 1, . . . , K . The results in Theorem 1, Proposition 1 and Theorem 4 still
hold with the Gaussian assumption replaced by either of the following moment conditions.

• (C6). (Sub-Gaussian-type tails) Suppose that log p = o(n1/4). There exist some constants η > 0 and C > 0 such that

E exp(ηV 2
ij /ωii) ≤ C for 1 ≤ i ≤ p, 1 ≤ j ≤ K .

• (C7). (Polynomial-type tails) Suppose that for some constants γ0, c1 > 0, p ≤ c1nγ0 , and for some constants ϵ > 0 and
C > 0

E|Vij/ω
1
2
ii |

2γ0+2+ϵ
≤ C for 1 ≤ i ≤ p, 1 ≤ j ≤ K .

6. Proof of main results

We prove the main results in this section. We begin by collecting and proving in Section 6.1 a few technical lemmas that
will be used in the proofs of the main theorems.
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6.1. Technical lemmas

Lemma 1 (Bonferroni Inequality). Let A = ∪
p
t=1 At . For any k < [p/2], we have

2k
t=1

(−1)t−1Et ≤ P(A) ≤

2k−1
t=1

(−1)t−1Et ,

where Et =


1≤i1<···<it≤p P(Ai1 ∩ · · · ∩ Ait ).

Lemma 2 (Berman [3]). If X and Y have a bivariate normal distribution with expectation zero, unit variance and correlation
coefficient ρ , then

lim
c→∞

P (X > c, Y > c)

[2π(1 − ρ)1/2c2]−1 exp

−

c2
1+ρ


(1 + ρ)3/2

= 1,

uniformly for all ρ such that |ρ| ≤ δ, for any δ, 0 < δ < 1.

Lemma 3 (Zolotarev [22]). Let Y be a nondegenerate Gaussian mean zero r.v. with covariance operator 6. Let σ 2 be the largest
eigenvalue of 6 and d be the dimension of the corresponding eigenspace. Let σ 2

i , 1 ≤ i < d′, be the positive eigenvalues of
6 arranged in a nonincreasing order and taking into account the multiplicities. Further, if d′ < ∞, put σ 2

i = 0, i ≥ d′. Let
H(6) :=


∞

i=d+1(1 − σ 2
i /σ 2)−1/2. Then for y > 0,

P{∥Y∥ > y} ∼ 2Aσ 2yd−2 exp(−y2/(2σ 2)), as y → ∞,

where A := (2σ 2)−d/2Γ −1(d/2)H(6) with Γ (·) the gamma function.

Lemma 4. For general positive definite matrix A and (bi,j) =: B = A6A, suppose C−1
≤ λmin(A) ≤ λmax(A) ≤ C and

C−1
≤ λmin(B) ≤ λmax(B) ≤ C for some constant C > 0 and 6 has all diagonal elements equal to 1. Then for pr -sparse

{δ(jl), 1 ≤ j < l ≤ K}, with r < 1/4 and nonzero locations of δ(jl) randomly and uniformly drawn from {1, . . . , p} for every
1 ≤ j < l ≤ K , we have

P


max
i∈H

 |ηi|2
√
bii

−
aii

√
bii

|δi|2

 = O(pr−a/2)max
i∈H

|δi|2


→ 1, (13)

and

P


max
i∈H

 η(jl)
i

√
bii

aii
√
bii

δ
(jl)
i

 = O(pr−a/2)max
i∈H

δ
(jl)
i


→ 1, (14)

for 1 ≤ j < l ≤ K and for any 2r < a < 1 − 2r, as p → ∞, where δi = (δ
(12)
i , δ

(13)
i , . . . , δ

(K−1K)
i )T and ηi =

((Aδ(12))i, . . . , (Aδ(K−1K))i)
T for i ∈ H := {1 ≤ i ≤ p : δ

(jl)
i ≠ 0 for some 1 ≤ j < l ≤ K} = {i1, . . . , im}.

Proof of Lemma 4. We only need to prove (13) because the proof of (14) is similar. We re-order ai1, . . . , aip as |ai(1)| ≥

· · · ≥ |ai(p)|. Let a satisfy 2r < a < 1 − 2r with r < 1/4. Define I = {1 ≤ i1 < · · · < im ≤ p} and

I0 = {1 ≤ i1 < · · · < im ≤ p : there exist some 1 ≤ k ≤ m and some j ≠ k and 1 ≤ j ≤ m, such that
|aikij ≥ |aik(pa)|}.

We can show that

|I0|/|I| = O

p · pa


p

pr − 2


p
pr


.

So we have |I0|
|I|

= O(pa+2r−1) = o(1). For 1 ≤ t ≤ m, write


1≤j<l≤K

(Aδ(jl))2it =


1≤j<l≤K


p

k=1

ait kδ
(jl)
k

2

=


1≤j<l≤K


ait it δ

(jl)
it +

m
q=1,q≠t

ait iqδ
(jl)
iq

2

.

So we have

|ηit |2 =

ait it δit +

m
q=1,q≠t

ait iqδiq


2

≥ |ait it δit |2 −

 m
q=1,q≠t

ait iqδiq


2

,
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and |ηit |2 ≤ |ait it δit |2 + |
m

q=1,q≠t ait iqδiq |2. Note that for any (i1, . . . , im) ∈ Ic
0,

m
q=1,q≠t

|ait iq | ≤ pr


C1

pa
.

It follows that for H ∈ I0 and i ∈ H ,

|ηi|2
√
bii

=
aii

√
bii

|δi|2 + O(pr−a/2)max
i∈H

|δi|2.

