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Abstract

Motivated by applications in text mining and discrete distribution inference, we

investigate the testing for equality of probability mass functions of K groups of high-

dimensional multinomial distributions. A test statistic, which is shown to have an

asymptotic standard normal distribution under the null, is proposed. The optimal de-

tection boundary is established, and the proposed test is shown to achieve this optimal

detection boundary across the entire parameter space of interest. The proposed method

is demonstrated in simulation studies and applied to analyze two real-world datasets

to examine variation among consumer reviews of Amazon movies and diversity of sta-

tistical paper abstracts.

Keywords: authorship attribution, closeness testing, consumer reviews, martin-

gale central limit theorem, minimax optimality, topic model

1 Introduction

Statistical inference for multinomial data has garnered considerable recent interest [Di-

akonikolas and Kane, 2016, Balakrishnan and Wasserman, 2018]. One important appli-

cation is in text mining, as it is common to model the word counts in a text document

by a multinomial distribution [Blei et al., 2003]. We consider a specific example in mar-

keting, where the study of online customer ratings and reviews has become a trending

topic [Chevalier and Mayzlin, 2006, Zhu and Zhang, 2010, Leung and Yang, 2020]. Cus-

tomer reviews are a good proxy to the overall word of mouth (WOM) and can significantly

influence customers’ decisions [Zhu and Zhang, 2010]. Many research works aim to under-

stand the patterns in online reviews and their impacts on sales. Classical studies only use

the numerical ratings but ignore the rich text reviews because of their unstructured na-

ture. More recent works have revealed the importance of analyzing text reviews [Chevalier

and Mayzlin, 2006], especially for hedonic products such as books, movies, and hotels. A

question of great interest is to detect the heterogeneity in reviewers’ response styles. For

example, Leung and Yang [2020] discovered that younger travelers, women, and travelers

with less review expertise tend to give more positive reviews and that guests staying in
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high-class hotels tend to have more extreme response styles than those staying in low-class

hotels. Knowing such differences will offer valuable insights for hotel managers and online

rating/review sites.

The aforementioned heterogeneity detection can be cast as a hypothesis test on multi-

nomial data. Suppose reviews are written on a vocabulary of p distinct words. Let Xi ∈ Rp

denote the word counts in review i. We model that

Xi ∼ Multinomial(Ni,Ωi), 1 ≤ i ≤ n, (1.1)

where Ni is the total length of review i and Ωi ∈ Rp is a probability mass function (PMF)

containing the population word frequencies. These reviews are divided into K groups by

reviewer characteristics (e.g., age, gender, new/returning customer), product characteristics

(e.g., high-class versus low-class hotels), and numeric ratings (e.g., from 1 star to 5 stars),

where K can be presumably large. We view Ωi as representing the ‘true response’ of review

i. The “average response” of a group k is defined by a weighted average of the PMFs:

µk = (nkN̄k)
−1
∑
i∈Sk

NiΩi, 1 ≤ k ≤ K. (1.2)

Here Sk ⊂ {1, 2, . . . , n} is the index set of group k, nk = |Sk| is the total number of reviews

in group k, and N̄k = n−1
k

∑
i∈Sk Ni is the average length of reviews in group k. We would

like to test

H0 : µ1 = µ2 = . . . = µK . (1.3)

When the null hypothesis is rejected, it means there exist statistically significant differences

among the group-wise “average responses”.

We call (1.1)-(1.3) the “K-sample testing for equality of average PMFs in multinomials”

or “K-sample testing for multinomials” for short. Interestingly, as K varies, this problem

includes several well-defined problems in text mining and discrete distribution inference as

special cases.

1. Global testing for topic models. Topic modeling [Blei et al., 2003] is a popular text

mining tool. In a topic model, each Ωi in (1.1) is a convex combination of M topic

vectors. Before fitting a topic model to a corpus, it is often desirable to determine

if the corpus indeed contains multiple topics. This boils down to the global testing

problem, which tests M = 1 versus M > 1. Under the null hypothesis, Ωi’s are equal

to each other, and in the alternative hypothesis, Ωi’s can take continuous values in

a high-dimensional simplex. This is a special case of our problem with K = n and

nk = 1.

2. Authorship attribution [Mosteller and Wallace, 1963, Kipnis, 2022]. In these appli-

cations, the goal is to determine the unknown authorship of an article from other

articles with known authors. A famous example [Mosteller and Wallace, 2012] is to

determine the actual authors of a few Federalist Papers written by three authors but

published under a single pseudonym. It can be formulated [Mosteller and Wallace,

1963, Kipnis, 2022] as testing the equality of population word frequencies between the
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article of interest and the corpus from a known author, a special case of our problem

with K = 2.

3. Closeness between discrete distributions [Chan et al., 2014, Bhattacharya and Valiant,

2015, Balakrishnan and Wasserman, 2019]. There has been a surge of interest in

discrete distribution inference. Closeness testing is one of most studied problems.

The data from two discrete distributions are summarized in two multinomial vectors

Multinomial(N1, µ) and Multinomial(N2, θ). The goal is to test µ = θ. It is a special

case of our testing problem with K = 2 and n1 = n2 = 1.

In this paper, we provide a unified solution to all the aforementioned problems. The

key to our methodology is a flexible statistic called DELVE (DE-biased and Length-assisted

Variability Estimator). It provides a general similarity measure for comparing groups of

discrete distributions such as count vectors associated with text corpora. Similarity mea-

sures (such as the classical cosine similarity, log-likelihood ratio statistic, and others) are

fundamental in text mining and have been applied to problems in distribution testing [Kim

et al., 2022], computational linguistics [Gomaa et al., 2013], econometrics [Hansen et al.,

2018], and computational biology [Kolodziejczyk et al., 2015]. Our method is a new and

flexible similarity measure that is potentially useful in these areas.

We emphasize that our setting does not require that the Xi’s in the same group are

drawn from the same distribution. Under the null hypothesis (1.3), the group-wise means

are equal, but the Ωi’s within each group can still be different from each other. As a result,

the null hypothesis is composite and designing a proper test statistic is non-trivial.

1.1 Our results and contributions

The dimensionality of the testing problem is captured by (n, p,K) and N̄ := n−1
∑n

i=1Ni.

We are interested in a high-dimensional setting where

nN̄ →∞, p→∞, and n2N̄2/(Kp)→∞. (1.4)

In most places of this paper, we use a subscript n to indicate asymptotics, but our method

and theory do apply to the case where n is finite and N̄ →∞. In text applications, nN̄ is

the total count of words in the corpus, and a large nN̄ means either there are sufficiently

many documents, or the documents are sufficiently long. Given that nN̄ →∞, we further

allow (p,K) to grow with n at a speed such that Kp � n2N̄2. In particular, our settings

allow K to range from 2 to n, so as to cover all the application examples.

We propose a test that enjoys the following properties:

(a) Parameter-free null distribution: We show that the test statistic ψ → N(0, 1) under

H0. Even under the null hypothesis (1.3), the model contains a large number of free

parameters because the null hypothesis is only about the equality of “average” PMFs

but still allows (Ni,Ωi) to differ within each group. As an appealing property, the

null distribution of ψ does not depend on these individual multinomial parameters;

hence, we can always conveniently obtain the asymptotic p-value for our proposed

test.
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(b) Minimax optimal detection boundary: We define a quantity ωn := ωn(µ1, µ2, . . . , µK)

in (3.5) that measures the difference among the K group-wise mean PMF’s. It sat-

isfies that ωn = 0 if and only if the null hypothesis holds, and it has been properly

normalized so that ωn is bounded under the alternative hypothesis (provided some

mild regularity conditions hold). We show that the proposed test has an asymptotic

full power if ω4
nn

2N̄2/(Kp)→∞. We also provide a matching lower bound by showing

that the null hypothesis and the alternative hypothesis are asymptotically indistin-

guishable if ω4
nn

2N̄2/(Kp) → 0. Therefore, the proposed test is minimax optimal.

Furthermore, in the boundary case where ω4
nn

2N̄2/(Kp)→ c0 for a constant c0 > 0,

for some special settings, we show that ψ → N(0, 1) under H0, and ψ → N(c1, 1),

under H1, with the constant c1 being an explicit function of c0.

To the best of our knowledge, this testing problem for a general K has not been studied

before. The existing works primarily focused on closeness testing and authorship attribution

(see Section 1.2), which are special cases with K = 2. In comparison, our test is applicable

to any value of K, offering a unified solution to multiple applications. Even for K = 2,

the existing works do not provide a test statistic that has a tractable null distribution.

They determined the rejection region and calculated p-values using either a (conservative)

large-deviation bound or a permutation procedure. Our test is the first one equipped with a

tractable null distribution. Our results about the optimal detection boundary for a general

K are also new to the literature. By varying K in our theory, we obtain the optimal detec-

tion boundary for different sub-problems. For some of them (e.g., global testing for topic

models, authorship attribution with moderate sparsity), the optimal detection boundary

was not known before; hence, our results help advance the understanding of the statistical

limits of these problems.

1.2 Related literature

First, we make a connection to discrete distribution inference. Let X ∼ Multinomial(N,Ω)

represent a size-N sample from a discrete distribution with p categories. The one-sample

closeness testing aims to test H0 : Ω = µ, for a given PMF µ. Existing works focus

on finding the minimum separation condition in terms of the `1-norm or `2-norm of Ω −
µ. Balakrishnan and Wasserman [2019] derived the minimum `1-separation condition and

proposed a truncated chi-square test to achieve it. Valiant and Valiant [2017] studied the

“local critical radius”, a local separation condition that depends on the “effective sparsity”

of µ, and they proposed a “2/3rd + tail” test to achieve it. In the two-sample closeness

testing problem, given X1 ∼ Multinomial(N1,Ω1) and X2 ∼ Multinomial(N2,Ω2), it aims

to test H0 : Ω1 = Ω2. Again, this literature focuses on finding the minimum separation

condition in terms of the `1-norm or `2-norm of Ω1 − Ω2. When N1 = N2, Chan et al.

[2014] derived the minimum `1-separation condition and proposed a weighted chi-square

test to attain it. Bhattacharya and Valiant [2015] extended their results to the unbalanced

case where N1 6= N2, assuming ‖Ω1 − Ω2‖1 ≥ p−1/12. This assumption was later removed

by Diakonikolas and Kane [2016], who established the minimum `1-separation condition in

full generality. Kim et al. [2022] proposed a two-sample kernel U -statistic and showed that
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it attains the minimum `2-separation condition.

Since the two-sample closeness testing is a special case of our problem with K = 2 and

n1 = n2 = 1, our test is directly applicable. An appealing property of our test is its tractable

asymptotic null distribution of N(0, 1). In contrast, for the chi-square statistic in Chan et al.

[2014] or the U -statistic in [Kim et al., 2022], the rejection region is determined by either an

upper bound from concentration inequalities or a permutation procedure, which may lead

to a conservative threshold or need additional computational costs. Regarding the testing

power, we show in Section 4.3 that our test achieves the minimum `2-separation condition,

i.e., our method is an optimal “`2 testor.” Our test can also be turned into an optimal “`1

testor” (a test that achieves the minimum `1-separation condition) by re-weighting terms

in the test statistic (see Section 4.3).

Next, we make a connection to text mining. In this literature, a multinomial vector

X ∼ Multinomial(N,Ω) represents the word counts for a document of length N written

with a dictionary containing p words. In a topic model, each Ωi is a convex combination of

M “topic vectors”: Ωi =
∑M

k=1wi(k)Ak, where each Ak ∈ Rp is a PMF and the combination

coefficient vector wi ∈ RK is called the “topic weight” vector for document i. Given a

collection of documents X1, X2, . . . , Xn, the global testing problem aims to test M = 1

versus M > 1. Interestingly, the optimal detection boundary for this problem has never

been rigorously studied. As we have explained, this problem a special case of our testing

problem with K = n. Our results (a) provide a test statistic that has a tractable null

distribution and (b) reveal that the optimal detection boundary is ω2
n � (

√
nN̄)−1√p.

Both (a) and (b) are new results. When comparing our results with those about estimation

of Ak’s [Ke and Wang, 2022], it suggests that global testing requires a strictly lower signal

strength than topic estimation.

For authorship attribution, Kipnis [2022] treats the corpus from a known author as a

single document and tests the null hypothesis that this combined document and a new

document have the same population word frequencies. It is a two-sample closeness testing

problem, except that sparsity is imposed on the difference of two PMFs. Kipnis [2022]

proposed a test which applies an “exact binomial test” to obtain a p-value for each word

and combines these p-values using Higher Criticism [Donoho and Jin, 2004]. Donoho and

Kipnis [2022] analyzed this test when the number of “useful words” is o(
√
p), and they

derived a sharp phase diagram (a related one-sample setting was studied in Arias-Castro

and Wang [2015]). In Section 4.2, we show that our test is applicable to this problem and

has some nice properties: (a) tractable null distribution; (b) allows for s ≥ c
√
p, where s

is the number of useful words; and (c) does not require documents from the known author

to have identical population word frequencies, making the setting more realistic. On the

other hand, when s = o(
√
p), our test is less powerful than the one in Kipnis [2022], Donoho

and Kipnis [2022], as our test does not utilize sparsity explicitly. We can further improve

our test in this regime by modifying the DELVE statistic to incorporate sparsity (see the

remark in Section 4.2).
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1.3 Organization

The rest of this paper is arranged as follows. In Section 2, we introduce the test statistic and

explain the rationale behind it. We then present in Section 3 the main theoretical results,

including the asymptotic null distribution, power analysis, a matching lower bound, the

study of two special cases (K = n and K = 2), and a discussion of the contiguity regime.

Section 4 applies our results to text mining and discrete distribution testing. Simulations

are in Section 5 and real data analysis is in Section 6. The paper is concluded with a

discussion in Section 7. All proofs are in the appendix.

2 The DELVE Test

Recall thatXi ∼ Multinomial(Ni,Ωi) for 1 ≤ i ≤ n. There is a known partition {1, 2, . . . , n} =

∪Kk=1Sk. Write nk = |Sk|, N̄k = n−1
k

∑
i∈Sk Ni, and N̄ = n−1

∑n
i=1Ni. In (1.2), we have de-

fined the group-wise mean PMF µk = (nkN̄k)
−1
∑

i∈Sk NiΩi. We further define the overall

mean PMF µ ∈ Rp by

µ :=
1

nN̄

K∑
k=1

nkN̄kµk =
1

nN̄

n∑
i=1

NiΩi. (2.1)

We introduce a quantity ρ2 = ρ2(µ1, . . . , µK) by

ρ2 :=

K∑
k=1

nkN̄k‖µk − µ‖2. (2.2)

This quantity measures the variations across K group-wise mean PMFs. It is true that the

null hypothesis (1.3) holds if and only if ρ2 = 0. Inspired by this observation, we hope to

construct an unbiased estimator of ρ2 and develop it to a test statistic.

We can easily obtain the minimum variance unbiased estimators of µk and µ:

µ̂k =
1

nkN̄k

∑
i∈Sk

Xi, and µ̂ =
1

nN̄

K∑
k=1

nkN̄kµ̂k =
1

nN̄

n∑
i=1

Xi. (2.3)

For each 1 ≤ j ≤ p, let µkj , µj , µ̂kj and µ̂j represent the jth entry of µk, µ, µ̂k and µ̂,

respectively. A naive estimator of ρ2 is

T̃ =

p∑
j=1

T̃j , where T̃j =

K∑
k=1

nkN̄k(µ̂kj − µ̂j)2. (2.4)

This estimator is biased. In Section C.1 of the appendix , we show that E[T̃j ] =
∑K

k=1

[
nkN̄k(µkj−

µj)
2 +

(
1

nkN̄k
− 1

nN̄

)∑
i∈Sk NiΩij(1− Ωij)

]
. It motivates us to debias T̃j by using an unbi-

ased estimate of Ωij(1 − Ωij). By elementary properties of the multinomial distribution,

E[Xij(Ni − Xij)] = Ni(Ni − 1)Ωij(1 − Ωij). We thereby use 1
Ni(Ni−1)Xij(Ni − Xij) to

estimate Ωij(1− Ωij). This gives rise to an unbiased estimator of ρ2 as

T =

p∑
j=1

Tj , Tj =

K∑
k=1

[
nkN̄k(µ̂kj − µ̂j)2 −

( 1

nkN̄k
− 1

nN̄

)∑
i∈Sk

Xij(Ni −Xij)

Ni − 1

]
. (2.5)
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Lemma 2.1. Under Models (1.1)-(1.2), the estimator in (2.5) satisfies that E[T ] = ρ2.

To use T for hypothesis testing, we need a proper standardization of this statistic. In

Sections A.1-A.2 of the appendix , we study V(T ), the variance of T . Under mild regularity

conditions, it can be shown that V(T ) = Θn · [1 + o(1)], where

Θn := 4

K∑
k=1

p∑
j=1

nkN̄k(µkj − µj)2µkj + 2

K∑
k=1

∑
i∈Sk

p∑
j=1

( 1

nkN̄k
− 1

nN̄

)2 N3
i

Ni − 1
Ω2
ij (2.6)

+
2

n2N̄2

∑
1≤k 6=`≤K

∑
i∈Sk

∑
m∈S`

p∑
j=1

NiNmΩijΩmj + 2

K∑
k=1

∑
i∈Sk,m∈Sk,

i 6=m

p∑
j=1

( 1

nkN̄k
− 1

nN̄

)2
NiNmΩijΩmj .

In Θn, the first term vanishes under the null, so it suffices to estimate the other three terms

in Θn. By properties of multinomial distributions, E[XijXmj ] = NiNmΩijΩmj , E[X2
ij ] =

N2
i Ω2

ij + NiΩij(1 − Ωij), and E[Xij(Ni −Xij)] = Ni(Ni − 1)Ωij(1 − Ωij). It inspires us to

estimate ΩijΩmj by
XijXmj
NiNm

and estimate Ω2
ij by

X2
ij

N2
i
− Xij(Ni−Xij)

N2
i (Ni−1)

=
X2
ij−Xij

Ni(Ni−1) . Define

V = 2

K∑
k=1

∑
i∈Sk

p∑
j=1

( 1

nkN̄k
− 1

nN̄

)2 X2
ij −Xij

Ni(Ni − 1)
+

2

n2N̄2

∑
k 6=`

∑
i∈Sk

∑
m∈S`

p∑
j=1

XijXmj

+ 2

K∑
k=1

∑
i∈Sk,m∈Sk,

i 6=m

p∑
j=1

( 1

nkN̄k
− 1

nN̄

)2
XijXmj . (2.7)

The test statistic we propose is as follows (in the rate event V < 0, we simply set ψ = 0):

ψ = T/
√
V . (2.8)

We call ψ the DEbiased and Length-adjusted Variability Estimator (DELVE). In Section 3.1,

we show that under mild regularity conditions, ψ → N(0, 1) under the null hypothesis. For

any fixed α ∈ (0, 1), the asymptotic level-α DELVE test rejects H0 if

ψ > zα, where zα is the (1− α)-quantile of N(0, 1). (2.9)

2.1 The special cases of K = n and K = 2

As seen in Section 1, the application examples of K = n and K = 2 are particularly

intriguing. In these cases, we give more explicit expressions of our test statistic.

When K = n, we have Sk = {i} and µ̂kj = N−1
i Xij . The null hypothesis becomes

H0 : Ω1 = Ω2 = . . . = Ωn. The statistic in (2.5) reduces to

T =

p∑
j=1

n∑
i=1

[
(Xij −Niµ̂j)

2

Ni
−
(

1− Ni

nN̄

)Xij(Ni −Xij)

Ni(Ni − 1)

]
. (2.10)

Moreover, in the variance estimate (2.7), the last term is exactly zero, and it can be shown

that the third term is negligible compared to the first term. We thereby consider a simpler
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variance estimator by only retaining the first term in (2.7):

V ∗ = 2
n∑
i=1

p∑
j=1

( 1

Ni
− 1

nN̄

)2 X2
ij −Xij

Ni(Ni − 1)
. (2.11)

The simplified DELVE test statistic is ψ∗ = T/
√
V ∗.

When K = 2, we observe two collections of multinomial vectors, denoted by {Xi}1≤i≤n
and {Gi}1≤i≤m. We assume for 1 ≤ i ≤ n and 1 ≤ j ≤ m,

Xi ∼ Multinomial(Ni,Ωi), Gj ∼ Multinomial(Mj ,Γj). (2.12)

Write N̄ = n−1
∑n

i=1Ni and M̄ = m−1
∑m

i=1Mi. The null hypothesis becomes

H0 : η = θ, where η =
1

nN̄

n∑
i=1

NiΩi, and θ =
1

mM̄

m∑
i=1

MiΓi, (2.13)

where θ and η are the two group-wise mean PMFs. We estimate them by η̂ = (nN̄)−1
∑n

i=1Xi

and θ̂ = (mM̄)−1
∑m

i=1Gi. The statistic in (2.5) has an equivalent form as follows:

T =
nN̄mM̄

nN̄ +mM̄

[
‖η̂ − θ̂‖2 −

n∑
i=1

p∑
j=1

Xij(Ni −Xij)

n2N̄2(Ni − 1)
−

m∑
i=1

p∑
j=1

Gij(Mi −Gij)
m2M̄2(Mi − 1)

]
. (2.14)

The variance estimate (2.7) has an equivalent form as follows:

V =
4
∑n

i=1

∑m
i′=1

∑p
j=1XijGi′j

(nN̄ +mM̄)2
+

2m2M̄2
[∑n

i=1

X2
ij−Xij

Ni(Ni−1) +
∑

1≤i 6=i′≤nXijXi′j

]
n2N̄2(nN̄ +mM̄)2

+
2n2N̄2

[∑m
i=1

G2
ij−Gij

Mi(Mi−1) +
∑

1≤i 6=i′≤mGijGi′j
]

m2M̄2(nN̄ +mM̄)2
. (2.15)

The DELVE test statistic is ψ = T/
√
V .

2.2 A variant: DELVE+

We introduce a variant of the DELVE test statistic to better suit real data. Let µ̂, T and

V be as in (2.3), (2.5) and (2.7). Define

ψ+ = T/
√
V +, where V + = V ·

(
1 + ‖µ̂‖2T/

√
V
)
. (2.16)

We call (2.16) the DELVE+ test statistic. In theory, this modification has little effect on

the key properties of the test. To see this, we note that ‖µ̂‖2 = oP(1) in high-dimensional

settings. Suppose T/
√
V → N(0, 1) under H0. Since ‖µ̂‖2 → 0, it is seen immediately

that V +/V → 1; hence, the asymptotic normality also holds for ψ+. Suppose T/
√
V →∞

under the alternative hypothesis. It follows that V + ≤ 2 max{V, ‖µ̂‖2 · T
√
V } and ψ+ ≥

1√
2

min{T/
√
V , ‖µ̂‖−1

2 (T/
√
V )1/2} → ∞. We have proved the following lemma:

Lemma 2.2. As nN̄ → ∞, suppose ‖µ̂‖2 → 0 in probability. Under H0, if T/
√
V →

N(0, 1), then T/
√
V + → N(0, 1). Under H1, if T/

√
V →∞, then T/

√
V + →∞.
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In practice, this modification avoids extremely small p-values. In some real datasets, V is

very small and leads to an extremely small p-value in the original DELVE test. In DELVE+,

as long as T is positive, ψ+ is smaller than ψ, so that the p-value is adjusted.

In the numerical experiments, we consider both DELVE and DELVE+. For theoretical

analysis, since these two versions have almost identical theoretical properties, we only focus

on the original DELVE test statistic.

3 Theoretical Properties

We first present the regularity conditions. For a constant c0 ∈ (0, 1), we assume

min
1≤i≤n

Ni ≥ 2, max
1≤i≤n

‖Ωi‖∞ ≤ 1− c0, max
1≤k≤K

nkN̄k

nN̄
≤ 1− c0. (3.1)

In (3.1), the first condition is mild. The second condition is also mild: note that ‖Ωi‖1 = 1

for each i; this condition excludes those cases where one of the p categories has an extremely

dominating probability in the PMF Ωi. In the third condition, nkN̄k is the total number of

counts in all multinomials of group k, and this condition excludes the extremely unbalanced

case where one group occupies the majority of counts. Note that in the special case ofK = 2,

we relax this condition to allow for severely unbalanced groups (see Section 3.4).

Recall that µk = 1
nkN̄k

∑
i∈Sk NiΩi is the mean PMF within group k. We also define a

‘covariance’ matrix of PMF’s for group k by Σk = 1
nkN̄k

∑
i∈Sk NiΩiΩ

′
i. Let

αn := max

{
K∑
k=1

‖µk‖33
nkN̄k

,

K∑
k=1

‖µk‖2

n2
kN̄

2
k

}/( K∑
k=1

‖µk‖2
)2

, (3.2)

and

βn := max

{ K∑
k=1

∑
i∈Sk

N2
i

n2
kN̄

2
k

‖Ωi‖33,
K∑
k=1

‖Σk‖2F
}/

(K‖µ‖2). (3.3)

We assume that as nN̄ →∞,

αn = o(1), βn = o(1), and
‖µ‖44
K‖µ‖4

= o(1). (3.4)

Here αn and βn only depend on group-wise quantities, such as µk, Σk and
∑

i∈Sk N
2
i ‖Ωi‖33;

hence, a small number of ‘outliers’ (i.e., extremely large entries) in Ω has little effect on αn
and βn. Furthermore, in a simple case where maxk nk ≤ C mink nk, maxk N̄k ≤ C mink N̄k

and ‖Ω‖max = O(1/p), it holds that αn = O(max{ 1
nN̄
, Kp
n2N̄2 }), βn = O(max{K2

n2p
, 1
p}) and

‖µ‖44
K‖µ‖4 = O( 1

Kp). When nN̄ → ∞ and p → ∞, (3.4) reduces to n2N̄2/(Kp) → ∞. This

condition is necessary for successful testing, because our lower bound in Section 3.3 implies

that the two hypotheses are asymptotically indistinguishable if n2N̄2/(Kp)→ 0.
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3.1 The asymptotic null distribution

Under the null hypothesis, the K group-wise mean PMF’s µ1, µ2, . . . , µK , are equal to each

other, but this hypothesis is still highly composite, as (Ni,Ωi) are not necessarily the same

within each group. We show that the DELVE test statistic always enjoys a parameter-free

asymptotic null distribution. Let T , Θn and V be as in (2.5)-(2.7). The next two theorems

are proved in the appendix.

Theorem 3.1. Consider Models (1.1)-(1.2), where the null hypothesis (1.3) holds. Suppose

(3.1) and (3.4) are satisfied. As nN̄ →∞, T/
√

Θn → N(0, 1) in distribution.

Theorem 3.2. Under the conditions of Theorem 3.1, as nN̄ → ∞, V/Θn → 1 in proba-

bility, and ψ := T/
√
V → N(0, 1) in distribution.

By Theorem 3.2, the asymptotic p-value is computed via 1 − Φ(ψ), where Φ(·) is the

cumulative distribution function of the standard normal. Moreover, for any fixed α ∈ (0, 1),

the rejection region of the asymptotic level-α test is as given in (2.9).

The proofs of Theorems 3.1-3.2 contain two key steps: in the first step, we decompose T

into the sum of mutually uncorrelated terms. We introduce a set of independent, mean-zero

random vectors {Zir}1≤i≤n,1≤r≤Ni , where Zir ∼ Multinomial(1,Ωi)− Ωi. By properties of

multinomial distributions, Xi = NiΩi +
∑Ni

r=1 Zir in distribution. We plug it into (2.5) to

obtain T = T1 +T2 +T3 +T4, where T1 is a linear form of {Zir}, T2, T3 and T4 are quadratic

forms of {Zir}, and the four terms are uncorrelated with each other (details are contained

in Section A of the appendix ). In the second step, we construct a martingale for each term

Tj . This is accomplished by rearranging the double-index sequence Zir to a single-index

sequence and then successively adding terms in this sequence to Tj . We then apply the

martingale central limit theorem (CLT) [Hall and Heyde, 2014] to prove the asymptotic

normality of each Tj . The asymptotic normality of T follows by identifying the dominating

terms in T1-T4 (as model parameters change, the dominating terms can be different) and

studying their joint distribution. This step involves extensive calculations to bound the

conditional variance and to verify the Lindeberg conditions of the martingale CLT, as well

as numerous subtle uses of the Cauchy-Schwarz inequality to simplify the moment bounds.

3.2 Power analysis

Under the alternative hypothesis, the PMF’s µ1, µ2, . . . , µK are not the same. In Section 2,

we introduce a quantity ρ2 (see (2.2)) to capture the total variation in µk’s, but this quantity

is not scale-free. We define a scaled version of ρ2 as

ωn = ωn(µ1, µ2, . . . , µK) :=
1

nN̄‖µ‖2
K∑
k=1

nkN̄k‖µk − µ‖2. (3.5)

It is seen that ωn ≤ maxk{‖µk−µ‖
2

‖µ‖2 }, which is properly scaled.

Theorem 3.3. Consider Models (1.1)-(1.2), where (3.1) and (3.4) are satisfied. Then,

E[T ] = nN̄‖µ‖2ω2
n, and V(T ) = O

(∑K
k=1 ‖µk‖2

)
+ E[T ] ·O

(
max1≤k≤K ‖µk‖∞

)
.

10



For the DELVE test to have an asymptotically full power, we need E[T ]�
√
V(T ). By

Theorem 3.3, this is satisfied if E[T ] �
√∑

k ‖µk‖2 and E[T ] � maxk ‖µk‖∞. Between

these two requirements, the latter one is weaker; hence, we only need E[T ]�
√∑K

k=1 ‖µk‖2.

It gives rise to the following theorem:

Theorem 3.4. Under the conditions of Theorem 3.3, we further assume that under the

alternative hypothesis, as nN̄ →∞,

SNRn :=
nN̄‖µ‖2ω2

n√∑K
k=1 ‖µk‖2

→ ∞. (3.6)

The following statements are true. Under the alternative hypothesis, ψ →∞ in probability.

For any fixed α ∈ (0, 1), the level-α DELVE test has an asymptotic level of α and an

asymptotic power of 1. If we choose α = αn such that αn → 0 and 1− Φ(SNRn) = o(αn),

where Φ is the CDF of N(0, 1), then the sum of type I and type II errors of the DELVE

test converges to 0.

The detection boundary in (3.6) has simpler forms in some special cases. For example,

if ‖µk‖ � ‖µ‖ for 1 ≤ k ≤ K, then SRNn � nN̄ω2
n‖µ‖/

√
K. If, furthermore, all entries of

µ are at the same order, which implies ‖µ‖ � p−1/2, then SRNn � n2N̄2ω2
n/
√
Kp. In this

case, the detection boundary simplifies to ω4
nn

2N̄2/(Kp)→∞.

Remark 1 (The low-dimensional case p = O(1)). Although we are primarily interested in

the high-dimensional setting p → ∞, it is also worth investigating the case p = O(1). We

can show the same detection boundary for our test, but the asymptotic normality may not

hold, because the variance estimator V in (2.7) is not guaranteed to be consistent. To fix

this issue, we propose a variant of our test by replacing V with a refined variance estimator

Ṽ , which is consistent for a finite p. The expression of Ṽ is a little complicated. Due to

space limits, we relegate it to Section E of the appendix.

3.3 A matching lower bound

We have seen that the DELVE test successfully separates two hypotheses if SNRn → ∞,

where SNRn is as defined in (3.6). We now present a lower bound to show that the two

hypotheses are asymptotically indistinguishable if SNRn → 0.

Let `i ∈ {1, 2, . . . ,K} denote the group label of Xi. Write ξ = {(Ni,Ωi, `i)}1≤i≤n. Let

µk, αn, βn, and ωn be the same as defined in (1.2), (3.2), (3.3), and (3.5), respectively. For

each given (n, p,K, N̄), we write µk = µk(ξ) to emphasize its dependence on parameters,

and similarly for αn, βn, ωn. For any c0 ∈ (0, 1) and sequence εn, define

Qn(c0, εn) :=
{
ξ = {(Ni,Ωi, `i)}ni=1 : (3.1) holds for c0, max(αn(ξ), βn(ξ)) ≤ εn

}
(3.7)

Furthermore, for any sequence δn, we define a parameter class for the null hypothesis and

a parameter class for the alternative hypothesis:

Q∗0n(c0, εn) = Qn(c0, εn) ∩ {ξ : ωn(ξ) = 0} ,

11



Q∗1n(δn; c0, εn) = Qn(c0, εn) ∩

ξ :
nN̄‖µ(ξ)‖2ω2

n(ξ)√∑K
k=1 ‖µk(ξ)‖2

≥ δn

 . (3.8)

Theorem 3.5. Fix a constant c0 ∈ (0, 1) and two positive sequences εn and δn such that

εn → 0 as n→∞. For any sequence of (n, p,K, N̄) indexed by n, we consider Models (1.1)-

(1.2) for Ω ∈ Qn(c0, εn). Let Q∗0n(c0, εn) and Q∗1n(δn; c0, εn) be as in (3.8). If δn → 0, then

lim supn→∞ infΨ∈{0,1}
{

supξ∈Q∗0n(c0,εn) Pξ(Ψ = 1) + supξ∈Q∗1n(δn;c0,εn) Pξ(Ψ = 0)
}

= 1.

