Testing High-dimensional Multinomials with Applications to Text Analysis

T. Tony Cai*, Zheng Tracy Ke^{\dagger}, and Paxton Turner ${ }^{\dagger}$

Abstract

Motivated by applications in text mining and discrete distribution inference, we investigate the testing for equality of probability mass functions of K groups of highdimensional multinomial distributions. A test statistic, which is shown to have an asymptotic standard normal distribution under the null, is proposed. The optimal detection boundary is established, and the proposed test is shown to achieve this optimal detection boundary across the entire parameter space of interest. The proposed method is demonstrated in simulation studies and applied to analyze two real-world datasets to examine variation among consumer reviews of Amazon movies and diversity of statistical paper abstracts.

Keywords: authorship attribution, closeness testing, consumer reviews, martingale central limit theorem, minimax optimality, topic model

1 Introduction

Statistical inference for multinomial data has garnered considerable recent interest Diakonikolas and Kane, 2016, Balakrishnan and Wasserman, 2018. One important application is in text mining, as it is common to model the word counts in a text document by a multinomial distribution Blei et al. 2003. We consider a specific example in marketing, where the study of online customer ratings and reviews has become a trending topic Chevalier and Mayzlin, 2006, Zhu and Zhang, 2010, Leung and Yang, 2020. Customer reviews are a good proxy to the overall word of mouth (WOM) and can significantly influence customers' decisions Zhu and Zhang, 2010. Many research works aim to understand the patterns in online reviews and their impacts on sales. Classical studies only use the numerical ratings but ignore the rich text reviews because of their unstructured nature. More recent works have revealed the importance of analyzing text reviews Chevalier and Mayzlin, 2006, especially for hedonic products such as books, movies, and hotels. A question of great interest is to detect the heterogeneity in reviewers' response styles. For example, Leung and Yang 2020 discovered that younger travelers, women, and travelers with less review expertise tend to give more positive reviews and that guests staying in

[^0]high-class hotels tend to have more extreme response styles than those staying in low-class hotels. Knowing such differences will offer valuable insights for hotel managers and online rating/review sites.

The aforementioned heterogeneity detection can be cast as a hypothesis test on multinomial data. Suppose reviews are written on a vocabulary of p distinct words. Let $X_{i} \in \mathbb{R}^{p}$ denote the word counts in review i. We model that

$$
\begin{equation*}
X_{i} \sim \operatorname{Multinomial}\left(N_{i}, \Omega_{i}\right), \quad 1 \leq i \leq n \tag{1.1}
\end{equation*}
$$

where N_{i} is the total length of review i and $\Omega_{i} \in \mathbb{R}^{p}$ is a probability mass function (PMF) containing the population word frequencies. These reviews are divided into K groups by reviewer characteristics (e.g., age, gender, new/returning customer), product characteristics (e.g., high-class versus low-class hotels), and numeric ratings (e.g., from 1 star to 5 stars), where K can be presumably large. We view Ω_{i} as representing the 'true response' of review i. The "average response" of a group k is defined by a weighted average of the PMFs:

$$
\begin{equation*}
\mu_{k}=\left(n_{k} \bar{N}_{k}\right)^{-1} \sum_{i \in S_{k}} N_{i} \Omega_{i}, \quad 1 \leq k \leq K \tag{1.2}
\end{equation*}
$$

Here $S_{k} \subset\{1,2, \ldots, n\}$ is the index set of group $k, n_{k}=\left|S_{k}\right|$ is the total number of reviews in group k, and $\bar{N}_{k}=n_{k}^{-1} \sum_{i \in S_{k}} N_{i}$ is the average length of reviews in group k. We would like to test

$$
\begin{equation*}
H_{0}: \quad \mu_{1}=\mu_{2}=\ldots=\mu_{K} \tag{1.3}
\end{equation*}
$$

When the null hypothesis is rejected, it means there exist statistically significant differences among the group-wise "average responses".

We call $1.1-(1.3)$ the " K-sample testing for equality of average PMFs in multinomials" or " K-sample testing for multinomials" for short. Interestingly, as K varies, this problem includes several well-defined problems in text mining and discrete distribution inference as special cases.

1. Global testing for topic models. Topic modeling Blei et al. 2003 is a popular text mining tool. In a topic model, each Ω_{i} in 1.1 is a convex combination of M topic vectors. Before fitting a topic model to a corpus, it is often desirable to determine if the corpus indeed contains multiple topics. This boils down to the global testing problem, which tests $M=1$ versus $M>1$. Under the null hypothesis, Ω_{i} 's are equal to each other, and in the alternative hypothesis, Ω_{i} 's can take continuous values in a high-dimensional simplex. This is a special case of our problem with $K=n$ and $n_{k}=1$.
2. Authorship attribution Mosteller and Wallace, 1963, Kipnis, 2022. In these applications, the goal is to determine the unknown authorship of an article from other articles with known authors. A famous example Mosteller and Wallace, 2012 is to determine the actual authors of a few Federalist Papers written by three authors but published under a single pseudonym. It can be formulated Mosteller and Wallace, 1963, Kipnis, 2022 as testing the equality of population word frequencies between the
article of interest and the corpus from a known author, a special case of our problem with $K=2$.
3. Closeness between discrete distributions Chan et al., 2014, Bhattacharya and Valiant, 2015, Balakrishnan and Wasserman, 2019. There has been a surge of interest in discrete distribution inference. Closeness testing is one of most studied problems. The data from two discrete distributions are summarized in two multinomial vectors $\operatorname{Multinomial}\left(N_{1}, \mu\right)$ and Multinomial $\left(N_{2}, \theta\right)$. The goal is to test $\mu=\theta$. It is a special case of our testing problem with $K=2$ and $n_{1}=n_{2}=1$.

In this paper, we provide a unified solution to all the aforementioned problems. The key to our methodology is a flexible statistic called DELVE (DE-biased and Length-assisted Variability Estimator). It provides a general similarity measure for comparing groups of discrete distributions such as count vectors associated with text corpora. Similarity measures (such as the classical cosine similarity, log-likelihood ratio statistic, and others) are fundamental in text mining and have been applied to problems in distribution testing Kim et al., 2022, computational linguistics Gomaa et al., 2013, econometrics Hansen et al., 2018, and computational biology Kolodziejczyk et al. 2015. Our method is a new and flexible similarity measure that is potentially useful in these areas.

We emphasize that our setting does not require that the X_{i} 's in the same group are drawn from the same distribution. Under the null hypothesis (1.3), the group-wise means are equal, but the Ω_{i} 's within each group can still be different from each other. As a result, the null hypothesis is composite and designing a proper test statistic is non-trivial.