So the lemma is proved. �

6.2. Proof of Theorem 1

Without loss of generality, we assume σii = 1 for i = 1, . . . , p throughout the proof. Let Y i = (


n1n2
n1+n2

(X̄1 −

X̄2)i,


n1n3
n1+n3

(X̄1 − X̄3)i, . . . ,


nK−1nK
nK−1+nK

(X̄K−1 − X̄K )i)
T . Let 60 be the b × b covariance matrix of Y i := (Y1i, . . . , Ybi)

T

for i = 1, . . . , p, where b =
K(K−1)

2 . LetMn = max1≤i≤p |Y i|
2
2. Then it is enough to prove the following lemma.

Lemma 5. Suppose that max1≤i≠j≤p |σij| ≤ r < 1 and C−1
0 ≤ λmin(6) ≤ λmax(6) ≤ C0. We have

P

Mn − 2σ 2 log p − (d − 2)σ 2 log log p ≤ x


→ exp


−Γ −1


d
2


H(6) exp(−x/2σ 2)


. (15)

Proof. Set xp =

2σ 2 log p + (d − 2)σ 2 log log p + x. By Lemma 1, we have for any fixedm ≤ [p/2],

2m
t=1

(−1)t−1Et ≤ P


max
1≤i≤p

|Y i|2 ≥ xp


≤

2m−1
t=1

(−1)t−1Et , (16)

where

Et =


1≤i1<···<it≤p

P

|Y i1 |2 ≥ xp, . . . , |Y it |2 ≥ xp


=:


1≤i1<···<it≤p

Pi1,...,it .

Then it suffices to show that
1≤i1<···<it≤p

Pi1,...,it = (1 + o(1))
1
t!

Γ −t

d
2


H t(6) exp


−

tx
2σ 2


. (17)

When t = 1, by Lemma 3, we have
1≤i1≤p

Pi1 = (1 + o(1))Γ −1

d
2


H(6) exp


−

x
2σ 2


.

This implies (17). It remains to prove the lemma when t ≥ 2. Let γ > 0 be a sufficiently small number which will be
specified later. Define

I =


1 ≤ i1 < · · · < it ≤ p : max

1≤k<l≤t
|σikil | ≥ p−γ


.

For d = 1, define

I1 =

1 ≤ i1 < · · · < it ≤ p : |σikil | ≥ p−γ for every 1 ≤ k < l ≤ t


.

So when t = 2, we have I = I1. For 2 ≤ d ≤ t − 1 and t ≥ 3, define

Id = {1 ≤ i1 < · · · < it ≤ p : the cardinality of S is d, where S is the largest subsetof
{i1, . . . , it} such that ∀k ≠ l ∈ S, |σikil | < p−γ


.

So we have I = ∪
t−1
d=1 Id for t ≥ 2. Let Card(Id) denote the total number of the vectors (i1, . . . , it) in Id. We can show

that Card(Id)≤ Cpd+2γ t . In fact, the total number of the subsets of {i1, . . . , it} with cardinality d is
 p
d


. For a fixed subset
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S with cardinality d, the number of i such that |σik il | ≥ p−γ for some j ∈ S is no more than Cdp2γ . This implies that
Card(Id)≤ Cpd+2γ t . Define Ic

= {1 ≤ i1 < · · · < it ≤ p} \ I. Then the number of elements in the sum


(i1,...,it )∈Ic Pi1,...,it

is
 p
t


− O(

t−1
d=1 p

d+2γ t) =
 p
t


− O(pt−1+2γ t) = (1 + o(1))

 p
t


.

To prove Lemma 5, it suffices to show that

Pi1,...,it = (1 + o(1))Γ −t

d
2


H t(6)p−t exp


−

tx
2σ 2


(18)

uniformly in (i1, . . . , it) ∈ Ic , and for 1 ≤ d ≤ t − 1,
(i1,...,it )∈Id

Pi1,...,it → 0. (19)

By submitting (18) and (19) into (16), we obtain that

(1 + o(1))S2m ≤ P


max
1≤i≤p

|Y i|2 ≥ xp


≤ (1 + o(1))S2m−1, (20)

where Sm =
m

t=1(−1)t−1 1
t!Γ

−t( d
2 )H

t(6) exp(− tx
2σ 2 ). Note that

lim
m→∞

Sm = 1 − exp


−Γ −1

d
2


H(6) exp(−x/2σ 2)


.

By letting p → ∞ first and thenm → ∞ in (20), we prove Lemma 5.
First we prove (18). Let Ỹ = (Y T

i1 , . . . , Y
T
it )

T and (ZT
i1 , . . . , Z

T
it )

T
=: Z ∼ N(0, Ibt×bt), where b =

K(K−1)
2 , Z ij =

(Z1ij , . . . , Zbij)
T for j = 1, . . . , t and Ỹ and Z are independent. Let |Ỹ |t = min1≤j≤t |Y ij |2 and let λp = Cp−γ /4 for some

constant C > 0. Then we have

Pi1,...,it = P(|Ỹ |t ≥ xp)

≤ P


|Ỹ + λpZ |t ≥ xp − λp max

1≤j≤t
|Z ij |2


≤

1
(2π)bt/2 det(61 + λpI)1/2


|z|t≥xp−Cp−γ /8

exp


−
1
2
zT (61 + λpI)−1z


dz

+ P


λp max

1≤j≤t
|Z ij |2 ≥ Cp−γ /8


≤

1
(2π)bt/2 det(61 + λpI)1/2


|z|t≥xp−Cp−γ /8

exp


−
1
2
zT (61 + λpI)−1z


dz + O(p−2t), (21)

where z ∈ Rbt and61 is the covariancematrix of Ỹ and C is a constant. Let6 be a bt×bt matrix with6jb+1:(j+1)b,jb+1:(j+1)b =

