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Stable Recovery of Sparse Signals
and an Oracle Inequality

Tony Tony Cai, Lie Wang, and Guangwu Xu

Abstract—This article considers sparse signal recovery in the
presence of noise. A mutual incoherence condition which was pre-
viously used for exact recovery in the noiseless case is shown to
be sufficient for stable recovery in the noisy case. Furthermore, the
condition is proved to be sharp. A specific counterexample is given.
In addition, an oracle inequality is derived under the mutual inco-
herence condition in the case of Gaussian noise.

Index Terms— � minimization, compressed sensing, mutual in-
coherence, oracle inequality, sparse recovery.

I. INTRODUCTION

C OMPRESSED sensing has received much recent atten-
tion in signal and imaging processing, applied mathe-

matics, and statistics. The central goal is to accurately recon-
struct a high dimensional sparse signal based on a small number
linear measurements. Specifically one considers the following
linear model:

(1)

where is an matrix (with ) and is a
vector of measurement errors. The goal is to recover the un-
known signal based on and . Throughout the paper
we shall assume that the columns of are standardized to have
unit norm.

It is now well understood that the method of minimization
provides an effective way for reconstructing a sparse signal in
many settings. The minimization problem in this context is

subject to (2)

Here is a bounded set. For example, is taken to be
in the noiseless case and can be or

in the noisy case.
It is clear that with the linear system (1) is underde-

termined and regularity conditions are needed. A widely used
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condition for sparse signal recovery is the mutual incoherence
property (MIP) introduced in [10]. The MIP requires the pair-
wise correlations among the column vectors of to be small.
Let

(3)

It was first shown by Donoho and Huo [10], in the noiseless
case for the setting where is a concatenation of two square
orthogonal matrices, that

(4)

ensures the exact recovery of when has at most nonzero
entries (such a signal is called -sparse). This result was then
extended in the noiseless case in [14] and [16] to a general dic-
tionary .

Stronger MIP conditions have been used in the literature to
guarantee stable recovery of sparse signals in the noisy case.
When noise is assumed to be bounded in norm, i.e., ,
[9] showed that sparse signals can be recovered approximately
through minimization, with the error at worst proportional to
the input noise level, when

The results in [3] imply that

is sufficient for stable recovery. And Tseng [19] used

However, to the best of our knowledge, the natural question
whether (4), namely

is sufficient for stable recovery in the noisy case remains open.
In this paper, we consider stable recovery of sparse signals

under the MIP framework. Our results show that not only the
condition (4) is indeed sufficient for stable recovery in the noisy
case, it is also sharp in the sense that there exist dictionaries
such that it is not possible to recover certain -sparse signals
with . A specific counterexample is constructed
in Section III.
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In addition to bounded noise in an ball, we also consider
bounded error in . This case is
closely connected to the Dantzig Selector introduced in Candès
and Tao [7] in the framework of the restricted isometry prop-
erty. The results for bounded error can be extended directly to
the Gaussian noise case, which is of particular interest in signal
processing and in statistics.

Oracle inequality is a powerful decision-theoretic tool that
provides great insight into the performance of a procedure as
compared to that of an ideal estimator. It was first introduced by
Donoho and Johnstone [11] to demonstrate the optimalities of
certain wavelet thresholding rules in statistical signal processing
problems. Candès and Tao [7] established an oracle inequality
in the setting of compressed sensing for the Dantzig Selector
under the restrictive isometry property. In this paper, we present
an oracle inequality for sparse signal recovery under the MIP
condition (4) in the Gaussian noise case. It is worth noting that
our proof is simple and elementary.

The rest of the paper is organized as follows. Section II con-
siders stable recovery of sparse signals under the MIP. We shall
show that the condition is sufficient for stable
recovery with bounded noise as well as Gaussian noise. We
then show in Section III that is not only suf-
ficient but in fact sharp by providing a counterexample when

. Section IV establishes the oracle inequality in
the case of Gaussian noise under the MIP condition. Section V
discusses some relations to the restricted isometry property.

II. STABLE RECOVERY OF SPARSE SIGNALS

As aforementioned, has been proved to guar-
antee the exact recovery of -sparse signals in noiseless case.
We shall show in this section that this condition is also sufficient
for stable reconstruction of -sparse signals in the noisy case.
We shall consider the case where the error is bounded. Two spe-
cific bounded sets are considered: the ball

and the set . These results can
be extended directly to the Gaussian noise case since Gaussian
noise is “essentially bounded.” The Gaussian noise case is of
particular interest in statistics. See, for example, Efron, et al.
[13], and Candès and Tao [7]. We will then derive an oracle in-
equality for the Gaussian noise case in Section IV.

We begin by introducing basic notation and definitions as well
as some elementary results that will be needed later.

The support of a vector is de-
fined to be . A vector is said to
be -sparse if . We use the standard notation

to denote the -norm of the vector
. We shall also treat a vector as a function

by assigning .
Consider the minimization problem . Let be a fea-

sible solution to , i.e., . Let be a solution to the
minimization problem . Then by definition .
Let and . Here denotes the in-
dicator function of a set , i.e., if

and 0 if .