1.1 Our results and contributions

The dimensionality of the testing problem is captured by (n, p, K) and $\bar{N}:=n^{-1} \sum_{i=1}^{n} N_{i}$. We are interested in a high-dimensional setting where

$$
\begin{equation*}
n \bar{N} \rightarrow \infty, \quad p \rightarrow \infty, \quad \text { and } \quad n^{2} \bar{N}^{2} /(K p) \rightarrow \infty \tag{1.4}
\end{equation*}
$$

In most places of this paper, we use a subscript n to indicate asymptotics, but our method and theory do apply to the case where n is finite and $\bar{N} \rightarrow \infty$. In text applications, $n \bar{N}$ is the total count of words in the corpus, and a large $n \bar{N}$ means either there are sufficiently many documents, or the documents are sufficiently long. Given that $n \bar{N} \rightarrow \infty$, we further allow (p, K) to grow with n at a speed such that $K p \ll n^{2} \bar{N}^{2}$. In particular, our settings allow K to range from 2 to n, so as to cover all the application examples.

We propose a test that enjoys the following properties:
(a) Parameter-free null distribution: We show that the test statistic $\psi \rightarrow N(0,1)$ under H_{0}. Even under the null hypothesis (1.3), the model contains a large number of free parameters because the null hypothesis is only about the equality of "average" PMFs but still allows $\left(N_{i}, \Omega_{i}\right)$ to differ within each group. As an appealing property, the null distribution of ψ does not depend on these individual multinomial parameters; hence, we can always conveniently obtain the asymptotic p-value for our proposed test.
(b) Minimax optimal detection boundary: We define a quantity $\omega_{n}:=\omega_{n}\left(\mu_{1}, \mu_{2}, \ldots, \mu_{K}\right)$ in (3.5) that measures the difference among the K group-wise mean PMF's. It satisfies that $\omega_{n}=0$ if and only if the null hypothesis holds, and it has been properly normalized so that ω_{n} is bounded under the alternative hypothesis (provided some mild regularity conditions hold). We show that the proposed test has an asymptotic full power if $\omega_{n}^{4} n^{2} \bar{N}^{2} /(K p) \rightarrow \infty$. We also provide a matching lower bound by showing that the null hypothesis and the alternative hypothesis are asymptotically indistinguishable if $\omega_{n}^{4} n^{2} \bar{N}^{2} /(K p) \rightarrow 0$. Therefore, the proposed test is minimax optimal. Furthermore, in the boundary case where $\omega_{n}^{4} n^{2} \bar{N}^{2} /(K p) \rightarrow c_{0}$ for a constant $c_{0}>0$, for some special settings, we show that $\psi \rightarrow N(0,1)$ under H_{0}, and $\psi \rightarrow N\left(c_{1}, 1\right)$, under H_{1}, with the constant c_{1} being an explicit function of c_{0}.

To the best of our knowledge, this testing problem for a general K has not been studied before. The existing works primarily focused on closeness testing and authorship attribution (see Section 1.2), which are special cases with $K=2$. In comparison, our test is applicable to any value of K, offering a unified solution to multiple applications. Even for $K=2$, the existing works do not provide a test statistic that has a tractable null distribution. They determined the rejection region and calculated p-values using either a (conservative) large-deviation bound or a permutation procedure. Our test is the first one equipped with a tractable null distribution. Our results about the optimal detection boundary for a general K are also new to the literature. By varying K in our theory, we obtain the optimal detection boundary for different sub-problems. For some of them (e.g., global testing for topic models, authorship attribution with moderate sparsity), the optimal detection boundary was not known before; hence, our results help advance the understanding of the statistical limits of these problems.

1.2 Related literature

First, we make a connection to discrete distribution inference. Let $X \sim \operatorname{Multinomial}(N, \Omega)$ represent a size- N sample from a discrete distribution with p categories. The one-sample closeness testing aims to test $H_{0}: \Omega=\mu$, for a given PMF μ. Existing works focus on finding the minimum separation condition in terms of the ℓ^{1}-norm or ℓ^{2}-norm of $\Omega-$ μ. Balakrishnan and Wasserman 2019] derived the minimum ℓ^{1}-separation condition and proposed a truncated chi-square test to achieve it. Valiant and Valiant 2017] studied the "local critical radius", a local separation condition that depends on the "effective sparsity" of μ, and they proposed a " $2 / 3$ rd + tail" test to achieve it. In the two-sample closeness testing problem, given $X_{1} \sim \operatorname{Multinomial}\left(N_{1}, \Omega_{1}\right)$ and $X_{2} \sim \operatorname{Multinomial}\left(N_{2}, \Omega_{2}\right)$, it aims to test $H_{0}: \Omega_{1}=\Omega_{2}$. Again, this literature focuses on finding the minimum separation condition in terms of the ℓ^{1}-norm or ℓ^{2}-norm of $\Omega_{1}-\Omega_{2}$. When $N_{1}=N_{2}$, Chan et al. 2014 derived the minimum ℓ^{1}-separation condition and proposed a weighted chi-square test to attain it. Bhattacharya and Valiant 2015) extended their results to the unbalanced case where $N_{1} \neq N_{2}$, assuming $\left\|\Omega_{1}-\Omega_{2}\right\|_{1} \geq p^{-1 / 12}$. This assumption was later removed by Diakonikolas and Kane 2016, who established the minimum ℓ^{1}-separation condition in full generality. Kim et al. 2022 proposed a two-sample kernel U-statistic and showed that
it attains the minimum ℓ^{2}-separation condition.
Since the two-sample closeness testing is a special case of our problem with $K=2$ and $n_{1}=n_{2}=1$, our test is directly applicable. An appealing property of our test is its tractable asymptotic null distribution of $N(0,1)$. In contrast, for the chi-square statistic in Chan et al. 2014 or the U-statistic in Kim et al. 2022, the rejection region is determined by either an upper bound from concentration inequalities or a permutation procedure, which may lead to a conservative threshold or need additional computational costs. Regarding the testing power, we show in Section 4.3 that our test achieves the minimum ℓ^{2}-separation condition, i.e., our method is an optimal " ℓ^{2} testor." Our test can also be turned into an optimal " ℓ^{1} testor" (a test that achieves the minimum ℓ^{1}-separation condition) by re-weighting terms in the test statistic (see Section 4.3).

Next, we make a connection to text mining. In this literature, a multinomial vector $X \sim \operatorname{Multinomial}(N, \Omega)$ represents the word counts for a document of length N written with a dictionary containing p words. In a topic model, each Ω_{i} is a convex combination of M "topic vectors": $\Omega_{i}=\sum_{k=1}^{M} w_{i}(k) A_{k}$, where each $A_{k} \in \mathbb{R}^{p}$ is a PMF and the combination coefficient vector $w_{i} \in \mathbb{R}^{K}$ is called the "topic weight" vector for document i. Given a collection of documents $X_{1}, X_{2}, \ldots, X_{n}$, the global testing problem aims to test $M=1$ versus $M>1$. Interestingly, the optimal detection boundary for this problem has never been rigorously studied. As we have explained, this problem a special case of our testing problem with $K=n$. Our results (a) provide a test statistic that has a tractable null distribution and (b) reveal that the optimal detection boundary is $\omega_{n}^{2} \asymp(\sqrt{n} \bar{N})^{-1} \sqrt{p}$. Both (a) and (b) are new results. When comparing our results with those about estimation of A_{k} 's Ke and Wang 2022, it suggests that global testing requires a strictly lower signal strength than topic estimation.