By Theorem 3.5, the null and alternative hypotheses are asymptotically indistinguish-

able if SRNn → 0. Combining it with Theorem 3.4, the DELVE test achieves the minimax

optimal detection boundary.

3.4 The special case of K = 2

The special case of K = 2 is found in applications such as closeness testing and authorship

attribution. We study this case more carefully. Given {Xi}1≤i≤n and {Gi}1≤i≤m, we assume

Xi ∼ Multinomial(Ni,Ωi), Gj ∼ Multinomial(Mj ,Γj). (3.9)

Write N̄ = n−1
∑n

i=1Ni and M̄ = m−1
∑m

i=1Mi. The null hypothesis becomes

H0 : η = θ, where η =
1

nN̄

n∑
i=1

NiΩi, and θ =
1

mM̄

m∑
i=1

MiΓi, (3.10)

where θ and η are the two group-wise mean PMFs. In this case, the test statistic ψ has a

more explicit form as in (2.14)-(2.15).

In our previous results for a general K, the regularity conditions (e.g., (3.1)) impose

restrictions on the balance of sample sizes among groups. For K = 2, the severely unbal-

anced setting is interesting (e.g., in authorship attribution, n = 1 and m can be large). We

relax the regularity conditions to the following ones:

Condition 3.1. Let θ and η be as in (3.10) and define two matrices Σ1 = 1
nN̄

∑n
i=1NiΩiΩ

′
i

and Σ2 = 1
mM̄

∑m
i=1MiΓiΓ

′
i. We assume that the following statements are true (a) For

1 ≤ i ≤ n and 1 ≤ j ≤ m, Ni ≥ 2, ‖Ωi‖∞ ≤ 1 − c0, Mj ≥ 2, and ‖Γj‖∞ ≤ 1 − c0, where

c0 ∈ (0, 1) is a contant, (b) max
{(‖η‖33

nN̄
+
‖θ‖33
mM̄

)
,
( ‖η‖22
n2N̄2 +

‖θ‖22
m2M̄2

2

)}/∥∥ mM̄
nN̄+mM̄

η+ nN̄
nN̄+mM̄

θ
∥∥4

=

o(1), (c) max
{∑

i
N2
i

n2N̄2 ‖Ωi‖33,
∑

i
M2
i

m2M̄2 ‖Γi‖33, ‖Σ1‖2F + ‖Σ2‖2F
}/
‖µ‖2 = o(1), and (d)

‖µ‖44/‖µ‖4 = o(1).

Condition (a) is similar to (3.1), except that we drop the sample size balance requriement.

Conditions (b)-(d) are equivalent to (3.4) but have more explicit expressions for K = 2.

Theorem 3.6. In Model (3.9), we test the null hypothesis H0: θ = µ. As min{nN̄,mM̄} →
∞, suppose Condition 3.1 is satisfied. Under the alternative hypothesis, we further assume

‖η − θ‖2(
1
nN̄

+ 1
mM̄

)
max{‖η‖, ‖θ‖}

→ ∞. (3.11)
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Consider the DELVE test statistic ψ = T/
√
V . The following statements are true. Under

the null hypothesis, ψ → N(0, 1) in distribution. Under the alternative hypothesis, ψ →∞
in probability. Moreover for any fixed α ∈ (0, 1), the level-α DELVE test has an asymptotic

level of α and an asymptotic power of 1.

Compared with the theorems for a general K, first, Theorem 3.6 allows the two groups

to be severely unbalanced and reveals that the detection boundary depends on the harmonic

mean of nN̄ and mM̄ . Second, the detection boundary is expressed using ‖η − θ‖, which

is easier to interpret.

3.5 The special case of K = n

The special case of K = n is interesting for two reasons. First, the application example of

global testing in topic models corresponds to K = n. Second, for any K, when Ωi’s within

each group are assumed to be the same (e.g., this is the case in closeness testing of discrete

distributions), it suffices to aggregate the counts in each group, i.e., let Yk =
∑

i∈Sk Xi and

operate on Y1, . . . , YK instead of the original Xi’s; this reduces to the case of K = n.

When K = n, the null hypothesis has a simpler form:

H0 : Ωi = µ, 1 ≤ i ≤ n. (3.12)

Moreover, under the alternative hypothesis, the quantity ω2
n in (3.5) simplifies to

ωn = ωn(Ω1,Ω2, . . . ,Ωn) =
1

nN̄‖µ‖2
n∑
i=1

Ni‖Ωi − µ‖2. (3.13)

The DELVE test statistic also has a simplified form as in (2.10)-(2.11). We can prove the

same theoretical results under weaker conditions:

Condition 3.2. We assume that the following statements are true: (a) For a constant

c0 ∈ (0, 1), 2 ≤ Ni ≤ (1− c0)nN̄ and ‖Ωi‖∞ ≤ 1− c0, 1 ≤ i ≤ n, and

(b) max
{∑

i
‖Ωi‖33
Ni

,
∑

i
‖Ωi‖2
N2
i

}/
(
∑

i ‖Ωi‖2)2 = o(1), and (
∑

i ‖Ωi‖33)/(n‖µ‖2) = o(1)

When K = n, Condition (a) is equivalent to (3.1); and Condition (b) is weaker than (3.4),

as we have dropped the requirement
‖µ‖44
K‖µ‖4 = o(1). We obtain weaker conditions for K = n

because the dominant terms in T differ from those for K < n.

Theorem 3.7. In Model (1.1), we test the null hypothesis (3.12). As n→∞, we assume

that Condition 3.2 is satisfied. Under the alternative, we further assume that

nN̄‖µ‖2ω2
n√∑n

i=1 ‖Ωi‖2
→∞. (3.14)

Let T and V ∗ be the same as in (2.10)-(2.11). Consider the simplified DELVE test statistic

ψ∗ = T/
√
V ∗. The following statements are true. Under the null hypothesis, ψ∗ → N(0, 1)

in distribution. Under the alternative hypothesis, ψ∗ →∞ in probability. Moreover for any

fixed α ∈ (0, 1), the level-α DELVE test has an asymptotic level of α and an asymptotic

power of 1.
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The detection boundary in (3.14) has a simpler form if
∑

i ‖Ωi‖2 � n‖µ‖2. In this case,

(3.14) is equivalent to
√
nN̄‖µ‖ω2

n → ∞. Additionally, if all entries of µ are at the same

order, then ‖µ‖ � 1/
√
p, and (3.14) further reduces to

√
nN̄2/p · ω2

n →∞.

3.6 A discussion of the contiguity regime

Our power analysis in Section 3.2 concerns SNRn →∞, and our lower bound in Section 3.3

concerns SNRn → 0. We now study the contiguity regime where SNRn tends to a constant.

For illustration, we consider a special choice of parameters, which allows us to obtain a

simple expression of the testing risk.

Suppose K = n and Ni = N for all 1 ≤ i ≤ n. Consider the pair of hypotheses:

H0 : Ωij = p−1, v.s. H1 : Ωij = p−1(1 + βnδij), (3.15)

where {δij}1≤i≤n,1≤j≤p satisfy that |δij | = 1,
∑p

j=1 δij = 0 and
∑n

i=1 δij = 0. Such δij
always exist.1 The SNRn in (3.6) satisfies that SNRn � (N

√
n/
√
p)β2

n. We thereby set

β2
n =

√
2p

N
√
n
· a, for a constant a > 0. (3.16)

Since K = n here, we consider the simplified DELVE test statistic ψ∗ as in Section 3.5.

Theorem 3.8. Consider Model (1.1) with Ni = N . For a constant a > 0, let the null

and alternative hypotheses be specified as in (3.15)-(3.16). As n→∞, if p = o(N2n), then

ψ∗ → N(0, 1) under H0 and ψ∗ → N(a, 1) under H1.

Let Φ be the cumulative distribution function of the standard normal. By Theorem 3.8,

for any fixed constant t ∈ (0, a), if we reject the null hypothesis when ψ∗ > t, then the sum

of type I and type II errors converges to [1− Φ(t)] + [1− Φ(a− t)].

4 Applications

As mentioned in Section 1, our testing problem includes global testing for topic models,

authorship attribution, and closeness testing for discrete distributions as special examples.

In this section, the DELVE test is applied separately to these three problems.

4.1 Global testing for topic models

Topic modeling [Blei et al., 2003] is a popular tool in text mining. It aims to learn a small

number of “topics” from a large corpus. Given n documents written using a dictionary of p

words, let Xi ∼ Multinomial(Ni,Ωi) denote the word counts of document i, where Ni is the

length of this document and Ωi ∈ Rp contains the population word frequencies. In a topic

model, there exist M topic vectors A1, A2, . . . , AM ∈ Rp, where each Ak is a PMF. Let

1For example, we can first partition the dictionary into two halves and then partition all the documents

into two halves; this divides {1, 2, . . . , p} × {1, 2, . . . , n} into four subsets; we construct δij ’s freely on one

subset and then specify the δij ’s on the other three subsets by symmetry.
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wi ∈ RM be a nonnegative vector whose entries sum up to 1, where wi(k) is the “weight”

document i puts on topic k. It assumes

Ωi =
M∑
k=1

wi(k)Ak, 1 ≤ i ≤ n. (4.1)

Under (4.1), the matrix Ω = [Ω1,Ω2, . . . ,Ωn] admits a low-rank nonnegative factorization.

Before fitting a topic model, we would like to know whether the corpus indeed involves

multiple topics. This is the global testing problem: H0 : M = 1 v.s. H1 : M > 1. When

M = 1, by writing A1 = µ, the topic model reduces to the null hypothesis in (3.12). We

can apply the DELVE test by treating each Xi as a separate group (i.e., K = n).

Corollary 4.1. Consider Model (1.1) and define a vector ξ ∈ Rn by ξi = N̄−1Ni. Suppose

that Ω = µ1′n under the null hypothesis, with µ = n−1Ωξ, and that Ω satisfies (4.1) under

the alternative hypothesis, with r := rank(Ω) ≥ 2. Suppose N̄/(miniNi) = O(1). Denote

by λ1, λ2, . . . , λr > 0 the singular values of Ω[diag(ξ)]1/2, arranged in the descending order.

We further assume that under the alternative hypothesis,

N̄ ·
∑r

k=2 λ
2
k√∑r

k=1 λ
2
k

→∞. (4.2)

For any fixed α ∈ (0, 1), the level-α DELVE test has an asymptotic level α and an asymptotic

power 1.

The least-favorable configuration in the proof of Theorem 3.5 is in fact a topic model

that follows (4.1) with M = 2. Transferring the argument yields the following lower bound

that confirms the optimality of DELVE for the global testing of topic models.

Corollary 4.2. Let Rn,M (εn, δn) be the collection of {(Ni,Ωi)}ni=1 satisfying the following

conditions: 1) Ω follows the topic model (4.1) with M topics; 2) Condition 3.2 holds with

o(1) replaced by ≤ εn; 3) N̄(
∑r

k=2 λ
2
k)/(

∑r
k=1 λ

2
k)

1/2 ≥ δn. If εn → 0 and δn → 0, then

lim supn→∞ infΨ∈{0,1}

{
supRn,1(εn,0) P(Ψ = 1) + sup∪M≥2Rn,M (δn,δn) P(Ψ = 0)

}
= 1.

The detection boundary (4.2) can be simplified when M = O(1). Following Ke and

Wang [2022], we define ΣA = A′H−1A and ΣW = n−1WW ′, where A = [A1, A2, . . . , AM ],

W = [w1, w2, . . . , wn] and H = diag(A1M ). Ke and Wang [2022] argued that it is reasonable

to assume that eigenvalues of these two matrices are at the constant order. If this is

true, with some mild additional regularity conditions, each λk is at the order of
√
n/p.

Hence, (4.2) reduces to
√
nN̄/

√
p → ∞. In comparison, Ke and Wang [2022] showed that

a necessary condition for any estimator Â = [Â1, Â2, . . . , ÂM ] to achieve 1
M

∑M
k=1 ‖Âk −

Ak‖1 = o(1) is
√
nN̄/p → ∞. We conclude that consistent estimation of topic vectors

requires strictly stronger conditions than successful testing.

4.2 Authorship attribution

In authorship attribution, given a corpus from a known author, we want to test whether

a new document is from the same author. It is a special case of our testing problem
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with K = 2. We can directly apply the results in Section 3.4. However, the setting in

Section 3.4 has no sparsity. Kipnis [2022], Donoho and Kipnis [2022] point out that the

number of words with discriminating power is often much smaller than p. To see how our

test performs under sparsity, we consider a sparse model. As in Section 3.4, let

Xi ∼ Multinomial(Ni,Ωi), 1 ≤ i ≤ n, and Gi ∼ Multinomial(Mi,Γi), 1 ≤ i ≤ m.
(4.3)

Let N̄ and M̄ be the average of Ni’s and Mi’s, respectively. Write η = 1
nN̄

∑n
i=1NiΩi and

θ = 1
mM̄

∑m
i=1MiΓi. We assume for some βn > 0,

ηj = θj , for j /∈ S, and
∣∣√ηj −√θj∣∣ ≥ βn, for j ∈ S. (4.4)

Corollary 4.3. Under the model (4.3)-(4.4), consider testing H0 : S = ∅ v.s. H1 : S 6= ∅,
where Condition 3.1 is satisfied. Let ηS and θS be the sub-vectors of η and θ restricted to

the coordinates in S. Suppose that under the alternative hypothesis,

β2
n · (‖ηS‖1 + ‖θS‖1)(

1
nN̄

+ 1
mM̄

)
max{‖η‖, ‖θ‖}

→ ∞. (4.5)

As min{nN̄,mM̄} → ∞, the level-α DELVE test has an asymptotic level α and an asymp-

totic power 1. Furthermore, if nN̄ � mM̄ and minj∈S(ηj +θj) ≥ cp−1 for a constant c > 0,

then (4.5) reduces to nN̄β2
n|S|/

√
p→∞.

Donoho and Kipnis [2022] studied a case where N = M , n = m = 1, p→∞,

|S| = p1−ϑ, and βn = c ·N−1/2
√

log(p). (4.6)

When ϑ > 1/2 (i.e., |S| = o(
√
p)), they derived a phase diagram for the aforementioned

testing problem (under a slightly different setting where the data distributions are Poisson

instead of multinomial). They showed that when ϑ > 1/2 and c is a properly large constant,

a Higher-Criticism-based test has an asymptotically full power. Donoho and Kipnis [2022]

did not study the case of ϑ ≤ 1/2. By Corollary 4.3, when ϑ ≤ 1/2 (i.e., |S| ≥ C
√
p), the

DELVE test has asymptotically full power.

Remark 2. When ϑ > 1/2 in (4.6), the DELVE test is powerless. However, this issue can

be resolved by borrowing the idea of maximum test or Higher Criticism test [Donoho and

Jin, 2004] from the classical multiple testing. For example, recalling Tj in (2.5), we can use

max1≤j≤p{Tj/
√
Vj} as the test statistic, where Vj is a proper estimator of the variance of

Tj . We leave a careful study of this idea to future work.

4.3 Closeness testing between discrete distributions

Two-sample closeness testing is a subject of intensive study in discrete distribution inference

[Bhattacharya and Valiant, 2015, Chan et al., 2014, Diakonikolas and Kane, 2016, Kim et al.,

2022]. It is a special case of our problem with K = 2 and n1 = n2 = 1. We thereby apply

both Theorem 3.6 and Theorem 3.7.
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Corollary 4.4. Let Y1 and Y2 be two discrete variables taking values on the same p out-

comes. Let Ω1 ∈ Rp and Ω2 ∈ Rp be their corresponding PMFs. Suppose we have N1

samples of Y1 and N2 samples of Y2. The data are summarized in two multinomial vec-

tors: X1 ∼ Multinomial(N1,Ω1), X2 ∼ Multinomial(N2,Ω2). We test H0 : Ω1 = Ω2. Write

µ = 1
N1+N2

(N1Ω1 +N2Ω2). Suppose min{N1, N2} ≥ 2, max{‖Ω1‖∞, ‖Ω2‖∞} ≤ 1− c0, for

a constant c0 ∈ (0, 1). Suppose 1
(
∑2
k=1 ‖Ωk‖2)2

max
{∑2

k=1
‖Ωk‖33
Nk

,
∑2

k=1
‖Ωk‖2
N2
k

}
= o(1), and

1
n‖µ‖2

∑2
k=1 ‖Ωk‖33 = o(1). We assume that under the alternative hypothesis,

‖Ω1 − Ω2‖2(
N−1

1 +N−1
2

)
max{‖Ω1‖, ‖Ω2‖}

→ ∞. (4.7)

As min{N1, N2} → ∞, the level-α DELVE test has level α and power 1, asymptotically.

We notice that (4.7) matches with the minimum `2-separation condition for two-sample

closeness testing [Kim et al., 2022, Proposition 4.4]. Therefore, our test is an optimal

`2-testor. Although other optimal `2-testors have been proposed [Chan et al., 2014, Bhat-

tacharya and Valiant, 2015, Diakonikolas and Kane, 2016], they are not equipped with

tractable null distributions.

Remark 3. We can modify the DELVE test to incorporate frequency-dependent weights.

Given any nonnegative vector w = (w1, w2, . . . , wp)
′, define T (w) :=

∑p
j=1wjTj where Tj is

the same as in (2.5). These weights wj serve to adjust the contributions of different words.

For example, consider wj =
(
max{1/p, µ̂j}

)−1
. This kind of weights have been used in

discrete distribution inference [Balakrishnan and Wasserman, 2019, Chan et al., 2014] to

turn an optimal `2 testor to an optimal `1 testor. We can similarly study the power of this

modified test, except that we need an additional assumption nN̄ � p to guarantee that µ̂j
is a sufficiently accurate estimator of µj .

5 Simulations

The proposed DELVE test is computationally efficient and easy to implement. In this

section, we investigate its numerical performance in simulation studies. Real data analysis

will be carried out in Section 6.

Experiment 1 (Asymptotic normality) . Given (n, p,K,Nmin, Nmax, α), we generate data

as follows: first, we divide {1, . . . , n} into K equal-size groups. Next, we draw Ωalt
1 , . . . ,Ωalt

n

i.i.d. from Dirichlet(p, α1p). Third, we draw Ni
iid∼ Uniform[Nmin, Nmax] and set Ωnull

i = µ,

where µ := 1
nN̄

∑
iNiΩ

alt
i . Last, we generate X1, . . . , Xn using Model (1.1). We consider

three sub-experiments. In Experiment 1.1, (n, p,K,Nmin, Nmax, α) = (50, 100, 5, 10, 20, 0.3).

In Experiment 1.2, α is changed to 1, and the other parameters are the same. When

α = 1, Ωalt
i are drawn from the uniform distribution of the standard probability simplex;

in comparison, α = 0.3 puts more mass near the boundary of the standard probability

simplex. In Experiment 1.3, we keep all parameters the same as in Experiment 1.1, except

that (p,K) are changed to (300, 50). For each sub-experiment, we generate 2000 data

sets under the null hypothesis and plot the histogram of the DELVE test statistic ψ (in
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Figure 1: Histograms of the DELVE statistic (top three panels) and the DELVE+ statistic

(bottom three panels) in Experiments 1.1-1.3. In each plot, the blue and orange histograms

correspond to the null and alternative hypotheses, respectively; and the green curve is the

density of N(0, 1).

blue); similarly, we generate 2000 data sets under the alternative hypothesis and plot the

histogram of ψ (in orange). The results are contained on the top three panels of Figure 1.

In Section 2.2, we introduced a variant of DELVE, called DELVE+, in which the variance

estimator V is replaced by an adjusted one. DELVE+ has similar theoretical properties as

DELVE but is more suitable for real data. We plot the histograms of the DELVE+ test

statistics on the bottom three panels of Figure 1.

We have several observations. In all sub-experiments, when the null hypothesis holds,

the histograms of both DELVE and DELVE+ fit the standard normal density reasonably

well. This supports our theory in Section 3.1. Second, when (p,K) increase, the finite

sample effect becomes slightly more pronounced (c.f., Experiment 1.3 versus Experiment

1.1). Third, the tests have power in differentiating two hypotheses. As α decreases or K

increases, the power increases, and the histograms corresponding to two hypotheses become

further apart. Last, in the alternative hypothesis, DELVE+ has smaller mean and variance

than DELVE. By Lemma 2.2, these two have similar asymptotic behaviors. The simulation

results suggest that they have noticeable finite-sample differences.

Experiment 2 (Power curve). Similarly as before, we divide {1, 2, . . . , n} into K equal-

size groups and draw Ni ∼ Uniform[Nmin, Nmax]. In this experiment, the PMF’s Ωi are gen-

erated in a different way. Under the null hypothesis, we generate µ ∼ Dirichlet(p/2, α1p/2)

and set Ωnull
i = µ̃, where µ̃j = 1

2µj for 1 ≤ j ≤ p/2 and µ̃j = 1
2µp+1−j for p/2 + 1 ≤ j ≤ p.

Under the alternative hypothesis, we draw z1, . . . , zK , b1, . . . , bp/2
iid∼ Rademacher(1/2) and

then let Ωalt
ij = µ(1 + τnzkbj), for all i in group k and 1 ≤ j ≤ p/2, and Ωalt

ij = µ(1 + τnzkbj)

for p/2 + 1 ≤ j ≤ p. By applying our theory in Section 3.2 together with some cal-

culations, we obtain that the signal-to-noise ratio is captured by λ := K−1/2nN̄‖µ‖τn.
We consider three sub-experiments, Experiment 2.1-2.3, in which the parameter values of
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Figure 2: Power diagrams (based on 500 repetitions) at level 5%. The x-axis plots the

SNR λ(ωn) = K−1/2nN̄‖µ‖ · ωn.

(n, p,K,Nmin, Nmax, α) are the same as in Experiments 1.1-1.3. For each sub-experiment,

we consider a grid of 10 equally-spaced values of λ. When λ = 0, it corresponds to the null

hypothesis; when λ > 0, it corresponds to the alternative hypothesis. For each λ, we gener-

ate 500 data sets and compute the fraction of rejections of the level-5% DELVE test. This

gives a power curve for the level-5% DELVE test, in which the first point corresponding to

λ = 0 is the actual level of the test. The results are contained on the top three panels of

Figure 2. We repeat the same experiments for the DELVE+ test, which results are on the

bottom three panels of Figure 2. In all three experiments, the actual level of our proposed

tests is ≤ 5%, suggesting that our tests perform well at controlling the type-I error. As

λ increases, the power gradually increased to 1, suggesting that λ is a good metric of the

signal-to-noise ratio. This supports our theory in Section 3.2.

6 Real Data Analysis

We apply our proposed methods on two real corpora: one consists of abstracts of research

papers in four statistics journals, and the other consists of movie reviews on Amazon. For

the analysis of real data, we use DELVE+, which modifies the variance estimator in DELVE

and reduces the occurrence of extremely small p-values.

6.1 Abstracts of statisticians

We use the data set from Ji and Jin [2016]. It contains the bibtex information of all pub-

lished papers in four top-tier statistics journals, Annals of Statistics, Biometrika, Journal of

the American Statistical Association, and Journal of the Royal Statistical Society - Series B,

from 2003 to the first half of 2012. We pre-process the abstracts of papers by tokenization
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Figure 3: (Left) Histogram of nonzero DELVE Z-scores for all authors in the dataset. The

mean is 4.52 and the standard deviation is 2.94. (Right) Scatter plot of author DELVE

scores versus the natural log of the number of papers with five statisticians identified.

Figure 4: Pairwise Z-score plots for Peter Hall (left) and Jianqing Fan (right). In the cell

(x, y), we compare the corpus of an author’s abstracts from time x with the corpus of that

author’s abstracts from time y. The heatmap shows the value of DELVE+ with K = 2 for

each cell.

and stemming and turn each abstract to a word count vector.

We conduct two experiments. In the first one, we fix an author and treat the collection

of his/her co-authored abstracts as a corpus. We apply DELVE+ with K = n, where n is

the total number of abstracts written by this author. The Z-score measures the “diversity”

or “variability” of this authors’ abstracts. An author with a high Z-score possesses either

diverse research interests or a variable writing style. A number of authors have only 1–2

papers in this data set, and the variance estimator V is often negative; we remove all those

authors. In Figure 3 (left panel), we plot the histogram of Z-scores of all retained authors.

The mean is 4.52 and the standard deviation is 2.94. In Figure 3 (right panel), we show

the scatter plot of Z-score versus logarithm of the number of abstracts written by this

author, and a few prolific authors who have many papers and a large Z-score are labeled.

For example, Peter Hall has the most papers in this dataset (82 papers in total). Hall’s

Z-score is larger than 20, implying a huge diversity in his abstracts. There is also a positive

association between Z-score and total papers. It suggests that senior authors have more

diversity in their abstracts, which is as expected.
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Year Title Journal

2011 Nonparametric independence screening in sparse

ultra-high-dimensional additive models

JASA

2011 Penalized composite quasi-likelihood for ultrahigh

dimensional variable selection

JRSS-B

2011 Multiple testing via FDRL for large-scale imaging

data

Ann. Stat.

2012 Vast volatility matrix estimation using high-

frequency data for portfolio selection

JASA

2012 A road to classification in high dimensional space:

the regularized optimal affine discriminant

JRSS-B

2012 Variance estimation using refitted cross-validation

in ultrahigh dimensional regression

JRSS-B

Year Title Journal

2004 Low order approximations in deconvolution

and regression with errors in variables

JRSS-B

2004 Nonparametric inference about service time

distribution from indirect measurements

JRSS-B

2004 Cross-validation and the estimation of condi-

tional probability densities

JASA

2004 Nonparametric confidence intervals for re-

ceiver operating characteristic curves

Biometrika

2004 Bump hunting with non-Gaussian kernels Ann. Stat.

2004 Attributing a probability to the shape of a

probability density

Ann. Stat.

Figure 5: (Left) Jianqing Fan’s papers in the dataset of Ji and Jin [2016] from 2011 to

2012. (Right) Peter Hall’s papers in the dataset of Ji and Jin [2016] from 2004.

In the second experiment, we divide the abstracts of each author into groups by publi-

cation year. We divide Peter Hall’s abstracts into 9 groups, and each group corresponds to

one year. We divide Jianqing Fan’s abstracts into 6 groups, with unequal window sizes to

make all groups have roughly equal numbers of abstracts. Our test can be used to detect

differences between all groups, but to see more informative results, we do a pairwise com-

parison: for each pair of groups, we apply DELVE+ with K = 2. This yields a pairwise

plot of Z-scores. The plot reveals the temporal patterns of this author in abstract writing.

Figure 4 shows the results for Peter Hall and Jianqing Fan.

There are interesting temporal patterns. For Jianqing Fan (right panel of Figure 4), the

group consisting of his 2011-2012 abstracts has comparably large Z-scores in the pairwise

comparison with other groups. To interpret this , we gathered the titles and abstracts of all

his papers in the dataset and compared the ones before/after 2011. He published six papers

in these journals during 2011-2012, whose titles are listed on the left of Figure 5. We see

that his papers in this period had a strong emphasis on screening and variable selection:

four out of the six papers mention this subject in their titles and/or abstracts. This shows a

departure from his previously published topics such as covariance estimation (a focus from

2007–2009) and semiparametric estimation (a focus before 2010). Though Jianqing Fan had

previously published papers on variable selection and screening in these journals, he had

never published so many in such a short time period. For Peter Hall (left panel of Figure 4),

the group of 2004 abstracts have comparably large Z-scores in the pairwise comparison with

other groups. We examined the titles and abstracts of his 6 papers published in 2004 in

this data set. All of his 2004 papers, except the first one, mention bandwidth selection or

smoothing parameters, and in the last 4 papers, bandwidth selection plays a central role.

For instance, Bump hunting with non-Gaussian kernels, (Ann. Stat., 2004) studies the

relationship between the number of modes of a kernel density estimator and its bandwidth

parameter. Though Peter Hall’s 2014 papers concern many nonparametric statistics topics,

we find that bandwidth selection is a theme underlying his research in these journals in

2004.
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Rank Title Z-Score Total reviews

1 Prometheus 34.44 813

2 Expelled: No Intelligence Allowed 34.17 830

3 V for Vendetta 32.24 815

4 Sin City 31.72 828

5 No Country for Old Men 30.57 819
...

...
...

...

16 John Adams 20.78 857

17 Cars 19.98 902

18 Food, Inc. 17.81 876

19 Jeff Dunham: Arguing with Myself 4.96 860

20 Jeff Dunham: Spark of Insanity 4.46 877

Figure 6: (Left) Histogram of Z-scores for the 500 most-reviewed movies. The mean is

19.97 and the standard deviation is 5.07. (Right) Z-scores for the top 20 most reviewed

movies.

Figure 7: Pairwise Z-scores for 3 movies. In each cell, we use DELVE+ to compare reviews

associated to a pair of star ratings. For each movie, the title list the number of reviews of

each rating from 1–5.

6.2 Amazon movie reviews

We analyze Amazon reviews from the dataset Maurya [2018] that consists of 1,924,471

reviews of 143,007 visual media products (ie, DVDs, Bluray, or streams). We examine

products with the largest number of reviews. Each product’s review corpus is cleaned and

stemming is used to group together words with the same root. We obtain word counts

for each review and a term-document matrix of a product’s review corpus. In the first

experiment, we fix a movie and apply DELVE+ with K = n to the corpus consisting

of all reviews of this movie. In Figure 6 (left panel), we plot the histogram of Z-scores

for the top 500 most reviewed movies. The mean is 19.97 and the standard deviation is

5.07. Compared with the histogram of Z-scores for statistics paper abstracts, there is much

larger diversity in movie reviews. In Figure 6 (right panel), we list the 5 movies with the

highest Z-scores and lowest Z-scores out of the 20 most reviewed movies. Each movie has

more than 800 reviews, but some have surprisingly low Z-scores. The works by comedian

Jeff Dunham have the lowest Z-scores, suggesting strong homogeneity among the reviews.

The 2012 horror film Prometheus has the highest degree of review diversity among the 20

most reviewed movies. In the second experiment, we divide the reviews of each movie into
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5 groups by star rating. We compare each pair of groups using DELVE+ with K = 2,

resulting in a pairwise Z-score plot. In Figure 7, we plot this for 3 popular movies. We

see a variety of polarization patterns among the scores. In Harry Potter and the Deathly

Hallows Part I, DELVE+ signifies that the reviews with ratings in the range 2–4 stars are

all similar. We see a smooth gradation in how the 1-star reviews differ from those from 2–4

stars, and similarly for 5-star reviews versus those from 2–4 stars. Twilight Saga: Eclipse

shows three clusters: 1–2 stars, 3–4 stars, and 5 star, while Night of the living dead shows

two clusters: 1–2 stars and 3–5 stars.

7 Discussions

We examine the testing for equality of PMFs of K groups of high-dimensional multino-

mial distributions. The proposed DELVE statistic has a parameter-free limiting null that

allows for computation of Z-scores and p-values on real data. DELVE achieves the op-

timal detection boundary over the whole range of parameters (n, p,K, N̄), including the

high-dimensional case p→∞, which is very relevant to applications in text mining.

This work leads to interesting questions for future study. So far the focus is on testing,

but one can also consider inference for ρ2 from (2.2), which measures the heterogeneity

among the group-wise means. Consistent variance estimation under the alternative uses a

similar strategy, though we omit the calculations in this paper. Establishing asymptotic

normality of DELVE under the alternative would then lead to asymptotic confidence in-

tervals for our heterogeneity metric ρ2. Based on the plots in Section 5, it is possible that

stronger regularity conditions are needed to obtain a pivotal distribution under the alterna-

tive. As in the two-sample multinomial testing problems described in Kipnis and Donoho

[2021], Kipnis [2022], such as author attribution, we may also consider an alternative where

all the group means are the same except for a small set of “giveaway words”. It is interest-

ing to develop a procedure for identifying these useful words. As discussed in Section 4.2,

we may modify DELVE by using a version based on the maximum test or higher criticism.

Another extension is to go beyond ‘bag-of-words’ style analysis and use different types of

counts besides raw word frequencies. One option is to apply a suitably modified DELVE

to the counts of multi-grams in the corpus and another is to combine words with similar

meanings into a ‘superword’ and use superword counts as the basis for DELVE. To do this,

we can combine words that are close together in some word embedding. We leave these

interesting tasks for future work.
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Notational conventions for the appendix: We write A . B (respectively, A & B) if

there exists an absolute constant C > 0 such that A ≤ C · B (respectively A ≥ C · B). If

both A . B and B . A, we write A � B. The implicit constant C may vary from line to

line. For sequences at, bt indexed by an integer t ∈ N, we write at � bt if bt/at → ∞ as

t → ∞, and we write at � bt if at/bt → ∞ as t → ∞. We also may write at = o(bt) to

denote at � bt. In particular, we write at = (1 + o(1))bt if at/bt → 1 as t→∞.