60 for j = 0, . . . , t −1 and6ij = 0 otherwise. For (i1, . . . , it) ∈ Ic , we have 61jb+1:(j+1)b,jb+1:(j+1)b = 60 for j = 0, . . . , t −1
and |61ij| < p−γ otherwise. Write

|z|t≥xp−Cp−γ /8
exp


−

1
2
zT (61 + λpI)−1z


dz =


|z|t≥xp−Cp−γ /8,∥z∥2≥(log p)2

exp


−
1
2
zT (61 + λpI)−1z


dz

+


|z|t≥xp−Cp−γ /8,∥z∥2≤(log p)2

exp


−
1
2
zT (61 + λpI)−1z


dz. (22)

Because λmax(61 + λpI) ≤ λmax(60) + O(p−γ /4) ≤ M by some constantM > 0, we can get
|z|t≥xp−Cp−γ /8,∥z∥2≥(log p)2

exp


−
1
2
zT (61 + λpI)−1z


dz ≤ C exp(−(log p)2/2bt) ≤ Cp−2bt , (23)

uniformly in (i1, . . . , it) ∈ Ic . For the second part of the sum in (22), note that

∥(61 + λpI)−1
− (6 + λpI)−1

∥2 ≤ Cλ−2
p p−γ

≤ Cp−γ /2, (24)
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we can obtain that
|z|t≥xp−Cp−γ /8,∥z∥2≤(log p)2

exp


−
1
2
zT (61 + λpI)−1z


dz

=


|z|t≥xp−Cp−γ /8,∥z∥2≤(log p)2

exp


−
1
2
zT ((61 + λpI)−1

− (6 + λpI)−1)z −
1
2
zT (6 + λpI)−1z


dz

= (1 + O(p−γ /2(log p)2))


|z|t≥xp−Cp−γ /8,∥z∥2≤(log p)2
exp


−

1
2
zT (6 + λpI)−1z


dz

= (1 + O(p−γ /2(log p)2))


|z|t≥xp−Cp−γ /8
exp


−

1
2
zT (6 + λpI)−1z


dz + O(p−2bt)

= (1 + O(p−γ /2(log p)2))


∥z i1∥2≥xp−Cp−γ /8

exp


−
1
2
zTi1(60 + λpI)−1z i1


dz i1

t

+ O(p−2bt), (25)

where z i1 ∈ Rb. So for (i1, . . . , it) ∈ Ic , we have

Pi1,...,it ≤ (1 + O(p−γ /2(log p)2))

P(|Y i1 + λpZ i1 |2 ≥ xp − Cp−γ /8)

t
+ Cp−2t

= (1 + o(1))

P(|Y i1 |2 ≥ xp)

t
+ Cp−2t

= (1 + o(1))Γ −t

d
2


H t(6)p−t exp


−

tx
2σ 2


, (26)

where the last equation comes from Lemma 3. Similarly, because

P(|Ỹ |t ≥ xp) ≥ P


|Ỹ + λpZ |t ≥ xp + λp max

1≤j≤t
|Z ij |2


, (27)

we can get

Pi1,...,it ≥ (1 − o(1))Γ −t

d
2


H t(6)p−t exp


−

tx
2σ 2


. (28)

So (18) is proved.
It remains to prove (19). For S ⊂ Id with d ≥ 1, without loss of generality, we can assume S = {it−d+1, . . . , it}. By the

definition of S and Id, for any k ∈ {i1, . . . , it−d}, there exists at least one l ∈ S such that |σkl| ≥ p−γ . We divide Id into two
parts:

Id,1 = {1 ≤ i1 < · · · < it ≤ p : there exists an k ∈ {i1, . . . , it−d} such thatfor some l1, l2 ∈ S with
l1 ≠ l2, |σkl1 | ≥ p−γ and |σkl2 | ≥ p−γ


,

Id,2 = Id \ Id,1.

Clearly, I1,1 = ∅ and I1,2 = I1. Moreover, we can show that Card(Id,1)≤ Cpd−1+2γ t . Similarly as proved in (21) and
(26)–(28), for any (i1, . . . , it) ∈ Id,1,

P

|Y i1 |2 ≥ xp, . . . , |Y it |2 ≥ xp


≤ P


|Y it−d+1 |2 ≥ xp, . . . , |Y it |2 ≥ xp


= O(p−d).

Hence by letting γ be sufficiently small,
Id,1

Pi1,...,it ≤ Cp−1+2γ t
= o(1). (29)

For any (i1, . . . , it) ∈ Id,2, without loss of generality, we assume that |σi1,it−d+1 | ≥ p−γ . Note that

P

|Y i1 |2 ≥ xp, . . . , |Y it |2 ≥ xp


≤ P


|Y i1 |2 ≥ xp, |Y it−d+1 |2 ≥ xp, . . . , |Y it |2 ≥ xp


.

Let W l be the covariance matrix of (Y T
i1 , Y

T
it−d+1

, . . . , Y T
it )

T . We can show that ∥W l − W̄ l∥2 = O(p−γ ), where W̄ l =

diag(D,6(t−d)b+1:tb,(t−d)b+1:tb) and D is the covariance matrix of (Y T
i1 , Y

T
it−d+1

)T . Using the similar arguments as in (22)–(25),
we can get

P

|Y i1 |2 ≥ xp, . . . , |Y it |2 ≥ xp


≤ (1 + o(1))P(|Y i1 |2 ≥ xp, |Y it−d+1 |2 ≥ xp) × O(p−d+1) + O(p−2t).
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Define a set A = {−1, −1 + p−α, −1 + 2p−α, . . . ,−1 + 2[pα
]p−α, 1}, where α is a constant that will be specified later and