The following is a widely used fact (see, for example, [3], [5],
[7], and [10])

(5)

This follows directly from the fact that

The following fact is well known. Let be any -sparse
signal, then

(6)

See, e.g., [3], [9], [18], and [19].
We now consider stable recovery of sparse signals with error

in the ball . The following result shows that
is a sufficient condition for stable recovery.

Theorem 2.1: Consider the model (1) with . Sup-
pose is -sparse with . Let be the minimizer

of with , and . Then satisfies

Remark 2.1: This theorem improves several stable recovery
results in the literature. In particular, our condition

is weaker than [9], [3], and

[19].

Proof: First we note that

This simply follows from

It is also noted that is equivalent to

Without loss of generality, we shall assume that
. It follows from the facts ,

for , and (6) that
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On the other hand, it follows from (6) that

Therefore, we have1

Finally

Note that . So

We now turn to stable recovery of -sparse signals with error
in the bounded set under the
MIP framework. Candès and Tao [7] treated the sparse signal
recovery problem by solving with

, in the framework of restricted isometry prop-
erty, and referred the solution as the Dantzig Selector. We shall

1Here we assume that � �� � as the case for � � � is trivial.

show here and in Section IV the Dantzig Selector can be an-
alyzed easily using elementary tools under the MIP condition

.

Theorem 2.2: Consider the model (1) with satisfying
. Suppose is -sparse with . Let

be the minimizer of with , and
. Then satisfies

Proof: Note that from the fact and the
first part of the proof of Theorem 2.1, we have

Using the fact where ,
we get

Again, as in the proof of Theorem 2.1

so we conclude

Remark 2.2: For simplicity, we have focused on recovering
-sparse signals in the present paper. When is not -sparse,

minimization can also recover with accuracy if has good
-term approximation. For a general vector , denote
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the vector with the -largest entries (in absolute
value) set to zero. Then similar to [2] and [3], our results can be
extended to the general setting. Under , Theorem
2.1 holds with the error bound

for some constants and , and Theorem 2.2 holds with the
error bound

for some constants and .
We have so far focused on stable recovery with bounded

error. The results can be extended directly to the Gaussian noise
case. This is due to the fact that Gaussian noise is “essentially
bounded”. See, for example, [3] and [2].

III. SHARPNESS OF

We have just shown in Section II that the condition
is sufficient for stable recovery of -sparse signals

in both bounded noise and Gaussian noise settings. An inspec-
tion of our proof shows that this condition arises naturally. It is
interesting to ask whether the condition is sharp. Our next result
implies that this condition is indeed sharp.

Theorem 3.1: Let be a positive integer. Let be any
integer, and set and . Then there exists
an matrix with mutual incoherence (or
equivalently ), and two nonzero -sparse vectors

and with disjoint supports such that

Remark 3.1: This result implies that the model (1) is not
identifiable in general under the condition and
therefore not all -sparse signals can be recovered exactly in the
noiseless case. In the noisy case, it is easy to see that both The-
orems 2.1 and 2.2 fail because no estimator can be close to
both and when and are sufficiently small. The proof
reveals that one can actually get at least pairs of such -sparse
signals .

Remark 3.2: The specific counterexample constructed in the
proof shows that the bound is tight when

. It should be noted that some necessary and suf-
ficient sparse recovery conditions for more general have
been discussed in the Grassmannian angle framework. See, for
example, [12] and [20].

Proof: Let be a matrix such that each diagonal
element of is 1 and each off diagonal element equals .
Then it is easy to see that is a positive-semidefinite matrix
with rank .

Note that the symmetric matrix can be decomposed as
where is a matrix with rank .

More precisely, since has two distinct eigenvalues and

0, with the multiplicities of and 1, respectively, there is
an orthogonal matrix such that

It suffices to take as

. . .

Write where
are unit eigenvectors corresponding to eigenvalue and

is the eigenvector corresponding
to eigenvalue 0. It is verified that each column of is of length 1

in norm. This is because .

Since the rank of is , there exists some such
that and . Now define an matrix by

It can be seen easily that the mutual incoherence for satisfies
. Suppose are given by

Then both and are -sparse vectors but .
This means the model is not identifiable within the class of

-sparse signals.

IV. AN ORACLE INEQUALITY

As aforementioned, oracle inequality was first introduced by
Donoho and Johnstone [11] in the context of signal denoising
using wavelet thresholding. The oracle inequality approach pro-
vides an effective tool for studying the optimalities of a proce-
dure. An oracle inequality compares the properties of a given
procedure to that of an ideal estimator with the aid of an oracle.
The ideal risk is used as a benchmark to evaluate the perfor-
mance of the procedure of interest. This approach has since been
extended to study many other problems. In particular, [7] devel-
oped an oracle inequality for the Dantzig Selector in the
Gaussian noise setting in the framework of the restrictive isom-
etry property. In this section, we derive an oracle inequality for
sparse signal recovery under the MIP condition (4). We should
note that our proof is particularly simple and elementary.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 16,2010 at 17:47:07 UTC from IEEE Xplore.  Restrictions apply. 