A Properties of T and V

We recall that

Xi ∼ Multinomial(Ni,Ωi), 1 ≤ i ≤ n. (A.1)

For each 1 ≤ k ≤ K, define

µk =
1

nkN̄k

∑
i∈Sk

NiΩi ∈ Rp, Σk =
1

nkN̄k

∑
i∈Sk

NiΩiΩ
′
i ∈ Rp×p. (A.2)

Moreover, let

µ =
1

nN̄

K∑
k=1

nkN̄kµk =
1

nN̄

n∑
i=1

NiΩi , Σ =
1

nN̄

n∑
k=1

nkN̄kΣk =
1

nN̄

∑
i

NiΩiΩ
′
i (A.3)

The DELVE test statistic is ψ = T/
√
V , where T is as in (2.5) and V is as in (2.7). As a

preparation for the main proofs, in this section, we study T and V separately.

A.1 The decomposition of T

It is well-known that a multinomial with the number of trials equal to N can be equivalently

written as the sum of N independent multinomials each with the number of trials equal to

1. This inspires us to introduce a set of independent, mean-zero random vectors:

{Zir}1≤i≤n,1≤r≤Ni , with Zir = Bir − EBir, and Bir ∼ Multinomial(1,Ωi). (A.4)

We use them to get a decomposition of T into mutually uncorrelated terms:

Lemma A.1. Let {Zir}1≤i≤n,1≤r≤Ni be as in (A.4). For each Zir ∈ Rp, let {Zijr}1≤j≤p
denote its p coordinates. Recall that ρ2 =

∑K
k=1 nkN̄k‖µk − µ‖2. For 1 ≤ j ≤ p, define

U1j = 2

K∑
k=1

∑
i∈Sk

Ni∑
r=1

(µkj − µj)Zijr,

U2j =

K∑
k=1

∑
i∈Sk

∑
1≤r 6=s≤Ni

( 1

nkN̄k
− 1

nN̄

) Ni

Ni − 1
ZijrZijs,

U3j = − 1

nN̄

∑
1≤k 6=`≤K

∑
i∈Sk

∑
m∈S`

Ni∑
r=1

Nm∑
s=1

ZijrZmjs,
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U4j =

K∑
k=1

∑
i∈Sk,m∈Sk

i 6=m

Ni∑
r=1

Nm∑
s=1

( 1

nkN̄k
− 1

nN̄

)
ZijrZmjs.

Then, T = ρ2 +
∑4

κ=1 1
′
pUκ. Moreover, E[Uκ] = 0p and E[UκU

′
ζ ] = 0p×p for 1 ≤ κ 6= ζ ≤ 4.

A.2 The variance of T

By Lemma A.1, the four terms {1′pUκ}1≤κ≤4 are uncorrelated with each other. Therefore,

Var(T ) = Var(1′pU1) + Var(1′pU2) + Var(1′pU3) + Var(1′pU4).

It suffices to study the variance of each of these four terms.

Lemma A.2. Let U1 be the same as in Lemma A.1. Define

Θn1 = 4
K∑
k=1

nkN̄k

∥∥diag(µk)
1/2(µk − µ)

∥∥2
(A.5)

Ln = 4
K∑
k=1

nkN̄k

∥∥Σ
1/2
k (µk − µ)

∥∥2
(A.6)

Then Var(1′pU1) = Θn1 − Ln. Furthermore, if max1≤k≤K ‖µk‖∞ = o(1), then Var(1′pU1) =

o(ρ2).

Lemma A.3. Let U2 be the same as in Lemma A.1. Define

Θn2 = 2

K∑
k=1

( 1

nkN̄k
− 1

nN̄

)2 ∑
i∈Sk

N3
i

Ni − 1
‖Ωi‖2 (A.7)

An = 2
K∑
k=1

( 1

nkN̄k
− 1

nN̄

)2 ∑
i∈Sk

N3
i

Ni − 1
‖Ωi‖33 (A.8)

Then

Θn2 −An ≤ Var(1′pU2) ≤ Θn2.

Furthermore, if

max
1≤k≤K

{∑i∈Sk N
2
i ‖Ωi‖33∑

i∈Sk N
2
i ‖Ωi‖2

}
= o(1), (A.9)

then Var(1′pU2) = [1 + o(1)] ·Θn2.

Lemma A.4. Let U3 be the same as in Lemma A.1. Define

Θn3 =
2

n2N̄2

∑
k 6=`

∑
i∈Sk

∑
m∈S`

∑
j

NiNmΩijΩmj (A.10)

Bn = 2
∑
k 6=`

nkn`N̄kN̄`

n2N̄2
1′p(Σk ◦ Σ`)1p (A.11)

Then

Θn3 −Bn ≤ Var(1′pU3) ≤ Θn3 +Bn.
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Lemma A.5. Let U4 be the same as in Lemma A.1. Define

Θn4 = 2

K∑
k=1

∑
i∈Sk,m∈Sk

i 6=m

∑
j

( 1

nkN̄k
− 1

nN̄

)2
NiNmΩijΩmj . (A.12)

En = 2
∑
k

∑
i∈Sk,m∈Sk,

i 6=m

∑
1≤j,j′≤p

( 1

nkN̄k
− 1

nN̄

)2
NiNmΩijΩij′ΩmjΩmj′ (A.13)

Then

Θn4 − En ≤ Var(1′pU4) ≤ Θn4 + En

.

Using Lemmas A.2-A.5, we derive regularity conditions such that the first term in

Var(1′pUκ) is the dominating term. Observe that Θn = Θn1 + Θn2 + Θn3 + Θn4, where the

quantity Θn is defined in (2.6). The following intermediate result is useful.

Lemma A.6. Suppose that (3.1) holds. Then

Θn2 + Θn3 + Θn4 �
∑
k

‖µk‖2. (A.14)

Moreover, under the null hypothesis, Θn � K‖µ‖2.

The next result is useful in proving that our variance estimator V is asymptotically

unbiased.

Lemma A.7. Suppose that (3.1) holds, and recall the definition of Θn in (2.6). Define

βn =

max

{∑
k

∑
i∈Sk

N2
i

n2
kN̄

2
k
‖Ωi‖33 ,

∑
k ‖Σk‖2F

}
K‖µ‖2

. (A.15)

If βn = o(1), then under the null hypothesis, Var(T ) = [1 + o(1)] ·Θn.

We also study the case of K = 2 more explicitly. In the lemmas below we use the

notation from Section 3.4. First we have an intermediate result analogous to Lemma A.6

that holds under weaker conditions.

Lemma A.8. Consider K = 2 and suppose that minNi ≥ 2, minMi ≥ 2 Then

Θn2 + Θn3 + Θn4 �
∥∥∥∥ mM̄

nN̄ +mM̄
η +

nN̄

nN̄ +mM̄
θ

∥∥∥∥2

.

Moreover, under the null hypothesis, Θn � ‖µ‖2.

The next result is a version of Lemma A.7 for the case K = 2 that holds under weaker

conditions.

Lemma A.9. Suppose that miniNi ≥ 2 and miniMi ≥ 2. Define

β(2)
n =

max

{∑
iN

2
i ‖Ωi‖3,

∑
iM

2
i ‖Γi‖3 , ‖Σ1‖2F + ‖Σ2‖2F

}
‖µ‖2

. (A.16)

If β
(2)
n = o(1), then under the null hypothesis, Var(T ) = [1 + o(1)] ·Θn.
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A.3 The decomposition of V

Lemma A.10. Let {Zir}1≤i≤n,1≤r≤Ni be as in (A.4). Recall that

V = 2

K∑
k=1

∑
i∈Sk

p∑
j=1

( 1

nkN̄k
− 1

nN̄

)2
[
NiX

2
ij

Ni − 1
− NiXij(Ni −Xij)

(Ni − 1)2

]
(A.17)

+
2

n2N̄2

∑
1≤k 6=`≤K

∑
i∈Sk

∑
m∈S`

p∑
j=1

XijXmj + 2

K∑
k=1

∑
i∈Sk,m∈Sk,

i 6=m

p∑
j=1

( 1

nkN̄k
− 1

nN̄

)2
XijXmj .

Define

θi =
( 1

nkN̄k
− 1

nN̄
)2 N3

i

Ni − 1
for i ∈ Sk , and let

αim =

{
2

n2N̄2 if i ∈ Sk,m ∈ S`, k 6= `

2
(

1
nkN̄k

− 1
nN̄

)2 if i,m ∈ Sk

If we let

A1 =
∑
i

Ni∑
r=1

∑
j

[4θiΩij

Ni
+

∑
m∈[n]\{i}

2αimNmΩmj

]
Zijr, (A.18)

A2 =
∑
i

∑
r 6=s∈[Ni]

2θi
Ni(Ni − 1)

(∑
j

ZijrZijs
)

(A.19)

A3 =
∑
i 6=m

Ni∑
r=1

Nm∑
s=1

αim
(∑

j

ZijrZmjs
)
, (A.20)

then these terms are mean zero, are mutually uncorrelated, and satisfy

V = A1 +A2 +A3 + Θn2 + Θn3 + Θn4. (A.21)

A.4 Properties of V

First we control the variance of V .

Lemma A.11. Let A1, A2, and A3 be defined as in Lemma A.10. Then

Var(A1) .
1

nN̄
‖µ‖33 +

∑
k

‖µk‖33
nkN̄k

.
∑
k

‖µk‖33
nkN̄k

Var(A2) .
∑
k

∑
i∈Sk

N2
i ‖Ωi‖22
n4
kN̄

4
k

.
∑
k

‖µk‖2

n2
kN̄

2
k

Var(A3) .
∑
k

‖µk‖2

n2
kN̄

2
k

+
1

n2N̄2
‖µ‖2 .

∑
k

‖µk‖2

n2
kN̄

2
k

.

Next we show consistency of V under the null, which is crucial in properly standardizing

our test statistic and establishing asymptotic normality.
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Proposition A.1. Recall the definition of βn in (A.15). Suppose that βn = o(1) and that

the condition (3.1) holds. If under the null hypothesis we have

K2‖µ‖4 �
∑
k

‖µ‖2

n2
kN̄

2
k

∨
∑
k

‖µ‖33
nkN̄k

, (A.22)

then V/VarT → 1 in probability.

To later control the type II error, we must also show that V does not dominate the

true variance under the alternative. We first state an intermediate result that is useful

throughout.

Lemma A.12. Suppose that, under either the null or alternative, maxi ‖Ωi‖∞ ≤ 1 − c0

holds for an absolute constant c0 > 0. Then

Var(T ) & Θn2 + Θn3 + Θn4. (A.23)

Proposition A.2. Suppose that under the alternative (3.1) holds and

(∑
k

‖µk‖2
)2 �∑

k

‖µk‖2

n2
kN̄

2
k

∨
∑
k

‖µk‖33
nkN̄k

. (A.24)

Then V = OP(Var(T )) under the alternative.

We also require versions of Proposition A.1 and Proposition A.2 that hold under weaker

conditions in the special case K = 2. We omit the proofs as they are similar. Below we use

the notation of Section 3.4.

Proposition A.3. Suppose that K = 2 and recall the definition of β
(2)
n in A.16. Suppose

that β
(2)
n = o(1), miniNi ≥ 2,miniMi ≥ 2, and maxi ‖Ωi‖∞ ≤ 1− c0,maxi ‖Γi‖∞ ≤ 1− c0.

If under the null hypothesis

‖µ‖4 � max
{( ‖µ‖22

n2N̄2
+
‖µ‖22
m2M̄2

2

)
,
(‖µ‖33
nN̄

+
‖µ‖33
mM̄

)}
, (A.25)

then V/Var(T )→ 1 in probability.

Under the alternative we have the following.

Proposition A.4. Suppose that K = 2, miniNi ≥ 2,miniMi ≥ 2, and maxi ‖Ωi‖∞ ≤
1− c0,maxi ‖Γi‖∞ ≤ 1− c0. If under the alternative∥∥∥∥ mM̄

nN̄ +mM̄
η +

nN̄

nN̄ +mM̄
θ

∥∥∥∥4

� max
{( ‖η‖22

n2N̄2
+
‖θ‖22
m2M̄2

2

)
,
(‖η‖33
nN̄

+
‖θ‖33
mM̄

)}
, (A.26)

then V = OP(Var(T )).

In the setting of K = n and utilize the variance estimator V ∗. The next results capture

the behavior of V ∗ under the null and alternative. The proofs are given later in this section.
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Proposition A.5. Define

β(n)
n =

∑
i ‖Ωi‖3

n‖µ‖2
. (A.27)

Suppose that (3.1) holds, β
(n)
n = o(1), and

n2‖µ‖4 �
∑
i

‖µ‖2

N2
i

∨
∑
i

‖µ‖33
Ni

. (A.28)

Then V ∗/Var(T )→ 1 in probability as n→∞.

Proposition A.6. Suppose that under the alternative (3.1) holds and(∑
i

‖Ωi‖2
)2 �∑

i

‖Ωi‖2

N2
i

∨
∑
i

‖Ωi‖33
Ni

. (A.29)

Then V ∗ = OP(Var(T )) under the alternative.

A.5 Proof of Lemma A.1

We first show that E[Uκ] = 0p and E[UκU
′
ζ ] = 0p×p for κ 6= ζ. Note that {Zir}1≤i≤n,1≤r≤Ni

are independent mean-zero random vectors. It follows that each Uκ is a mean-zero random

vector. We then compute E[Uκj1Uζj2 ] for κ 6= ζ and all 1 ≤ j1, j2 ≤ p. By direct calculations,

E[U1jU2j2 ] = 2
∑

(k,i,r,s)

∑
(k′,i′,r′)

( 1

nkN̄k
− 1

nN̄

)
(µk′j − µj)

Ni

Ni − 1
E[Zij2rZij2sZi′j1r′ ].

If i′ 6= i, or if i′ = i and r′ /∈ {r, s}, then Zi′j1r′ is independent of Zij2rZij2s, and it follows

that E[Zij2rZij2sZi′j1r′ ] = 0. If i′ = i and r = r′, then E[Zij2rZij2sZi′j1r′ ] = E[Zij2rZij1r] ·
E[Zij2s]; since r 6= s, we also have E[Zij2rZij2sZi′j1r′ ] = 0. This proves E[U1jU2j∗ ] = 0.

Since this holds for all 1 ≤ j1, j2 ≤ p, we immediately have

E[U1U
′
2] = 0p×p.

We can similarly show that E[UκU
′
ζ ] = 0p×p, for other κ 6= ζ. The proof is omitted.

It remains to prove the desirable decomposition of T . Recall that T =
∑p

j=1 Tj . Write

ρ2 =
∑p

j=1 ρ
2
j , where ρ2

j = 2
∑K

k=1 nkN̄k(µkj − µj)2. It suffices to show that

Tj = ρ2
j + U1j + U2j + U3j + U4j , for all 1 ≤ j ≤ p. (A.30)

To prove (A.30), we need some preparation. Define

Yij :=
Xij

Ni
− Ωij =

1

Ni

Ni∑
r=1

Zijr, Qij := Y 2
ij − EY 2

ij = Y 2
ij −

Ωij(1− Ωij)

Ni
. (A.31)

With these notations, Xij = Ni(Ωij +Yij) and NiY
2
ij = NiQij + Ωij(1−Ωij). Moreover, we

can use (A.31) to re-write Qij as a function of {Zijr}1≤r≤Ni as follows:

Qij =
1

N2
i

Ni∑
r=1

[Z2
ijr − Ωij(1− Ωij)] +

1

N2
i

∑
1≤r 6=s≤Ni

ZijrZijs.
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Note that Zijr = Bijr−Ωij , where Bijr can only take values in {0, 1}. Hence, (Zijr+Ωij)
2 =

(Zijr+Ωij) always holds. Re-arranging the terms gives Z2
ijr−Ωij(1−Ωij) = (1−2Ωij)Zijr.

It follows that

Qij = (1− 2Ωij)
Yij
Ni

+
1

N2
i

∑
1≤r 6=s≤Ni

ZijrZijs. (A.32)

This is a useful equality which we will use in the proof below.

We now show (A.30). Fix j and write Tj = Rj −Dj , where

Rj =

K∑
k=1

nkN̄k(µ̂kj − µ̂j)2, and Dj =

K∑
k=1

∑
i∈Sk

ξk
Xij(Ni −Xij)

nkN̄k(Ni − 1)
, with ξk = 1− nkN̄k

nN̄

First, we study Dj . Note that Xij(Nij −Xij) = N2
i (Ωij + Yij)(1−Ωij − Yij) = N2

i Ωij(1−
Ωij)−N2

i Y
2
ij +N2

i (1− 2Ωij)Yij , where Y 2
ij = Qij +N−1

i Ωij(1− Ωij). It follows that

Xij(Nij −Xij)

Ni(Ni − 1)
= Ωij(1− Ωij)−

NiQij
Ni − 1

+
Ni

Ni − 1
(1− 2Ωij)Yij .

We apply (A.32) to get

Xij(Nij −Xij)

Ni(Ni − 1)
= Ωij(1− Ωij) + (1− 2Ωij)Yij −

1

Ni(Ni − 1)

∑
1≤r 6=s≤Ni

ZijrZijs. (A.33)

It follows that

Dj =

K∑
k=1

∑
i∈Sk

ξkNi

nkN̄k
Ωij(1− Ωij) +

K∑
k=1

∑
i∈Sk

ξkNi

nkN̄k
(1− 2Ωij)Yij

−
K∑
k=1

∑
i∈Sk

ξk
nkN̄k(Ni − 1)

∑
1≤r 6=s≤Ni

ZijrZijs. (A.34)

Next, we study Rj . Note that nkN̄k(µ̂kj − µ̂j) =
∑

i∈Sk(Xij − N̄kµ̂j). It follows that

Rj =
K∑
k=1

1

nkN̄k

[∑
i∈Sk

(Xij − N̄kµ̂j)

]2

.

Recall thatXij = Ni(Ωij+Yij). By direct calculations,
∑

i∈Sk Xij = nkN̄kµkj+
∑

i∈Sk NiYij ,

and µ̂j = µj + (nN̄)−1
∑n

m=1NmYmj . We then have the following decomposition:

∑
i∈Sk

(Xij − N̄kµ̂j) = nkN̄k(µkj − µj) +
∑
i∈Sk

NiYij −
nkN̄k

nN̄

( n∑
m=1

NmYmj

)
.

Using this decomposition, we can expand [
∑

i∈Sk(Xij− N̄kµ̂j)]
2 to a total of 6 terms, where

3 are quadratic terms and 3 are cross terms. It yields a decomposition of Rj into 6 terms:

Rj =
K∑
k=1

nkN̄k(µkj − µj)2 +
K∑
k=1

1

nkN̄k

(∑
i∈Sk

NiYij

)2
+

K∑
k=1

nkN̄k

n2N̄2

( n∑
m=1

NmYmj

)2
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+ 2
K∑
k=1

(µkj − µj)
(∑
i∈Sk

NiYij

)
− 2

K∑
k=1

nkN̄k

nN̄
(µkj − µj)

( n∑
m=1

NmYmj

)

− 2

nN̄

K∑
k=1

(∑
i∈Sk

NiYij

)( n∑
m=1

NmYmj

)
≡ I1 + I2 + I3 + I4 + I5 + I6. (A.35)

By definition,
∑K

k=1 nkN̄k = nN̄ and
∑K

k=1 nkN̄kµkj = nN̄µj . It follows that

I3 =
1

nN̄

( n∑
m=1

NmYmj

)2
, I5 = 0, I6 = − 2

nN̄

( n∑
m=1

NmYmj

)2
= −2I3.

It follows that

Rj = I1 + I2 − I3 + I4. (A.36)

We further simplify I3. Recall that ξk = 1− (nN̄)−1nkN̄k. By direct calculations,

I3 =
1

nN̄

( n∑
m=1

NmYmj

)2
=

1

nN̄

[ K∑
k=1

(∑
i∈Sk

NiYij

)]2

=
1

nN̄

K∑
k=1

(∑
i∈Sk

NiYij

)2
+

1

nN̄

∑
1≤k 6=`≤K

(∑
i∈Sk

NiYij

)(∑
m∈S`

NmYmj

)

=

K∑
k=1

(1− ξk)
1

nkN̄k

(∑
i∈Sk

NiYij

)2
+

1

nN̄

∑
k 6=`

∑
i∈Sk

∑
m∈S`

NiNmYijYmj︸ ︷︷ ︸
J1

= I2 −
K∑
k=1

∑
i∈Sk

ξk
nkN̄k

(∑
i∈Sk

NiYij

)2
+ J1

= I2 + J1 −
K∑
k=1

ξk
nkN̄k

(∑
i∈Sk

N2
i Y

2
ij

)
−

K∑
k=1

ξk
nkN̄k

∑
i∈Sk,m∈Sk

i 6=m

NiNmYijYmj

︸ ︷︷ ︸
J2

. (A.37)

By (A.31), NiY
2
ij = NiQi + Ωij(1− Ωij). We further apply (A.32) to get

N2
i Y

2
ij = Ni(1− 2Ωij)Yij +

∑
1≤r 6=s≤Ni

ZijrZijs +NiΩij(1− Ωij).

It follows that

K∑
k=1

ξk
nkN̄k

(∑
i∈Sk

N2
i Y

2
ij

)
=

K∑
k=1

∑
i∈Sk

ξkNi

nkN̄k
(1− 2Ωij)Yij︸ ︷︷ ︸

J3

+

K∑
k=1

∑
i∈Sk

ξk
nkN̄k

∑
r 6=s

ZijrZijs︸ ︷︷ ︸
J4

+

K∑
k=1

∑
i∈Sk

ξkNi

nkN̄k
Ωij(1− Ωij)︸ ︷︷ ︸

J5

. (A.38)
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We plug (A.38) into (A.37) to get I3 = I2 + J1 − J2 − J3 − J4 − J5. Further plugging I3

into the expression of Rj in (A.36), we have

Rj = I1 + I4 − J1 + J2 + J3 + J4 + J5, (A.39)

where I1 and I4 are defined in (A.35), J1-J2 are defined in (A.37), and J3-J5 are defined in

(A.38).

Finally, we combine the expressions of Dj and Rj . By (A.34) and the definitions of

J1-J5,

Dj = J5 + J3 −
K∑
k=1

∑
i∈Sk

ξk
nkN̄k(Ni − 1)

∑
r 6=s

ZijrZijs

= J5 + J3 + J4 −
K∑
k=1

∑
i∈Sk

ξkNi

nkN̄k(Ni − 1)

∑
r 6=s

ZijrZijs︸ ︷︷ ︸
J6

.

Combining it with (A.39) gives Tj = Rj −Dj = I1 + I4 − J1 + J2 + J6. We further plug in

the definition of each term. It follows that

Tj =
K∑
k=1

nkN̄k(µkj − µj)2 + 2
K∑
k=1

∑
i∈Sk

(µkj − µj)NiYij −
1

nN̄

∑
k 6=`

∑
i∈Sk,m∈S`

NiNmYijYmj

+

K∑
k=1

∑
i∈Sk,m∈Sk

i 6=m

ξk
nkN̄k

NiNmYijYmj +

K∑
k=1

∑
i∈Sk

ξkNi

nkN̄k(Ni − 1)

∑
r 6=s

ZijrZijs.

(A.40)

We plug in Yij = N−1
i

∑Ni
r=1 Zijr and take a sum of 1 ≤ j ≤ p. It gives (A.30) immediately.

The proof is now complete.

A.6 Proof of Lemma A.2

Recall that {Zir}1≤i≤n,1≤r≤Ni are independent random vectors. Write

1′pU1 = 2

K∑
k=1

∑
i∈Sk

Ni∑
r=1

(µk − µ)′Zir.

The covariance matrix of Zir is diag(Ωi)− ΩiΩ
′
i. It follows that

Var(1′pU1) = 4

K∑
k=1

∑
i∈Sk

Ni∑
r=1

(µk − µ)′
[
diag(Ωi)− ΩiΩ

′
i

]
(µk − µ)

= 4
∑
k

(µk − µ)′
[
diag

(∑
i∈Sk

NiΩi

)
−
(∑
i∈Sk

NiΩiΩ
′
i

)]
(µk − µ)

= 4
∑
k

(µk − µ)′
[
diag(nkN̄kµk)− nkN̄kΣk

]
(µk − µ)
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= 4
∑
k

nkN̄k

∥∥diag(µk)
1/2(µk − µ)

∥∥2 − 4
∑
k

nkN̄k

∥∥Σ
1/2
k (µk − µ)

∥∥2
.(A.41)

This proves the first claim. Furthermore, by (A.41),

Var(1′pU1) ≤ 4
∑
k

nkN̄k

∥∥diag(µk)
1/2(µk − µ)

∥∥2 ≤ 4
∑
k

nkN̄k‖diag(µk)‖‖µk − µ‖2.

Note that ‖diag(µk)‖ = ‖µk‖∞. Therefore, if maxk ‖µk‖∞ = o(1), the right hand side

above is o(1) · 4
∑

k nkN̄k‖µk − µ‖2 = o(ρ2). This proves the second claim.

A.7 Proof of Lemma A.3

For each 1 ≤ k ≤ K, define a set of index triplets: Mk = {(i, r, s) : i ∈ Sk, 1 ≤ r < s ≤ Ni}.
Let M = ∪Kk=1Mk. Write for short θi = ( 1

nkN̄k
− 1

nN̄
)2 N3

i
Ni−1 , for i ∈ Sk. It is seen that

1′pU2 = 2
∑

(i,r,s)∈M

√
θi√

Ni(Ni − 1)
Wirs, with Wirs =

p∑
j=1

ZijrZijs.

For Wirs and Wi′r′s′ , if i 6= i′, or if i = i′ and {r, s}∩{r′, s′} = ∅, then these two variables are

independent; if i = i′, r = r′ and s 6= s′, then E[WirsWirs′ ] =
∑

j,j′ E[ZijrZijsZij′rZij′s′ ] =∑
j,j′ E[ZijrZij′r]·E[Zijs]·E[Zij′s′ ] = 0. Therefore, {Wirs}(i,r,s)∈M is a collection of mutually

uncorrelated variables. It follows that

Var(1′pU2) = 4
∑

(i,r,s)∈M

θi
Ni(Ni − 1)

Var(Wirs).

It remains to calculate the variance of each Wirs. By direction calculations,

Var(Wirs) =
∑
j

E[Z2
ijrZ

2
ijs] + 2

∑
j<`

E[ZijrZijsZi`rZi`s]

=
∑
j

[Ωij(1− Ωij)]
2 + 2

∑
j<`

(−ΩijΩi`)
2

=
∑
j

Ω2
ij − 2

∑
j

Ω3
ij +

(∑
j

Ω2
ij

)2

= ‖Ωi‖2 − 2‖Ωi‖33 + ‖Ωi‖4

(A.42)

Since maxij Ωij ≤ 1, we have

‖Ωi‖2 − ‖Ωi‖33 ≤ Var(Wirs) ≤ ‖Ωi‖2.

Therefore,

Var(1′pU2) = 4
K∑
k=1

∑
i∈Sk

∑
1≤r<s≤Ni

θi
Ni(Ni − 1)

Var(Wirs)
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= 2
K∑
k=1

∑
i∈Sk

θiVar(Wirs) ≥ 2
K∑
k=1

∑
i∈Sk

θi
[
‖Ωi‖2 − ‖Ωi‖33

]
= Θn2 −An,

and similarly Var(1′pU2) ≤ Θn2, which proves the first claim. To prove the second claim,

note that Var(1′pU2) = Θn2 +O(An). By (A.9) and the assumption minNi ≥ 2, we have

An .
∑
k

( 1

nkN̄k
− 1

nN̄

)2 ∑
i∈Sk

N2
i ‖Ωi‖33

=
∑
k

( 1

nkN̄k
− 1

nN̄

)2 · o(∑
i∈Sk

N2
i ‖Ωi‖2

)
= o(Θn2),

which implies that Var(1pU2) = [1 + o(1)]Θn2, as desired.

A.8 Proof of Lemma A.4

For each 1 ≤ k < ` ≤ K, define a set of index quadruples: Jk` = {(i, r,m, s) : i ∈ Sk, j ∈
S`, 1 ≤ r ≤ Ni, 1 ≤ s ≤ Nm}. Let J = ∪(k,`):1≤k<`≤KJk`. It is seen that

1′pU3 = − 2

nN̄

∑
(i,r,m,s)∈J

Virms, where Virms =

p∑
j=1

ZijrZmjs.

For Virms and Vi′r′m′s′ , if {(i, r), (m, s)} ∩ {(i′, r′), (m′, s′)} = ∅, then the two variables are

independent of each other. If (i, r) = (i′, r′) and (m, s) 6= (m′, s′), then E[VirmsVirm′s′ ] =∑
j,j′ E[ZijrZmjsZij′rZm′j′s′ ] =

∑
j,j′ E[ZijrZij′r] · E[Zmjs] · E[Zm′js′ ] = 0. Therefore, the

only correlated case is when (i, r,m, s) = (i′, r′,m′, s′). This implies that {Virms}(i,r,m,s)∈J
is a collection of mutually uncorrelated variables. Therefore,

Var(1′pU3) =
4

n2N̄2

∑
(i,r,m,s)∈J

Var(Virms).

Note that Var(Virms) = E[(
∑

j ZijrZmjs)
2] =

∑
j,j′ E[ZijrZmjsZij′rZmj′s]; also, the covari-

ance matrix of Zir is diag(Ωi)− ΩiΩ
′
i. It follows that

Var(Virms) =
∑
j

E[Z2
ijr] · E[Z2

mjs] +
∑
j 6=j′

E[ZijrZij′r] · E[ZmjsZmj′s]

=
∑
j

Ωij(1− Ωij)Ωmj(1− Ωmj) +
∑
j 6=j′

ΩijΩij′ΩmjΩmj′

=
∑
j

ΩijΩmj − 2
∑
j

Ω2
ijΩ

2
mj +

∑
j,j′

ΩijΩij′ΩmjΩmj′ . (A.43)

Write for short δim = −2
∑

j Ω2
ijΩ

2
mj +

∑
j,j′ ΩijΩij′ΩmjΩmj′ .Combining the above gives

Var(1′pU3) =
4

n2N̄2

∑
k<`

∑
i∈Sk

∑
m∈S`

Ni∑
r=1

Nm∑
s=1

(∑
j

ΩijΩmj + δim

)
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=
2

n2N̄2

∑
k 6=`

∑
i∈Sk

∑
m∈S`

∑
j

NiNmΩijΩmj +
2

n2N̄2

∑
k 6=`

∑
i∈Sk

∑
m∈S`

NiNmδim. (A.44)

It is easy to see that |δim| ≤
∑

j,j′ ΩijΩij′ΩmjΩmj′ . Also, by the definition of Σk in (A.2),

we have Σk(j, j
′) = 1

nkN̄k

∑
i∈Sk NiΩijΩij′ . Using these results, we immediately have∣∣∣ 2

n2N̄2

∑
k 6=`

∑
i∈Sk

∑
m∈S`

NiNmδim

∣∣∣ ≤ 2

n2N̄2

∑
k 6=`

∑
i∈Sk

∑
m∈S`

∑
j,j′

NiNmΩijΩij′ΩmjΩmj′

=
2

n2N̄2

∑
j,j′

∑
k 6=`

(∑
i∈Sk

NiΩijΩij′

)(∑
m∈S`

NiΩmjΩmj′

)
=

2

n2N̄2

∑
j,j′

∑
k 6=`

nkN̄kΣk(j, j
′) · n`N̄`Σ`(j, j

′)

= 2
∑
k 6=`

nkn`N̄kN̄`

n2N̄2
1′p(Σk ◦ Σ`)1p =: Bn (A.45)

as desired.

A.9 Proof of Lemma A.5

For 1 ≤ k ≤ K, define a set of index quadruples: Qk = {(i, r,m, s) : i ∈ Sk,m ∈ Sk, i <
m, 1 ≤ r ≤ Ni, 1 ≤ s ≤ Nm}. Let Q = ∪Kk=1Qk. Write κim = ( 1

nkN̄k
− 1

nN̄
)2NiNm, for

i ∈ Sk and m ∈ Sk. It is seen that

1′pU4 = 2
∑

(i,r,m,s)∈Q

√
κim√
NiNm

Virms, where Virms =

p∑
j=1

ZijrZmjs.

It is not hard to see that Virms and Vi′r′m′s′ are correlated only if (i, r,m, s) = (i′, r′,m′, s′).

It follows that

Var(1′pU4) = 4
∑

(i,r,m,s)∈Q

κim
NiNm

Var(Virms).

In the proof of Lemma A.4, we have studied Var(Virms). In particular, by (A.43), we have

Var(Virms) =
∑
j

ΩijΩmj + δim, with |δim| ≤
∑
j,j′

ΩijΩij′ΩmjΩmj′ .