⌊pα
⌋ is the largest integer no larger than pα . Because |Y i1 |2 = sup|z|2=1 |Y T

i1z|, we have

P(|Y i1 |2 ≥ xp, |Y it−d+1 |2 ≥ xp) = P


sup

|z|2=1
|Y T

i1z| ≥ xp, sup
|z|2=1

|Y T
it−d+1

z| ≥ xp


≤ P


max

zi∈A,|z|2=1
|Y T

i1z| ≥ xp − C max
1≤j≤b

|Yji1 |p
−α, max

zi∈A,|z|2=1
|Y T

it−d+1
z| ≥ xp − C max

1≤j≤b
|Yjit−d+1 |p

−α


≤ P


max

zi∈A,|z|2=1
|Y T

i1z| ≥ xp − Cp−α/2, max
zi∈A,|z|2=1

|Y T
it−d+1

z| ≥ xp − Cp−α/2


+ O(p−2t)

≤ (1 + o(1))Cpbα max
z(j)i ∈A,|z(j)|2=1

P(|Y T
i1z

(1)
| ≥ xp, |Y T

it−d+1
z(2)

| ≥ xp) + O(p−2t)

≤ (1 + o(1))Cpbα max
z(j)i ∈A,|z(j)|2=1

P


|x1| ≥ xp/


V ar(Y T

i1z
(1)), |x2| ≥ xp/


V ar(Y T

it−d+1
z(2))


+ O(p−2t)

for i = 1, . . . , b and j = 1, 2, where x1 = Y T
i1z

(1)/


V ar(Y T

i1z
(1)) ∼ N(0, 1) and x2 = Y T

it−d+1
z(2)/


V ar(Y T

it−d+1
z(2)) ∼

N(0, 1) and

Cov(x1, x2) =
Cov(Y T

i1z
(1), Y T

t−d+1z
(2))

V ar(Y T
i1z

(1))V ar(Y T
it−d+1

z(2))
.

Because

V ar(Y T
i1z

(1)) =


1≤j,l≤b

Cov(Yji1z
(1)
j , Yli1z

(1)
l ) =


1≤j,l≤b

ξjlz
(1)
j z(1)

l ,

and

V ar(Y T
it−d+1

z(2)) =


1≤j,l≤b

Cov(Yjit−d+1z
(2)
j , Yli1z

(2)
l ) =


1≤j,l≤b

ξjlz
(2)
j z(2)

l ,

where ξjl = Cov(Yji1 , Yli1), then we have
V ar(Y T

i1z
(1))V ar(Y T

it−d+1
z(2)) =

 
1≤j,l≤b

ξjlz
(1)
j z(1)

l


1≤j,l≤b

ξjlz
(2)
j z(2)

l

=

 
1≤j,l≤b

ξjlz
(1)
j z(2)

l


1≤j,l≤b

ξjlz
(1)
l z(2)

j

=


1≤j,l≤b

ξjlz
(1)
j z(2)

l .

Also we have

Cov(Y T
i1z

(1), Y T
t−d+1z

(2)) =


1≤j,l≤b

Cov(Yji1z
(1)
j , Ylit−d+1z

(2)
l ) =


1≤j,l≤b

ri1 it−d+1ξjlz
(1)
j z(2)

l ,

so we get Cov(x1, x2) = ri1 it−d+1 . In addition, V ar(Y T
i1z

(1)) ≤ λmax(60) = σ 2 and V ar(Y T
it−d+1

z(2)) ≤ λmax(60) = σ 2, we
have

P(|Y i1 |2 ≥ xp, |Y it−d+1 |2 ≥ xp) ≤ (1 + o(1))CpbαP(|x1| ≥ xp/σ , |x2| ≥ xp/σ) + O(p−2t).

Thus, by Lemma 2 and the assumption max1≤i≠j≤p |rij| ≤ r < 1, for any (i1, . . . , it) ∈ Id,2, we have

P

|Y i1 |2 ≥ xp, . . . , |Y it |2 ≥ xp


≤ (1 + o(1))4Cpbαp−

2
1+r × O(p−d+1).

Thus by letting γ and α be sufficiently small,
Id,2

Pi1,...,it ≤ (1 + o(1))4Cpd+2γ t+bα−d+1− 2
1+r = o(1). (30)

Combining (29) and (30), we prove (19). The proof of Lemma 5 is complete. �
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6.3. Proof of Theorem 2

It suffices to prove P

max1≤i≤p ||ηi|2/

√
bii| ≥


(2σ 2 + ε/2) log p


→ 1. By Lemma 4 and the condition maxi |δi|2/σ

1
2
ii

≥

2σ 2β log pwith β ≥ 1/(mini σiiaii)+ε for some constant ε > 0, we can getmax1≤i≤p |ηi|2/

√
ωii ≥


(2σ 2 + ε/2) log p

with probability tending to one. So Theorem 2 follows. �

6.4. Proof of Theorem 4

We only prove part (ii) of Theorem 4 in this section, part (i) follows from the proof of part (ii) directly. Without loss of
generality, we assume that σii = 1 for 1 ≤ i ≤ p. Let Y i = (


n1n2
n1+n2

(X̄1 − X̄2)i,


n1n3
n1+n3

(X̄1 − X̄3)i, . . . ,


nK−1nK
nK−1+nK

(X̄K−1 −

X̄K )i)
T , and let Z i =

1√
bi,i


n1n2
n1+n2

(A(X̄1 − X̄2))i, . . . ,


nK−1nK
nK−1+nK

(A(X̄K−1 − X̄K ))i

T
. Let H = {1 ≤ i ≤ p : δ

(jl)
i ≠

0 for some 1 ≤ j < l ≤ K} = {l1, . . . , lm}. Define the event G = {max1≤i≤p |δi|2 ≤ 8


σ 2 log p}. We first prove the following
two lemmas.