For authorship attribution, Kipnis 2022 treats the corpus from a known author as a single document and tests the null hypothesis that this combined document and a new document have the same population word frequencies. It is a two-sample closeness testing problem, except that sparsity is imposed on the difference of two PMFs. Kipnis 2022 proposed a test which applies an "exact binomial test" to obtain a p-value for each word and combines these p-values using Higher Criticism Donoho and Jin, 2004. Donoho and Kipnis 2022 analyzed this test when the number of "useful words" is $o(\sqrt{p})$, and they derived a sharp phase diagram (a related one-sample setting was studied in Arias-Castro and Wang 2015). In Section 4.2, we show that our test is applicable to this problem and has some nice properties: (a) tractable null distribution; (b) allows for $s \geq c \sqrt{p}$, where s is the number of useful words; and (c) does not require documents from the known author to have identical population word frequencies, making the setting more realistic. On the other hand, when $s=o(\sqrt{p})$, our test is less powerful than the one in Kipnis 2022, Donoho and Kipnis 2022, as our test does not utilize sparsity explicitly. We can further improve our test in this regime by modifying the DELVE statistic to incorporate sparsity (see the remark in Section 4.2.

1.3 Organization

The rest of this paper is arranged as follows. In Section2, we introduce the test statistic and explain the rationale behind it. We then present in Section 3 the main theoretical results, including the asymptotic null distribution, power analysis, a matching lower bound, the study of two special cases ($K=n$ and $K=2$), and a discussion of the contiguity regime. Section 4 applies our results to text mining and discrete distribution testing. Simulations are in Section 5 and real data analysis is in Section 6. The paper is concluded with a discussion in Section 7. All proofs are in the appendix.

2 The DELVE Test

Recall that $X_{i} \sim \operatorname{Multinomial}\left(N_{i}, \Omega_{i}\right)$ for $1 \leq i \leq n$. There is a known partition $\{1,2, \ldots, n\}=$ $\cup_{k=1}^{K} S_{k}$. Write $n_{k}=\left|S_{k}\right|, \bar{N}_{k}=n_{k}^{-1} \sum_{i \in S_{k}} N_{i}$, and $\bar{N}=n^{-1} \sum_{i=1}^{n} N_{i}$. In (1.2), we have defined the group-wise mean PMF $\mu_{k}=\left(n_{k} \bar{N}_{k}\right)^{-1} \sum_{i \in S_{k}} N_{i} \Omega_{i}$. We further define the overall mean PMF $\mu \in \mathbb{R}^{p}$ by

$$
\begin{equation*}
\mu:=\frac{1}{n \bar{N}} \sum_{k=1}^{K} n_{k} \bar{N}_{k} \mu_{k}=\frac{1}{n \bar{N}} \sum_{i=1}^{n} N_{i} \Omega_{i} . \tag{2.1}
\end{equation*}
$$

We introduce a quantity $\rho^{2}=\rho^{2}\left(\mu_{1}, \ldots, \mu_{K}\right)$ by

$$
\begin{equation*}
\rho^{2}:=\sum_{k=1}^{K} n_{k} \bar{N}_{k}\left\|\mu_{k}-\mu\right\|^{2} . \tag{2.2}
\end{equation*}
$$

This quantity measures the variations across K group-wise mean PMFs. It is true that the null hypothesis (1.3) holds if and only if $\rho^{2}=0$. Inspired by this observation, we hope to construct an unbiased estimator of ρ^{2} and develop it to a test statistic.

We can easily obtain the minimum variance unbiased estimators of μ_{k} and μ :

$$
\begin{equation*}
\hat{\mu}_{k}=\frac{1}{n_{k} \bar{N}_{k}} \sum_{i \in S_{k}} X_{i}, \quad \text { and } \quad \hat{\mu}=\frac{1}{n \bar{N}} \sum_{k=1}^{K} n_{k} \bar{N}_{k} \hat{\mu}_{k}=\frac{1}{n \bar{N}} \sum_{i=1}^{n} X_{i} \tag{2.3}
\end{equation*}
$$

For each $1 \leq j \leq p$, let $\mu_{k j}, \mu_{j}, \hat{\mu}_{k j}$ and $\hat{\mu}_{j}$ represent the j th entry of $\mu_{k}, \mu, \hat{\mu}_{k}$ and $\hat{\mu}$, respectively. A naive estimator of ρ^{2} is

$$
\begin{equation*}
\widetilde{T}=\sum_{j=1}^{p} \widetilde{T}_{j}, \quad \text { where } \quad \widetilde{T}_{j}=\sum_{k=1}^{K} n_{k} \bar{N}_{k}\left(\hat{\mu}_{k j}-\hat{\mu}_{j}\right)^{2} . \tag{2.4}
\end{equation*}
$$

This estimator is biased. In Section C.1 of the appendix, we show that $\mathbb{E}\left[\widetilde{T}_{j}\right]=\sum_{k=1}^{K}\left[n_{k} \bar{N}_{k}\left(\mu_{k j}-\right.\right.$ $\left.\left.\mu_{j}\right)^{2}+\left(\frac{1}{n_{k} N_{k}}-\frac{1}{n N}\right) \sum_{i \in S_{k}} N_{i} \Omega_{i j}\left(1-\Omega_{i j}\right)\right]$. It motivates us to debias \widetilde{T}_{j} by using an unbiased estimate of $\Omega_{i j}\left(1-\Omega_{i j}\right)$. By elementary properties of the multinomial distribution, $\mathbb{E}\left[X_{i j}\left(N_{i}-X_{i j}\right)\right]=N_{i}\left(N_{i}-1\right) \Omega_{i j}\left(1-\Omega_{i j}\right)$. We thereby use $\frac{1}{N_{i}\left(N_{i}-1\right)} X_{i j}\left(N_{i}-X_{i j}\right)$ to estimate $\Omega_{i j}\left(1-\Omega_{i j}\right)$. This gives rise to an unbiased estimator of ρ^{2} as

$$
\begin{equation*}
T=\sum_{j=1}^{p} T_{j}, \quad T_{j}=\sum_{k=1}^{K}\left[n_{k} \bar{N}_{k}\left(\hat{\mu}_{k j}-\hat{\mu}_{j}\right)^{2}-\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right) \sum_{i \in S_{k}} \frac{X_{i j}\left(N_{i}-X_{i j}\right)}{N_{i}-1}\right] . \tag{2.5}
\end{equation*}
$$