Thus

Var(1′pU4) = 4
K∑
k=1

∑
i∈Sk,m∈Sk

i<m

Ni∑
i=1

Nm∑
r=1

κim
NiNm

Var(Virms)

= 4
K∑
k=1

∑
i∈Sk,m∈Sk

i<m

κim

(∑
j

ΩijΩmj + δim

)
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= 2
K∑
k=1

∑
i∈Sk,m∈Sk

i 6=m

∑
j

κimΩijΩmj ± 2
∑
k

∑
i 6=m∈Sk

κim
∑
j,j′

ΩijΩij′ΩmjΩmj′ ,

= Θn3 ± En. (A.46)

which proves the lemma.

A.10 Proof of Lemma A.6

By assumption (3.1), N3
i /(Ni − 1) � Ni and

(
1

nkN̄k
− 1

nN̄

)2
� 1

n2
kN̄

2
k

. First, observe that

Θn2 + Θn4 = 2

K∑
k=1

( 1

nkN̄k
− 1

nN̄

)2 ∑
i∈Sk

N3
i

Ni − 1
‖Ωi‖2

+ 2

K∑
k=1

∑
i∈Sk,m∈Sk

i 6=m

∑
j

( 1

nkN̄k
− 1

nN̄

)2
NiNmΩijΩmj

�
∑
k=1

( 1

nkN̄k

)2∑
j

∑
i,m∈Sk

NiΩij ·NmΩij =
∑
k

‖µk‖2. (A.47)

Recall the definitions of µk and µ in (A.2)-(A.3). By direct calculations, we have

Θn3 = 2
∑
j

∑
k 6=`

( 1

nN̄

∑
i∈Sk

NiΩij

)( 1

nN̄

∑
m∈S`

NmΩmj

)
= 2

∑
j

∑
k 6=`

nkN̄k

nN̄
µkj ·

n`N̄`

nN̄
µ`j

= 2
∑
k 6=`

nkn`N̄kN̄`

n2N̄2
· µ ′k µ`

≤ 2
∑
j

(∑
k

nkN̄k

nN̄
µkj

)2
= 2

∑
j

µ2
j = 2‖µ‖2. (A.48)

By Cauchy–Schwarz,

‖µ‖2 =
∑
j

(∑
k

(
nkN̄k

nN̄
)µkj

)2

≤
∑
j

(∑
k

(
nkN̄k

nN̄
)2

)
·
(∑

k

µ2
kj

)

≤
∑
j

(∑
k

(
nkN̄k

nN̄
)

)
·
(∑

k

µ2
kj

)
=
∑
j

∑
k

µ2
kj =

∑
k

‖µk‖2. (A.49)

Combining (A.47), (A.48), and (A.49) yields

c
(∑

k

‖µk‖2
)
≤ Θn2 + Θn3 + Θn4 ≤ C

(∑
k

‖µk‖2
)
,

for absolute constants c, C > 0. This completes the proof.
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A.11 Proof of Lemma A.7

By (3.1), it holds that

(
1

nkN̄k
− 1

nN̄
)2 � 1

(nkN̄k)2
, (A.50)

and moreover, for all i ∈ {1, 2, . . . , n},

N3
i

Ni − 1
� N2

i . (A.51)

Recall the definitions of An, Bn, and En in (A.8), (A.11), and (A.13), respectively. Note

that these are the remainder terms in Lemmas A.3, A.4, and A.5, respectively. Under the

null hypothesis (recall Θn1 ≡ 0 under the null),

Var(T ) = Θn2 + Θn3 + Θn4 +O(An +Bn + En). (A.52)

It holds that

An ≤
K∑
k=1

( 1

nkN̄k

)2 ∑
i∈Sk

N2
i ‖Ωi‖33. (A.53)

Next, by linearity and the definition of Σk,Σ in (A.2), (A.3), respectively,

Bn ≤ 2
∑
k,`

nkn`N̄kN̄`

n2N̄2
1′p(Σk ◦ Σ`)1p

≤ 21′p

(
1

nN̄

∑
k

nkN̄kΣk

)
◦
(

1

nN̄

∑
`

n`N̄`Σk`

)
1p

= 21′p(Σ ◦ Σ)1p = 2‖Σ‖2F

By Cauchy–Schwarz,

Bn ≤ ‖Σ‖2F =
∑
j,j′

(∑
k

(
nkN̄k

nN̄
Σk(j, j

′)

)2

≤
∑
j,j′

(∑
k

(
nkN̄k

nN̄
)2

)
·
(∑

k

Σk(j, j
′)2

)

≤
∑
j,j′

(∑
k

nkN̄k

nN̄

)
·
(∑

k

Σk(j, j
′)2

)
=
∑
j,j′

∑
k

Σk(j, j
′)2 =

∑
k

‖Σk‖2F . (A.54)

Next by the definition of Σk in (A.2), we have Σk(j, j
′) = 1

nkN̄k

∑
i∈Sk NiΩijΩij′ . It

follows that

En ≤
∑
k

∑
j,j′

( 1

nkN̄k

∑
i∈Sk

NiΩijΩij′

)( 1

nkN̄k

∑
m∈Sk

NmΩmjΩmj′

)
=
∑
k

∑
j,j′

Σ2
k(j, j

′) =
∑
k

‖Σk‖2F . (A.55)
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Next, Lemma A.6 implies that

Θn2 + Θn3 + Θn4 �
∑
k

‖µk‖2 = K‖µ‖2, (A.56)

where we use that the null hypothesis holds. By assumption of the lemma, we have

βn =

max

{∑
k

∑
i∈Sk

N2
i

n2
kN̄

2
k
‖Ωi‖33 ,

∑
k ‖Σk‖2F

}
K‖µ‖2

= o(1)

Combining this with (A.52), (A.53), (A.54), (A.55),and (A.56) completes the proof of the

first claim. The second claim follows plugging in µk = µ for all k ∈ {1, 2, . . . ,K}.

A.12 Proof of Lemma A.8

By assumption, N3
i /(Ni − 1) � Ni,M

3
i /(Mi − 1) �Mi. By direct calculation,

Θn2 + Θn4 �
[ mM̄

(nN̄ +mM̄)nN̄

]2 ∑
i,m,j

NiNmΩijΩmj +
[ nN̄

(nN̄ +mM̄)mM̄

]2∑
i,m

NiNmΓijΓmj

=
1

(nN̄ +mM̄)2

(
(mM̄)2‖η‖2 + nN̄2‖θ‖2

)
. (A.57)

Next

Θn3 =
4

(nN̄ +mM̄)2

∑
i∈S1

∑
m∈S2

∑
j

NiΩij ·NmΓmj

=
4

(nN̄ +mM̄)2
· nN̄mM̄〈θ, η〉. (A.58)

Combining (A.57) and (A.58) yields

Θn2 + Θn3 + Θn4 �
1

(nN̄ +mM̄)2

(
(mM̄)2‖η‖2 + 2nN̄mM̄〈θ, η〉+ nN̄2‖θ‖2

)
=

∥∥∥∥ mM̄

nN̄ +mM̄
η +

nN̄

nN̄ +mM̄
θ

∥∥∥∥2

,

which proves the first claim. The second follows by plugging in θ = η = µ under the

null.

A.13 Proof of Lemma A.9

As in (A.52), we have under the null that

Var(T ) = Θn2 + Θn3 + Θn4 +O(An +Bn + En). (A.59)

For general K, observe that the proofs of the bounds

An ≤
K∑
k=1

( 1

nkN̄k

)2 ∑
i∈Sk

N2
i ‖Ωi‖33
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Bn ≤
K∑
k=1

‖Σk‖2F

En ≤
K∑
k=1

‖Σk‖2F

derived in (A.53), (A.54), and (A.55), only use the assumption that Ni,Mi ≥ 2 for all i.

Translating these bounds to the notation of the K = 2 case, we have

An ≤
∑
i

N2
i ‖Ωi‖3 +

∑
i

M2
i ‖Γi‖3

Bn ≤ ‖Σ1‖2F + ‖Σ2‖2F
En ≤ ‖Σ1‖2F + ‖Σ2‖2F . (A.60)

Furthermore, we know that Θn ≥ c‖µ‖2 under the null by Lemma A.8, for an absolute

constant c > 0. Combining this with (A.59) and (A.60) completes the proof.

A.14 Proof of Lemma A.10

Define

V1 = 2

K∑
k=1

∑
i∈Sk

p∑
j=1

( 1

nkN̄k
− 1

nN̄

)2
[
NiX

2
ij

Ni − 1
− NiXij(Ni −Xij)

(Ni − 1)2

]

V2 =
2

n2N̄2

∑
1≤k 6=`≤K

∑
i∈Sk

∑
m∈S`

p∑
j=1

XijXmj

V3 = 2
K∑
k=1

∑
i∈Sk,m∈Sk,

i 6=m

p∑
j=1

( 1

nkN̄k
− 1

nN̄

)2
XijXmj .

Observe that V1 + V2 + V3 = V . Also define

A11 =
∑
i

Ni∑
r=1

∑
j

[4θiΩij

Ni

]
Zijr (A.61)

A12 = 2
∑
i

Ni∑
r=1

∑
j

[ ∑
m∈[n]\{i}

αimNmΩmj

]
Zijr (A.62)

and observe that A11 +A12 = A1.

First, we derive the decomposition of V1. Recall that

Yij :=
Xij

Ni
− Ωij =

1

Ni

Ni∑
r=1

Zijr, Qij := Y 2
ij − EY 2

ij = Y 2
ij −

Ωij(1− Ωij)

Ni
. (A.63)

With these notations, Xij = Ni(Ωij + Yij) and NiY
2
ij = NiQij + Ωij(1− Ωij).
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Write

V1 = 2

n∑
i=1

n∑
i=1

θi
Ni

∆ij , where ∆ij :=
X2
ij

Ni
− Xij(Ni −Xij)

Ni(Ni − 1)
. (A.64)

Note that Xij = Ni(Ωij + Yij) and Y 2
ij = Qij +N−1

i Ωij(1− Ωij). It follows that

X2
ij

Ni
= NiΩ

2
ij + 2NiΩijYij +NiQij + Ωij(1− Ωij).

In (A.32), we have shown that Qij = (1−2Ωij)
Yij
Ni

+ 1
N2
i

∑
1≤r 6=s≤Ni ZijrZijs. It follows that

X2
ij

Ni
= NiΩ

2
ij + 2NiΩijYij + (1− 2Ωij)Yij +

1

Ni

∑
1≤r 6=s≤Ni

ZijrZijs + Ωij(1− Ωij).

Additionally, by (A.33),

Xij(Nij −Xij)

Ni(Ni − 1)
= Ωij(1− Ωij) + (1− 2Ωij)Yij −

1

Ni(Ni − 1)

∑
1≤r 6=s≤Ni

ZijrZijs.

Combining the above gives

∆ij = NiΩ
2
ij + 2NiΩijYij +

1

Ni − 1

∑
1≤r 6=s≤Ni

ZijrZijs

= NiΩ
2
ij + 2Ωij

Ni∑
r=1

Zijr +
1

Ni − 1

∑
1≤r 6=s≤Ni

ZijrZijs. (A.65)

Recall the definition of Θn2 in (A.7), A2 in (A.19), and A11 in (A.61). We have

V1 = 2
∑
k,i∈Sk

∑
j

θi
Ni

[
NiΩ

2
ij + 2Ωij

Ni∑
r=1

Zijr +
1

Ni − 1

∑
1≤r 6=s≤Ni

ZijrZijs
]
.

= Θn2 +
∑
k,i∈Sk

∑
j

4θiΩij

Ni

Ni∑
r=1

Zijr +
∑
k,i∈Sk

∑
j

2θi
Ni(Ni − 1)

∑
1≤r 6=s≤Ni

ZijrZijs

= Θn2 +A11 +A2 (A.66)

Next, we have

V2 + V3 =
∑
i 6=m

αimNiNm

∑
j

[
(Yij + Ωij)(Ymj + Ωmj)

]
=
∑
i 6=m

αimNiNm

∑
j

YijYmj + 2
∑
i 6=m

αimNiNm

∑
j

YijΩmj +
∑
i 6=m

αimNiNm

∑
j

ΩijΩmj

=
∑
i 6=m

Ni∑
r=1

Nm∑
s=1

αim
(∑

j

ZijrZmjs
)

+ 2
∑
i

Ni∑
r=1

∑
j

[ ∑
m∈[n]\{i}

αimNmΩmj

]
Zijr + Θn3 + Θn4

= A3 +A12 + Θn3 + Θn4.
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Hence

A1 +A2 +A3 + Θn2 + Θn3 + Θn4 = V,

which verifies (A.21). By inspection, we also see that EAb = 0 for b ∈ {1, 2, 3}. That

A1, A2, A3 are mutually uncorrelated follows immediately from the linearity of expecta-

tion and the fact that the random variables {Zijr}i,r ∪ {ZijrZmjs}(i,r) 6=(m,s) are mutually

uncorrelated.

A.15 Proof of Lemma A.11

Define

γirj =
4θiΩij

Ni
+

∑
m∈[n]\{i}

2αimNmΩmj (A.67)

and recall that A1 =
∑

i

∑
r∈[Ni]

∑
j γirjZijr. First we develop a bound on γirj . Suppose

that i ∈ Sk. Then we have

γirj .
NiΩij

n2
kN̄

2
k

+
∑

m∈Sk,m 6=i

NmΩmj

n2
kN̄

2
k

+
∑

k′∈[K]\{k}

∑
m∈Sk′

NmΩmj

n2N̄2

.
µkj
nkN̄k

+
µj
nN̄

.

Next using properties of the covariance matrix of a multinomial vector, we have

Var(A1) =
∑

i,r∈[Ni]

Var(γ′ir:Zi:r) =
∑

i,r∈[Ni]

γ′ir:Cov(Zi:r)γir:

≤
∑

i,r∈[Ni]

γ′ir:diag(Ωi:)γir: =
∑

i,r∈[Ni]

∑
j

Ωijγ
2
irj

.
∑
k,j

( µkj
nkN̄k

+
µj
nN̄

)2 ∑
i∈Sk,r∈[Ni]

Ωij

.
∑
k,j

( µkj
nkN̄k

)2
nkN̄kµkj +

∑
k,j

( µj
nN̄

)2
nkN̄kµkj

= (
∑
k

‖µk‖33
nkN̄k

) +
‖µ‖33
nN̄

.
∑
k

‖µk‖33
nkN̄k

, (A.68)

which proves the first claim. The last inequality follows because by Jensen’s inequality

(noting that the function x 7→ x3 is convex for x ≥ 0),

‖µ‖33 =
∑
j

(∑
k

(
nkN̄k

nN̄
)µkj

)3

≤
∑
j

∑
k

(
nkN̄k

nN̄
)µ3
kj ≤

∑
k

‖µk‖33.

Next observe that

A2 =
∑
i

∑
r 6=s

2θi
Ni(Ni − 1)

Wirs (A.69)
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where recall Wirs =
∑

j ZijrZijs. Also recall that Wirs and Wi′r′s′ are uncorrelated unless

i = i′ and {r, s} = {r′, s′}. By (A.42),

Var(A2) =
∑
i

∑
r 6=s

4θ2
i

N2
i (Ni − 1)2

Var(Wirs)

.
∑
i

∑
r 6=s

4θ2
i

N2
i (Ni − 1)2

‖Ωi‖2

.
∑
k

∑
i∈Sk

·( 1

nkN̄k
− 1

nN̄
)4 N6

i

(Ni − 1)2
· 1

Ni(Ni − 1)
‖Ωi‖2

.
∑
k

∑
i∈Sk

N2
i

n4
kN̄

4
k

‖Ωi‖2 (A.70)

Also observe that∑
k

1

n4
kN̄

4
k

∑
i∈Sk

N2
i ‖Ωi‖22 ≤

∑
k

1

n2
kN̄

2
k

∑
i,m∈Sk

〈
(
Ni

nkN̄k
)Ωi, (

Nm

nmN̄m
)Ωm

〉
=
∑
k

1

n2
kN̄

2
k

‖µk‖2.

This establishes the second claim.

Last we study A3. Observe that

A3 =
∑
i 6=m

Ni∑
r=1

Nm∑
s=1

αimVirms

where recall Virms =
∑

j ZijrZmjs. Recall that Virms and Vi′r′m′s′ are uncorrelated unless

(r, s) = (r′, s′) and {i,m} = {i′,m′} .By (A.43),

Var(A3) .
∑
i 6=m

α2
imNiNm

∑
j

ΩijΩmj

.
∑
k

∑
i 6=m∈Sk

1

n4
kN̄

4
k

〈NiΩi, NmΩm〉+
∑
k 6=`

∑
i∈Sk,m∈S`

1

n4N̄4
〈NiΩi, NmΩm〉

.
∑
k

‖µk‖2

n2
kN̄

2
k

+
∑
k,`

1

n4N̄4
〈nkN̄kµk, n`N̄`µ`〉

.
∑
k

‖µk‖2

n2
kN̄

2
k

+
‖µ‖2

n2N̄2
.
∑
k

‖µk‖2

n2
kN̄

2
k

. (A.71)

In the last line we use that ‖µ‖2 ≤ 2
∑
‖µk‖2 as shown in (A.49). This proves all required

claims.

A.16 Proof of Proposition A.1

Under the null hypothesis, we have Θn1 ≡ 0. Thus, EV = Θn under the null by Lemma

A.10. Under (3.1), we have Var(T ) = [1 + o(1)]Θn. Therefore,

EV = [1 + o(1)]Var(T ), (A.72)
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so V is asymptotically unbiased under the null. Furthermore, by Lemma A.6, we have

Θn � K‖µ‖2. (A.73)

In Lemma A.11, we showed that

Var(A2) .
∑
k

∑
i∈Sk

N2
i ‖Ωi‖22
n4
kN̄

4
k

We conclude by Lemma A.11 that under the null

Var(V ) .
∑
k

‖µ‖2

n2
kN̄

2
k

∨
∑
k

‖µ‖33
nkN̄k

. (A.74)

By Chebyshev’s inequality, (A.73), (A.74), and assumption (A.22) of the theorem state-

ment, we have

|V − EV |
Var(T )

� |V − EV |
K‖µ‖2

= oP(1).

Thus by (A.72),

V

Var(T )
=

(V − EV )

Var(T )
+

EV
Var(T )

= oP(1) + [1 + o(1)],

as desired.

A.17 Proof of Lemma A.12

By Lemmas A.1–A.5, we have

Var(T ) =

4∑
a=1

Var(1′pUa) ≥ (

4∑
a=2

Θna)− (An +Bn + En). (A.75)

Using that maxi ‖Ωi‖∞ ≤ 1− c0, we have ‖Ωi‖3 ≤ (1− c0)‖Ωi‖2, which implies that

An ≤ (1− c0)Θn2. (A.76)

Again using maxi ‖Ωi‖∞ ≤ 1− c0, as well as
∑

j′ Ωij′ = 1, we have

Bn =
2

n2N̄2

∑
k 6=`

∑
i∈Sk

∑
m∈S`

∑
j,j′

NiNmΩijΩij′ΩmjΩmj′

≤ (1− c0) · 2

n2N̄2

∑
k 6=`

∑
i∈Sk

∑
m∈S`

∑
j,j′

NiNmΩijΩij′Ωmj

= (1− c0) · 2

n2N̄2

∑
k 6=`

∑
i∈Sk

∑
m∈S`

∑
j

NiNmΩijΩmj

≤ (1− c0) ·Θn3. (A.77)
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Similarly to control En, we again use maxi ‖Ωi‖∞ ≤ 1− c0 and obtain

En = 2
∑
k

∑
i∈Sk,m∈Sk,

i 6=m

∑
1≤j,j′≤p

( 1

nkN̄k
− 1

nN̄

)2
NiNmΩijΩij′ΩmjΩmj′

≤ (1− c0) · 2
∑
k

∑
i∈Sk,m∈Sk,

i 6=m

∑
1≤j,j′≤p

( 1

nkN̄k
− 1

nN̄

)2
NiNmΩijΩij′Ωmj

≤ (1− c0) · 2
∑
k

∑
i∈Sk,m∈Sk,

i 6=m

∑
1≤j≤p

( 1

nkN̄k
− 1

nN̄

)2
NiNmΩijΩmj

≤ (1− c0) ·Θn4. (A.78)

Combining (A.75), (A.76), (A.77), and (A.78) finishes the proof.

A.18 Proof of Proposition A.2

By Lemmas A.6 and A.12,

Var(T ) & Θn2 + Θn3 + Θn4 &
∑
k

‖µk‖2. (A.79)

By Lemma A.11,

Var(V ) .
∑
k

‖µk‖2

n2
kN̄

2
k

∨
∑
k

‖µk‖33
nkN̄k

(A.80)

Using a similar argument based on Chebyshev’s inequality as in the proof of Proposition

A.1 and applying (A.79) and (A.80), we have

|V − EV |
Var(T )

&
|V − EV |∑
k ‖µk‖2

= oP(1). (A.81)

Next, by Lemma A.10 and (A.79),

EV = Θn2 + Θn3 + Θn4 . Var(T ). (A.82)

Combining (A.81) and (A.82) finishes the proof.

A.19 Proof of Proposition A.5

From the proof of Lemma A.10, we have

V ∗ = V1 = Θn2 +A11 +A2,

and the terms on the right-hand-side are mutually uncorrelated. From (A.68), we have

Var(A11) .
∑
i

‖Ωi‖33
Ni
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Var(A2) .
∑
i

‖Ωi‖2

N2
i

.

Hence

EV ∗ = Θn2

Var(V ∗) .
∑
i

‖Ωi‖33
Ni

∨
∑
i

‖Ωi‖2

N2
i

. (A.83)

Since K = n and the null hypothesis holds, we have Θn1 ≡ Θn4 ≡ 0. Moreover, by

(A.48), we have

Θn3 . ‖µ‖2 � Θn2 � n‖µ‖2.

It follows that

Var(T ) = [1 + o(1)]Θn2 � n‖µ‖2. (A.84)

Thus by (A.83) and Chebyshev’s inequality, we have

V ∗

Var(T )
=
V ∗ − EV ∗

Var(T )
+

EV ∗

Var(T )
= oP(1) + 1 + o(1),

as desired.

A.20 Proof of Proposition A.6

By Lemmas A.6 and A.12,

Var(T ) & Θn2 + Θn3 &
∑
i

‖Ωi‖2. (A.85)

By (A.83),

Var(V ∗) .
∑
i

‖Ωi‖2

N2
i

∨
∑
i

‖Ωi‖33
Ni

(A.86)

Using a similar argument based on Chebyshev’s inequality as in the proof of Proposition

A.1 and applying (A.85) and (A.86), we have

|V ∗ − EV ∗|
Var(T )

&
|V ∗ − EV ∗|∑

i ‖Ωi‖2
= oP(1). (A.87)

Next, by Lemma A.10 and (A.85),

EV ∗ = Θn2 . Var(T ). (A.88)

Combining (A.81) and (A.88) finishes the proof.
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B Proofs of asymptotic normality results

The goal of this section is to prove Theorems 3.1 and 3.2. The argument relies on the

martingale central limit theorem and the lemmas stated below. As a preliminary, we

describe a martingale decomposition of T under the null.

Define

U = 1′p(U3 + U4), and S = 1′pU2.

By Lemma A.1, we have T = U + S under the null hypothesis. It holds that

U =
∑
i<i′

σi,i′
Ni∑
r=1

Ni′∑
s=1

(∑
j

ZijrZi′js
)
. (B.1)

where we define

σi,i′ =

{
2
(

1
nkN̄k

− 1
nN̄

)
if i, i′ ∈ Sk for some k

− 2
nN̄

else.

Define a sequence of random variables

D`,s =
∑

i∈[`−1]

σi,`

Ni∑
r=1

∑
j

ZijrZ`js (B.2)

indexed by (`, s) ∈ {(i, r)}1≤i≤n,1≤r≤Ni , where these tuples are placed in lexicographical

order. Precisely, we define

(`1, s1) ≺ (`2, s2)

if either

• `1 < `2, or

• `1 = `2 and s1 < s2.

Observe that ∑
`,s

D`,s = U.

Next define F≺(`,s) to be the σ-field generated by {Zi:r}(i,r)≺(`,s). Observe that

E[D`,s|F≺(`,s)] = 0,

and hence {D`,s} is a martingale difference sequence. Turning to S, we have

S =
n∑
i=1

σi
∑
r<s

∑
j

ZijrZijs. (B.3)

where we define

σi = 2
( 1

nkN̄k
− 1

nN̄

) Ni

Ni − 1
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if i ∈ Sk. Define

E`,s = σ`
∑

r∈[s−1]

∑
j

Z`jrZ`js. (B.4)

Note that E`,1 = 0. Order (`, s) lexicographically as above, and recall that F≺(`,s) is the

σ-field generated by {Zi:r}(i,r)≺(`,s). Observe that

E[E`,s|F≺(`,s)] = 0,

and hence {E`,s} is a martingale difference sequence. We have

∑
(`,s)

σ`
∑

r∈[s−1]

∑
j

Z`jrZ`js =
n∑
`=1

N∑̀
s=1

σ`
∑

r∈[s−1]

∑
j

Z`jrZ`js = S.

Define

M`,s = D`,s + E`,s, M̃`,s =
M`,s√
Var(T )

. (B.5)

Thus we obtain the martingale decomposition:

T = U + S =
∑
(`,s)

[D`,s + E`,s] =
∑
(`,s)

M`,s. (B.6)

The technical results below are crucial to the proof of Theorem 3.1 given in Section B.1.

Theorem 3.2 then follows easily from Theorem 3.1 and Theorem A.1.

Lemma B.1. Let M̃`,s be defined as in (B.5). It holds that

E
[∑

(`,s)

Var
(
M̃`,s

∣∣F≺(`,s)

)]
= 1.

Lemma B.2. Suppose that minNi ≥ 2 and max ‖Ωi‖∞ ≤ 1−c0. Under the null hypothesis,

it holds that

Var

(∑
(`,s)

Var(D`,s|F≺(`,s))

)
.
(∑

k

1

nkN̄k

)
‖µ‖33 +K‖µ‖44.

Lemma B.3. Suppose that minNi ≥ 2 and max ‖Ωi‖∞ ≤ 1−c0. Under the null hypothesis,

it holds that ∑
(`,s)

ED4
`,s .

(∑
k

1

n2
kN̄

2
k

)
‖µ‖2 +

(∑
k

1

nkN̄k

)
‖µ‖33 ,

Lemma B.4. Suppose that minNi ≥ 2 and and max ‖Ωi‖∞ ≤ 1− c0. Then we have

Var

(∑
(`,s)

Var(Ẽ`,s|F≺(`,s))

)
.
∑
k

∑
i∈Sk

N3
i ‖Ωi‖33
n4
kN̄

4
k

∨
∑
k

∑
i∈Sk

N4
i ‖Ωi‖44
n4
kN̄

4
k

(B.7)
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Lemma B.5. Suppose that minNi ≥ 2 and and max ‖Ωi‖∞ ≤ 1− c0. Then we have

∑
(`,s)

EE4
`,s .

∑
k

∑
i∈Sk

N2
i ‖Ωi‖2

n4
kN̄

4
k

∨
∑
k

∑
i∈Sk

N3
i ‖Ωi‖33
n4
kN̄

4
k

Lemma B.6. Under either the null or alternative, it holds that∑
k

∑
i∈Sk

N2
i ‖Ωi‖2

n4
kN̄

4
k

≤
∑
k

1

n2
kN̄

2
k

‖µk‖2

∑
k

∑
i∈Sk

N3
i ‖Ωi‖33
n4
kN̄

4
k

≤
∑
k

1

nkN̄k
‖µk‖33

∑
k

∑
i∈Sk

N4
i ‖Ωi‖44
n4
kN̄

4
k

≤
∑
k

‖µk‖44

B.1 Proof of Theorem 3.1

By the martingale central limit theorem (see e.g. Hall and Heyde [2014]), we have that

T/
√

Var(T )⇒ N(0, 1) if the following conditions are satisfied:∑
(`,s)

Var
(
M̃`,s

∣∣F≺(`,s)

) P→ 1 (B.8)

∑
(`,s)

E
[
M̃2

`,s1|M̃`,s|>ε
∣∣F≺(`,s)

] P→ 0, for any ε > 0. (B.9)

It is known that (B.9), which is a Lindeberg-type condition, is implied by the Lyapunov-type

condition ∑
(`,s)

EM̃4
`,s = o(1). (B.10)

See e.g. Jin et al. [2018].

Since (3.1) holds,

Var(T ) & Θ = Θn2 + Θn3 + Θn4 & K‖µ‖2. (B.11)

Recall that

M̃`,s =
M`,s

Var(T )
=
D`,s + E`,s

Var(T )
,

Note that (B.8) holds if

E
[
Var
(
M̃`,s

∣∣F≺(`,s)

)]
→ 1, and (B.12)

Var

(
Var
(
M̃`,s

∣∣F≺(`,s)

))
→ 0. (B.13)

Recall that (B.12) holds by Lemma B.1.
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Next note that

E(D`,sE`,s|F≺(`,s)) = 0,

by inspection of the expressions for D`,s and E`,s in (B.2) and (B.4). Therefore

Var(M`,s|F≺(`,s)) = Var(D`,s|F≺(`,s)) + Var(E`,s|F≺(`,s)).

Hence by (B.11); Lemmas B.2, B.4 , and B.6; and the assumption (3.4), under the null

hypothesis, we have

Var

(
Var
(
M̃`,s

∣∣F≺(`,s)

))
≤ 1

Var(T )2

[
Var

(
Var
(
D`,s

∣∣F≺(`,s)

))
+ Var

(
Var
(
E`,s

∣∣F≺(`,s)

))]
.

1

K2‖µ‖4

[(∑
k

1

nkN̄k

)
‖µ‖33 +K‖µ‖44

)
‖µ‖2

]
= o(1).

This proves (B.13). Thus, (B.12) and (B.13) are established, which proves (B.8).

Similarly, (B.10) (and thus (B.9)) holds by (B.11); Lemmas (B.3), (B.5), and (B.6), and

the assumption (3.4). Combining (B.8) and (B.9) verifies the conditions of the martingale

central limit theorem, so we conclude that T/
√

Var(T ) ⇒ N(0, 1). Since Var(T ) = [1 +

o(1)]Θn by (3.4) and Lemma A.7, the proof is complete.

We record a useful proposition that records the weaker conditions under which T/
√

Var(T )

is asymptotically normal.

Proposition B.1. Recall that αn is defined as

αn := max

{
K∑
k=1

‖µk‖33
nkN̄k

,
K∑
k=1

‖µk‖2

n2
kN̄

2
k

}/( K∑
k=1

‖µk‖2
)2

(B.14)

in (3.2). If under the null hypothesis,

αn = max

{
K∑
k=1

‖µk‖33
nkN̄k

,
K∑
k=1

‖µk‖2

n2
kN̄

2
k

}/(
K‖µ‖2

)2

→ 0, and
‖µ‖44
K‖µ‖4

→ 0, (B.15)

then T/
√

Var(T )⇒ N(0, 1).

B.1.1 Proof of Theorem 3.2

By our assumptions, Proposition A.1 holds and V/Var(T )→ 1. Thus the variance estimate

V is consistent under the null. Theorem 3.2 follows immediately from Slutsky’s theorem

and Theorem 3.1.

B.2 Proof of Lemma B.1

By Lemma A.1, S and U are uncorrelated, and it holds that

Var(T ) = Var(S) + Var(U). (B.16)
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Next note that

E(D`,sE`,s|F≺(`,s)) = 0,

by inspection of the expressions for D`,s and E`,s in (B.2) and (B.4). Therefore

Var(M`,s|F≺(`,s)) = Var(D`,s|F≺(`,s)) + Var(E`,s|F≺(`,s)).

Observe that

E
[∑

(`,s)

Var(E`,s|F≺(`,s))

]
=
∑
(`,s)

EE2
`,s =

∑
(`,s)

σ2
`

∑
r,r′∈[s−1]

∑
j,j′

E[Z`jrZ`jsZ`j′r′Z`j′s]

=
∑
(`,s)

σ2
`

∑
r∈[s−1]

∑
j,j′

E[Z`jrZ`j′rZ`jsZ`j′s]

=
n∑
`=1

σ2
`

∑
s∈[N`]

∑
r∈[s−1]

E
(∑

j

Z`jrZ`js
)2

= Var(S). (B.17)

The last line is obtained noting that S as defined in (B.3) is a sum of uncorrelated terms

over (i, r, s).

Similarly, we have

E
[∑

(`,s)

Var(D`,s|F≺(`,s))

]
= E

[∑
(`,s)

E
[
D2
`,s|F≺(`,s)

]]
=
∑
(`,s)

E
[
D2
`,s

]
=
∑
(`,s)

∑
i∈[`−1]

σ2
i,`Var

( Ni∑
r=1

∑
j

ZijrZ`js
)

=
∑
`

∑
i∈[`−1]

σ2
i,`Var

( Ni∑
r=1

N∑̀
s=1

ZijrZ`js
)

= Var(U). (B.18)

The lemma follows by combining (B.16)–(B.18).