Lemma 6. (i) Suppose (C1) and (C2) hold. Then under H1 with r < 1/6, we have

P(Φα(I) = 1,G) = αP(G) + (1 − α)P(Ec,G) + o(1), (31)

where E = {maxi∈H |Y i|2 < xp}, and

P(Ec,G) = I{G} − I{G}


i∈H


1 − P{δi},G


|Y i|2 ≥ xp


+ o(1).

(ii) Suppose (C1) and (C3) hold. Then under H1 with r < 1/6, we have

P(Φα(�) = 1,G) = αP(G) + (1 − α)P(Ẽ
c
,G) + o(1), (32)

where Ẽ = {maxi∈H |Z i|2 < xp}, and

P(Ẽ
c
,G) = I{G} − I{G}


i∈H


1 − P{δi},G


|Z i|2 ≥ xp


+ o(1).

Lemma 7. Let ap = o((log p)−1/2). We have

max
1≤k≤pr

P max
1≤i≤k

|Y i|2 ≥ xp + an


− P


max
1≤i≤k

|Y i|2 ≥ xp

 = o(1) (33)

uniformly in the means δi, 1 ≤ i ≤ p, where xp =

2σ 2 log p + (d − 2)σ 2 log log p + qα , r < 1/6 and Y i, i ∈ H are

independent normal random vectors with covariance matrix 60.

Proof of Lemma 6. To prove (31) and (32), we only need to prove

P(Φα(I) = 1,G) ≤ αP(G) + (1 − α)P(Ec,G) + o(1),

under (C1) and (C2) and

P(Φα(�) = 1,G) ≥ αP(G) + (1 − α)P(Ẽ
c
,G) + o(1),

under (C1) and (C3). In the case when A = �, by Lemma 4, we have

P


max
1≤i≤p

|ηi|2
√
bii

≥ (1 − o(1)) max
1≤i≤p

|δi|2


→ 1.

Thus we have

P

Φα(A) = 1,Gc

≥ P


8


σ 2 log p − max
1≤i≤p


1≤j<l≤K

njnl

nj + nl

(A(Ū j − Ū l))
2
i

bii
≥ (1 + δ)


2σ 2 log p,Gc


− o(1)

= (1 − o(1))P(Gc) − o(1),
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where U j1, . . . ,U jnj ∼ N(0, 6), j = 1, . . . , K , for sufficiently small δ > 0. We next consider P (Φα(I) = 1,G) and
P (Φα(A) = 1,G). For notation briefness, we denote P(LG|δi) and P(L|δi) by P{δi},G(L) and P{δi}(L) respectively for any
event L and i = 1, . . . , p. Let Hc

= {1, . . . , p} \ H . We have

P{δi},G(Φα(I) = 1) = P{δi},G


max
i∈H

|Y i|2 ≥ xp


+ P{δi},G


max
i∈H

|Y i|2 < xp,max
j∈Hc

|Y j|2 ≥ xp


, (34)

where xp =

2σ 2 log p + (d − 2)σ 2 log log p + qα . Define

Hc
1 = {j ∈ Hc

: |σij| ≤ p−ξ for any i ∈ H}

for 2r < ξ < (1 − r)/2. It is easy to see that Card (H1) ≤ Kpr+2ξ . It follows that

P


max
j∈H1

|Y j|2 ≥ xp


≤ Kpr+2ξ P


|Y 1|2 ≥ xp


= O(pr+2ξ−1) = o(1). (35)

We claim that

P{δi},G


max
i∈H

|Y i|2 < xp,max
j∈Hc

1

|Y j|2 ≥ xp


≤ (1 + o(1))P{δi},G


max
i∈H

|Y i|2 < xp


P{δi},G


max
j∈Hc

1

|Y j|2 ≥ xp


+ o(1).(36)

To prove (36), we set

E =


max
i∈H

|Y i|2 < xp


, F j = {|Y j|2 ≥ xp}, j ∈ Hc

1 .

Then by Bonferroni inequality, we have for any fixed integer k > 0,

P{δi},G


j∈Hc

1

{E ∩ F j}

 ≤

2k−1
t=1

(−1)t−1


i1<···<it∈Hc
1

P{δi},G

E ∩ F i1 ∩ · · · ∩ F it


. (37)

Let Y ∗
= (Y T

i , i ∈ H)T , Y ⋆
= (Y T

i1 , . . . , Y
T
it )

T , and let |Y ∗
|m = maxi∈H |Y i|2 and |Y ⋆

|t = min1≤j≤t |Y ij |2. Let (Z∗T
1 , . . . ,

Z∗T
m )T =: Z∗

∼ N(0, Ibm×bm), independent with Y ∗, and (Z⋆T
i1 , . . . , Z⋆T

it )T =: Z⋆
∼ N(0, Ibt×bt), independent with Y ⋆.

Similarly as proved in Theorem 1, let λp = Cp−ξ for some constant C > 0, we have

P{δi},G(E) = P{δi},G(|Y ∗
|m < xp)

≤ P{δi},G


|Y ∗

+ λpZ∗
|2 < xp + λp max

i∈H
|Z∗

i |2


≤ P{δi},G(|Y ∗

+ λpZ∗
|2 < xp + Cp−ξ/8) + O(p−M), (38)

for sufficiently large constantM > 0. We also have

P{δi},G

 
1≤j≤t

F ij


= P{δi},G(|Y ⋆

|t ≥ xp)

≤ P{δi},G


|Y ⋆

+ λpZ⋆
|t ≥ xp − λp max

1≤j≤t
|Z⋆

ij |2


≤ P{δi},G(|Y ⋆

+ λpZ⋆
|t ≥ xp − Cp−ξ/8) + O(p−2t). (39)