Lemma 2.1. Under Models (1.1)-(1.2), the estimator in (2.5) satisfies that $\mathbb{E}[T]=\rho^{2}$.
To use T for hypothesis testing, we need a proper standardization of this statistic. In Sections A.1 A. 2 of the appendix, we study $\mathbb{V}(T)$, the variance of T. Under mild regularity conditions, it can be shown that $\mathbb{V}(T)=\Theta_{n} \cdot[1+o(1)]$, where

$$
\begin{align*}
& \Theta_{n}:=4 \sum_{k=1}^{K} \sum_{j=1}^{p} n_{k} \bar{N}_{k}\left(\mu_{k j}-\mu_{j}\right)^{2} \mu_{k j}+2 \sum_{k=1}^{K} \sum_{i \in S_{k}} \sum_{j=1}^{p}\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right)^{2} \frac{N_{i}^{3}}{N_{i}-1} \Omega_{i j}^{2} \tag{2.6}\\
& +\frac{2}{n^{2} \bar{N}^{2}} \sum_{1 \leq k \neq \ell \leq K} \sum_{i \in S_{k}} \sum_{m \in S_{\ell}} \sum_{j=1}^{p} N_{i} N_{m} \Omega_{i j} \Omega_{m j}+2 \sum_{k=1}^{K} \sum_{\substack{i \in S_{k}, m \in S_{k}, i \neq m}} \sum_{j=1}^{p}\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right)^{2} N_{i} N_{m} \Omega_{i j} \Omega_{m j} .
\end{align*}
$$

In Θ_{n}, the first term vanishes under the null, so it suffices to estimate the other three terms in Θ_{n}. By properties of multinomial distributions, $\mathbb{E}\left[X_{i j} X_{m j}\right]=N_{i} N_{m} \Omega_{i j} \Omega_{m j}, \mathbb{E}\left[X_{i j}^{2}\right]=$ $N_{i}^{2} \Omega_{i j}^{2}+N_{i} \Omega_{i j}\left(1-\Omega_{i j}\right)$, and $\mathbb{E}\left[X_{i j}\left(N_{i}-X_{i j}\right)\right]=N_{i}\left(N_{i}-1\right) \Omega_{i j}\left(1-\Omega_{i j}\right)$. It inspires us to estimate $\Omega_{i j} \Omega_{m j}$ by $\frac{X_{i j} X_{m j}}{N_{i} N_{m}}$ and estimate $\Omega_{i j}^{2}$ by $\frac{X_{i j}^{2}}{N_{i}^{2}}-\frac{X_{i j}\left(N_{i}-X_{i j}\right)}{N_{i}^{2}\left(N_{i}-1\right)}=\frac{X_{i j}^{2}-X_{i j}}{N_{i}\left(N_{i}-1\right)}$. Define

$$
\begin{align*}
V= & 2 \sum_{k=1}^{K} \sum_{i \in S_{k}} \sum_{j=1}^{p}\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right)^{2} \frac{X_{i j}^{2}-X_{i j}}{N_{i}\left(N_{i}-1\right)}+\frac{2}{n^{2} \bar{N}^{2}} \sum_{k \neq \ell} \sum_{i \in S_{k}} \sum_{m \in S_{\ell}} \sum_{j=1}^{p} X_{i j} X_{m j} \\
& +2 \sum_{k=1}^{K} \sum_{\substack{i \in S_{k}, m \in S_{k}, i \neq m}} \sum_{j=1}^{p}\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right)^{2} X_{i j} X_{m j} . \tag{2.7}
\end{align*}
$$

The test statistic we propose is as follows (in the rate event $V<0$, we simply set $\psi=0$):

$$
\begin{equation*}
\psi=T / \sqrt{V} \tag{2.8}
\end{equation*}
$$

We call ψ the DEbiased and Length-adjusted Variability Estimator (DELVE). In Section 3.1, we show that under mild regularity conditions, $\psi \rightarrow N(0,1)$ under the null hypothesis. For any fixed $\alpha \in(0,1)$, the asymptotic level- α DELVE test rejects H_{0} if

$$
\begin{equation*}
\psi>z_{\alpha}, \quad \text { where } z_{\alpha} \text { is the }(1-\alpha) \text {-quantile of } N(0,1) . \tag{2.9}
\end{equation*}
$$

2.1 The special cases of $K=n$ and $K=2$

As seen in Section 1, the application examples of $K=n$ and $K=2$ are particularly intriguing. In these cases, we give more explicit expressions of our test statistic.

When $K=n$, we have $S_{k}=\{i\}$ and $\hat{\mu}_{k j}=N_{i}^{-1} X_{i j}$. The null hypothesis becomes $H_{0}: \Omega_{1}=\Omega_{2}=\ldots=\Omega_{n}$. The statistic in (2.5) reduces to

$$
\begin{equation*}
T=\sum_{j=1}^{p} \sum_{i=1}^{n}\left[\frac{\left(X_{i j}-N_{i} \hat{\mu}_{j}\right)^{2}}{N_{i}}-\left(1-\frac{N_{i}}{n \bar{N}}\right) \frac{X_{i j}\left(N_{i}-X_{i j}\right)}{N_{i}\left(N_{i}-1\right)}\right] . \tag{2.10}
\end{equation*}
$$

Moreover, in the variance estimate (2.7), the last term is exactly zero, and it can be shown that the third term is negligible compared to the first term. We thereby consider a simpler
variance estimator by only retaining the first term in (2.7):

$$
\begin{equation*}
V^{*}=2 \sum_{i=1}^{n} \sum_{j=1}^{p}\left(\frac{1}{N_{i}}-\frac{1}{n \bar{N}}\right)^{2} \frac{X_{i j}^{2}-X_{i j}}{N_{i}\left(N_{i}-1\right)} . \tag{2.11}
\end{equation*}
$$

The simplified DELVE test statistic is $\psi^{*}=T / \sqrt{V^{*}}$.
When $K=2$, we observe two collections of multinomial vectors, denoted by $\left\{X_{i}\right\}_{1 \leq i \leq n}$ and $\left\{G_{i}\right\}_{1 \leq i \leq m}$. We assume for $1 \leq i \leq n$ and $1 \leq j \leq m$,

$$
\begin{equation*}
X_{i} \sim \operatorname{Multinomial}\left(N_{i}, \Omega_{i}\right), \quad G_{j} \sim \operatorname{Multinomial}\left(M_{j}, \Gamma_{j}\right) . \tag{2.12}
\end{equation*}
$$

Write $\bar{N}=n^{-1} \sum_{i=1}^{n} N_{i}$ and $\bar{M}=m^{-1} \sum_{i=1}^{m} M_{i}$. The null hypothesis becomes

$$
\begin{equation*}
H_{0}: \quad \eta=\theta, \quad \text { where } \eta=\frac{1}{n \bar{N}} \sum_{i=1}^{n} N_{i} \Omega_{i}, \text { and } \theta=\frac{1}{m \bar{M}} \sum_{i=1}^{m} M_{i} \Gamma_{i}, \tag{2.13}
\end{equation*}
$$

where θ and η are the two group-wise mean PMFs. We estimate them by $\hat{\eta}=(n \bar{N})^{-1} \sum_{i=1}^{n} X_{i}$ and $\hat{\theta}=(m \bar{M})^{-1} \sum_{i=1}^{m} G_{i}$. The statistic in (2.5) has an equivalent form as follows:

$$
\begin{equation*}
T=\frac{n \bar{N} m \bar{M}}{n \bar{N}+m \bar{M}}\left[\|\hat{\eta}-\hat{\theta}\|^{2}-\sum_{i=1}^{n} \sum_{j=1}^{p} \frac{X_{i j}\left(N_{i}-X_{i j}\right)}{n^{2} \bar{N}^{2}\left(N_{i}-1\right)}-\sum_{i=1}^{m} \sum_{j=1}^{p} \frac{G_{i j}\left(M_{i}-G_{i j}\right)}{m^{2} \bar{M}^{2}\left(M_{i}-1\right)}\right] . \tag{2.14}
\end{equation*}
$$