B.3 Proof of Lemma B.2

Let Mk = nkN̄k and M = nN̄ . Define

Σ =
1

M

∑
k

MkΣk =
1

M

∑
`∈[n]

N`Ω`j1Ω`j2 . (B.19)

Our main goal is to control the conditional variance process. Define

δjj′` = EZ`jrZ`j′r =

{
Ω`j(1− Ω`j) if j = j′

−Ω`jΩ`j′ else.
(B.20)
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Observe that

Var(D`,s|F≺(`,s)) = E[
∑

i,i′∈[`−1]

∑
r,r′

∑
j1,j2

σi`σi′`Zij1rZ`j1sZi′j2r′Z`j2s|F≺(`,s)]

=
∑

i,i′∈[`−1]

∑
r,r′

∑
j1,j2

σi`σi′`Zij1rZi′j2r′E[Z`j1sZ`j2s]

=
∑

i,i′∈[`−1]

∑
r,r′

σi`σi′`
∑
j1,j2

δj1j2`Zij1rZi′j2r′

Define

αii′j1j2 =
∑
`>i′

N`σi`σi′`δj1j2`. (B.21)

Thus

∑
(`,s)

Var(D`,s|F≺(`,s)) =
∑
`,s

∑
i,i′∈[`−1]

Ni∑
r=1

Ni′∑
r′=1

σi`σi′`
∑
j1,j2

δj1j2` Zij1rZi′j2r′

=
∑
i

Ni∑
r=1

Ni∑
r′=1

∑
j1,j2

(∑
`>i

N`σ
2
i`δj1j2`

)
Zij1rZi′j2r′

+ 2
∑
i<i′

Ni∑
r=1

Ni′∑
r′=1

∑
j1,j2

(∑
`>i′

N`σi`σi′`δj1j2`

)
Zij1rZi′j2r′

=
∑
i

Ni∑
r=1

Ni∑
r′=1

∑
j1,j2

αiij1j2Zij1rZi′j2r′

+ 2
∑
i<i′

Ni∑
r=1

Ni′∑
r′=1

∑
j1,j2

αii′j1j2Zij1rZi′j2r′ .

Define

ζiri′r′ =
∑
j1,j2

αii′j1j2Zij1rZi′j2r′ . (B.22)

Then

∑
(`,s)

Var(D`,s|F≺(`,s)) =
∑
i

∑
r∈[Ni]

ζirir +

(
2
∑
i

∑
r<r′∈[Ni]

ζirir′ + 2
∑
i<i′

Ni∑
r=1

Ni′∑
r′=1

ζiri′r′

)
=: V1 + V2

With this decomposition, Lemma B.2 follows directly from Lemmas B.7 and B.8 stated

below and proved in the next remainder of this subsection.

Lemma B.7. It holds that

Var(V1) .
(∑

k

1

Mk

)
‖µ‖33.
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Lemma B.8. It holds that

Var(V2) . K‖µ‖44

B.3.1 Statement and proof of Lemma B.9

The proofs of Lemmas B.7 and B.8 heavily rely on the following intermediate result that

bounds the coefficients αii′j1j2 in all cases.

Lemma B.9. It holds that

αii′j1j2 .



1
Mk
µj1 if i, i′ ∈ Sk, j1 = j2

1
Mk

Σkj1j2 + 1
MΣj1j2 if i, i′ ∈ Sk, j1 6= j2

1
M µj1 if i ∈ Sk1 , i′ ∈ Sk2 , k1 6= k2, j1 = j2
1
M

∑2
a=1 Σkaj1j2 + 1

MΣj1j2 if i ∈ Sk1 , i′ ∈ Sk2 , k1 6= k2, j1 6= j2

Proof. If j1 = j2 and i, i′ ∈ Sk, we have

|αii′j1j1 | = |
∑
`>i′

N`σi`σi′`δj1j1`| ≤
K∑
k′=1

∑
`∈Sk′

N`σi`σi′`δj1j1`

.
1

Mk
· 1

Mk

∑
`∈Sk

N`Ω`j1 +
1

M
· 1

M

∑
`∈[n]

N`Ω`j1 .
1

Mk
µj1 +

1

M
µj1 .

1

Mk
µj1 .

If j1 6= j2 and i, i′ ∈ Sk, we have

|αii′j1j2 | = |
∑
`>i′

N`σi`σi′`δj1j2`| ≤
∑
`∈[n]

N`|σi`σi′`|Ω`j1Ω`j2

.
1

Mk
· 1

Mk

∑
`∈Sk

N`Ω`j1Ω`j2 +
1

M
· 1

M

∑
`∈[n]

N`Ω`j1Ω`j2 .
1

Mk
Σkj1j2 +

1

M
Σj1j2 .

If i 6= i′, j1 = j2, and i ∈ Sk1 , i′ ∈ Sk2 where k1 6= k2, we have

|αii′j1j1 | = |
∑
`>i′

N`σi`σi′`δj1j1`| ≤
∑
`

N`|σi`σi′`|Ω`j1

.
1

M
·

2∑
a=1

1

Mka

∑
`∈Ska

N`Ω`j1 +
1

M
· 1

M

∑
`∈[n]

N`Ω`j1 =
3

M
µj1 .

If i 6= i′, j1 6= j2, and i ∈ Sk1 , i′ ∈ Sk2 where k1 6= k2, we have

|αii′j1j2 | = |
∑
`>i′

N`σi`σi′`δj1j2`| .
∑
`

N`σi`σi′`Ω`j1Ω`j2

.
1

M
·

2∑
a=1

1

Mka

∑
`∈Ska

N`Ω`j1Ω`j2 +
1

M
· 1

M

∑
`∈[n]

N`Ω`j1Ω`j2

≤ 1

M

2∑
a=1

Σkaj1j2 +
1

M
Σj1j2 .
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B.3.2 Proof of Lemma B.7

We have

Var(V1) =
∑
i,r

Eζ2
irir.

Next by symmetry,

Eζ2
irir =

∑
j1,j2,j3,j4

αiij1j2αiij3j4 EZij1rZij3rZij2rZij4r

.
∑
j1

α2
iij1j1Ωij1 +

∑
j1 6=j4

αiij1j1αiij1j4 Ωij1Ωij4

+
∑
j1 6=j3

αiij1j1αiij3j3 Ωij1Ωij3 +
∑
j1 6=j2

α2
iij1j2 Ωij1Ωij2

+
∑

j1,j3,j4(dist.)

αiij1j1αiij3j4 Ωij1Ωij3Ωij4 +
∑

j1,j2,j4(dist.)

αiij1j2αiij1j4Ωij1Ωij2Ωij4

+
∑

j1,j2,j3,j4(dist.)

αiij1j2αiij3j4Ωij1Ωij2Ωij3Ωij4 =:

7∑
a=1

Ba,i,r

Thus

Var(V1) .
∑
a

(∑
i,r

Ba,i,r︸ ︷︷ ︸
=:Ba

)
.

We analyze B1– B7 separately, bounding the αii′jrjs coefficients using Lemma B.9.

For B1,

B1 .
∑
i,r

∑
j1

α2
iij1j2Ωij1 .

k∑
k=1

∑
i∈Sk

∑
r∈[Ni]

∑
j1

(
1

Mk
µj1)2Ωij1

.
∑
k

∑
j1

(
1

Mk
µj1)2Mkµj1 .

(∑
k

1

Mk

)
‖µ‖33. (B.23)

For B2,

B2 .
∑
i,r

∑
j1 6=j4

αiij1j1αiij1j4 Ωij1Ωij4

.
∑
k

∑
i∈Sk

∑
r∈[Ni]

∑
j1 6=j4

1

Mk
µj1 ·

( 1

Mk
Σkj1j4 +

1

M
Σj1j4

)
· Ωij1Ωij4

.
∑
k

∑
j1 6=j4

1

Mk
µj1 ·

( 1

Mk
Σkj1j4 +

1

M
Σj1j4

)
·MkΣkj1j4

.
∑
k

1

Mk

∑
j1 6=j4

Σ2
kj1j4µj1 +

∑
k

1

M

∑
j1 6=j4

Σkj1j4Σj1j4µj1
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.
∑
k

1′Σ◦2k µ

Mk
+
∑
k

1′(Σk ◦ Σ)µ

M
=
∑
k

1′Σ◦2k µ

Mk

Next, ∑
j1 6=j4

Σ2
kj1j4µj1 =

∑
j1 6=j4

1

M2
k

∑
i,i′∈Sk

NiNi′Ωij1Ωi′j1Ωij4Ωi′j4 · µj1

≤
∑
j1

1

M2
k

∑
i,i′∈Sk

NiNi′Ωij1Ωi′j1µj1 ·
(∑
j4

Ωij4Ωi′j4

)
≤
∑
j1

1

M2
k

∑
i,i′∈Sk

NiNi′Ωij1Ωi′j1 · µj1

≤
∑
j1

µ3
j1 = ‖µ‖33, (B.24)

and similarly∑
j1 6=j4

Σkj1j4Σj1j4µj1 =
∑
j1 6=j4

1

MkM

∑
i∈Sk,i′∈[n]

NiNi′Ωij1Ωi′j1Ωij4Ωi′j4 · µj1

≤
∑
j1

1

MkM

∑
i∈Sk,i′∈[n]

NiNi′Ωij1Ωi′j1µj1

=
∑
j1

µ3
j1 = ‖µ‖33.

Thus

B2 .
(∑

k

1

Mk

)
‖µ‖33. (B.25)

For B3,

B3 .
∑
i,r

∑
j1 6=j3

αiij1j1αiij3j3 Ωij1Ωij3

.
∑
k

∑
i∈Sk

∑
r∈[Ni]

∑
j1 6=j3

1

Mk
µj1 ·

1

Mk
µj3 · Ωij1Ωij3

.
∑
k

∑
j1 6=j3

1

Mk
µj1 ·

1

Mk
µj3 ·MkΣkj1j3 .

∑
k

µ′Σkµ

Mk
.

We have by Cauchy-Schwarz,

µ′Σkµ =
1

Mk

∑
i∈Sk

Niµ
′ΩiΩ

′
i′µ

=
1

Mk

∑
i∈Sk

Ni

(∑
j

µjΩij

)2
≤ 1

Mk

∑
i∈Sk

Ni

(∑
j

Ωij

)(∑
j

µ2
jΩij

)
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=
∑
j

µ3
j = ‖µ‖33. (B.26)

Thus

B3 .
(∑

k

1

Mk

)
‖µ‖33 (B.27)

For B4,

B4 .
∑
i,r

∑
j1 6=j2

α2
iij1j2 Ωij1Ωij2 .

∑
k

∑
i∈Sk

∑
r∈[Ni]

∑
j1 6=j2

( 1

Mk
Σkj1j2 +

1

M
Σj1j2

)2
Ωij1Ωij2

.
∑
k

∑
j1 6=j2

( 1

Mk
Σkj1j2 +

1

M
Σj1j2

)2 ·MkΣkj1j2 .
∑
k

1′(Σ◦3k )1

Mk
+
∑
k

Mk

M2
1′(Σk ◦ Σ◦2)1

.
(∑

k

1′(Σ◦3k )1

Mk

)
+

1

M
1′(Σ◦3)1.

First,

1′(Σ◦3k )1 =
1

M3
k

∑
i1,i2,i3∈Sk

Ni1Ni2Ni3

(∑
j

Ωi1jΩi2jΩi3j

)2
≤ 1

M3
k

∑
i1,i2,i3∈Sk

Ni1Ni2Ni3 ·
∑
j

Ωi1jΩi2jΩi3j =
∑
j

µ3
j = ‖µ‖33,

and similarly,

1′(Σ◦3)1 =
1

M3

∑
i1,i2,i3∈[n]

Ni1Ni2Ni3

(∑
j

Ωi1jΩi2jΩi3j

)2 ≤ ‖µ‖33.
Thus

B4 .
(∑

k

1

Mk

)
‖µ‖33 (B.28)

For B5,

B5 .
∑
i,r

∑
j1,j3,j4(dist.)

αiij1j1αiij3j4 Ωij1Ωij3Ωij4

.
∑
k

∑
i∈Sk

Ni

∑
j1,j3,j4

1

Mk
µj1 · (

1

Mk
Σkj3j4 +

1

M
Σj3j4) · Ωij1Ωij3Ωij4

.
∑
k

∑
i∈Sk

∑
j1,j3,j4

Niµj1Σkj3j4Ωij1Ωij3Ωij4

M2
k

+
∑
k

∑
i∈Sk

∑
j1,j3,j4

Niµj1Σj3j4Ωij1Ωij3Ωij4

MkM

=: B51 +B52.

We have

B51 =
∑
k

1

M3
k

∑
i1,i2∈Sk

∑
j1,j3,j4

Ni1Ni2µj1Ωi1j1Ωi1j3Ωi2j3Ωi1j4Ωi2j4
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=
∑
k

1

M3
k

∑
i1,i2∈Sk

Ni1Ni2(Ω′i1µ) · (Ω′i1Ωi2)2

≤
∑
k

1

M3
k

∑
i1,i2∈Sk

Ni1Ni2 · Ω′i1µ · Ω
′
i1Ωi2

=
∑
k

1

M2
k

∑
i1

Ni1µ
′Ωi1Ω′i1µ =

1

Mk
µ′Σkµ ≤

∑
k

1

Mk
‖µ‖33. (B.29)

In the last line we apply (B.26). Similarly,

B52 =
∑
k

1

MkM2

∑
i1∈Sk,i2∈[n]

∑
j1,j3,j4

Ni1Ni2µj1Ωi1j1Ωi1j3Ωi2j3Ωi1j4Ωi2j4

≤
∑
k

1

MkM2

∑
i1∈Sk,i2∈[n]

Ni1Ni2 · Ω′i1µ · Ω
′
i1Ωi2

≤
∑
k

1

MkM

∑
i1∈Sk

Ni1µ
′Ωi1Ω′i1µ ≤

∑
k

1

M
‖µ‖33. (B.30)

Thus

B5 .
(∑

k

1

Mk

)
‖µ‖33. (B.31)

For B6,

B6 .
∑
k

∑
i∈Sk

∑
r∈[Ni]

∑
j1,j2,j4(dist.)

( 1

Mk
Σkj1j2 +

1

M
Σj1j2

)( 1

Mk
Σkj1j4 +

1

M
Σj1j4

)
Ωij1Ωij2Ωij4

.
∑
k

∑
i∈Sk

∑
r∈[Ni]

∑
j1,j2,j4

Σ2
kj1j2

Ωij1Ωij2Ωij4

M2
k

+ 2
∑
k

∑
i∈Sk

∑
r∈[Ni]

∑
j1,j2,j4

Σkj1j2Σj1j2Ωij1Ωij2Ωij4

MkM

+
∑
k

∑
i∈Sk

∑
r∈[Ni]

∑
j1,j2,j4

Σ2
j1j2

Ωij1Ωij2Ωij4

M2
=: B61 +B62 +B63.

First,

B61 ≤
∑
k

∑
i∈Sk

∑
r∈[Ni]

∑
j1,j2,j4

Σ2
kj1j2

Ωij1

M2
k

=
∑
k

1

Mk
1′Σ◦2k µ ≤

∑
k

1

Mk
‖µ‖33,

where we applied (B.24). Similarly,

B62 .
∑
k

1

Mk
‖µ‖33, and

B63 .
∑
k

1

Mk
‖µ‖33.

Thus

B6 .
(∑

k

1

Mk

)
‖µ‖33. (B.32)
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For B7, we have

B7 .
∑

j1,j2,j3,j4(dist.)

( 1

Mk
Σkj1j2 +

1

M
Σj1j2

)( 1

Mk
Σkj3j4 +

1

M
Σj3j4

)
Ωij1Ωij2Ωij3Ωij4

.
∑
k

∑
i∈Sk

∑
r∈[Ni]

∑
j1,j2,j3,j4

Σkj1j2Σkj3j4Ωij1Ωij2Ωij3Ωij4

M2
k

+ 2
∑
k

∑
i∈Sk

∑
r∈[Ni]

∑
j1,j2,j3,j4

Σkj1j2Σj3j4Ωij1Ωij2Ωij3Ωij4

MkM

+
∑
k

∑
i∈Sk

∑
r∈[Ni]

∑
j1,j2,j3,j4

Σj1j2Σj3j4Ωij1Ωij2Ωij3Ωij4

M2
=: B71 +B72 +B73.

Note that

Σkj1j2 =
1

Mk

∑
i∈Sk

NiΩij1Ωij2 ≤
1

Mk

∑
i∈Sk

NiΩij1 = µj1 , and

Σj1j2 =
1

M

∑
i∈[n]

NiΩij1Ωij2 ≤
1

M

∑
i∈[n]

NiΩij1 = µj1 . (B.33)

Thus

B71 ≤
∑
k

∑
i∈Sk

∑
r∈[Ni]

∑
j1,j2,j3,j4

µj1Σkj3j4Ωij1Ωij2Ωij3Ωij4

M2
k

≤
∑
k

∑
i∈Sk

∑
j1,j3,j4

Niµj1Σkj3j4Ωij1Ωij3Ωij4

M2
k

≤
∑
k

1

Mk
‖µ‖33

where we applied (B.29). Similarly,

B72 .
∑
k

1

Mk
‖µ‖33, and

B73 .
∑
k

1

Mk
‖µ‖33.

Thus

B7 .
(∑

k

1

Mk

)
‖µ‖33. (B.34)

Combining the results for B1–B7 concludes the proof.

B.3.3 Proof of Lemma B.8

We have

Var(V2) . 4
∑

(i,r) 6=(i′,r′)

Eζ2
irir′ ,
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where r ∈ [Ni] and r ∈ [Ni′ ] in the summation above.

By symmetry, if (i, r) 6= (i′, r′),

Eζ2
iri′r′ =

∑
j1,j2,j3,j4

αii′j1j2αii′j3j4 EZij1rZij3r EZi′j2r′Zi′j4r′

.
∑
j1

α2
ii′j1j1 Ωij1Ωi′j1 +

∑
j1 6=j4

αii′j1j1αii′j1j4 Ωij1Ωi′j1Ωi′j4

+
∑
j1 6=j3

αii′j1j1αii′j3j3 Ωij1Ωij3Ωi′j1Ωi′j3 +
∑
j1 6=j2

α2
ii′j1j2 Ωij1Ωi′j2

+
∑

j1,j3,j4(dist.)

αii′j1j1αii′j3j4 Ωij1Ωij3Ωi′j1Ωi′j4 +
∑

j1,j2,j4(dist.)

αii′j1j2αii′j1j4 Ωij1Ωi′j2Ωi′j4

+
∑

j1,j2,j3,j4(dist.)

αii′j1j2αii′j3j4Ωij1Ωij3Ωi′j2Ωi′j4 =:
7∑
a

Ca,i,r. (B.35)

Thus

Var(V2) .
7∑

a=1

∑
(i,r)6=(i′,r′)

Ca,i,r .
7∑

a=1

∑
i,i′

NiNi′Ca,i,r︸ ︷︷ ︸
=:Ca

.

Next we analyze C1, . . . , C7, bounding the αii′jrjs coefficients using Lemma B.9.

For C1,

C1 .
∑
k

∑
i,i′∈Sk

∑
j1

NiNi′α
2
ii′j1j1Ωij1Ωi′j1 +

∑
k 6=k′

∑
i∈Sk,i′∈Sk′

∑
j1

NiNi′α
2
ii′j1j1Ωij1Ωi′j1

.
∑
k

∑
i,i′∈Sk

∑
j1

NiNi′(
1

Mk
µj1)2Ωij1Ωij1 +

∑
k 6=k′

∑
i∈Sk,i′∈Sk′

∑
j1

(
1

M
µj1)2Ωij1Ωi′j1

.
∑
k

∑
j1

µ4
j1 +

∑
k 6=k′

∑
j1

MkMk′

M2
µ4
j1 . K‖µ‖44. (B.36)

For C2,

C2 .
∑
k

∑
i,i′∈Sk

NiNi′
∑
j1 6=j4

αii′j1j1αii′j1j4 Ωij1Ωi′j1Ωi′j4

+
∑
k 6=k′

∑
i∈Sk,i′∈Sk′

NiNi′
∑
j1 6=j4

αii′j1j1αii′j1j4 Ωij1Ωi′j1Ωi′j4

.
∑
k

∑
i,i′∈Sk

NiNi′
∑
j1 6=j4

1

Mk
µj1 ·

( 1

Mk
Σkj1j4 +

1

M
Σj1j4

)
Ωij1Ωi′j1Ωi′j4

+
∑
k 6=k′

∑
i∈Sk,i′∈Sk′

NiNi′
∑
j1 6=j4

1

M
µj1 ·

( 1

M

∑
a∈{k,k′}

Σaj1j4 +
1

M
Σj1j4

)
Ωij1Ωi′j1Ωi′j4

.
∑
k

∑
i,i′∈Sk

NiNi′
∑
j1 6=j4

1

Mk
µj1 ·

( 1

Mk
µj1 +

1

M
µj1
)

Ωij1Ωi′j1Ωi′j4

+
∑
k 6=k′

∑
i∈Sk,i′∈Sk′

NiNi′
∑
j1 6=j4

1

M
µj1 ·

( 2

M
µj1 +

1

M
µj1
)

Ωij1Ωi′j1Ωi′j4
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.
∑
k

∑
j1

(
µ4
j1 +

Mk

M
µ4
j1

)
+
∑
k 6=k′

∑
j1

MkMk′

M2
µ4
j1 . K‖µ‖44. (B.37)

where we applied (B.33).

For C3,

C3 .

(∑
k

∑
i,i′∈Sk

NiNi′ +
∑
k 6=k′

∑
i∈Sk,i′∈Sk′

NiNi′

) ∑
j1 6=j3

αii′j1j1αii′j3j3 Ωij1Ωij3Ωi′j1Ωi′j3

.
∑
k

∑
i,i′∈Sk

NiNi′
∑
j1 6=j3

1

Mk
µj1 ·

1

Mk
µj3 · Ωij1Ωij3Ωi′j1Ωi′j3

+
∑
k 6=k′

∑
i∈Sk,i′∈Sk′

NiNi′
∑
j1 6=j3

1

M
µj1 ·

1

M
µj3 Ωij1Ωij3Ωi′j1Ωi′j3

=
∑
k

∑
j1 6=j3

µj1µj3Σ2
kj1j3 +

∑
k 6=k′

∑
j1 6=j3

MkMk′

M2
µj1µj3Σkj1j3Σk′j1j3

≤
(∑

k

µ′Σ◦2k µ
)

+ µ′Σ◦2µ.

First, by Cauchy–Schwarz,

µ′Σ◦2k µ =
1

M2
k

∑
i,i′∈Sk

NiNi′
(∑

j

µjΩijΩi′j

)2
=

1

M2
k

∑
i,i′∈Sk

NiNi′
(∑

j

ΩijΩi′j

)∑
j

µ2
jΩijΩi′j

≤ 1

M2
k

∑
i,i′∈Sk

NiNi′
∑
j

µ2
jΩijΩi′j =

∑
j

µ4
j = ‖µ‖44. (B.38)

Similarly

µ′Σ◦2µ . ‖µ‖44. (B.39)

Hence

C3 . K‖µ‖44. (B.40)

For C4,

C4 .

(∑
k

∑
i,i′∈Sk

NiNi′ +
∑
k 6=k′

∑
i∈Sk,i′∈Sk′

NiNi′

) ∑
j1 6=j2

α2
ii′j1j2 Ωij1Ωi′j2

.
∑
k

∑
i,i′∈Sk

NiNi′
∑
j1 6=j2

( 1

Mk
Σkj1j2 +

1

M
Σj1j2

)2
Ωij1Ωi′j2

+
∑
k 6=k′

∑
i∈Sk,i′∈Sk′

NiNi′
∑
j1 6=j2

( 1

M

2∑
a∈{k,k′}

Σaj1j2 +
1

M
Σj1j2

)2
Ωij1Ωi′j2

.
∑
k

∑
i,i′∈Sk

NiNi′
∑
j1 6=j2

( 1

M2
k

Σ2
kj1j2 +

1

M2
Σ2
j1j2

)
Ωij1Ωi′j2
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+
∑
k 6=k′

∑
i∈Sk,i′∈Sk′

NiNi′
∑
j1 6=j2

( 1

M2

2∑
a∈{k,k′}

Σ2
aj1j2 +

1

M2
Σ2
j1j2

)
Ωij1Ωi′j2 =: C41 + C42

First,

C41 .
∑
k

∑
i,i′∈Sk

NiNi′
∑
j1 6=j2

1

M2
k

Σ2
kj1j2Ωij1Ωi′j2 +

∑
k

∑
i,i′∈Sk

NiNi′
∑
j1 6=j2

1

M2
Σ2
j1j2Ωij1Ωi′j2

.
∑
k

∑
j1 6=j2

Σ2
kj1j2µj1µj2 +

∑
k

∑
j1 6=j2

M2
k

M2
Σ2
j1j2µj1µj2 ≤

∑
k

µ′Σ◦2k µ+
∑
k

M2
k

M2
µ′Σ◦2µ.

Similarly,

C42 .
∑
k 6=k′

∑
j1 6=j2

MkMk′

M2
Σ2
kj1j2µj1µj2 +

∑
k 6=k′

∑
j1 6=j2

MkMk′

M2
Σ2
j1j2µj1µj2

.
∑
k 6=k′

MkMk′

M2

(
µ′Σ◦2k µ+ µ′Σ◦2µ

)
Combining the previous two displays and applying (B.38) and (B.39), we have

C4 . K‖µ‖44. (B.41)

For C5,

C5 .

(∑
k

∑
i,i′∈Sk

NiNi′ +
∑
k 6=k′

∑
i∈Sk,i′∈Sk′

NiNi′

) ∑
j1,j3,j4(dist.)

αii′j1j1αii′j3j4 Ωij1Ωij3Ωi′j1Ωi′j4

.
∑
k

∑
i,i′∈Sk

NiNi′
∑

j1,j3,j4

1

Mk
µj1 ·

( 1

Mk
Σkj3j4 +

1

M
Σj3j4

)
Ωij1Ωij3Ωi′j1Ωi′j4

+
∑
k 6=k′

∑
i∈Sk,i′∈Sk′

NiNi′
∑

j1,j3,j4

1

M
µj1
( 1

M

2∑
a∈{k,k′}

Σaj3j4 +
1

M
Σj3j4

)
Ωij1Ωij3Ωi′j1Ωi′j4

=
∑
k

∑
j1,j3,j4

µj1Σkj3j4Σkj1j3Σkj1j4 +
∑
k

∑
j1,j3,j4

Mk

M
µj1Σj3j4Σkj1j3Σkj1j4

+ 2
∑
k 6=k′

∑
j1,j3,j4

MkMk′

M2
µj1Σkj3j4Σkj1j3Σk′j1j4 +

∑
k 6=k′

∑
j1,j3,j4

MkMk′

M2
µj1Σj3j4Σkj1j3Σk′j1j4

= C51 + C52 + 2C53 + C54

For C51, we have

C51 =
∑
k

1

M3
k

∑
i1,i2,i3∈Sk

Ni1Ni2Ni3〈µ ◦ Ωi1 ,Ωi2〉〈Ωi1 ,Ωi3〉〈Ωi2 ,Ωi3〉

=
∑
k

1

M2
k

∑
i1,i2∈Sk

Ni1Ni2〈µ ◦ Ωi1 ,Ωi2〉 · 〈Ωi1 ,ΣkΩi2〉

≤
∑
k

(
1

M2
k

∑
i1,i2∈Sk

Ni1Ni2〈µ ◦ Ωi1 ,Ωi2〉2
)1/2( 1

M2
k

∑
i1,i2∈Sk

Ni1Ni2〈Ωi1 ,ΣkΩi2〉2
)1/2
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=:
∑
k

C
1/2
511k · C

1/2
512k. (B.42)

We have by Cauchy–Schwarz that

C511k =
1

M2
k

∑
i1,i2∈Sk

Ni1Ni2

(∑
j

µjΩi1jΩi2j

)2
≤ 1

M2
k

∑
i1,i2∈Sk

Ni1Ni2

(∑
j

µ2
jΩi1jΩi2j

)(∑
j

Ωi1jΩi2j

)
≤ ‖µ‖44,

and similarly

C512k =
1

M2
k

∑
i1,i2∈Sk

Ni1Ni2

(∑
j1,j2

Ωi1j1Σkj1j2Ωi2j2

)2
=

1

M2
k

∑
i1,i2

Ni1Ni2

(∑
j1,j2

Ωi1j1Σ2
kj1j2Ωi2j2

)(∑
j1,j2

Ωi1j1Ωi2j2

)
≤ 1

M2
k

∑
i1,i2

Ni1Ni2

(∑
j1,j2

Ωi1j1Σ2
kj1j2Ωi2j2

)
= µ′Σ◦2k µ (B.43)

Since by Cauchy–Schwarz,

µ′Σ◦2k µ =
∑
j1,j2

µj1µj2
( 1

Mk

∑
i∈Sk

NiΩij1Ωij2

)2
=

1

M2
k

∑
j1,j2

µj1µj2
∑
i,i′∈Sk

NiNi′Ωij1Ωij2Ωi′j1Ωi′j2

=
1

M2
k

∑
i,i′∈Sk

(∑
j

µjΩijΩi′j

)2 ≤ 1

M2
k

∑
i,i′∈Sk

∑
j

µ2
jΩijΩi′j ≤ ‖µ‖44 (B.44)

we have in total C512k . K‖µ‖44. Combining the result with the bound for C511k implies

that

C51 . K‖µ‖44.

Next we study C52 using a similar argument.

C52 =
∑
k

∑
j1,j3,j4

Mk

M
µj1Σj3j4Σkj1j3Σkj1j4

=
∑
k

∑
j1,j3,j4

Mk

M
µj1
( 1

M

∑
i1∈[n]

Ni1Ωi1j3Ωi1j4

)( 1

Mk

∑
i2∈Sk

Ni2Ωi2j1Ωi2j3

)( 1

Mk

∑
i3∈Sk

Ni3Ωi3j1Ωi3j4

)
=
∑
k

1

M2Mk

∑
j1,j2,j3

∑
i1∈[n]
i2,i3∈Sk

Ni1Ni2Ni3〈µ ◦ Ωi2 ,Ωi3〉〈Ωi1 ,Ωi3〉〈Ωi1 ,Ωi2〉

=
∑
k

1

M2

∑
i2,i3∈[Sk]

Ni2Ni3〈µ ◦ Ωi2 ,Ωi3〉〈Ωi3 ,ΣΩi2〉

≤
∑
k

(
1

M2

∑
i2,i3∈[Sk]

Ni2Ni3〈µ ◦ Ωi2 ,Ωi3〉2
)1/2( 1

M2

∑
i2,i3∈[Sk]

Ni2Ni3〈Ωi3 ,ΣΩi2〉
)1/2
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=:
∑
k

C
1/2
521kC

1/2
522k. (B.45)

Observe that C521k = C511k, and thus C521 . ‖µ‖4 by (B.43). With a similar argument as

in (B.44) we obtain C522k . ‖µ‖44. Hence we obtain

C52 ≤
∑
k

C
1/2
521kC

1/2
522k . K‖µ‖44.

For C53, we have

C53 =
∑
k 6=k′

∑
j1,j3,j4

MkMk′

M2
µj1Σkj3j4Σkj1j3Σk′j1j4

≤
∑
k

∑
j1,j3,j4

Mk

M
µj1Σkj3j4Σkj1j3Σj1j4

=
∑
k

∑
j1,j3,j4

Mk

M
µj1
( 1

Mk

∑
i1∈Sk

Ni1Ωi1j3Ωi1j4

)( 1

Mk

∑
i2∈Sk

Ni2Ωi2j1Ωi2j3

)( 1

M

∑
i3∈[n]

Ni3Ωi3j1Ωi3j4

)
=
∑
k

1

M2Mk

∑
i1,i2∈Sk
i3∈[n]

Ni1Ni2Ni3〈µ ◦ Ωi2 ,Ωi3〉〈Ωi1 ,Ωi2〉〈Ωi1 ,Ωi3〉

=
∑
k

1

M2

∑
i2∈Sk,i3∈[n]

Ni2Ni3〈µ ◦ Ωi2 ,Ωi3〉〈Ωi2 ,ΣkΩi3〉. (B.46)

We then upper bound the last line using a similar strategy as in that we used for C51 and

C52, respectively. We omit the details and state the final bound:

C53 . K‖µ‖44 (B.47)

Finally for C54, summing over k, k′ we obtain

C54 ≤
∑

j1,j3,j4

µj1Σj3j4Σj1j3Σj1j4 =
1

M3

∑
i1,i2,i3∈[n]

Ni1Ni2Ni3〈µ ◦ Ωi2 ,Ωi3〉〈Ωi1 ,Ωi2〉〈Ωi1 ,Ωi3〉.

(B.48)

We then proceed as in (B.46) to control the right-hand side. We omit the details and state

the final bound:

C54 . K‖µ‖44. (B.49)

Combining the results for C51, . . . , C54, we see that

C5 . K‖µ‖4.