Thus, we have

P{δi},G

E ∩ F i1 ∩ · · · ∩ F it


≤ P{δi},G


|Y ∗

+ λpZ∗
|2 < xp + Cp−ξ/8, |Y ⋆

+ λpZ⋆
|t ≥ xp − Cp−ξ/8

+ O(p−2t). (40)

Let W = (wij) be the covariance matrix of the vector ((Y ∗
+ λpZ∗)T , (Y ⋆

+ λpZ⋆)T )T . Let (w̃ij) =: W = diag(W 1,W 2),
where W 1 and W 2 are the covariance matrices of Y ∗

+ λpZ∗ and Y ⋆
+ λpZ⋆ respectively. So for (i1, . . . , it) ∈ Hc

1 , we have
∥W − W∥2 = O(pr−ξ ). Set z = (δTi , i ∈ H, zTi1 , . . . , z

T
it )

T and

R = {|ui + δi|2 ≤ xp + Cp−ξ/8, i ∈ H, |z i1 |2 ≥ xp . . . , |z it |2 ≥ xp − Cp−ξ/8
},

R1 = R ∩


max
1≤j≤t

|z ij |2 ≤ 8b

t log p


,

R2 = R ∩


max
1≤j≤t

|z ij |2 > 8b

t log p


.



192 T.T. Cai, Y. Xia / Journal of Multivariate Analysis 131 (2014) 174–196

We have

P{δi},G

|Y ∗

+ λpZ∗
|2 < xp + Cp−ξ/8, |Y ⋆

+ λpZ⋆
|t ≥ xp − Cp−ξ/8

=
I{G}

(2π)(bm+bt)/2|W |1/2


R

exp


−
1
2
zTW−1z


dz. (41)

Note that |W | = (1 + O(pr−ξ ))bm+bt
|W | = (1 + O(p2r−ξ ))|W | and

∥W−1
− W−1

∥2 ≤ Cλ−2
p pr−ξ

= O(pr−ξ/2).

This implies that

1
(2π)(bm+bt)/2|W |1/2


R1

exp


−
1
2
zTW−1z


dz

= (1 + O(p2r−ξ log p))
1

(2π)(bm+bt)/2|W |1/2


R1

exp


−
1
2
zT W−1

z

dz. (42)

Furthermore, it is easy to see that

1
(2π)(bm+bt)/2|W |1/2


R2

exp


−
1
2
z
T
W−1z


dz = O(p−16bt),

1

(2π)(bm+bt)/2|W |1/2


R2

exp


−
1
2
z
T
W̃

−1
z

dz = O(p−16bt). (43)

Thus, it follows from (41) to (43) that

P{δi},G

|Y ∗

+ λpZ∗
|2 < xp + Cp−ξ/8, |Y ⋆

+ λpZ⋆
|t ≥ xp − Cp−ξ/8

= (1 + O(p2r−ξ log p))P{δi},G

|Y ∗

+ λpZ∗
|2 < xp + Cp−ξ/8P


|Y ⋆

+ λpZ⋆
|t ≥ xp − Cp−ξ/8

+ O(p−16bt)

= (1 + o(1))P{δi},G

|Y ∗

|2 < xp


P{δi}


|Y ⋆

|t ≥ xp

+ O(p−16bt).

So

P{δi},G

E ∩ F i1 ∩ · · · ∩ F it


≤ (1 + o(1))P{δi},G(E)P{δi}(F i1 ∩ · · · ∩ F it ) + O(p−2t).

Similarly as (40), we have

P{δi},G

E ∩ F i1 ∩ · · · ∩ F it


≥ P{δi},G


|Y ∗

+ λpZ∗
|2 < xp − Cp−ξ/8, |Y ⋆

+ λpZ⋆
|t ≥ xp + Cp−ξ/8

+ O(p−2t). (44)

Thus, by using the exact argument as above, we have

P{δi},G

E ∩ F i1 ∩ · · · ∩ F it


≥ (1 + o(1))P{δi},G(E)P{δi}(F i1 ∩ · · · ∩ F it ) + O(p−2t).

So we have

P{δi},G

E ∩ F i1 ∩ · · · ∩ F it


= (1 + o(1))P{δi},G(E)P{δi}(F i1 ∩ · · · ∩ F it ) + O(p−2t).

As the proof of Lemma 5, we can show that
i1<···<it∈Hc

1

P{δi}


F i1 ∩ · · · ∩ F it


= (1 + o(1))Γ −t


K − 1

2


1
t!

exp


−
tqα

K


.

It follows from (37) that

P{δi},G


j∈Hc

1

{E ∩ F j}

 ≤ αP{δi},G(E) + o(1).

This, together with (34) and (35), implies that

P{δi},G(Φα(I) = 1) ≤ αI{G} + (1 − α)P{δi},G(Ec) + o(1),

where o(1) is uniformly for {δ(jl), 1 ≤ j < l ≤ K}. Hence, we have

P(Φα(I) = 1,G) ≤ αP(G) + (1 − α)P(Ec,G) + o(1).
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We next prove that

P(Φα(A) = 1,G) ≥ αP(G) + (1 − α)P(Ẽ
c
,G) + o(1), (45)

where

Ẽ =


max
i∈H

|Z i|2 < xp


.

Define

H̃c
1 = {j ∈ Hc

: |aij| ≤ p−ξ and |bij| ≤ p−ξ for any i ∈ H}

for 2r < ξ < (1 − r)/2. We can see that Card(H̃c
1) ≥ p − O(pr+2ξ ). Then

P{δi},G(Φα(A) = 1) = P{δi},G


max
i∈H

|Z i|2 ≥ xp


+ P{δi},G


max
i∈H

|Z i|2 < xp,max
k∈Hc

|Zk|2 ≥ xp


≥ P{δi},G


max
i∈H

|Z i|2 ≥ xp


+ P{δi},G


max
i∈H

|Z i|2 < xp,max
k∈H̃c

1

|Zk|2 ≥ xp


.