The variance estimate (2.7) has an equivalent form as follows:

$$
\begin{align*}
V & =\frac{4 \sum_{i=1}^{n} \sum_{i^{\prime}=1}^{m} \sum_{j=1}^{p} X_{i j} G_{i^{\prime} j}}{(n \bar{N}+m \bar{M})^{2}}+\frac{2 m^{2} \bar{M}^{2}\left[\sum_{i=1}^{n} \frac{X_{i j}^{2}-X_{i j}}{N_{i}\left(N_{i}-1\right)}+\sum_{1 \leq i \neq i^{\prime} \leq n} X_{i j} X_{i^{\prime} j}\right]}{n^{2} \bar{N}^{2}(n \bar{N}+m \bar{M})^{2}} \\
& +\frac{2 n^{2} \bar{N}^{2}\left[\sum_{i=1}^{m} \frac{G_{i j}^{2}-G_{i j}}{M_{i}\left(M_{i}-1\right)}+\sum_{1 \leq i \neq i^{\prime} \leq m} G_{i j} G_{i^{\prime} j}\right]}{m^{2} \bar{M}^{2}(n \bar{N}+m \bar{M})^{2}} . \tag{2.15}
\end{align*}
$$

The DELVE test statistic is $\psi=T / \sqrt{V}$.

2.2 A variant: DELVE+

We introduce a variant of the DELVE test statistic to better suit real data. Let $\hat{\mu}, T$ and V be as in (2.3), (2.5) and (2.7). Define

$$
\begin{equation*}
\psi^{+}=T / \sqrt{V^{+}}, \quad \text { where } \quad V^{+}=V \cdot\left(1+\|\hat{\mu}\|_{2} T / \sqrt{V}\right) . \tag{2.16}
\end{equation*}
$$

We call (2.16) the DELVE + test statistic. In theory, this modification has little effect on the key properties of the test. To see this, we note that $\|\hat{\mu}\|_{2}=o_{\mathbb{P}}(1)$ in high-dimensional settings. Suppose $T / \sqrt{V} \rightarrow N(0,1)$ under H_{0}. Since $\|\hat{\mu}\|_{2} \rightarrow 0$, it is seen immediately that $V^{+} / V \rightarrow 1$; hence, the asymptotic normality also holds for ψ^{+}. Suppose $T / \sqrt{V} \rightarrow \infty$ under the alternative hypothesis. It follows that $V^{+} \leq 2 \max \left\{V,\|\hat{\mu}\|_{2} \cdot T \sqrt{V}\right\}$ and $\psi^{+} \geq$ $\frac{1}{\sqrt{2}} \min \left\{T / \sqrt{V},\|\hat{\mu}\|_{2}^{-1}(T / \sqrt{V})^{1 / 2}\right\} \rightarrow \infty$. We have proved the following lemma:

Lemma 2.2. As $n \bar{N} \rightarrow \infty$, suppose $\|\hat{\mu}\|_{2} \rightarrow 0$ in probability. Under H_{0}, if $T / \sqrt{V} \rightarrow$ $N(0,1)$, then $T / \sqrt{V^{+}} \rightarrow N(0,1)$. Under H_{1}, if $T / \sqrt{V} \rightarrow \infty$, then $T / \sqrt{V^{+}} \rightarrow \infty$.

In practice, this modification avoids extremely small p-values. In some real datasets, V is very small and leads to an extremely small p-value in the original DELVE test. In DELVE + , as long as T is positive, ψ^{+}is smaller than ψ, so that the p-value is adjusted.

In the numerical experiments, we consider both DELVE and DELVE+. For theoretical analysis, since these two versions have almost identical theoretical properties, we only focus on the original DELVE test statistic.

3 Theoretical Properties

We first present the regularity conditions. For a constant $c_{0} \in(0,1)$, we assume

$$
\begin{equation*}
\min _{1 \leq i \leq n} N_{i} \geq 2, \quad \max _{1 \leq i \leq n}\left\|\Omega_{i}\right\|_{\infty} \leq 1-c_{0}, \quad \max _{1 \leq k \leq K} \frac{n_{k} \bar{N}_{k}}{n \bar{N}} \leq 1-c_{0} \tag{3.1}
\end{equation*}
$$

In (3.1), the first condition is mild. The second condition is also mild: note that $\left\|\Omega_{i}\right\|_{1}=1$ for each i; this condition excludes those cases where one of the p categories has an extremely dominating probability in the PMF Ω_{i}. In the third condition, $n_{k} \bar{N}_{k}$ is the total number of counts in all multinomials of group k, and this condition excludes the extremely unbalanced case where one group occupies the majority of counts. Note that in the special case of $K=2$, we relax this condition to allow for severely unbalanced groups (see Section 3.4).

Recall that $\mu_{k}=\frac{1}{n_{k} N_{k}} \sum_{i \in S_{k}} N_{i} \Omega_{i}$ is the mean PMF within group k. We also define a 'covariance' matrix of PMF's for group k by $\Sigma_{k}=\frac{1}{n_{k} N_{k}} \sum_{i \in S_{k}} N_{i} \Omega_{i} \Omega_{i}^{\prime}$. Let

$$
\begin{equation*}
\alpha_{n}:=\max \left\{\sum_{k=1}^{K} \frac{\left\|\mu_{k}\right\|_{3}^{3}}{n_{k} \bar{N}_{k}}, \quad \sum_{k=1}^{K} \frac{\left\|\mu_{k}\right\|^{2}}{n_{k}^{2} \bar{N}_{k}^{2}}\right\} /\left(\sum_{k=1}^{K}\left\|\mu_{k}\right\|^{2}\right)^{2}, \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{n}:=\max \left\{\sum_{k=1}^{K} \sum_{i \in S_{k}} \frac{N_{i}^{2}}{n_{k}^{2} \bar{N}_{k}^{2}}\left\|\Omega_{i}\right\|_{3}^{3}, \quad \sum_{k=1}^{K}\left\|\Sigma_{k}\right\|_{F}^{2}\right\} /\left(K\|\mu\|^{2}\right) . \tag{3.3}
\end{equation*}
$$

We assume that as $n \bar{N} \rightarrow \infty$,

$$
\begin{equation*}
\alpha_{n}=o(1), \quad \beta_{n}=o(1), \quad \text { and } \quad \frac{\|\mu\|_{4}^{4}}{K\|\mu\|^{4}}=o(1) . \tag{3.4}
\end{equation*}
$$