For C6, we have

C6 ≤
(∑

k

∑
i,i′∈Sk

NiNi′ +
∑
k 6=k′

∑
i∈Sk,i′∈Sk′

NiNi′

) ∑
j1,j2,j4

αii′j1j2αii′j1j4 Ωij1Ωi′j2Ωi′j4

62



.
∑
k

∑
i,i′∈Sk

NiNi′
∑

j1,j2,j4

( 1

Mk
Σkj1j2 +

1

M
Σj1j2

)( 1

Mk
Σkj1j4 +

1

M
Σj1j4

)
Ωij1Ωi′j2Ωi′j4

+
∑
k 6=k′

i∈Sk,i′∈Sk′
j1,j2,j4

NiNi′
( 1

M

2∑
a∈{k,k′}

Σaj1j2 +
1

M
Σj1j2

)( 1

M

2∑
a∈{k,k′}

Σaj1j4 +
1

M
Σj1j4

)
Ωij1Ωi′j2Ωi′j4

=: C61 + C62.

For C61, we have

C61 =
∑
k

∑
i′∈Sk

Ni′
∑

j1,j2,j4

1

Mk
Σkj1j2Σkj1j4µj1Ωi′j2Ωi′j4

+ 2
∑
k

∑
i′∈Sk

Ni′
∑

j1,j2,j4

1

M
Σkj1j2Σj1j4µj1Ωi′j2Ωi′j4

+
∑
k

∑
i′∈Sk

Ni′
∑

j1,j2,j4

Mk

M2
Σj1j2Σj1j4µj1Ωi′j2Ωi′j4 =: C611 + 2C612 + C613.

Relabeling indices, we see that

C611 =
∑
k

∑
j1,j2,j4

µj1Σkj1j2Σkj1j4Σkj2j4 = C51

Hence, C611 . K‖µ‖44. Next,

C612 ≤
∑
k

Mk

M

∑
j1,j2,j4

µj1Σkj1j2Σj1j4Σkj2j4 . K‖µ‖4,

where we applied (B.46). Similarly,

C613 =
∑
k

M2
k

M2

∑
j1,j2,j4

µj1Σj1j2Σj1j4Σkj2j4 ≤
∑

j1,j2,j4

µj1Σj1j2Σj1j4Σj2j4 . K‖µ‖4,

where in the final bound we apply (B.48) and (B.49). Combining the results above for

C611, C612, C613, we obtain

C61 . K‖µ‖44 (B.50)

The argument for C62 is very similar, so we omit proof and state the final bound. We have

C62 . K‖µ‖4.

Thus

C6 . K‖µ‖44

For C7, we have

C7 .

(∑
k

∑
i,i′∈Sk

NiNi′ +
∑
k 6=k′

∑
i∈Sk,i′∈Sk′

NiNi′

) ∑
j1,j2,j3,j4

αii′j1j2αii′j3j4Ωij1Ωij3Ωi′j2Ωi′j4
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.
∑
k

∑
i,i′∈Sk

NiNi′
∑

j1,j2,j3,j4

( 1

Mk
Σkj1j2 +

1

M
Σj1j2

)( 1

Mk
Σkj3j4 +

1

M
Σj3j4

)
Ωij1Ωij3Ωi′j2Ωi′j4

+
∑
k 6=k′

∑
j1,j2,j3,j4
i∈Sk,i′∈Sk′

NiNi′
( 1

M

2∑
a∈{k,k′}

Σaj1j2 +
1

M
Σj1j2

)( 1

M

2∑
a∈{k,k′}

Σaj3j4 +
1

M
Σj3j4

)
Ωij1Ωij3Ωi′j2Ωi′j4

=: C71 + C72

Write

C71 =
∑
k

∑
i,i′∈Sk

NiNi′
∑

j1,j2,j3,j4

1

M2
k

Σkj1j2Σkj3j4Ωij1Ωij3Ωi′j2Ωi′j4

+ 2
∑
k

∑
i,i′∈Sk

NiNi′
∑

j1,j2,j3,j4

1

MkM
Σj1j2Σkj3j4Ωij1Ωij3Ωi′j2Ωi′j4

+
∑
k

∑
i,i′∈Sk

NiNi′
∑

j1,j2,j3,j4

1

M2
Σj1j2Σj3j4Ωij1Ωij3Ωi′j2Ωi′j4 =: C711 + 2C712 + C713.

For C711, we have

C711 =
∑
k

∑
j1,j2,j3,j4

Σkj1j2Σkj3j4Σkj1j3Σkj2j4

=
∑
k

1

M4
k

∑
i1,i2,i3,i4∈Sk

Ni1Ni2Ni3Ni4〈Ωi1 ,Ωi3〉〈Ωi1 ,Ωi4〉〈Ωi2 ,Ωi3〉〈Ωi2 ,Ωi4〉

=
1

M2
k

∑
k

∑
i3,i4

Ni3Ni4

(
Ω′i3ΣkΩi4

)2
=
∑
k

1

M2
k

∑
i3,i4

Ni3Ni4

(∑
j,j′

Ω′i3jΣkjj′Ωi4j′
)2

≤
∑
k

1

M2
k

∑
i3,i4

Ni3Ni4

∑
j,j′

Ω′i3jΣ
2
kjj′Ωi4j′ ≤

∑
k

∑
j,j′

µjΣ
2
kjj′µj′ . K‖µ‖44. (B.51)

In the last line we applied Cauchy–Schwarz and (B.44). For C712, we have similarly

C712 =
∑
k

Mk

M

∑
j1,j2,j3,j4

Σj1j2Σkj3j4Σkj1j3Σkj2j4

=
∑
k

1

M2Mk

∑
i1∈[n]

i2,i3,i4∈Sk

Ni1Ni2Ni3Ni4〈Ωi1 ,Ωi3〉〈Ωi1 ,Ωi4〉〈Ωi2 ,Ωi3〉〈Ωi2 ,Ωi4〉

=
∑
k

Mk

M2

∑
i1∈[n],i2∈Sk

Ni1Ni2〈Ωi1 ,ΣkΩi2〉2 ≤
∑
k

Mk

M2

∑
i1∈[n],i2∈Sk

Ni1Ni2

∑
j,j′

Ωi1jΣ
2
kjj′Ωi2j′

≤
∑
k

M2
k

M2

∑
j,j′

µjΣ
2
kjj′µj′ . K‖µ‖44. (B.52)

Next,

C713 =
∑
k

M2
k

M2

∑
j1,j2,j3,j4

Σj1j2Σj3j4Σkj1j3Σkj2j4

64



=
∑
k

1

M4

∑
i1,i2∈[n]
i3,i4∈Sk

Ni1Ni2Ni3Ni4〈Ωi1 ,Ωi3〉〈Ωi1 ,Ωi4〉〈Ωi2 ,Ωi3〉〈Ωi2 ,Ωi4〉,

and applying a similar strategy as in (B.51), (B.52) leads to the bound C713 . K‖µ‖44.

Thus

C71 . K‖µ‖44.

Next , by symmetry and summing over i ∈ Sk, i′ ∈ Sk′ , we have

C72 =
∑
k 6=k′

MkMk′

M2

∑
j1,j2,j3,j4

[
2Σkj1j2Σkj3j4 + 2Σk′j1j2Σkj3j4 + 4Σkj1j2Σj3j4 + Σj1j2Σj3j4

]
Σkj1j3Σk′j2j4

=: 2C721 + 2C722 + 4C723 + C724

First,

C721 ≤
∑
k

Mk

M

∑
j1,j2,j3,j4

Σkj1j2Σkj3j4Σkj1j3Σj2j4 = C712 . K‖µ‖44

by (B.52). Next,

C722 =
∑
k 6=k′

MkMk′

M2

∑
j1,j2,j3,j4

Σk′j1j2Σkj3j4Σkj1j3Σk′j2j4

≤
∑
k,k′

1

M2MkMk′

∑
i1,i2∈Sk
i3,i4∈Sk′

Ni1Ni2Ni3Ni4〈Ωi1 ,Ωi3〉〈Ωi1 ,Ωi4〉〈Ωi2 ,Ωi3〉〈Ωi2 ,Ωi4〉

=
∑
k,k′

Mk

M2Mk′

∑
i3,i4∈Sk′

Ni3Ni4〈Ωi3 ,ΣkΩi4〉2 ≤
∑
k,k′

Mk

M2Mk′

∑
i3,i4∈Sk′

Ni3Ni4

∑
j,j′

Ωi3jΣ
2
kjj′Ωi4j′

≤
∑
k,k′

MkMk′

M2
µ′Σ◦2k µ ≤ ‖µ‖44, (B.53)

where we applied Cauchy-Schwarz in the penultimate line and (B.44) in the last line.

For C723, we have

C723 =
∑
k 6=k′

MkMk′

M2

∑
j1,j2,j3,j4

Σkj1j2Σj3j4Σkj1j3Σk′j2j4 ≤
∑
k

Mk

M

∑
j1,j2,j3,j4

Σkj1j2Σj3j4Σkj1j3Σj2j4

=
∑
k

1

M3Mk

∑
i1,i3∈Sk
i2,i4∈[n]

Ni1Ni2Ni3Ni4〈Ωi1 ,Ωi3〉〈Ωi1 ,Ωi4〉〈Ωi2 ,Ωi3〉〈Ωi2 ,Ωi4〉

=
∑
k

1

M2

∑
i3∈Sk,i4∈[n]

Ni3Ni4〈Ωi3 ,ΣkΩi4〉〈Ωi3 ,ΣΩi4〉

≤ 1

2

∑
k

1

M2

∑
i3∈Sk,i4∈[n]

Ni3Ni4

(
〈Ωi3 ,ΣkΩi4〉2 + 〈Ωi3 ,ΣΩi4〉2

)
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Using a similar technique as in (B.51)–(B.53) and applying (B.38), (B.39) we obtain

C723 . ‖µ‖44.

Finally, for C724 we have

C724 =
∑
k 6=k′

MkMk′

M2

∑
j1,j2,j3,j4

Σj1j2Σj3j4Σkj1j3Σk′j2j4 ≤
∑

j1,j2,j3,j4

Σj1j2Σj3j4Σj1j3Σj2j4

=
1

M4

∑
i1,i2,i3,i4∈[n]

Ni1Ni2Ni3Ni4〈Ωi1 ,Ωi3〉〈Ωi1 ,Ωi4〉〈Ωi2 ,Ωi3〉〈Ωi2 ,Ωi4〉

The details are very similar to (B.51)–(B.53), so we omit them and simply state the final

bound:

C724 . ‖µ‖44

Combining the bounds for C721, C722, C723, and C724 yields

C7 . K‖µ‖44.

Combining the bounds for C1–C7 proves the result.

B.4 Proof of Lemma B.3

We have

ED4
`,s = E

[( ∑
i∈[`−1]

σi,`

Ni∑
r=1

∑
j

ZijrZ`js
)4]

=
∑

i1,i2,i3,i4∈[`−1]

σi1`σi2`σi3`σi4`
∑

r1,r2,r3,r4
j1,j2,j3,j4

E
[
Zi1j1r1Z`j1sZi2j2r2Z`j2sZi3j3r3Z`j3sZi4j4r4Z`j4s

]
=

∑
i1,i2,i3,i4∈[`−1]

σi1`σi2`σi3`σi4`
∑

r1,r2,r3,r4
j1,j2,j3,j4

E
[
Zi1j1r1Zi2j2r2Zi3j3r3Zi4j4r4

]
E
[
Z`j1sZ`j2sZ`j3sZ`j4s

]
=

∑
j1,j2,j3,j4

E[Z`j1sZ`j2sZ`j3sZ`j4s]
∑

i1,i2,i3,i4∈[`−1]
r1,r2,r3,r4

σi1`σi2`σi3`σi4`E[Zi1j1r1Zi2j2r2Zi3j3r3Zi4j4r4 ]

=:
∑

j1,j2,j3,j4

E[Z`j1sZ`j2sZ`j3sZ`j4s]Aj1,j2,j3,j4 (B.54)

In the summations above, rt ranges over [Nit ].

Observe that

|E[Z`j1sZ`j2sZ`j3sZ`j4s]| .



Ω`j1 if j1 = j2 = j3 = j4

Ω`j1Ω`j4 if j1 = j2 = j3, j4 6= j1

Ω`j1Ω`j3 if j1 = j2, j3 = j4, j1 6= j3

Ω`j1Ω`j3Ω`j4 if j1 = j2, j1, j3, j4 dist.

Ω`j1Ω`j2Ω`j3Ω`j4 if j1, j2, j3, j4 dist.

(B.55)
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Up to permutation of the indices j1, . . . , j4, this accounts for all possible cases.

To proceed we also bound Aj1,j2,j3,j4 by casework on the number of distinct j indices.

For brevity we define ωt = (it, rt) and slightly abuse notation, letting Zωt,j = Zitjrt . Further

let I` = {ω = (i, r) : i ∈ [`], 1 ≤ r ≤ Ni}. Our goal is to control

Aj1,j2,j3,j4 =
∑

ω1,ω2,ω3,ω4∈I`−1

σi1`σi2`σi3`σi4`E[Zω1j1Zω2j2Zω3j3Zω4j4 ]. (B.56)

To do this, we study (B.56) in five cases that cover all possibilities (up to permutation of

the indices j1, . . . , j4).

Case 1: j1 = j2 = j3 = j4. Define j = j1. It holds that

σi1`σi2`σi3`σi4`E[Zω1jZω2jZω3jZω4j ]

=

{
σ4
i1`

EZ4
ω1j

. σ4
i1`

Ωi1j if ω1 = ω2 = ω3 = ω4

σ2
i1`
σ2
i3`

EZ2
ω1j

EZ2
ω3j

. σ2
i1`
σ2
i3`

Ωi1jΩi3j if ω1 = ω2, ω3 = ω4, ω1 6= ω3

(B.57)

Up to permutation of the indices ω1, . . . , ω4, this accounts for all cases such that (B.57) is

nonvanishing. To be precise, by symmetry, it also holds that for all permutations π : [4]→
[4] that if ωπ(1) = ωπ(2), ωπ(3) = ωπ(4), ωπ(1) 6= ωπ(3), then

σi1`σi2`σi3`σi4`E[Zω1jZω2jZω3jZω4j ] . σ2
iπ(1)`

σ2
iπ(3)`

Ωiπ(1)jΩiπ(3)j .

In all other cases besides those considered above, we have

σi1`σi2`σi3`σi4`E[Zω1jZω2jZω3jZω4j ] = 0

by independence.

Therefore,

Ajjjj .
∑

ω∈I`−1

σ4
i`Ωij +

∑
ω1 6=ω3∈I`−1

σ2
i1`σ

2
i3`Ωi1jΩi3j (B.58)

In the remaining Cases 2–6, we follow the same strategy of writing out bounds for

σi1`σi2`σi3`σi4`E[Zω1j1Zω2j2Zω3j3Zω4j4 ]

that cover all nonzero cases, up to permutation of the indices ω1, . . . , ω4.

Case 2: j1 = j2 = j3, j1 6= j4. It holds that

σi1`σi2`σi3`σi4`E[Zω1j1Zω2j1Zω3j1Zω4j4 ]

=

{
σ4
i1`

E[Z3
ω1j1

Zω1j4 ] . σ4
i1`

Ωi1j1Ωi1j4 if ω1 = ω2 = ω3 = ω4

σ2
i1`
σ2
i3`

EZ2
ω1j1

EZω3j1Zω3j4 . σ2
i1`
σ2
i3`

Ωi1j1Ωi3j1Ωi3j4 if ω1 = ω2, ω3 = ω4, ω1 6= ω3

(B.59)
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Up to permutation of the indices ω1, . . . , ω4, this accounts for all cases such that (B.59) is

nonvanishing. Thus

Aj1,j1,j1,j4 .
∑

ω∈I`−1

σ4
i`Ωi1j1Ωi1j4 +

∑
ω1 6=ω3∈I`−1

σ2
i1`σ

2
i3` Ωi1j1Ωi3j1Ωi3j4 (B.60)

Case 3: j1 = j2, j3 = j4, j1 6= j3. It holds that

σi1`σi2`σi3`σi4`E[Zω1j1Zω2j1Zω3j3Zω4j3 ]

=


σ4
i1`

EZ2
ω1j1

Z2
ω1j3

. σ4
i1`

Ωi1j1Ωi1j3 if ω1 = ω2 = ω3 = ω4

σ2
i1`
σ2
i3`

EZ2
ω1j1

EZ2
ω3j3

. σ2
i1`
σ2
i3`

Ωi1j1Ωi3j3 if ω1 = ω2, ω3 = ω4, ω1 6= ω3

σ2
i1`
σ2
i3`

EZω1j1Zω1j3EZω2j1Zω2j3 . σ2
i1`
σ2
i3`

Ωi1j1Ωi1j3Ωi2j1Ωi2j3 if ω1 = ω3, ω2 = ω4, ω1 6= ω2.

(B.61)

Up to permutation of the indices ω1, . . . , ω4, this accounts for all cases such that (B.61) is

nonvanishing. Thus by symmetry,

Aj1,j1,j3,j3 .
∑

ω∈I`−1

σ4
i1` Ωi1j1Ωi1j3 +

∑
ω1 6=ω3∈I`−1

σ2
i1`σ

2
i3` Ωi1j1Ωi3j3 (B.62)

+
∑

ω1 6=ω3∈I`−1

σ2
i1`σ

2
i3`Ωi1j1Ωi1j3Ωi3j1Ωi3j3

Case 4: j1 = j2 and j1, j3, j4 distinct. We have

σi1`σi2`σi3`σi4`E[Zω1j1Zω2j1Zω3j3Zω4j4 ]

=


σ4
i1`

EZ2
ω1j1

Zω1j3Zω1j4 . σ4
i1`

Ωi1j1Ωi1j3Ωi1j4 if ω1 = ω2 = ω3 = ω4

σ2
i1`
σ2
i3`

EZ2
ω1j1

EZω3j3Zω3j4 . σ2
i1`
σ2
i3`

Ωi1j1Ωi3j3Ωi3j4 if ω1 = ω2, ω3 = ω4, ω1 6= ω3

σ2
i1`
σ2
i2`

EZω1j1Zω1j3EZω2j1Zω2j4 . σ2
i1`
σ2
i2`

Ωi1j1Ωi1j3Ωi2j1Ωi2j4 if ω1 = ω3, ω2 = ω4, ω1 6= ω2

(B.63)

Up to permutation of the indices ω1, . . . , ω4, this accounts for all cases such that (B.63) is

nonvanishing. Thus

Aj1,j1,j3,j4 .
∑

ω∈I`−1

σ4
i1` Ωi1j1Ωi1j3Ωi1j4 +

∑
ω1 6=ω3∈I`−1

σ2
i1`σ

2
i3` Ωi1j1Ωi3j3Ωi3j4 (B.64)

∑
ω1 6=ω3∈I`−1

σ2
i1`σ

2
i2` Ωi1j1Ωi1j3Ωi3j1Ωi3j4 .

Case 5: j1, j2, j3, j4 distinct. For this final case, it holds that

σi1`σi2`σi3`σi4`E[Zω1j1Zω2j2Zω3j3Zω4j4 ]

=

{
σ4
i1`

EZω1j1Zω1j2Zω1j3Zω1j4 . σ4
i1`

Ωi1j1Ωi1j2Ωi1j3Ωi1j4 if ω1 = ω2 = ω3 = ω4

σ2
i1`
σ2
i3`

EZω1j1Zω1j2EZω3j3Zω3j4 . σ2
i1`
σ2
i3`

Ωi1j1Ωi1j2Ωi3j3Ωi3j4 if ω1 = ω2, ω3 = ω4, ω1 6= ω3
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The above accounts for all nonzero cases, up to permutation of ω1, ω2, ω3, ω4. Hence

Aj1,j2,j3,j4 .
∑

ω∈I`−1

σ4
i1` Ωi1j1Ωi1j2Ωi1j3Ωi1j4 +

∑
ω1 6=ω3∈I`−1

σ2
i1`σ

2
i3` Ωi1j1Ωi1j2Ωi3j3Ωi3j4 .

(B.65)

Finally we control the fourth moment using the casework above. By (B.54) and sym-

metry,

ED4
`,s .

∑
j

E[Z`jsZ`jsZ`jsZ`js]Aj,j,j,j +
∑
j1 6=j4

E[Z`j1sZ`j1sZ`j1sZ`j4s]Aj1,j1,j1,j4

+
∑
j1 6=j3

E[Z`j1sZ`j1sZ`j3sZ`j3s]Aj1,j1,j3,j3 +
∑

j1,j3,j4 dist.

E[Z`j1sZ`j1sZ`j3sZ`j4s]Aj1,j1,j3,j4

+
∑

j1,j2,j3,j4 dist.

E[Z`j1sZ`j2sZ`j3sZ`j4s]Aj1,j2,j3,j4

=: F1`s + F2`s + F3`s + F4`s + F5`s (B.66)

By (B.55), (B.58), (B.60) ,(B.62), (B.64), and (B.65),

F1`s .
∑
j

Ω`j

( ∑
ω∈I`−1

σ4
i`Ωij +

∑
ω1 6=ω3∈I`−1

σ2
i1`σ

2
i3`Ωi1jΩi3j

)

F2`s .
∑
j1 6=j4

Ω`j1Ω`j4

( ∑
ω∈I`−1

σ4
i`Ωi1j1Ωi1j4 +

∑
ω1 6=ω3∈I`−1

σ2
i1`σ

2
i3` Ωi1j1Ωi3j1Ωi3j4

)

F3`s .
∑
j1 6=j3

Ω`j1Ω`j3

( ∑
ω∈I`−1

σ4
i1` Ωi1j1Ωi1j3 +

∑
ω1 6=ω3∈I`−1

σ2
i1`σ

2
i3` Ωi1j1Ωi3j3

+
∑

ω1 6=ω3∈I`−1

σ2
i1`σ

2
i3`Ωi1j1Ωi1j3Ωi3j1Ωi3j3

)

F4`s .
∑

j1,j3,j4 dist.

Ω`j1Ω`j3Ω`j4

( ∑
ω∈I`−1

σ4
i1` Ωi1j1Ωi1j3Ωi1j4 +

∑
ω1 6=ω3∈I`−1

σ2
i1`σ

2
i3` Ωi1j1Ωi3j3Ωi3j4

+
∑

ω1 6=ω3∈I`−1

σ2
i1`σ

2
i3` Ωi1j1Ωi1j3Ωi3j1Ωi3j4 .

)

F5`s .
∑

j1,j2,j3,j4 dist.

Ω`j1Ω`j2Ω`j3Ω`j4

( ∑
ω∈I`−1

σ4
i1` Ωi1j1Ωi1j2Ωi1j3Ωi1j4

+
∑

ω1 6=ω3∈I`−1

σ2
i1`σ

2
i3` Ωi1j1Ωi1j2Ωi3j3Ωi3j4

)
.

Define

F11`s =
∑

ω∈I`−1

σ4
i`

∑
j

Ω`jΩij

F21`s =
∑

ω∈I`−1

σ4
i`

∑
j1 6=j4

Ω`j1Ω`j4Ωi1j1Ωi1j4
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F31`s =
∑

ω∈I`−1

σ4
i1`

∑
j1 6=j3

Ω`j1Ω`j3Ωi1j1Ωi1j3

F41`s =
∑

ω∈I`−1

σ4
i1`

∑
j1,j3,j4 dist.

Ω`j1Ω`j3Ω`j4Ωi1j1Ωi1j3Ωi1j4

F51`s =
∑

ω∈I`−1

σ4
i1`

∑
j1,j2,j3,j4 dist.

Ω`j1Ω`j2Ω`j3Ω`j4Ωi1j1Ωi1j2Ωi1j3Ωi1j4

and

F12`s =
∑

ω1 6=ω3∈I`−1

σ2
i1`σ

2
i3`

∑
j

Ω`jΩi1jΩi3j

F22`s =
∑

ω1 6=ω3∈I`−1

σ2
i1`σ

2
i3`

∑
j1 6=j4

Ω`j1Ω`j4Ωi1j1Ωi3j1Ωi3j4

F32`s =
∑

ω1 6=ω3∈I`−1

σ2
i1`σ

2
i3`

∑
j1 6=j3

[
Ω`j1Ω`j3Ωi1j1Ωi3j3 + Ω`j1Ω`j3Ωi1j1Ωi1j3Ωi3j1Ωi3j3

]
F42`s =

∑
ω1 6=ω3∈I`−1

σ2
i1`σ

2
i3`

∑
j1,j3,j4 dist.

[
Ω`j1Ω`j3Ω`j4Ωi1j1Ωi3j3Ωi3j4

+ Ω`j1Ω`j3Ω`j4Ωi1j1Ωi1j3Ωi3j1Ωi3j4

]
F52`s =

∑
ω1 6=ω3∈I`−1

σ2
i1`σ

2
i3`

∑
j1,j2,j3,j4 dist.

Ω`j1Ω`j2Ω`j3Ω`j4Ωi1j1Ωi1j2Ωi3j3Ωi3j4

Note that
∑2

x=1 Ftx`s = Ft`s for all t ∈ [5]. Using the fact that
∑

j Ωij = 1, we have∑
t

Ft1`s . F11`s =
∑

ω∈I`−1

σ4
i`

∑
j

Ω`jΩij =
∑

ω∈I`−1

σ4
i`〈Ω`,Ωi〉. (B.67)

To control
∑

t Ft2`s , observe that, since Ωij ≤ 1 for all i, j,∑
j

Ω`jΩi1j = 〈Ω`,Ωi1 ◦ Ωi3〉∑
j1 6=j4

Ω`j1Ω`j4Ωi1j1Ωi3j1Ωi3j4 ≤ 〈Ω`,Ωi1 ◦ Ωi3〉 · 〈Ω`,Ωi3〉∑
j1 6=j3

[
Ω`j1Ω`j3Ωi1j1Ωi3j3 + Ω`j1Ω`j3Ωi1j1Ωi1j3Ωi3j1Ωi3j3

]
≤ 2〈Ω`,Ωi1〉 · 〈Ω`,Ωi3〉∑

j1,j3,j4 dist.

[
Ω`j1Ω`j3Ω`j4Ωi1j1Ωi3j3Ωi3j4 + Ω`j1Ω`j3Ω`j4Ωi1j1Ωi1j3Ωi3j1Ωi3j4

]
≤ 2〈Ω`,Ωi1〉〈Ω`,Ωi3〉2∑

j1,j2,j3,j4 dist.

Ω`j1Ω`j2Ω`j3Ω`j4Ωi1j1Ωi1j2Ωi3j3Ωi3j4 ≤ 〈Ω`,Ωi1〉2〈Ω`,Ωi3〉2.

These bounds are relatively sharp, and it is clear that the first and third lines dominate.

Furthermore as. Hence,∑
t

Ft2`s . F12`s + F32`s .
∑

ω1 6=ω3∈I`−1

σ2
i1`σ

2
i3`

[
〈Ω`,Ωi1 ◦ Ωi3〉+ 〈Ω`,Ωi1〉 · 〈Ω`,Ωi3〉

]
.

(B.68)
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Observe that if ` ∈ Sk, then∑
ω

σ4
i`Ωij ≤

∑
i∈Sk

1

n4
kN̄

4
k

NiΩij +
K∑
k′=1

∑
i∈Sk′

1

n4N̄4
NiΩij (B.69)

≤ 1

n3
kN̄

3
k

µkj +
1

n3N̄3
µj , (B.70)

and ∑
ω

σ2
i`Ωij ≤

∑
i∈Sk

1

n2
kN̄

2
k

NiΩij +

K∑
k′=1

∑
i∈Sk′

1

nN̄
NiΩij

≤ 1

nkN̄k
µkj +

1

nN̄
µj .

Next, ∑
(`,s)

∑
t

Ft1`s .
∑
(`,s)

∑
ω∈I`−1

σ4
i`〈Ω`,Ωi〉.

.
∑
(`,s)

∑
j

Ω`j

( 1

n3
kN̄

3
k

µkj +
1

n3N̄3
µj
)

.
∑
j

∑
k

1

n2
kN̄

2
k

µ2
kj +

∑
j

∑
k

1

n2N̄2
µ2
j .

∑
k

1

n2
kN̄

2
k

‖µk‖2, (B.71)

where we applied that ‖µ‖2 .
∑

k ‖µk‖2 (see (A.49)). Furthermore,

∑
(`,s)

∑
t

Ft2`s ≤
K∑
k=1

∑
`∈Sk

N`

∑
ω1,ω3

σ2
i1`σ

2
i3`

[
〈Ω`,Ωi1 ◦ Ωi3〉+ 〈Ω`,Ωi1〉 · 〈Ω`,Ωi3〉

]
.
∑
k

∑
`∈Sk

N`

[∑
j

Ω`j

( 1

nkN̄k
µkj +

1

nN̄
µj
)2

+

(∑
j

Ω`j ·
( 1

nkN̄k
µkj +

1

nN̄
µj
))2]

.
∑
k

∑
`∈Sk

N`

∑
j

Ω`j

( 1

nkN̄k
µkj +

1

nN̄
µj
)2

In the last line we apply Cauchy–Schwarz. Continuing, we have∑
(`,s)

∑
t

Ft2`s .
∑
k

∑
`∈Sk

N`

∑
j

Ω`j

( 1

nkN̄k
µkj +

1

nN̄
µj
)2

.
∑
k

∑
`∈Sk

N`

∑
j

Ω`j

( 1

nkN̄k
µkj
)2

+
∑
k

∑
`∈Sk

N`

∑
j

Ω`j

( 1

nN̄
µj
)2

.
∑
k

‖µk‖33
nkN̄k

+
∑
k

‖µ‖33
nN̄

.
∑
k

‖µk‖33
nkN̄k

, (B.72)

where we applied (A.68). Combining (B.66), (B.71) and (B.72), we have∑
(`,s)

ED4
`,s .

∑
(`,s)

2∑
x=1

5∑
t=1

Ftx`s .
∑
k

‖µk‖2

n2
kN̄

2
k

+
∑
k

‖µk‖33
nkN̄k

,

as desired.
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B.5 Proof of Lemma B.4

Var

[∑
(`,s)

Var(Ẽ`,s|F≺(`,s))

]
→ 0 (B.73)

Next we study (B.73). We have

Var(E`,s|F≺(`,s)) = E[E2
`,s|F≺(`,s)] = σ2

`

∑
r,r′∈[s−1]

∑
j,j′

E
[
Z`jrZ`jsZ`j′r′Z`j′s

∣∣F≺(`,s)

]
= σ2

`

∑
r,r′∈[s−1]

∑
j,j′

Z`jrZ`j′r′E[Z`jsZ`j′s]

= σ2
`

∑
r,r′∈[s−1]

∑
j,j′

δjj′`Z`jrZ`j′r′ , (B.74)

where we let

δjj′` = EZ`jsZ`j′s =

{
Ω`j(1− Ω`j) if j = j′

−Ω`jΩ`j′ else.
(B.75)

Define

ϕ`r`r′ =
∑
j,j′

δjj′`Z`jrZ`j′r′ . (B.76)

By (B.74) we have

∑
(`,s)

Var(E`,s|F≺(`,s)) =

n∑
`=1

N∑̀
s=1

∑
r,r′∈[s−1]

σ2
` ϕ`r`r′

=

n∑
`=1

N∑̀
s=1

[ ∑
r∈[s−1]

σ2
` ϕ`r`r + 2

∑
r<r′∈[s−1]

σ2
` ϕ`r`r′

]
=

n∑
`=1

N∑̀
r=1

∑
s∈[N`]:s>r

σ2
` ϕ`r`r + 2

s∑
`=1

∑
r<r′∈[N`]

∑
s∈[N`]:s>r′

σ2
` ϕ`r`r′

=
n∑
`=1

N∑̀
r=1

(N` − r)σ2
` ϕ`r`r + 2

s∑
`=1

∑
r<r′∈[N`]

(N` − r′)σ2
` ϕ`r`r′

≡ S1 + S2.

Observe that S1 and S2 are uncorrelated. In addition, the terms in the summation defining

S1 are uncorrelated; the same holds for S2 also.

First we study S2. Next,

Eϕ2
`r`r′ =

∑
j1,j2,j3,j4

δj1j2,`δj3j4,` EZ`j1rZ`j2r′Z`j3rZ`j4r′

=
∑

j1,j2,j3,j4

δj1j2`δj3j4`EZ`j1rZ`j3rEZ`j2r′Z`j4r′ . (B.77)
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First we study V2. By casework,

|δj1j2`δj3j4`EZ`j1rZ`j3rEZ`j2r′Z`j4r′ | (B.78)

=



δ2
jj`EZ2

`jrEZ2
`jr′ . Ω4

`j if j1 = · · · = j4

δj1j1`δj1j4`|EZ2
`j1r

EZ`j1r′Z`j4r′ | . Ω4
`j1

Ω2
`j4

if j1 = j2 = j3, j1 6= j4

δj1j1`δj3j3`EZ`j1rZ`j3rEZ`j1r′Z`j3r′ . Ω3
`j1

Ω3
`j3

if j1 = j2, j3 = j4, j1 6= j3

δ2
j1j2`

EZ2
`j1r

EZ2
`j2r′

. Ω3
`j1

Ω3
`j2

if j1 = j3, j2 = j4, j1 6= j2

δj1j1`δj3j4`EZ`j1rZ`j3rEZ`j1r′Z`j4r′ . Ω3
`j1

Ω2
`j3

Ω2
`j4

if j1 = j2, j1, j3, j4 dist.