3520 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 7, JULY 2010

Consider the Gaussian noise problem where we observe
with

(7)

We shall assume that the noise level is known. We wish to
reconstruct the signal accurately based on and .

We first briefly describe the main ideas behind the oracle in-
equality approach in the context of sparse signal recovery. For
more details, see [11] and [7].

Denote the support of the signal by . If were known to
us, could be simply recovered by using the least squares
estimator

with for and otherwise.
Note that minimizes the squared error among
all possible choices of .

One can be even more ambitious by asking for the best
-sparse “estimator” of . More specifically, denote by

the collection of all subsets of with cardinality
less than or equal to . Then for a given index set ,
we can estimate by using the least squares estimator

, with for and
otherwise. The ideal choice of the index set

is the one that minimizes the risk over all choices in , that is

and the oracle risk is the minimum mean squared error
achievable over

Note that for a given index set , the mean squared error of
can be easily calculated as

(8)

See, for example, [7]. Note that .
Hence, the ideal risk is bounded by

Note that the ideal risk is neither known nor attainable
as it requires the knowledge of the ideal -sparse subset .
So an interesting question is: Can the oracle risk be (al-
most) attained by a purely data-driven procedure without the
knowledge of ?

The following result shows that the answer is affirmative:
under the sufficient and sharp MIP condition ,

minimization nearly attains the oracle risk without the need
of knowing the optimal subset or the value of the ideal
risk .

Theorem 4.1: Consider the Gaussian model (7). Suppose
is -sparse with . Set . Let

be the minimizer of the problem

(9)

Then with probability at least , satisfies

(10)

Remark 4.1: As aforementioned, a similar oracle inequality
was derived in [7, Th. 1.2] in the context of restrictive isometry
property. In that setting, it was required to have the minimiza-
tion parameter where and
is a constant. In comparison, under the MIP condition we re-
quire a weaker condition on as the is essentially the same
as in the sense that as . In addition, as we
shall see later, under the MIP condition, the proof of the oracle
inequality (10) is particularly simple.

Proof: Without loss of generality, we assume and
and for . Set

and define the event .
Standard bound on Gaussian tail probability shows that

That is, the event occurs with probability at least .

In the following we shall assume that the event occurs, i.e.,
. Let and write
and . Then

1) .
2) By the definition of , it is clear that

. This implies that if . Therefore
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First we verify that is a feasible solution to (9). In fact, for
any with

if
otherwise

From Theorem 2.2, we have

and, hence

Consequently

V. RELATIONS TO THE RESTRICTED ISOMETRY PROPERTY

We have shown in the earlier sections that the MIP condi-
tion is sufficient and sharp for stable recovery
of -sparse signals in the presence of noise. Besides MIP, the
sparse signal recovery problem has also been well studied in the
framework of the restricted isometry property (RIP) introduced
by [6]. For an matrix and an integer , , the

-restricted isometry constant is the smallest constant such
that

(11)

for every -sparse vector . If , the -restricted
orthogonality constant , is the smallest number that satisfies

(12)

for all and such that and are -sparse and -sparse
respectively, and have disjoint supports.

It has been shown that minimization can recover a sparse
signal with a small or zero error under various conditions on

and . For example, was used
in [6], in [5], and in [7],

in [3] and in [2].
Simple conditions involving only the isometry constant

have also been given in the literature on sparse signal recovery,
for example, was used in [4] and was
given by [2]. Davies and Gribonval [8] constructed examples
which demonstrate that stable recovery cannot be guaranteed if

for . This indicates that the upper bound for
is likely less than in order to ensure stable recovery for

all -sparse signals.The exact sharp bound for the RIP constant
remains unknown. This is an interesting topic for further

research.
An advantage of MIP is that it can be used to deterministically

verify whether a given matrix satisfy (4). In contrast, calculating
the RIP parameters is typically computationally infeasible and it
is thus not possible to verify RIP conditions for a given matrix.
However, RIP constants can be used to probabilistically con-
struct compressed sensing matrices which achieves the nice ef-
fect that the number of rows can be considerably less than the
number of columns. For example, as long as ,
then with positive probability (when is large), the ma-
trix with entries drawn independently according to Gaussian
distribution, , is a compressed sensing matrix,
see [1], [6], and [17].

The connections between RIP and MIP have been noted in the
literature. It can be seen that , and the following
relations can be found in [3] (the first inequality can be also
found in [18])

(13)

With the above relations, the results in RIP can also be stated
in terms of MIP. However, current RIP conditions are not
enough for achieving the (sharp) MIP condition (4)

For example, to the best of our knowledge, one of the best RIP
conditions in the literature so far is

Using (13), this yields the corresponding MIP condition

which is stronger than (4).
It should be noted that RIP and MIP conditions, although

strongly connected, are different conditions. As indicated by the
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above example, the RIP framework does not contain the MIP
framework, or vice versa. Methods and techniques for treating
MIP and RIP are different as well.
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