Here α_{n} and β_{n} only depend on group-wise quantities, such as μ_{k}, Σ_{k} and $\sum_{i \in S_{k}} N_{i}^{2}\left\|\Omega_{i}\right\|_{3}^{3}$; hence, a small number of 'outliers' (i.e., extremely large entries) in Ω has little effect on α_{n} and β_{n}. Furthermore, in a simple case where $\max _{k} n_{k} \leq C \min _{k} n_{k}, \max _{k} \bar{N}_{k} \leq C \min _{k} \bar{N}_{k}$ and $\|\Omega\|_{\max }=O(1 / p)$, it holds that $\alpha_{n}=O\left(\max \left\{\frac{1}{n N}, \frac{K p}{n^{2} N^{2}}\right\}\right), \beta_{n}=O\left(\max \left\{\frac{K^{2}}{n^{2} p}, \frac{1}{p}\right\}\right)$ and $\frac{\|\mu\|_{1}^{4}}{K\|\mu\|^{4}}=O\left(\frac{1}{K p}\right)$. When $n \bar{N} \rightarrow \infty$ and $p \rightarrow \infty$, (3.4) reduces to $n^{2} \bar{N}^{2} /(K p) \rightarrow \infty$. This condition is necessary for successful testing, because our lower bound in Section 3.3 implies that the two hypotheses are asymptotically indistinguishable if $n^{2} \bar{N}^{2} /(K p) \rightarrow 0$.

3.1 The asymptotic null distribution

Under the null hypothesis, the K group-wise mean PMF's $\mu_{1}, \mu_{2}, \ldots, \mu_{K}$, are equal to each other, but this hypothesis is still highly composite, as (N_{i}, Ω_{i}) are not necessarily the same within each group. We show that the DELVE test statistic always enjoys a parameter-free asymptotic null distribution. Let T, Θ_{n} and V be as in (2.5)-(2.7). The next two theorems are proved in the appendix.

Theorem 3.1. Consider Models (1.1)-(1.2), where the null hypothesis (1.3) holds. Suppose (3.1) and (3.4) are satisfied. As $n \bar{N} \rightarrow \infty, T / \sqrt{\Theta_{n}} \rightarrow N(0,1)$ in distribution.

Theorem 3.2. Under the conditions of Theorem 3.1, as $n \bar{N} \rightarrow \infty, V / \Theta_{n} \rightarrow 1$ in probability, and $\psi:=T / \sqrt{V} \rightarrow N(0,1)$ in distribution.

By Theorem 3.2 , the asymptotic p-value is computed via $1-\Phi(\psi)$, where $\Phi(\cdot)$ is the cumulative distribution function of the standard normal. Moreover, for any fixed $\alpha \in(0,1)$, the rejection region of the asymptotic level- α test is as given in (2.9).

The proofs of Theorems $3.1-3.2$ contain two key steps: in the first step, we decompose T into the sum of mutually uncorrelated terms. We introduce a set of independent, mean-zero random vectors $\left\{Z_{i r}\right\}_{1 \leq i \leq n, 1 \leq r \leq N_{i}}$, where $Z_{i r} \sim \operatorname{Multinomial}\left(1, \Omega_{i}\right)-\Omega_{i}$. By properties of multinomial distributions, $X_{i}=N_{i} \Omega_{i}+\sum_{r=1}^{N_{i}} Z_{i r}$ in distribution. We plug it into 2.5 to obtain $T=T_{1}+T_{2}+T_{3}+T_{4}$, where T_{1} is a linear form of $\left\{Z_{i r}\right\}, T_{2}, T_{3}$ and T_{4} are quadratic forms of $\left\{Z_{i r}\right\}$, and the four terms are uncorrelated with each other (details are contained in Section A of the appendix). In the second step, we construct a martingale for each term T_{j}. This is accomplished by rearranging the double-index sequence $Z_{i r}$ to a single-index sequence and then successively adding terms in this sequence to T_{j}. We then apply the martingale central limit theorem (CLT) Hall and Heyde, 2014 to prove the asymptotic normality of each T_{j}. The asymptotic normality of T follows by identifying the dominating terms in $T_{1}-T_{4}$ (as model parameters change, the dominating terms can be different) and studying their joint distribution. This step involves extensive calculations to bound the conditional variance and to verify the Lindeberg conditions of the martingale CLT, as well as numerous subtle uses of the Cauchy-Schwarz inequality to simplify the moment bounds.

3.2 Power analysis

Under the alternative hypothesis, the PMF's $\mu_{1}, \mu_{2}, \ldots, \mu_{K}$ are not the same. In Section 2, we introduce a quantity ρ^{2} (see $\left(2.2 p\right.$) to capture the total variation in μ_{k} 's, but this quantity is not scale-free. We define a scaled version of ρ^{2} as

$$
\begin{equation*}
\omega_{n}=\omega_{n}\left(\mu_{1}, \mu_{2}, \ldots, \mu_{K}\right):=\frac{1}{n \bar{N}\|\mu\|^{2}} \sum_{k=1}^{K} n_{k} \bar{N}_{k}\left\|\mu_{k}-\mu\right\|^{2} . \tag{3.5}
\end{equation*}
$$

It is seen that $\omega_{n} \leq \max _{k}\left\{\frac{\left\|\mu_{k}-\mu\right\|^{2}}{\|\mu\|^{2}}\right\}$, which is properly scaled.
Theorem 3.3. Consider Models (1.1)-(1.2), where (3.1) and (3.4) are satisfied. Then, $\mathbb{E}[T]=n \bar{N}\|\mu\|^{2} \omega_{n}^{2}$, and $\mathbb{V}(T)=O\left(\sum_{k=1}^{K}\left\|\mu_{k}\right\|^{2}\right)+\mathbb{E}[T] \cdot O\left(\max _{1 \leq k \leq K}\left\|\mu_{k}\right\|_{\infty}\right)$.

For the DELVE test to have an asymptotically full power, we need $\mathbb{E}[T] \gg \sqrt{\mathbb{V}(T)}$. By Theorem 3.3, this is satisfied if $\mathbb{E}[T] \gg \sqrt{\sum_{k}\left\|\mu_{k}\right\|^{2}}$ and $\mathbb{E}[T] \gg \max _{k}\left\|\mu_{k}\right\|_{\infty}$. Between these two requirements, the latter one is weaker; hence, we only need $\mathbb{E}[T] \gg \sqrt{\sum_{k=1}^{K}\left\|\mu_{k}\right\|^{2}}$. It gives rise to the following theorem:

Theorem 3.4. Under the conditions of Theorem 3.3, we further assume that under the alternative hypothesis, as $n \bar{N} \rightarrow \infty$,

$$
\begin{equation*}
\mathrm{SNR}_{n}:=\frac{n \bar{N}\|\mu\|^{2} \omega_{n}^{2}}{\sqrt{\sum_{k=1}^{K}\left\|\mu_{k}\right\|^{2}}} \rightarrow \infty \tag{3.6}
\end{equation*}
$$

The following statements are true. Under the alternative hypothesis, $\psi \rightarrow \infty$ in probability. For any fixed $\alpha \in(0,1)$, the level- α DELVE test has an asymptotic level of α and an asymptotic power of 1 . If we choose $\alpha=\alpha_{n}$ such that $\alpha_{n} \rightarrow 0$ and $1-\Phi\left(\operatorname{SNR}_{n}\right)=o\left(\alpha_{n}\right)$, where Φ is the CDF of $N(0,1)$, then the sum of type I and type II errors of the DELVE test converges to 0 .