Note that on G ,

max
k∈H̃c

1

|ηk|2 = max
k∈H̃c

1

1
√
2

 
1≤j<l≤K


i∈H

akiδ
(jl)
i

2
1/2

= O(pr−ξ

log p).

Following the exact arguments as above and using the left side Bonferroni inequality, we can show that

P{δi},G


max
i∈H

|Z i|2 < xp,max
k∈H̃c

1

|Zk|2 ≥ xp


≥ P{δi},G


max
i∈H

|Z i|2 < xp,max
k∈H̃c

1

|Zk − ηk/

bkk|2 ≥ xp + O(pr−ξ


log p)


≥ αP{δi},G(Ẽ) − o(1).

Hence (45) is proved. Now we prove

P{δi},G


max
i∈H

|Y i|2 ≥ xp


= I{G} − I{G}


i∈H


1 − P{δi},G


|Y i|2 ≥ xp


+ o(1). (46)

Let I0 = {(i1, . . . , im) : ∃1 ≤ k < j ≤ m, such that |σik il | ≥ p−ξ
} for 2r < ξ < 1

2 (1 − 2r) and let I = {(i1, . . . , im)}. We
can show that

|I0|/|I| ≤ O

p · p2ξ


p

kp − 2


p
kp


.

So for ξ < 1
2 (1 − 2r), |I0|/|I| = o(1). Let Y ∗

= (Y T
i , i ∈ H)T and |Y ∗

|m = maxi∈H |Y i|2. Let (ZT
i1 , . . . , Z

T
im)T =: Z ∼

N(0, Ibm×bm), where b =
K(K−1)

2 and m = Card(H). Let λ = Cp−2δ for δ < 1
4 (ξ − 2r). So for H ∈ Ic

0, we have

P{δi},G(max
i∈H

|Y i|2 ≤ xp) ≤ P{δi},G


|Y ∗

+ λpZ |m ≤ xp + λp max
1≤j≤m

|Z ij |2


≤

I{G}

(2π)bm/2 det(61 + λpI)1/2


|z|m≤xp+Cp−δ

exp


−
1
2
zT (61 + λpI)−1z


dz + O(p−M),

where z ∈ Rbt and 61 is the covariance matrix of Y ∗, C is a constant and M is a sufficiently large constant. Let 6 be a
bm × bmmatrix with6jb+1:(j+1)b,jb+1:(j+1)b = 60 for j = 0, . . . ,m − 1 and6ij = 0 otherwise. For (i1, . . . , it) ∈ Ic

0, we have
61jb+1:(j+1)b,jb+1:(j+1)b = 60 for j = 0, . . . ,m − 1 and |61ij| < p−ξ otherwise. Write

|z|m≤xp+Cp−δ

exp


−
1
2
zT (61 + λpI)−1z


dz =


|z|m≤xp+Cp−δ ,∥z∥2≥m(log p)2

exp


−
1
2
zT (61 + λpI)−1z


dz

+


|z|m≤xp+Cp−δ ,∥z∥2≤m(log p)2

exp


−
1
2
zT (61 + λpI)−1z


dz.
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Because λmax(61 + λpI) ≤ λmax(60) + O(p−2δ) ≤ M for some constantM > 0, we can get
|z|m≤xp+Cp−δ ,∥z∥2≥m(log p)2

exp


−
1
2
zT (61 + λpI)−1z


dz ≤ C exp(−(log p)2/2b) ≤ Cp−2b,

uniformly in (i1, . . . , it) ∈ Ic
0. For the second part of the sum in (22), note that

∥(61 + λpI)−1
− (6 + λpI)−1

∥2 ≤ Cλ−2
p pr−ξ

≤ Cpr−ξ+4δ,

we can obtain that
|z|m≤xp+Cp−δ ,∥z∥2≤m(log p)2

exp


−
1
2
zT (61 + λpI)−1z


dz

=


|z|m≤xp+Cp−δ ,∥z∥2≤m(log p)2

exp


−
1
2
zT ((61 + λpI)−1

− (6 + λpI)−1)z −
1
2
zT (6 + λpI)−1z


dz

= (1 + O(p2r−ξ+4δ(log p)2))


|z|m≤xp+Cp−δ ,∥z∥2≤m(log p)2
exp


−

1
2
zT (6 + λpI)−1z


dz

= (1 + O(p2r−ξ+4δ(log p)2))


|z|m≤xp+Cp−δ

exp


−
1
2
zT (6 + λpI)−1z


dz + O(p−2b)

= (1 + O(p2r−ξ+4δ(log p)2))

i∈H


|z i|2≤xp+Cp−δ

exp


−
1
2
zTi (60 + λpI)−1z i


dz i


+ O(p−2b),

where z i1 ∈ Rb. Because ∥(61 + λpI) − (6 + λpI)∥2 = O(pr−ξ ), we have det(61 + λpI) = (1+ O(pr−ξ ))bm det(6 + λpI) =

(1 + O(p2r−ξ )) det(6 + λpI). So we have

P{δi},G(max
i∈H

|Y i|2 ≤ xp) ≤ (1 + o(1))I{G}


i∈H

P{δi},G(|Y i + λpZ i|2 ≤ xp) + o(1)

≤ (1 + o(1))I{G}


i∈H

P{δi},G(|Y i|2 ≤ xp + λp max
i∈H

|Z i|2) + o(1)

= (1 + o(1))I{G}


i∈H

P{δi},G(|Y i|2 ≤ xp) + o(1).