δj1j2`δj1j4`EZ2
`j1r

EZ`j2r′Z`j4r′ . Ω3
`j1

Ω2
`j2

Ω2
`j4

if j1 = j3, j1, j2, j4 dist.

δj1j2`δj3j4`EZ`j1rZ`j3rEZ`j2r′Z`j4r′ . Ω2
`j1

Ω2
`j2

Ω2
`j3

Ω2
`j4

if j1, j2, j3, j4 dist.

Up to permutation of the indices j1, . . . , j4, all nonzero terms of (B.77) take one of the

forms above. By (B.78) and Cauchy–Schwarz, we have

Eϕ2
`r`r′ . ‖Ω`‖44 + ‖Ω`‖44‖Ω`‖2 + 2‖Ω`‖63 + 2‖Ω`‖33‖Ω`‖4 + ‖Ω`‖8 . ‖Ω`‖44. (B.79)

Recalling that {ϕ`r`r′}`,r<r′∈[N`] are mutually uncorrelated, it follows that

Var(S2) .
∑
`

∑
r<r′∈[N`]

(N` − r′)2σ2
`Eϕ2

`r`r′

.
∑
`

∑
r<r′∈[N`]

(N` − r′)2σ4
` ‖Ω`‖44

.
∑
k

∑
`∈Sk

N4
` ·

1

n4
kN̄

4
k

‖Ω`‖44. (B.80)

Next we study S1. We have

Eϕ2
`r`r =

∑
j1,j2,j3,j4

δj1j2`δj3j4`EZ`j1rZ`j2rZ`j3rZ`j4r.

We have the following bounds by casework.

|δj1j2`δj3j4`EZ`j1rZ`j2rZ`j3rZ`j4r| (B.81)

=



δ2
jj`EZ4

`jr . Ω3
`j if j1 = · · · = j4

δj1j1`δj1j4`|EZ3
`j1r

Z`j4r| . Ω3
`j1

Ω2
`j4

if j1 = j2 = j3, j1 6= j4

δj1j1`δj3j3`EZ2
`j1r

Z2
`j3r

. Ω2
`j1

Ω2
`j3

if j1 = j2, j3 = j4, j1 6= j3

δ2
j1j2`

EZ2
`j1r

Z2
`j2r

. Ω3
`j1

Ω3
`j2

if j1 = j3, j2 = j4, j1 6= j3

δj1j1`δj3j4`|EZ2
`j1r

Z`j3rZ`j4r| . Ω2
`j1

Ω2
`j3

Ω2
`j4

if j1 = j2, j1, j3, j4 dist.

δj1j2`δj1j4`|EZ2
`j1r

Z`j2rZ`j4 | . Ω3
`j1

Ω2
`j2

Ω2
`j4

if j1 = j3, j1, j2, j4 dist.

δj1j2`δj3j4`|EZ`j1rZ`j2rZ`j3rZ`j4r| . Ω2
`j1

Ω2
`j2

Ω2
`j3

Ω2
`j4

if j1, j2, j3, j4 dist.

Up to symmetry, this accounts for all possible (nonzero) cases. Hence by Cauchy–Schwarz,

Eϕ2
`r`r . ‖Ω`‖33 + ‖Ω`‖33‖Ω`‖2 + ‖Ω`‖4 + ‖Ω`‖63 + ‖Ω`‖6 + ‖Ω`‖33‖Ω`‖4 + ‖Ω`‖8 . ‖Ω`‖33.

(B.82)

73



Recalling that {ϕ`r`r}`,r∈[N`] is an uncorrelated collection of random variables, we have

Var(S1) .
∑
`

∑
r∈[N`]

(N` − r)2σ4
`Eϕ2

`r`r

.
∑
`

∑
r∈[N`]

(N` − r)2σ4
` ‖Ω`‖33

.
∑
k

∑
`∈Sk

N3
` ·

1

n4
kN̄

4
k

‖Ω`‖33. (B.83)

Combining (B.83) and (B.80) proves the result.

B.6 Proof of Lemma B.5

We have

EE4
`,s =

∑
r1,r2,r3,r4∈[s−1]

σ4
`

∑
j1,j2,j3,j4

EZ`j1r1Z`j1sZ`j2r2Z`j2sZ`j3r3Z`j3sZ`j4r4Z`j4s

= σ4
`

∑
j1,j2,j3,j4

[
E[Z`j1sZ`j2sZ`j3sZ`j4s] ·

∑
r1,r2,r3,r4∈[s−1]

E[Z`j1r1Z`j2r2Z`j3r3Z`j4r4 ]

︸ ︷︷ ︸
=:B`,s;j1,j2,j3,j4

]

(B.84)

We have by exhaustive casework that

|E[Z`j1r1Z`j2r2Z`j3r3Z`j4r4 ]| (B.85)

=



EZ4
`j1r1

. Ω`j1 if j1=j2=j3=j4;
r1=r2=r3=r4

EZ2
`j1r1

EZ2
`j1r3

. Ω2
`j1

if j1=j2=j3=j4;
r1=r2,r3=r4,r1 6=r3

|E[Z3
`j1r1

Z`j4r1 ]| . Ω`j1Ω`j4 if j1=j2=j3,j1 6=j4;
r1=r2=r3=r4

|E[Z2
`j1r1

EZ`j1r3Z`j4r3 ]| . Ω2
`j1

Ω`j4 if j1=j2=j3,j1 6=j4;
r1=r2,r3=r4,r1 6=r3

|EZ2
`j1r1

Z2
`j3r1
| . Ω`j1Ω`j3 if j1=j2,j3=j4,j1 6=j3;

r1=r2=r3=r4

|E[Z2
`j1r1

Z2
`j3r3

]| . Ω`j1Ω`j3 if j1=j2,j3=j4,j1 6=j3;
r1=r2,r3=r4,r1 6=r3

|E[Z`j1r1Z`j3r1EZ`j1r2Z`j3r2 ]| . Ω2
`j1

Ω2
`j3

if j1=j2,j3=j4,j1 6=j3;
r1=r3,r2=r4,r1 6=r2

|E[Z2
`j1r1

Z`j3r1Z`j4r1 ]| . Ω`j1Ω`j3Ω`j4 if j1=j2,j1,j3,j4 dist.;
r1=r2=r3=r4

|E[Z2
`j1r1

EZ`j3r3Z`j4r3 ]| . Ω`j1Ω`j3Ω`j4 if j1=j2,j1,j3,j4 dist.;
r1=r2,r3=r4,r1 6=r3

|E[Z`j1r1Z`j3r1EZ`j1r2Z`j4r2 ]| . Ω2
`j1

Ω`j3Ω`j4 if j1=j2,j1,j3,j4 dist.;
r1=r3,r2=r4,r1 6=r2

|E[Z`j1r1Z`j2r1Z`j3r1Z`j4r1 ]| . Ω`j1Ω`j2Ω`j3Ω`j4 if j1,j2,j3,j4 dist;r1=r2=r3=r4

|E[Z`j1r1Z`j2r1EZ`j3r3Z`j4r3 ]| . Ω`j1Ω`j2Ω`j3Ω`j4 if j1,j2,j3,j4 dist;
r1=r2,r3=r4,r1 6=r3
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Up to permutation of the indices j1, j2, j3, j4 and r1, r2, r3, r4, this accounts for all possible

cases such that (B.85) is nonzero. Therefore,

B`,s;j1,j2,j3,j4 .



sΩ`j1 + s2Ω2
`j1

if j1 = j2 = j3 = j4

sΩ`j1Ω`j4 + s2Ω2
`j1

Ω`j4 if j1 = j2 = j3, j1 6= j4

sΩ`j1Ω`j3 + s2Ω`j1Ω`j3 if j1 = j2, j3 = j4, j1 6= j3

sΩ`j1Ω`j3Ω`j4 + s2Ω`j1Ω`j3Ω`j4 if j1 = j2, j1, j3, j4 dist.

sΩ`j1Ω`j2Ω`j3Ω`j4 + s2Ω`j1Ω`j2Ω`j3Ω`j4 if j1, j2, j3, j4 dist.

Up to permutation of j1, j2, j3, j4, this accounts for all possible cases. Returning to (B.84),

we have by applying (B.55) and the previous display that

EE4
`,s . σ4

`

(∑
j

Ω`j(sΩ`j + s2Ω2
`j) +

∑
j1 6=j4

Ω`j1Ω`j4(sΩ`j1Ω`j4 + s2Ω2
`j1Ω`j4)

+
∑
j1 6=j3

Ω`j1Ω`j3(sΩ`j1Ω`j3 + s2Ω`j1Ω`j3)

+
∑

j1,j3,j4(dist.)

Ω`j1Ω`j3Ω`j4(sΩ`j1Ω`j3Ω`j4 + s2Ω`j1Ω`j3Ω`j4)

+
∑

j1,j2,j3,j4 dist.

Ω`j1Ω`j2Ω`j3Ω`j4(sΩ`j1Ω`j2Ω`j3Ω`j4 + s2Ω`j1Ω`j2Ω`j3Ω`j4)

)
. sσ4

` ‖Ω`‖2 + s2σ4
` ‖Ω`‖33.

In the third line we group the coefficients of s and s2 and use the fact that ‖Ω`‖4 ≤ ‖Ω`‖33
by Cauchy–Schwarz. Therefore∑

(`,s)

EE4
`,s .

∑
(`,s)

sσ4
` ‖Ω`‖2 +

∑
(`,s)

s2σ4
` ‖Ω`‖33

=
∑
k

∑
`∈Sk

∑
s∈[N`]

sσ4
` ‖Ω`‖2 +

∑
k

∑
`∈Sk

∑
s∈[N`]

s2σ4
` ‖Ω`‖33

.
∑
k

∑
`∈Sk

N2
` ·

1

n4
kN̄

4
k

‖Ω`‖2 +
∑
k

∑
`∈Sk

N3
` ·

1

n4
kN̄

4
k

‖Ω`‖33,

as desired.

B.7 Proof of Lemma B.6

We have ∑
k

∑
i∈Sk

N2
i ‖Ωi‖2

n4
kN̄

4
k

≤
∑
k

1

n4
kN̄

4
k

∑
i,m∈Sk

NiNm〈Ωi,Ωm〉

=
∑
k

1

n2
kN̄

2
k

‖µk‖2,

which establishes the first claim.
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Similarly,∑
k

∑
i∈Sk

N3
i ‖Ωi‖33
n4
kN̄

4
k

≤
∑
k

1

n4
kN̄

4
k

∑
i,m,m′∈Sk

NiNmNm′
∑
j

ΩijΩmjΩm′j

≤
∑
k

1

nkN̄k
‖µk‖33,

which proves the second claim.

The third claim follows similarly and we omit the proof.

C Proofs of other main lemmas and theorems

C.1 Proof of Lemma 2.1

We start from computing E[(µ̂kj−µ̂j)2]. Write Xij = Ni(Ωij+Yij). It follows by elementary

calculation that

µ̂kj − µ̂j = µkj − µj +
( 1

nkN̄k
− 1

nN̄

)∑
i∈Sk

NiYij −
∑

1≤`≤K:`6=k

1

n`N̄`

∑
i∈S`

NiYij .

For different k, the variables
∑

i∈Sk NiYij are independent of each other. It follows that

E[(µ̂kj − µ̂j)2] = (µkj − µj)2 +
( 1

nkN̄k
− 1

nN̄

)2
E
[(∑

i∈Sk

NiYij

)2]
+
∑
`:`6=k

1

n2N̄2
E
[(∑

i∈S`

NiYij

)2]
= (µkj − µj)2 +

( 1

nkN̄k
− 1

nN̄

)2 ∑
i∈Sk

NiΩij(1− Ωij) +
∑
`:`6=k

1

n2N̄2

∑
i∈S`

NiΩij(1− Ωij)

= (µkj − µj)2 +
1

n2
kN̄

2
k

(
1− nkN̄k

nN̄

)∑
i∈Sk

NiΩij(1− Ωij)

+
1

n2N̄2

[(
1− nN̄

nkN̄k

)∑
i∈Sk

NiΩij(1− Ωij) +
∑
`:` 6=k

∑
i∈S`

NiΩij(1− Ωij)

]

= (µkj − µj)2 +
1

n2
kN̄

2
k

(
1− nkN̄k

nN̄

)∑
i∈Sk

NiΩij(1− Ωij)

− 1

nN̄nkN̄k

[∑
i∈Sk

NiΩij(1− Ωij)−
nkN̄k

nN̄

K∑
`=1

∑
i∈S`

NiΩij(1− Ωij)

]
︸ ︷︷ ︸

δkj

.

(C.1)

Since Xij follows a binomial distribution, it is easy to see that E[Xij ] = NiΩij and E[X2
ij ] =

(E[Xij ])
2 + Var(Xij) = N2

i Ω2
ij +NiΩij(1− Ωij). Combining them gives

E[Xij(Ni −Xij)] = Ni(Ni − 1)Ωij(1− Ωij). (C.2)
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Define

ζ̂kj = (µ̂kj − µ̂j)2 − 1

n2
kN̄

2
k

(
1− nkN̄k

nN̄

)∑
i∈Sk

Xij(Ni −Xij)

Ni − 1
,

It follows from (C.1)-(C.2) that

E[ζ̂kj ] = (µkj − µj)2 − 1

nN̄nkN̄k
δkj . (C.3)

We are ready to compute E[T ]. By definition, T =
∑p

j=1

∑K
k=1 nkN̄kζ̂kj and ρ2 =

∑
j,k(µkj−

µj)
2. Consequently,

E[T ] =

p∑
j=1

K∑
k=1

nkN̄k

[
(µkj − µj)2 − 1

nN̄nkN̄k
δkj

]
= ρ2 − 1

nN̄

p∑
j=1

K∑
k=1

δkj . (C.4)

We use the definition of δkj in (C.1). It is seen that for each 1 ≤ j ≤ p,

K∑
k=1

δkj =
K∑
k=1

∑
i∈Sk

NiΩij(1− Ωij)−
( K∑
k=1

nkN̄k

nN̄

) K∑
`=1

∑
i∈S`

NiΩij(1− Ωij) = 0. (C.5)

Combining (C.4)-(C.5) gives E[T ] = ρ2. This proves the claim.

C.2 Proof of Theorem 3.3

First we show that

Var(T ) . Θn (C.6)

Recall

Θn1 = 4

K∑
k=1

p∑
j=1

nkN̄k(µkj − µj)2µkj

Θn2 = 2
K∑
k=1

∑
i∈Sk

p∑
j=1

( 1

nkN̄k
− 1

nN̄

)2 N3
i

Ni − 1
Ω2
ij

Θn3 =
2

n2N̄2

∑
1≤k 6=`≤K

∑
i∈Sk

∑
m∈S`

p∑
j=1

NiNmΩijΩmj

Θn4 = 2

K∑
k=1

∑
i∈Sk,m∈Sk,

i 6=m

p∑
j=1

( 1

nkN̄k
− 1

nN̄

)2
NiNmΩijΩmj .

and that
∑4

a=1 Θna = Θn.

By Lemma A.2, we immediately have

Var(1′pU1) ≤ Θn1. (C.7)

77



For U2, it is shown in the Proof of Lemma A.3 that

Var(1′pU2) = 4
K∑
k=1

∑
i∈Sk

∑
1≤r<s≤Ni

θi
Ni(Ni − 1)

[
‖Ωi‖2 +O(‖Ωi‖33)].

Thus

Var(1′pU2) . 4
K∑
k=1

∑
i∈Sk

∑
1≤r<s≤Ni

θi
Ni(Ni − 1)

‖Ωi‖2

= 2

K∑
k=1

∑
i∈Sk

θi‖Ωi‖2 = Θn2 (C.8)

Next we study U3. Using that Ωmj′ ≤ 1 and ‖Ωi‖1 = 1, we have∑
k 6=`

nkn`N̄kN̄`

n2N̄2
1′p(Σk ◦ Σ`)1p =

2

n2N̄2

∑
k 6=`

∑
i∈Sk

∑
m∈S`

∑
j,j′

NiNmΩijΩij′ΩmjΩmj′

≤ 2

n2N̄2

∑
k 6=`

∑
i∈Sk

∑
m∈S`

∑
j

NiNmΩijΩmj

∑
j′

Ωij′

=
2

n2N̄2

∑
k 6=`

∑
i∈Sk

∑
m∈S`

∑
j

NiNmΩijΩmj .

Therefore by Lemma A.4,

Var(1′pU3) .
2

n2N̄2

∑
1≤k 6=`≤K

∑
i∈Sk

∑
m∈S`

p∑
j=1

NiNmΩijΩmj = Θn3. (C.9)

Similarly for U4, we have by the Proof of Lemma A.5 that

Var(1′pU4) = 4
K∑
k=1

∑
i∈Sk,m∈Sk

i<m

κim

(∑
j

ΩijΩmj + δim

)

.
K∑
k=1

∑
i∈Sk,m∈Sk

i<m

κim
∑
j

ΩijΩmj = Θn4. (C.10)

Above we use that |δim| ≤
∑

j ΩijΩmj and recall that κim = ( 1
nkN̄k

− 1
nN̄

)2NiNm.

Observe that by Lemma 2.1,

Θn1 = 4

K∑
k=1

p∑
j=1

nkN̄k(µkj − µj)2µkj . max
k
‖µk‖∞ · ρ2 = max

k
‖µk‖∞ · ET. (C.11)

Since (3.1) holds, Lemma A.6 applies and

Θn2 + Θn3 + Θn4 �
∑
k

‖µk‖2. (C.12)

Combining (C.6), (C.11), and (C.12) proves the theorem.
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C.3 Proof of Theorem 3.4

To prove Theorem 3.4, we must prove the following claims:

(a) Under the alternative hypothesis, ψ →∞ in probability.

(b) For any fixed α ∈ (0, 1), the level-α DELVE test has an asymptotic level of α and an

asymptotic power of 1.

(c) If we choose α = αn such that αn → 0 and 1−Φ(SNRn) = o(αn), where Φ is the CDF

of N(0, 1), then the sum of type I and type II errors of the DELVE test converges to

0.

We show the first claim, that ψ →∞, under the alternative hypothesis and the condi-

tions of Theorem 3.4. In particular, recall we assume that

ρ2√∑K
k=1 ‖µk‖2

=
nN̄‖µ‖2ω2

n√∑K
k=1 ‖µk‖2

→∞. (C.13)

Our first goal is to show that

T/
√

Var(T )
P→∞ (C.14)

under the alternative. By Chebyshev’s inequality, it suffices to show that

ET �
√

Var(T ). (C.15)

By Theorem 3.3,

Var(T ) .
∑
k

‖µk‖2 + max
k
‖µk‖∞ · ET =

∑
k

‖µk‖2 + max
k
‖µk‖∞ · ρ2 (C.16)

By (C.13),

ET = ρ2 �

√√√√ K∑
k=1

‖µk‖2 ≥ max
1≤k≤K

‖µk‖∞.

Therefore, √
max

1≤k≤K
‖µk‖∞ · ρ� ρ2 = ET. (C.17)

Moreover, by (C.13), ∑
k

‖µk‖2 � ρ4 = (ET )2. (C.18)

Combining (C.16), (C.17), and (C.18) implies (C.14).

Next we show that V > 0 with high probability (i.e., with probability tending to 1 as

nN̄ →∞). Recall that by Lemmas A.6, A.10, and A.11,

EV = Θn2 + Θn3 + Θn4 &
∑
k

‖µk‖2 > 0, and (C.19)
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Var(V ) .
∑
k

‖µk‖2

n2
kN̄

2
k

∨
∑
k

‖µk‖33
nkN̄k

. (C.20)

Using this, the Markov inequality, and (3.4), we have

P
(
V < E[V ]/2

)
≤ P

(
|V − E[V ]| ≥ E[V ]/2

)
≤ 4Var(V )

(E[V ])2
= o(1), (C.21)

which implies that V > 0 with high probability.

To finish the proof of the first claim, note that the assumptions of Proposition A.2 are

satisfied and we have V/Var(T ) = OP(1). By this, (C.14), and (C.21), we have

ψ =
T1V >0√

V
=

√
Var(T )√
V

· T√
Var(T )

· 1V >0 &
T√

Var(T )
→∞

in probability.

The second claim follows directly from the first claim and Theorem 3.2.

To prove the third claim, by Chebyshev’s inequality and T/
√

Var(T ) → ∞, it follows

that T > (1/2)ET = (1/2)ρ2 with high probability as nN̄ → ∞. By a similar Chebyshev

argument as above, it also holds that V < (3/2)EV with high probability as nN̄ → ∞.

Recall that EV = Θn2 +Θn3 +Θn4 .
∑

k ‖µk‖2 by Lemmas A.6 and A.10. Thus, with high

probability as nN̄ →∞, we have

ψ = T1V >0/
√
V & ρ2/

√
EV &

nN̄‖µ‖2ω2
n√∑

k ‖µk‖2
= SNRn.

Choosing αn as specified yield the third claim. The proof is complete since all three claims

are established.

C.4 Proof of Theorem 3.5

Without loss of generality, we assume p is even and write m = p/2. Let µ ∈ Rm be

a nonnegative vector with ‖µ‖1 = 1/2 . Let µ̃ = (µ′, µ′)′ ∈ Rp. We consider the null

hypothesis:

H0 : Ωi = µ̃, 1 ≤ i ≤ n. (C.22)

We pair it with a random alternative hypothesis. Let b1, b2, . . . , bm be a collection of

i.i.d. Rademacher variables. Let z1, z2, . . . , zK denote an independent collection of i.i.d.

Rademacher random variables conditioned on the event |
∑

k zk| ≤ 100
√
K. For a properly

small sequence ωn > 0 of positive numbers, let

H1 : Ωij =

{
µj
(
1 + ωn(nkN̄k)

−1
(

1
K

∑
k∈K nkN̄k

)
zkbj

)
, if 1 ≤ j ≤ m, i ∈ Sk

µ̃j
(
1− ωn(nkN̄k)

−1
(

1
K

∑
k∈K nkN̄k

)
zkbj−m

)
, if m+ 1 ≤ j ≤ 2m, i ∈ Sk

(C.23)
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In this section we slightly abuse notation, using ωn to refer to the (deterministic) sequence

above and reserving ω(Ω) for the random quantity

ω(Ω) =

√√√√ 1

nN̄‖µ‖2
K∑
k=1

nkN̄k‖µk − µ‖2. (C.24)

As long as

ωn ≤
mink nkN̄k

1
K

∑
k∈[K] nkN̄k

=
mink nkN̄k

nN̄/K
,

then Ωij ≥ 0 for all i ∈ [n], j ∈ [p]. Furthermore, for each 1 ≤ i ≤ n, we have ‖Ωi‖1 =

2‖µ‖1 = 1. We suppose there exists a constant c ∈ (0, 1) such that

cK−1nN̄ ≤ nkN̄k ≤ c−1K−1nN̄ for all k ∈ [K] (C.25)

With (C.25) in hand, we may assume without loss of generality that

ωn ≤ c/2 (C.26)

This assumption implies that (C.23) is well-defined and moreover Ωij � µj .
Next we characterize the random quantity ω(Ω) in terms of ωn.

Lemma C.1. Let ω2(Ω) be as in (C.24). When Ω follows Model (C.23), there exists a

constant c1 ∈ (0, 1) such that c1ω
2
n ≤ ω2(Ω) ≤ c−1

1 ω2
n with probability 1.

The proof of Lemma C.1 is given in Section C.4.1. By Lemma C.1, under the model

(C.23) it holds with probability 1 that

nN̄‖µ‖2ω2(Ω)√∑K
k=1 ‖µk‖2

� K−1/2nN̄‖µ‖ω2
n. (C.27)

Above we use that Ωij � µj , since we assume (C.26)

We also require Proposition C.1 below, whose proof is given in Section C.4.2.

Proposition C.1. Suppose that (C.25) and (C.26) hold. Consider the pair of hypotheses

in (C.22)-(C.23) and let P0, and P1 be the respective probability measures. If

nN̄‖µ‖2ω2(Ω)√∑K
k=1 ‖µk‖2

� K−1/2nN̄‖µ‖ω2
n → 0,

then the chi-square distance between P0 and P1 converges to 0.

Now we prove Theorem 3.5. Let δn denote an arbitrary sequence tending to 0. Without

loss of generality, we may assume that δn ≤ c∗ for a small absolute constant c∗ ∈ (0, 1).

Note that K−1/2nN̄ ≥ 1 since K ≤ n. Thus for appropriate choice of sequences of µ = µn
and ωn ≤ c/2 in models (C.22), (C.23) and applying (C.27), we obtain

2δn ≥
nN̄‖µ‖2ω2(Ω)√∑K

k=1 ‖µk‖2
≥ δn. (C.28)
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Recall the definitions of Q∗0n and Q∗1n in (3.8). Let Π denote the distribution on ξ =

{(Ni,Ωi, `i)} ∈ Q∗1n induced by (C.23). Let ξ0 denote the parameter associated to the

simple null hypothesis in (C.22) associated to our choice of µ and ωn satisfying (C.28). We

have by standard manipulations,

R(Q∗0n,Q∗1n) := inf
Ψ∈{0,1}

{
sup

ξ∈Q∗0n(c0,εn)
Pξ(Ψ = 1) + sup

ξ∈Q∗1n(δn;c0,εn)
Pξ(Ψ = 0)

}
= inf

Ψ∈{0,1}

{
sup

ξ∈Q∗0n(c0,εn),ξ′∈Q∗1n(δn;c0,εn)

[
Pξ(Ψ = 1) + Pξ(Ψ = 0)

]
≥ inf

Ψ∈{0,1}

{
sup

ξ∈Q∗0n(c0,εn)
Eξ′∼Π

[
Pξ(Ψ = 1) + Pξ′(Ψ = 0)

]}
≥ inf

Ψ∈{0,1}

{
Eξ′∼Π

[
Pξ0(Ψ = 1) + Pξ′(Ψ = 0)

]}
= inf

Ψ∈{0,1}

{
P0(Ψ = 1) + P1(Ψ = 0)

}
.

In the last line we recall the definition of P0 and P1 in (C.22) and (C.23), noting that for

all events E,

P1(E) = Eξ′∼π Pξ′(E).

Next, by the Neyman–Pearson lemma and the standard inequality TV(P,Q) ≤
√
χ2(P,Q)

(see e.g. Chapter 2 of Tsybakov [2008]),

R(Q∗0n,Q∗1n) ≥ inf
Ψ∈{0,1}

{
P0(Ψ = 1) + P1(Ψ = 0)

}
= 1− TV

(
P0,P1

)
≥ 1−

√
χ2(P0,P1).

By Proposition C.1, as δn → 0 we have χ2(P0,P1) → 0 and thus R(Q∗0n,Q∗1n) → 1, as

desired.

C.4.1 Proof of Proposition C.1

Next, we perform a change of parameters that preserves the signal strength and chi-squared

distance. The testing problem (C.22) and (C.23) has parameters Ωij , Ni, N̄k, nk, n, and K.

Let P0 and P1 denote the distributions corresponding to the null and alternative hypotheses,

respectively. For each k ∈ [K], we combine all documents in sample k to obtain new null

and alternative distributions P̃0 and P̃1 with parameters Ω̃ij , Ñi,
¯̃Ni, ñi, ñ, and K̃ such that

K̃ = K = ñ

Ñi = niN̄i for i ∈ [K̃]

¯̃Ni ≡ Ñi for i ∈ [K̃]

ñi = 1 for i ∈ [K̃] . (C.29)
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For notational ease, we define Ñ := ¯̃N = 1
K

∑
k∈[K] nkN̄k. Furthermore, we have Ω̃i = µ

for all i ∈ [ñ] under the null Ω̃i = µi for all i ∈ [ñ] under the alternative. Explicitly, in the

reparameterized model, we have the null hypothesis

H0 : Ωi = µ̃, 1 ≤ i ≤ n. (C.30)

and alternative hypothesis

H1 : Ωij =

{
µj
(
1 + ωnÑ

−1
i Ñzibj

)
, if 1 ≤ j ≤ m,

µ̃j
(
1− ωnÑ−1

i Ñzibj−m
)
, if m+ 1 ≤ j ≤ 2m.

(C.31)

for all i ∈ [K̃] = [K] = [ñ]. Observe that the likelihood ratio is preserved: dP0
dP1

= d̃P0

dP̃1
and

also ω(Ω) = ω(Ω̃). For simplicity we work with this reparameterized model in this proof.

If z1, . . . , zñ are independent Rademacher random variables then with probability at

least 1/2 it holds that

|
∑
i

zi| ≤ 100
√
ñ (C.32)

by Hoeffding’s inequality. Recall that our random model is defined in (C.23) where (i)

z1, . . . , zñ are independent Rademacher random variables conditioned on the event |
∑

i zi| ≤
100
√
ñ, and (ii) b1, . . . , bm are independent Rademacher random variables.

Now we study ω2(Ω̃). For each 1 ≤ j ≤ m, we have Ω̃ij = µj(1 + ωnÑ
−1
i Ñzibj). Define

ηj = (ñÑ)−1
∑ñ

i=1 ÑiΩ̃ij = µj(1 + ωnz̄bj) for 1 ≤ j ≤ m and ηj = (ñÑ)−1
∑ñ

i=1 ÑiΩ̃ij =

µ̃j(1− ωnz̄bj) for m < j ≤ 2m. We have

ñ∑
i=1

p∑
j=1

Ñi(Ω̃ij − ηj)2 = 2

ñ∑
i=1

m∑
j=1

Ñi · µ2
jω

2
n

Ñ2

Ñ2
i

(zi − z̄)2b2j

= 2ω2
nÑ

2‖µ‖2
ñ∑
i=1

Ñ−1
i (zi − z̄)2.

By (C.32), |z̄| ≤ 100
√
ñ. Thus |zi − z̄| � 1. Write Ñ∗ = (ñ−1

∑ñ
i=1 Ñ

−1
i ). It follows that

ñ∑
i=1

p∑
j=1

Ñi(Ω̃ij − ηj)2 � ω2
nÑ

2‖µ‖2 · ñÑ−1
∗ .

Note that Ñ ≥ Ñ∗. Additionally, by assumption (C.25), Ñi � Ñ ≤ c−1Ñ∗. It follows that

ñ∑
i=1

p∑
j=1

Ñi(Ω̃ij − ηj)2 � ñÑ‖µ‖2ω2
n. (C.33)

Moreover, ‖η‖2 =
∑p

j=1 µ
2
j (1 + ωnz̄bj)

2. By our conditioning on the event in (C.32),

|ωnz̄bj | . ωnñ
−1/2.
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Since ωn ≤ 1 and
∑

j bj = 0, we have

‖η‖2 = ‖µ‖2 +

p∑
j=1

µ2
jω

2
nz̄

2 = ‖µ‖2[1 +O(ñ−1)] � ‖µ‖2. (C.34)

Hence

ω2(Ω̃) = ω2(Ω) � ω2
n, where recall ω(Ω̃) =

∑ñ
i=1

∑p
j=1 Ñi(Ω̃ij − ηj)2

ñÑ‖η‖2
. (C.35)

This finishes the proof.

C.4.2 Proof of Proposition C.1

In this proof, we continue to employ the reparametrization in (C.29). As discussed there,

this reparametrization preserves the likelihood ratio and thus the chi-square distance.

By definition, χ2(P0,P1) =
∫

(dP1
dP0

)2dP0 − 1. It suffices to show that∫ (dP1

dP0

)2
dP0 = 1 + o(1). (C.36)

From the density of of multinomial distribution, dP0 =
∏
i,j µ̃

Xij
j , and dP1 = Eb,z[

∏
i,j Ω̃

Xij
ij ].

It follows that

dP1

dP0
= Eb,z

[ ñ∏
i=1

p∏
j=1

( Ω̃ij

µ̃j

)Xij]
.

Let b(0) = (b
(0)
1 , . . . , b

(0)
m )′ and z(0) = (z

(0)
1 , · · · , z(0)

ñ )′ be independent copies of b and z.