The detection boundary in (3.6) has simpler forms in some special cases. For example, if $\left\|\mu_{k}\right\| \asymp\|\mu\|$ for $1 \leq k \leq K$, then $\mathrm{SRN}_{n} \asymp n \bar{N} \omega_{n}^{2}\|\mu\| / \sqrt{K}$. If, furthermore, all entries of μ are at the same order, which implies $\|\mu\| \asymp p^{-1 / 2}$, then $\operatorname{SRN}_{n} \asymp n^{2} \bar{N}^{2} \omega_{n}^{2} / \sqrt{K p}$. In this case, the detection boundary simplifies to $\omega_{n}^{4} n^{2} \bar{N}^{2} /(K p) \rightarrow \infty$.

Remark 1 (The low-dimensional case $p=O(1)$). Although we are primarily interested in the high-dimensional setting $p \rightarrow \infty$, it is also worth investigating the case $p=O(1)$. We can show the same detection boundary for our test, but the asymptotic normality may not hold, because the variance estimator V in 2.7 is not guaranteed to be consistent. To fix this issue, we propose a variant of our test by replacing V with a refined variance estimator \widetilde{V}, which is consistent for a finite p. The expression of \tilde{V} is a little complicated. Due to space limits, we relegate it to Section E of the appendix.

3.3 A matching lower bound

We have seen that the DELVE test successfully separates two hypotheses if $\mathrm{SNR}_{n} \rightarrow \infty$, where SNR_{n} is as defined in (3.6). We now present a lower bound to show that the two hypotheses are asymptotically indistinguishable if $\mathrm{SNR}_{n} \rightarrow 0$.

Let $\ell_{i} \in\{1,2, \ldots, K\}$ denote the group label of X_{i}. Write $\xi=\left\{\left(N_{i}, \Omega_{i}, \ell_{i}\right)\right\}_{1 \leq i \leq n}$. Let $\mu_{k}, \alpha_{n}, \beta_{n}$, and ω_{n} be the same as defined in $(1.2),(3.2),(3.3)$, and (3.5), respectively. For each given (n, p, K, \bar{N}), we write $\mu_{k}=\mu_{k}(\xi)$ to emphasize its dependence on parameters, and similarly for $\alpha_{n}, \beta_{n}, \omega_{n}$. For any $c_{0} \in(0,1)$ and sequence ϵ_{n}, define

$$
\begin{equation*}
\mathcal{Q}_{n}\left(c_{0}, \epsilon_{n}\right):=\left\{\xi=\left\{\left(N_{i}, \Omega_{i}, \ell_{i}\right)\right\}_{i=1}^{n}: \text { (3.1) holds for } c_{0}, \max \left(\alpha_{n}(\xi), \beta_{n}(\xi)\right) \leq \epsilon_{n}\right\} \tag{3.7}
\end{equation*}
$$

Furthermore, for any sequence δ_{n}, we define a parameter class for the null hypothesis and a parameter class for the alternative hypothesis:

$$
\mathcal{Q}_{0 n}^{*}\left(c_{0}, \epsilon_{n}\right)=\mathcal{Q}_{n}\left(c_{0}, \epsilon_{n}\right) \cap\left\{\xi: \omega_{n}(\xi)=0\right\}
$$

$$
\begin{equation*}
\mathcal{Q}_{1 n}^{*}\left(\delta_{n} ; c_{0}, \epsilon_{n}\right)=\mathcal{Q}_{n}\left(c_{0}, \epsilon_{n}\right) \cap\left\{\xi: \frac{n \bar{N}\|\mu(\xi)\|^{2} \omega_{n}^{2}(\xi)}{\sqrt{\sum_{k=1}^{K}\left\|\mu_{k}(\xi)\right\|^{2}}} \geq \delta_{n}\right\} \tag{3.8}
\end{equation*}
$$

Theorem 3.5. Fix a constant $c_{0} \in(0,1)$ and two positive sequences ϵ_{n} and δ_{n} such that $\epsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$. For any sequence of (n, p, K, \bar{N}) indexed by n, we consider Models (1.1)(1.2) for $\Omega \in \mathcal{Q}_{n}\left(c_{0}, \epsilon_{n}\right)$. Let $\mathcal{Q}_{0 n}^{*}\left(c_{0}, \epsilon_{n}\right)$ and $\mathcal{Q}_{1 n}^{*}\left(\delta_{n} ; c_{0}, \epsilon_{n}\right)$ be as in (3.8). If $\delta_{n} \rightarrow 0$, then $\limsup _{n \rightarrow \infty} \inf _{\Psi \in\{0,1\}}\left\{\sup _{\xi \in \mathcal{Q}_{0 n}^{*}\left(c_{0}, \epsilon_{n}\right)} \mathbb{P}_{\xi}(\Psi=1)+\sup _{\xi \in \mathcal{Q}_{1 n}^{*}\left(\delta_{n} ; c_{0}, \epsilon_{n}\right)} \mathbb{P}_{\xi}(\Psi=0)\right\}=1$.

By Theorem 3.5, the null and alternative hypotheses are asymptotically indistinguishable if $\mathrm{SRN}_{n} \rightarrow 0$. Combining it with Theorem 3.4, the DELVE test achieves the minimax optimal detection boundary.

3.4 The special case of $K=2$

The special case of $K=2$ is found in applications such as closeness testing and authorship attribution. We study this case more carefully. Given $\left\{X_{i}\right\}_{1 \leq i \leq n}$ and $\left\{G_{i}\right\}_{1 \leq i \leq m}$, we assume

$$
\begin{equation*}
X_{i} \sim \operatorname{Multinomial}\left(N_{i}, \Omega_{i}\right), \quad G_{j} \sim \operatorname{Multinomial}\left(M_{j}, \Gamma_{j}\right) \tag{3.9}
\end{equation*}
$$

Write $\bar{N}=n^{-1} \sum_{i=1}^{n} N_{i}$ and $\bar{M}=m^{-1} \sum_{i=1}^{m} M_{i}$. The null hypothesis becomes

$$
\begin{equation*}
H_{0}: \quad \eta=\theta, \quad \text { where } \eta=\frac{1}{n \bar{N}} \sum_{i=1}^{n} N_{i} \Omega_{i}, \text { and } \theta=\frac{1}{m \bar{M}} \sum_{i=1}^{m} M_{i} \Gamma_{i}, \tag{3.10}
\end{equation*}
$$

where θ and η are the two group-wise mean PMFs. In this case, the test statistic ψ has a more explicit form as in (2.14)-(2.15).