Similarly, because

P{δi},G


max
i∈H

|Y i|2 ≤ xp


≥ P{δi},G


|Y ∗

+ λpZ |m ≤ xp − λ max
1≤j≤m

|Z ij |2


,

we can get

P{δi},G


max
i∈H

|Y i|2 ≤ xp


≥ (1 − o(1))I{G}


i∈H

P{δi},G(|Y i|2 ≤ xp) − o(1).

So (46) is proved. Similarly, let I1 = {(i1, . . . , im) : ∃1 ≤ k < j ≤ m, s.t. |bikil | ≥ p−ξ
}, then we can get |I1|/|I| = o(1),

and for H ∈ Ic
1,

P{δi},G


max
i∈H

|Z i|2 ≥ xp


= I{G} − I{G}


i∈H


1 − P{δi},G


|Z i|2 ≥ xp


+ o(1). �

Proof of Lemma 7. Based on the proof of Lemma 4 in supplementary material [7] (available on the web at www.unc.edu/
∼xiayin/mean-suppmaterial.pdf), it is enough to show that, for i = 1, . . . , p, we have

P(|Y i|2 ≥ xp + ap) = (1 + o(1))P(|Y i|2 ≥ xp) + o(p−r). (47)

Without loss of generality, suppose an > 0 and δ
(jl)
i ≥ 0 for 1 ≤ j < l ≤ K and i = 1, . . . , p. Because Y i ∼ N(δi, 60), let

Z ∼ N(0, I), then similarly as the proof from (21) and (27) in Theorem 1 for t = 1 and6 = 61 = 60, we have

P(|Y i|2 ≥ xp + ap) = P(|Y i + Cp−γ /4Z |2 ≥ xp + ap + O(p−γ /8)) + O(p−2)

= P((λ1z1 + δi1)
2
+ (λ2z2 + δi2)

2
+ · · · + (λbzb + δib)

2
≥ (xp + O(p−γ /8) + ap)2) + O(p−2),

www.unc.edu/~xiayin/mean-suppmaterial.pdf
www.unc.edu/~xiayin/mean-suppmaterial.pdf
www.unc.edu/~xiayin/mean-suppmaterial.pdf
www.unc.edu/~xiayin/mean-suppmaterial.pdf
www.unc.edu/~xiayin/mean-suppmaterial.pdf
www.unc.edu/~xiayin/mean-suppmaterial.pdf
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where (δi1, . . . , δib)
T

:= U(δ
(12)
i , . . . , δ

(K−1K)
i )T , 60 = UTΛU , (z1, . . . , zb) =: z ∼ N(0, I) and λ2

1 ≥ · · · ≥ λ2
b > 0 are

eigenvalues of 60 + Cn−γ /4I for some constant C satisfying C > 0. Hence, there exist a δ such that

P(|Y i|2 ≥ xp + ap) = P((λ1z1 + δ)2 ≥ (xp + O(p−γ /8) + ap)2 − (λ2
2z

2
2 + · · · + λ2

bz
2
b ),

λ2
2z

2
2 + · · · + λ2

bz
2
b ≤ r(xp + O(p−γ /8) + ap)2) + o(p−r)

= (1 + o(1))P((λ1z1 + δ)2 ≥ (xp + O(p−γ /8))2 − (λ2
2z

2
2 + · · · + λ2

bz
2
b )) + o(p−r),

where the last equality comes from the proof of Eq. 12 in Lemma 4 in supplementary material [7]. It follows from the fact
that

P(|Y i|2 ≥ x) = P(|Y i + Cp−γ /4Z |2 ≥ xp + O(p−γ /8)) + O(p−2)

(47) is proved. �

Proof of Theorem 4. We have P

|6̂X − 6|∞ ≤ C

√
log p/n


→ 1 as n, p → ∞; see [5]. On the event {|6̂X

− 6|∞ ≤ C
√
log p/n} withA = �,

|A6A − A6A|∞ ≤ CspM2−q
p


log p
n

(1−q)/2

= o(1/ log p).

Hence, as in the proof of Lemma 6, it is easy to show that P

Φα(A) = 1,Gc

= P(Gc) + o(1) and P

Φα(A) = 1,Gc

=

P(Gc)+o(1). Note that, for 1 ≤ j < l ≤ K ,


njnl
nj+nl

A(X̄ j−X̄ l) = (A−A)(


njnl
nj+nl

(X̄ j−X̄ l)−δ(jl))+(A−A)δ(jl)
+


njnl
nj+nl

A(X̄ j−X̄ l).

On G , we have(A − A)


njnl

nj + nl
(X̄ j − X̄ l) − δ(jl)


+ (A − A)δ(jl)


∞

= OP


log p

min{nj, nl}


= oP


1

√
log p


.

To prove Theorem 4, it suffices to show that

P


max
1≤i≤p

|Z i|2 ≥ xp + an,G


= P


max
1≤i≤p

|Z i|2 ≥ xp,G


+ o(1), (48)

for any an = o((log p)−1/2), where Z i =
1√
bi,i


n1n2
n1+n2

(A(X̄1 − X̄2))i, . . . ,


nK−1nK
nK−1+nK

(A(X̄K−1 − X̄K ))i


. From the proof of

Lemma 6, Let H = {1 ≤ i ≤ p : δ
(jl)
i ≠ 0 for some 1 ≤ j < l ≤ K} = {l1, . . . , lm}, then we can get

P


max
1≤i≤p

|Z i|2 ≥ xp + an,G


= αP(G) + (1 − α)P


max
i∈H

|Y i|2 ≥ xp + an,G


+ o(1),

P


max
1≤i≤p

|Z i|2 ≥ xp,G


= αP(G) + (1 − α)P


max
i∈H

|Y i|2 ≥ xp,G


+ o(1),

where given δ, Y i, i ∈ H are independent normal random vectors with covariance matrix 60. Thus, (48) can be proved by
Lemma 7 and Theorem 4 is proved. �
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