We construct Ω̃
(0)
ij similarly as in (C.31). It is seen that

∫ (dP1

dP0

)2
dP0 = EXEb,z,b(0),z(0)

[ ñ∏
i=1

p∏
j=1

( Ω̃ijΩ̃
(0)
ij

µ̃2
j

)Xij]

= Eb,z,b(0),z(0)
{ ñ∏
i=1

EXi

[ p∏
j=1

( Ω̃ijΩ̃
(0)
ij

µ̃2
j

)Xij]}

= Eb,z,b(0),z(0)
{ ñ∏
i=1

( p∑
j=1

µ̃j ·
Ω̃ijΩ̃

(0)
ij

µ̃2
j

)Ñi]}

= E[exp(M)], with M :=
ñ∑
i=1

Ñi log
( p∑
j=1

µ̃−1
j Ω̃ijΩ̃

(0)
ij

)
. (C.37)

Here, the third line follows from the moment generating function of a multinomial distri-

bution. We plug in the expression of Ω̃ij in (C.23). By direct calculations,

p∑
j=1

µ̃−1
j Ω̃ijΩ̃

(0)
ij =

m∑
j=1

µj
(
1 + ωnÑ

−1
i Ñzibj

)(
1 + ωnÑ

−1
i Ñz

(0)
i b

(0)
j

)
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+

m∑
j=1

µj
(
1− ωnÑ−1

i Ñzibj
)(

1− ωnÑ−1
i Ñz

(0)
i b

(0)
j

)
= 2‖µ‖1 + 2

m∑
j=1

µjω
2
nÑ
−2
i Ñ2ziz

(0)
i bjb

(0)
j

= 1 + 2
m∑
j=1

µjω
2
nÑ
−2
i Ñ2ziz

(0)
i bjb

(0)
j .

We plug it into M and notice that log(1 + t) ≤ t is always true. It follows that

M ≤
ñ∑
i=1

Ñi · 2
m∑
j=1

µjω
2
n

Ñ2

Ñ2
i

ziz
(0)
i bjb

(0)
j = 2Ñω2

n

( ñ∑
i=1

Ñ

Ñi

ziz
(0)
i

)( m∑
j=1

µjbjb
(0)
j

)
=: M∗.

(C.38)

We combine (C.38) with (C.37). It is seen that to show (C.36), it suffices to show that

E[exp(M∗)] = 1 + o(1). (C.39)

We now show (C.39). Write M1 =
∑ñ

i=1(Ñ−1
i Ñ)ziz

(0)
i and M2 =

∑p
j=1 µjbjb

(0)
j .

Recall that we condition on the event (C.32). By Hoeffding’s inequality, Bayes’s rule,

and (C.32),

P(|M1| > t) = P
(
|
∑
i

Ñ

Ñi

ziz
(0)
i ≥ t

∣∣∣∣ |∑
i

zi| ≤ 100
√
ñ, |
∑
i

z
(0)
i | ≤ 100

√
ñ

)

=
P
(
|
∑

i
Ñ
Ñi
ziz

(0)
i | ≥ t

)
P(|
∑

i zi| ≤ 100
√
ñ) P(|

∑
i z

(0)
i | ≤ 100

√
ñ)

≤ 4 · 2 exp
(
− t2

8
∑ñ

i=1(Ñ−1
i Ñ)2

)
= 8 exp

(
− t

2

8ñ

)
.

for all t > 0. In the last line, we have used the assumption of Ñi � Ñ . By Hoeffding’s

inequality again, we also have

P(|M2| > t) ≤ 2 exp
(
− t2

8
∑p

j=1 µ
2
j

)
= 2 exp

(
− t2

8‖µ‖2
)

for all t > 0. Write s2
ñ =
√
ñÑω2

n‖µ‖. It follows that

P(M∗ > t) = P
(
2Ñω2

nM1M2 > t
)

= P
(
M1M2 > t ·

√
ñ‖µ‖s−2

ñ

)
≤ P

(
M1 >

√
t ·
√
ñs−1

ñ

)
+ P

(
M2 >

√
t · ‖µ‖s−1

ñ

)
≤ 8 exp

(
− t

8s2
ñ

)
+ 2 exp

(
− t

8s2
ñ

)
≤ 4 exp(−c1t/s

2
ñ), (C.40)

for some constant c1 > 0. Here, in the last line, we have used the assumption of Ñi � Ñ .
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Let f(x) and F (x) be the density and distribution function of M∗. Write F̄ (x) = 1 −
F (x). Using integration by part, we have E[exp(M∗)] =

∫∞
0 exp(x)f(x)dx = − exp(x)F̄ (x)|∞0 +∫∞

0 exp(x)F̄ (x)dx = 1 +
∫∞

0 exp(x)F̄ (x)dx, provided that the integral exists. As a result,

when sñ = o(1),

E[exp(M∗)]− 1 =

∫ ∞
0

exp(t) · P(M∗ > t)

≤ 4

∫ ∞
0

exp
(
−[c1s

−2
ñ − 1]t

)
dt

≤ 4(c1s
−1
ñ − 1)−1 = 4sñ/(c1 − sñ).

It implies E[exp(M∗)] = 1+o(1), which is exactly (C.39). This completes the proof. because

s2
ñ =
√
ñÑω2

n‖µ‖ =
nN̄‖µ‖ω2

n√
K

� nN̄‖µ‖ω2
n√∑

k∈K ‖µk‖2.

C.5 Proof of Theorem 3.6

First we show that

T/
√

Var(T )⇒ N(0, 1), and (C.41)

V/Var(T )→ 1. (C.42)

If (C.41) and (C.42) hold, then by mimicking the proof of Theorem 3.2, we see that ψ is

asymptotically normal and the level-α DELVE test has asymptotic level α. We omit the

details as they are quite similar.

Recall the martingale decomposition of T described in Section B. Observe that, under

our assumptions, Lemmas B.1–B.6 are valid. Moreover, by Lemmas A.8 and A.12

Var(T ) & Θn2 + Θn3 + Θn4 &

∥∥∥∥ mM̄

nN̄ +mM̄
η +

nN̄

nN̄ +mM̄
θ

∥∥∥∥2

. (C.43)

Combining (C.43) with Lemmas B.1–B.6 and mimicking the argument in Section B.1 implies

that T/
√
V ⇒ N(0, 1). Thus (C.41) is established.

Moreover, (C.42) is a direct consequence of our assumptions and Proposition A.3. The

claims of Theorem 3.6 regarding the null hypothesis follow.

To prove the claims about the alternative hypothesis, it suffices to show

T/
√

Var(T )→∞, (C.44)

V > 0 with high probability, and (C.45)

V = OP(Var(T )). (C.46)

Once these claims are established, we prove that ψ = T1V >0/
√
V →∞ under the alterna-

tive by mimicking the last step of the proof of Theorem 3.4 in Section C.3. We omit the

details as they are very similar.
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Note that (C.46) follows directly from our assumptions and Proposition A.4.

As in the proof of Theorem 3.4 in Section C.3, to establish (C.44), it suffices to prove

that

ET = ρ2 � Var(T ). (C.47)

Our main assumption under the alternative when K = 2 is

‖η − θ‖2(
1
nN̄

+ 1
mM̄

)
max{‖η‖, ‖θ‖}

→ ∞. (C.48)

As shown in Section C.2, we have that

Var(T ) . Θn = Θn1 +
4∑
t=2

Θnt. (C.49)

Applying (C.17) to the first term and Lemma A.8 to the remaining terms, we have

Var(T ) . max{‖η‖∞, ‖θ‖∞} · ρ2 +

∥∥∥∥ mM̄

nN̄ +mM̄
η +

nN̄

nN̄ +mM̄
θ

∥∥∥∥2

. max{‖η‖, ‖θ‖} · ρ2 + max{‖η‖2, ‖θ‖2} (C.50)

Next, note that

ρ2 = nN̄‖η − µ‖2 +mM̄‖θ − µ‖2

= nN̄

∥∥∥∥η − ( nN̄

nN̄ +mM̄
η +

mM̄

nN̄ +mM̄
θ
)∥∥∥∥2

+mM̄

∥∥∥∥θ − ( nN̄

nN̄ +mM̄
η +

mM̄

nN̄ +mM̄
θ
)∥∥∥∥2

= nN̄ ·
( mM̄

nN̄ +mM̄

)2‖η − θ‖2 +mM̄ ·
( nN̄

nN̄ +mM̄

)2‖η − θ‖2
=

nN̄mM̄

(nN̄ +mM̄)
‖η − θ‖2 =

( 1

nN̄
+

1

mM̄

)−1‖η − θ‖2. (C.51)

By (C.48), (C.50), and (C.51), we have

(ET )2

Var(T )
&

ρ4

max{‖η‖, ‖θ‖} · ρ2 + max{‖η‖2, ‖θ‖2}

&
‖η − θ‖2

( 1
nN̄

+ 1
mM̄

) max{‖η‖, ‖θ‖}
+
( ‖η − θ‖2

( 1
nN̄

+ 1
mM̄

) max{‖η‖, ‖θ‖}
)2 →∞,

which proves (C.47) and thus (C.44).

To prove (C.45), we mimick the Markov argument in (C.21) and use that under our

assumptions, Var(V )/(EV )2 = o(1) . We omit the details as they are similar. Since we

have established (C.44), (C.45), and (C.46), the proof is complete.
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C.6 Proof of Theorem 3.7

Note that T/
√

Var(T ) ⇒ N(0, 1) by our assumptions and Proposition B.1. In particular,

using that n→∞ and the monotonicity of the `p norms we have

‖µ‖44
K‖µ‖4

=
‖µ‖44
n‖µ‖4

≤ 1

n
· ‖µ‖

4

‖µ‖4
=

1

n
→ 0.

Moreover, V ∗/Var(T )→ 1 in probability by Proposition A.5. It follows by Slutsky’s theo-

rem that ψ∗ = T/
√
V ∗ ⇒ N(0, 1) and that the level-α DELVE test has an asymptotic level

α.

To conclude the proof, it suffices to show that ψ∗ →∞ under the alternative. As in the

proof of Theorem 3.4, this follows immediately if we can show

T/
√

Var(T )→∞, (C.52)

V ∗ > 0 with high probability, and (C.53)

V ∗ = OP(Var(T )). (C.54)

Note that (C.52) follows from (C.14), and (C.54) is the content of Proposition A.6. Since

our assumptions imply that EV ∗ �
√

Var(V ∗), (C.53) follows by a Markov argument as in

(C.21).

C.7 Proof of Theorem 3.8

We apply Theorem 3.2 to get the asymptotic null distribution. Since Ni = N and µ =

p−11p, it is easy to see that Condition 3.2 is satisfied under our assumption of p = o(N2n).

Therefore, by Theorem 3.2, ψ∗ → N(0, 1) under H0.

We now show the asymptotic alternative distribution. By direct calculations and using∑n
i=1 δij = 0 and

∑p
j=1 δij = 0, we have

∑
i,j

Ni(Ωij − µj)2 =
nNβ2

n

p
,

∑
i,j

Ni(Ωij − µj)2Ωij =
nNβ2

n

p2
,

∑
i

‖Ωi‖2 =
n(1 + β2

n)

p
.

We apply Lemmas A.1-A.5 and plug in the above expressions. Let S = 1′pU2. It follows

that

T =
nNβ2

n

p
+ S +OP

(√
nNβn
p

+
1
√
p

)
, where Var(S) = 2p−1n[1 + o(1)]. (C.55)

First, we plug in β2
n = a

√
2p/(N

√
n). It gives p−1nNβ2

n =
√

2n/p. Second, p−1
√
nNβn �

(np)−1/4
√
n/p = o(

√
n/p). It follows that

T = a
√

2n/p+ S + oP
(√

n/p
)
, where Var(S) = (2n/p)[1 + o(1)]. (C.56)

Recall the martingale decomposition S =
∑

(`,s)E`,s where E`,s is defined in (B.4).

Observe that Lemmas B.4 and B.5 hold (even under the alternative). Define Ẽ`,s =
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E`,s/
√

Var(S). Using Var(S) & n
∑

i ‖Ωi‖2 and these lemmas, it is straightforward to

verify that the following conditions hold:∑
(`,s)

Var
(
Ẽ`,s

∣∣F≺(`,s)

) P→ 1 (C.57)

∑
(`,s)

EẼ4
`,s

P→ 0. (C.58)

As in Section B.1, the martingale CLT applies and we have

S/
√

Var(S)⇒ N(0, 1).

By C.55,

T/
√

Var(S) → N(a, 1). (C.59)

By Lemma A.3 and (A.84),

Var(S) = [1 + o(1)]Θn2 = [1 + o(1)]Var(T )

By Proposition A.6, we have that V ∗/Var(T )→ 1 in probability. As a result,

V ∗/Var(S) → 1, in probability. (C.60)

We combine (C.59) and (C.60) to conclude that ψ = T/
√
V ∗ → N(a, 1).

D Proofs of the corollaries for text analysis

D.1 Proof of Corollary 4.1

Note that Corollary 4.1 follows immediately from the slightly more general result stated

below.

Corollary D.1. Consider Model (1.1) and suppose that Ω = µ1′n under the null hypothesis

and that Ω satisfies (4.1) under the alternative hypothesis. Define ξ ∈ Rn by ξi = N̄−1Ni

and let Ω̃ = Ω[diag(ξ)]1/2. Let λ1, . . . , λM > 0 and λ̃1, . . . , λ̃M > 0 denote the singular

values of Ω and Ω̃, respectively, arranged in decreasing order.We further assume that under

the alternative hypothesis,

N̄ ·
∑M

k=2 λ̃
2
k√∑M

k=1 λ
2
k

→∞. (D.1)

For any fixed α ∈ (0, 1), the level-α DELVE test has an asymptotic level α and an asymptotic

power 1. Moreover if Ni � N̄ for all i, we may replace
∑M

k=2 λ̃
2
k with

∑M
k=2 λ

2
k in the

numerator of (D.1).
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Proof of Corollary D.1. This is a special case of our testing problem with K = n. Moreover,

µ = n−1Ωξ matches with the definition of µ in (1.2). Therefore, we can apply Theorem 3.7

directly. It remains to verify that the condition

N̄ ·
∑M

k=2 λ̃
2
k√∑M

k=1 λ
2
k

→∞ (D.2)

is sufficient to lead to the condition

nN̄‖µ‖2ω2
n√∑

i ‖Ωi‖2
→∞. (D.3)

If we show this then Theorem 3.7 applies directly. We first calculate ω2
n. Recall ξi = Ni/N̄

for 1 ≤ i ≤ n. Write

Ω̃ = Ω[diag(ξ)]1/2, ξ̃ = [diag(ξ)]1/21n.

For K = n, by (3.13), ω2
n = 1

nN̄‖µ‖2
∑n

i=1Ni‖Ωi − µ‖2. It follows that

ω2
n =

1

n‖µ‖2
∥∥∥(Ω− µ1′n)[diag(ξ)]1/2

∥∥∥2

F
=

1

n‖µ‖2
∥∥Ω̃− µξ̃′

∥∥2

F
. (D.4)

Recall that λ̃1, . . . , λ̃M are the singular values of Ω̃. We apply a well-known result in linear

algebra [Horn and Johnson, 1985], namely Weyl’s inequality: For any rank-1 matrix ∆,

‖Ω̃−∆‖2F ≥
∑

k 6=1 λ̃
2
k. In (D.4), µξ̃′ is a rank-1 matrix. It follows that

∥∥Ω̃− µξ̃′
∥∥2

F
≥

M∑
k=2

λ̃2
k. (D.5)

Hence

nN̄‖µ‖2ω2
n√∑

i ‖Ωi‖2
≥
N̄ ·

∑M
k=2 λ̃

2
k

‖Ω‖F
=
N̄ ·

∑M
k=2 λ̃

2
k√∑M

k=1 λ
2
k

,

which implies (D.3) by our assumption. The first claim is proved.

Next we prove the second claim. Observe that if Ni � N̄ , then by Weyl’s inequality:

ω2
n =

1

‖µ‖2nN̄
∑
i

Ni‖Ωi − µ|2 &
1

‖µ‖2
∑
i

‖Ωi − µ‖2

=
1

‖µ‖2
‖Ω− µ1′n‖2F ≥

1

‖µ‖2
M∑
k=2

λ2
k.

Thus

nN̄‖µ‖2ω2
n√∑

i ‖Ωi‖2
≥
N̄ ·

∑M
k=2 λ

2
k

‖Ω‖F
=
N̄ ·

∑M
k=2 λ

2
k√∑M

k=1 λ
2
k

.

We see that the assumption

N̄ ·
∑M

k=2 λ
2
k√∑M

k=1 λ
2
k

→∞ (D.6)

implies (D.3). The second claim is established and the proof is complete.
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D.2 Proof of Corollary 4.2

Recall the construction of a simple null and simple (random) alternative model from Section

C.4.2, specialized below to the case of K = n and Ni ≡ N :

H0 : Ωi = µ̃, 1 ≤ i ≤ n. (D.7)

H1 : Ωij =

{
µj
(
1 + ωnzibj

)
, if 1 ≤ j ≤ m

µ̃j
(
1− ωnzibj−m

)
, if m+ 1 ≤ j ≤ 2m

(D.8)

where b1, . . . , bm are i.i.d. Rademacher random variables and z1, . . . , zn are i.i.d Rademacher

random variables conditioned to satisfy |
∑

i zi| ≤ 100
√
n. Define

b̃ = (b1, . . . , bm, b1, . . . , bm)′.

To derive the lower bound of Corollary 4.2, we assume without loss of generality that ωn is

a sufficiently small absolute constant.

We claim that H1 prescribes a topic model with M = 2 topics. To see this, under the

alternative,

Ωi =

{
µ ◦ (1p + ωn b̃) if zi = 1

µ ◦ (1p − ωn b̃) if zi = −1.
(D.9)

Moreover, we showed in Section C.4.2 that Ωij ≥ 0 for all i, j and that ‖Ωij‖1 = 1. From

(D.9), we see that Ω = AW where A ∈ Rp×2 and W ∈ R2×n are defined as follows:

A:1 = µ ◦ (1p + ωn b̃), A:2 = µ ◦ (1p − ωn b̃)

W:i =

{
(1, 0)′ if zi = 1

(0, 1)′ if zi = −1.

Moreover, under the null hypothesis, Ω clearly prescribes a topic model with K = 1.

Therefore Ω follows the topic model (4.1). Moreover, since Ni ≡ N , we have Ω[diag(ξ)]1/2 =

Ω.

By Proposition C.1 specialized to our setting, we know that the χ2 distance between

the null and alternative goes to zero if

√
nN‖µ‖ω2

n → 0.

Thus to prove Corollary 4.2 it suffices to show that

N
∑M

k≥2 λ
2
k√∑M

k=1 λ
2
k

=
Nλ2

2√∑M
k=1 λ

2
k

&
√
nN‖µ‖ω2

n (D.10)

Accordingly we study the second largest singular value of Ω. First we have some pre-

liminary calculations. Let U = {i : zi = 1}, and let V = {i : zi = −1}. Define

u = µ ◦ (1p + ωn b̃), and
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v = µ ◦ (1p − ωn b̃).

Observe that

〈u, v〉 = ‖µ‖2 − ω2
n‖µ ◦ b̃‖2 = ‖µ‖2(1− ω2

n).

Also, since ωn is a sufficiently small absolute constant,

‖u‖2 = ‖µ‖2 + 2ωn〈µ, µ ◦ b̃〉+ ω2
n‖µ ◦ b̃‖2 = (1 + ω2

n)‖µ‖2 + 2ωn
∑
j

µ2
j b̃j & ‖µ‖2, and

‖v‖2 = ‖µ‖2 − 2ωn〈µ, µ ◦ b̃〉+ ω2
n‖µ ◦ b̃‖2 = (1 + ω2

n)‖µ‖2 − 2ωn
∑
j

µ2
j b̃j & ‖µ‖2. (D.11)

Again, since we assume that ωn is a sufficiently small absolute constant,

δ2 :=
〈u, v〉2

‖u‖2‖v‖2
=

‖µ‖4(1− ω2
n)2

(1 + ω2
n)2‖µ‖4 − 4ω2

n〈µ, µ ◦ b〉2
≤ ‖µ‖4(1− ω2

n)2

(1 + ω2
n)2‖µ‖4 − 4ω2

n‖µ‖4

=
‖µ‖4(1− ω2

n)2

‖µ‖4(1 + 2ω2
n − 3ω4

n)
=

(1− ω2
n)2

1 + 2ω2
n − 3ω4

n

(D.12)

Note that

‖au+ bv‖2 = a2‖u‖2 + 2ab〈u, v〉+ b2‖v‖2 ≥ a2‖u‖2 + b2‖v‖2 − 2abδ‖u‖‖v‖
≥ (1− δ)

(
a2‖u‖2 + b2‖v‖2

)
+ ‖au− bv‖2 ≥ (1− δ)

(
a2‖u‖2 + b2‖v‖2

)
.

By (D.12), we have for ωn sufficiently small that

1− δ ≥ 1− 1− ω2
n√

1 + 2ω2
n − 3ω4

n

=

√
1 + 2ω2

n − 3ω4
n − 1 + ω2

n√
1 + 2ω2

n − 3ω4
n

≥ ω2
n√

1 + 2ω2
n − 3ω4

n

& ω2
n.

Thus

‖au+ bv‖2 ≥ ω2
n(a2‖u‖2 + b2‖v‖2) & ω2

n‖µ‖2(a2 + b2) (D.13)

Recall that if M is a rank k matrix, then

λk(M) = sup
y:‖y‖=1, y∈Ker(M)⊥

‖My‖ = sup
y:‖y‖=1, y∈Im(M ′)

‖My‖. (D.14)

We have

ΩΩ′ =
∑
i∈U

uu′ +
∑
i∈V

vv′ = |U |uu′ + |V |vv′.

Let y ∈ Rn satisfy ‖y‖ = 1 and y = Ω′x for some x. We have

Ωy = ΩΩ′x = |U |〈u, x〉u+ |V |〈v, x〉v.
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By the previous equation and (D.13),

‖Ωy‖2 = ‖ΩΩ′x‖2 =

∥∥∥∥|U |〈u, x〉u+ |V |〈v, x〉v
∥∥∥∥2

& ω2
n‖µ‖2

(
|U |2〈u, x〉2 + |V |2〈v, x〉2

)
.

By our conditioning on z, we have min(|U |, |V |) & n. Moreover

1 = ‖y‖2 = ‖Ω′x‖2 = |U |〈u, x〉2 + |V |〈v, x〉2.

Applying these facts and (D.14), we obtain

λ2
2 ≥ ‖Ωy‖2 = ‖ΩΩ′x‖2 & ω2

n‖µ‖2n
(
|U |〈u, x〉2 + |V |〈v, x〉2

)
= ω2

n‖µ‖2n.

Next,

M∑
k=1

λ2
k = ‖Ω‖2F =

∑
i∈U
‖u‖2 +

∑
i∈V
‖v‖2 = |U | · ‖u‖2 + |V | · ‖v‖2 � n‖µ‖2 (D.15)

We conclude that

N
∑M

k≥2 λ
2
k√∑M

k=1 λ
2
k

=
Nλ2

2√∑M
k=1 λ

2
k

&
N · ω2

n‖µ‖2n√
n‖µ‖

=
√
nN‖µ‖ω2

n

which establishes (D.10). The proof is complete.

D.3 Proof of Corollary 4.3

This is a special case of our testing problem with K = 2, we can apply Theorem 3.6 directly.

It remains to verify that the condition

β2
n · (‖ηS‖1 + ‖θS‖1)(

1
nN̄

+ 1
mM̄

)
max{‖η‖, ‖θ‖}

→ ∞ (D.16)

is sufficient to yield the condition (3.11) in Theorem 3.6. This is done by calculating ‖η−θ‖2

directly. By our sparse model (4.4), for j ∈ S, |√ηj −
√
θj | ≥ βn. It follows that for j ∈ S,

|ηj − θj |2 = (
√
ηj +

√
θj)

2(
√
ηj −

√
θj)

2 ≥ β2
n(
√
ηj +

√
θj)

2 ≥ β2
n(ηj + θj).

It follows that

‖η − θ‖2 ≥ β2
n

∑
j∈S

(ηj + θj) ≥ β2
n

(
‖ηS‖1 + ‖θS‖1

)
. (D.17)

We plug it into (3.11) and see immediately that (D.16) implies this condition. The claim

follows directly from Theorem 3.6.
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E A modification of DELVE for finite p

Below we write out the variance of the terms of the raw DELVE statistic under the null,

using the proofs of Lemmas A.3–A.5.

Var(1′pU2) = 2
K∑
k=1

∑
i∈Sk

∑
1≤r<s≤Ni

(
1

nkN̄k
− 1

nN̄
)2 N2

i

(Ni − 1)2

[
‖Ωi‖2 − 2‖Ωi‖33 + ‖Ωi‖4

]
(E.1)

Var(1′pU3) =
2

n2N̄2

∑
k 6=`

∑
i∈Sk

∑
m∈S`

NiNm

(∑
j

ΩijΩmj − 2
∑
j

Ω2
ijΩ

2
mj +

∑
j,j′

ΩijΩij′ΩmjΩmj′

)

Var(1′pU4) = 2
K∑
k=1

∑
i∈Sk,m∈Sk

i 6=m

(
1

nkN̄k
− 1

nN̄
)2NiNm

(∑
j

ΩijΩmj − 2
∑
j

Ω2
ijΩ

2
mj +

∑
j,j′

ΩijΩij′ΩmjΩmj′

)
.

In this section we develop an unbiased estimator for each term above, which leads to an

unbiased estimator of Var(T ) by taking their sum. We require some preliminary results

proved later in this section. Recall that Lemma E.2 was established in the proof of Lemma

A.1.

Lemma E.1. If j 6= j′, an unbiased estimator of ΩijΩij′ is

Ω̂ijΩij′ :=
XijXij′

Ni(Ni − 1)

Lemma E.2. An unbiased estimator of Ω2
ij is

Ω̂2
ij :=

X2
ij −Xij

Ni(Ni − 1)
. (E.2)

Lemma E.3. If j 6= j′, an unbiased estimator for Ω2
ijΩ

2
ij′ is

Ω̂2
ijΩ

2
ij′ =

(X2
ij −Xij)(X

2
ij′ −Xij′)

Ni(Ni − 1)(Ni − 2)(Ni − 3)

Lemma E.4. An unbiased estimator of Ω3
ij is

Ω̂3
ij :=

X3
ij − 3X2

ij + 2Xij

Ni(Ni − 1)(Ni − 2)
. (E.3)

Lemma E.5. An unbiased estimator of Ω4
ij is

Ω̂4
ij :=

X4
ij − 3X3

ij −X2
ij + 3Xij

Ni(Ni − 1)(Ni − 2)(Ni − 3)
. (E.4)

Define

‖̂Ωi‖2 :=
∑
j

Ω̂2
ij
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‖̂Ωi‖33 :=
∑
j

Ω̂3
ij

‖̂Ωi‖4 :=
∑
j

Ω̂4
ij +

∑
j 6=j′

Ω̂2
ijΩ

2
ij′ . (E.5)

Using Lemmas E.1–E.5 and (E.5), we define an unbiased estimator for each term of (E.1).

Let Ω̂ij = Xij/Ni and define

̂Var(1′pU2) = 2

K∑
k=1

∑
i∈Sk

∑
1≤r<s≤Ni

(
1

nkN̄k
− 1

nN̄
)2 N2

i

(Ni − 1)2

[
‖̂Ωi‖2 − 2‖̂Ωi‖33 + ‖̂Ωi‖4

]
(E.6)

̂Var(1′pU3) =
2

n2N̄2

∑
k 6=`

∑
i∈Sk

∑
m∈S`

NiNm

(∑
j

Ω̂ijΩ̂mj − 2
∑
j

Ω̂2
ijΩ̂

2
mj +

∑
j,j′

Ω̂ijΩij′
̂ΩmjΩmj′

)
̂Var(1′pU4) = 2

K∑
k=1

∑
i∈Sk,m∈Sk

i 6=m

(
1

nkN̄k
− 1

nN̄
)2NiNm

(∑
j

Ω̂ijΩ̂mj − 2
∑
j

Ω̂2
ijΩ̂

2
mj +

∑
j,j′

Ω̂ijΩij′
̂ΩmjΩmj′

)
.

Define

Ṽ = ̂Var(1′pU2) + ̂Var(1′pU3) + ̂Var(1′pU4). (E.7)

We define exact DELVE as ψ̃ = T/Ṽ 1/2. Combining our results above, we obtain the

following.

Proposition E.1. Consider the statistic Ṽ defined in (E.7). Under the null hypothesis, Ṽ

is an unbiased estimator for Var(T ).

With this result in hand, it is possible to derive consistency of Ṽ as an estimator of

Var(T ) under certain regularity conditions. We omit the details.

E.1 Proof of Lemma E.1

Recall that Bijr is the Bernoulli random variable Bijr = Zijr + Ωij and satisfies Xijr =∑Ni
r=1Bijr. Observe that

XijXij′ =
∑
r,s

BijrBij′s =
∑
r

BijrBij′r +
∑
r 6=s

BijrBij′s = 0 +
∑
r 6=s

BijrBij′s

Thus

EXijXij′ = Ni(Ni − 1)ΩijΩij′ ,

and we obtain

Ω̂ijΩij′ =
XijXij′

Ni(Ni − 1)

is an unbiased estimator for ΩijΩij′ , as desired.
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E.2 Proof of Lemma E.3

Note that

X2
ijX

2
ij′ =

(∑
r

Bijr +
∑
r 6=s

BijrBijs
)(∑

r

Bij′r +
∑
r 6=s

Bij′rBij′s
)

=
∑
r

BijrBij′r +
∑
r1 6=r2

BijrBij′s +
∑
r1 6=s

Bijr1Bijs
∑
r2

Bij′r2 +
∑
r1 6=s

Bij′r1Bij′s
∑
r2

Bijr2

+
(∑
r 6=s

BijrBijs
)(∑

r 6=s
Bij′rBij′s

)
=
∑
r1 6=r2

BijrBij′s +
∑
r1 6=s

Bijr1Bijs
∑
r2

Bij′r2 +
∑
r1 6=s

Bij′r1Bij′s
∑
r2

Bijr2

+
(∑
r 6=s

BijrBijs
)(∑

r 6=s
Bij′rBij′s

)
Since BijrBij′r = 0, note that

(X2
ij −Xij)(X

2
ij′ −Xij′) =

∑
r1 6=s1

∑
r2 6=s2

Bijr1Bijs1Bij′r2Bij′s2

=
∑

r1,s1,r2,s2 dist.

Bijr1Bijs1Bij′r2Bij′s2 .

Thus

E(X2
ij −Xij)(X

2
ij′ −Xij′) =

∑
r1,s1,r2,s2 dist.

E
[
Bijr1Bijs1Bij′r2Bij′s2

]
= Ni(Ni − 1)(Ni − 2)(Ni − 3) · Ω2

ijΩ
2
ij′ .

It follows that

Ω̂2
ijΩ

2
ij′ =

(X2
ij −Xij)(X

2
ij′ −Xij′)

Ni(Ni − 1)(Ni − 2)(Ni − 3)

is an unbiased estimator for Ω2
ijΩ

2
ij′ .

E.3 Proof of Lemma E.4

Recall that Bijr is the Bernoulli random variable Bijr = Zijr + Ωij and satisfies Xijr =∑Ni
r=1Bijr. Observe that

X3
ij =

∑
r

Bijr + 3
∑
r1 6=r2

Bijr1Bijr2 +
∑

r1 6=r2 6=r3

Bijr1Bijr2Bijr3 .

Thus

EX3
ij = NiΩij + 3Ni(Ni − 1)Ω2

ij +Ni(Ni − 1)(Ni − 2)Ω3
ij .
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Unbiased estimators for Ωij and Ω2
ij are

Xij

Ni

X2
ij

N2
i

− Xij(Ni −Xij)

N2
i (Ni − 1)

=
1

Ni(Ni − 1)

(
X2
ij −Xij

)
,

respectively. Hence

X3
ij −Xij − 3(X2

ij −Xij) = X3
ij − 3X2

ij + 2Xij

is an unbiased estimator for Ni(Ni − 1)(Ni − 2)Ω3
ij , as desired.

E.4 Proof of Lemma E.5

Observe that

X4
ij =

∑
r

B4
ijr + 4

∑
r1 6=r2

B3
ijr1Bijr2 + 6

∑
r1 6=r2

B2
ijr1B

2
ijr2

+ 3
∑

r1 6=r2 6=r3

B2
ijr1Bijr2Bijr3 +

∑
r1 6=r2 6=r3 6=r4

Bijr1Bijr2Bijr3Bijr4

=
∑
r

Bijr + 10
∑
r1 6=r2

Bijr1Bijr2 + 3
∑

r1 6=r2 6=r3

Bijr1Bijr2Bijr3

+
∑

r1 6=r2 6=r3 6=r4

Bijr1Bijr2Bijr3Bijr4 .

Thus

EX4
ij = NiΩij + 10Ni(Ni − 1)Ω2

ij + 3Ni(Ni − 1)(Ni − 2)Ω3
ij

+Ni(Ni − 1)(Ni − 2)(Ni − 3)Ω4
ij .

Plugging in unbiased estimators for the first three terms, we have

X4
ij −Xij − 10(X2

ij −Xij)− 3(X3
ij − 3X2

ij + 2Xij) = X4
ij − 3X3

ij −X2
ij + 3Xij

is an unbiased estimator for Ni(Ni − 1)(Ni − 2)(Ni − 3), as desired.
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