In our previous results for a general K, the regularity conditions (e.g., (3.1) impose restrictions on the balance of sample sizes among groups. For $K=2$, the severely unbalanced setting is interesting (e.g., in authorship attribution, $n=1$ and m can be large). We relax the regularity conditions to the following ones:

Condition 3.1. Let θ and η be as in (3.10) and define two matrices $\Sigma_{1}=\frac{1}{n N} \sum_{i=1}^{n} N_{i} \Omega_{i} \Omega_{i}^{\prime}$ and $\Sigma_{2}=\frac{1}{m M} \sum_{i=1}^{m} M_{i} \Gamma_{i} \Gamma_{i}^{\prime}$. We assume that the following statements are true (a) For $1 \leq i \leq n$ and $1 \leq j \leq m, N_{i} \geq 2,\left\|\Omega_{i}\right\|_{\infty} \leq 1-c_{0}, M_{j} \geq 2$, and $\left\|\Gamma_{j}\right\|_{\infty} \leq 1-c_{0}$, where $c_{0} \in(0,1)$ is a contant, (b) $\max \left\{\left(\frac{\|\eta\|_{3}^{3}}{n N}+\frac{\|\theta\|_{3}^{3}}{m M}\right),\left(\frac{\|\eta\|_{2}^{2}}{n^{2} N^{2}}+\frac{\|\theta\|_{2}^{2}}{m^{2} M_{2}^{2}}\right)\right\} /\left\|\frac{m \bar{M}}{n N+m \bar{M}} \eta+\frac{n \bar{N}}{n \bar{N}+m \bar{M}} \theta\right\|^{4}=$ $o(1)$, (c) $\max \left\{\sum_{i} \frac{N_{i}^{2}}{n^{2} N^{2}}\left\|\Omega_{i}\right\|_{3}^{3}, \sum_{i} \frac{M_{i}^{2}}{m^{2} M^{2}}\left\|\Gamma_{i}\right\|_{3}^{3},\left\|\Sigma_{1}\right\|_{F}^{2}+\left\|\Sigma_{2}\right\|_{F}^{2}\right\} /\|\mu\|^{2}=o(1)$, and (d) $\|\mu\|_{4}^{4} /\|\mu\|^{4}=o(1)$.

Condition (a) is similar to (3.1), except that we drop the sample size balance requriement. Conditions (b)-(d) are equivalent to (3.4) but have more explicit expressions for $K=2$.

Theorem 3.6. In Model (3.9), we test the null hypothesis $H_{0}: \theta=\mu . A s \min \{n \bar{N}, m \bar{M}\} \rightarrow$ ∞, suppose Condition 3.1 is satisfied. Under the alternative hypothesis, we further assume

$$
\begin{equation*}
\frac{\|\eta-\theta\|^{2}}{\left(\frac{1}{n N}+\frac{1}{m M}\right) \max \{\|\eta\|,\|\theta\|\}} \rightarrow \infty . \tag{3.11}
\end{equation*}
$$

Consider the DELVE test statistic $\psi=T / \sqrt{V}$. The following statements are true. Under the null hypothesis, $\psi \rightarrow N(0,1)$ in distribution. Under the alternative hypothesis, $\psi \rightarrow \infty$ in probability. Moreover for any fixed $\alpha \in(0,1)$, the level- α DELVE test has an asymptotic level of α and an asymptotic power of 1 .

Compared with the theorems for a general K, first, Theorem 3.6 allows the two groups to be severely unbalanced and reveals that the detection boundary depends on the harmonic mean of $n \bar{N}$ and $m \bar{M}$. Second, the detection boundary is expressed using $\|\eta-\theta\|$, which is easier to interpret.

3.5 The special case of $K=n$

The special case of $K=n$ is interesting for two reasons. First, the application example of global testing in topic models corresponds to $K=n$. Second, for any K, when Ω_{i} 's within each group are assumed to be the same (e.g., this is the case in closeness testing of discrete distributions), it suffices to aggregate the counts in each group, i.e., let $Y_{k}=\sum_{i \in S_{k}} X_{i}$ and operate on Y_{1}, \ldots, Y_{K} instead of the original X_{i} 's; this reduces to the case of $K=n$.

When $K=n$, the null hypothesis has a simpler form:

$$
\begin{equation*}
H_{0}: \quad \Omega_{i}=\mu, \quad 1 \leq i \leq n . \tag{3.12}
\end{equation*}
$$

Moreover, under the alternative hypothesis, the quantity ω_{n}^{2} in (3.5) simplifies to

$$
\begin{equation*}
\omega_{n}=\omega_{n}\left(\Omega_{1}, \Omega_{2}, \ldots, \Omega_{n}\right)=\frac{1}{n \bar{N}\|\mu\|^{2}} \sum_{i=1}^{n} N_{i}\left\|\Omega_{i}-\mu\right\|^{2} . \tag{3.13}
\end{equation*}
$$

The DELVE test statistic also has a simplified form as in (2.10)- 2.11 . We can prove the same theoretical results under weaker conditions:

Condition 3.2. We assume that the following statements are true: (a) For a constant $c_{0} \in(0,1), 2 \leq N_{i} \leq\left(1-c_{0}\right) n \bar{N}$ and $\left\|\Omega_{i}\right\|_{\infty} \leq 1-c_{0}, 1 \leq i \leq n$, and (b) $\max \left\{\sum_{i} \frac{\left\|\Omega_{i}\right\|_{3}^{3}}{N_{i}}, \sum_{i} \frac{\left\|\Omega_{i}\right\|^{2}}{N_{i}^{2}}\right\} /\left(\sum_{i}\left\|\Omega_{i}\right\|^{2}\right)^{2}=o(1)$, and $\left(\sum_{i}\left\|\Omega_{i}\right\|_{3}^{3}\right) /\left(n\|\mu\|^{2}\right)=o(1)$

When $K=n$, Condition (a) is equivalent to (3.1); and Condition (b) is weaker than (3.4), as we have dropped the requirement $\frac{\|\mu\|_{1}^{4}}{K\|\mu\|^{4}}=o(1)$. We obtain weaker conditions for $K=n$ because the dominant terms in T differ from those for $K<n$.

Theorem 3.7. In Model (1.1), we test the null hypothesis (3.12). As $n \rightarrow \infty$, we assume that Condition 3.2 is satisfied. Under the alternative, we further assume that

$$
\begin{equation*}
\frac{n \bar{N}\|\mu\|^{2} \omega_{n}^{2}}{\sqrt{\sum_{i=1}^{n}\left\|\Omega_{i}\right\|^{2}}} \rightarrow \infty . \tag{3.14}
\end{equation*}
$$

Let T and V^{*} be the same as in 2.10)-2.11). Consider the simplified DELVE test statistic $\psi^{*}=T / \sqrt{V^{*}}$. The following statements are true. Under the null hypothesis, $\psi^{*} \rightarrow N(0,1)$ in distribution. Under the alternative hypothesis, $\psi^{*} \rightarrow \infty$ in probability. Moreover for any fixed $\alpha \in(0,1)$, the level- α DELVE test has an asymptotic level of α and an asymptotic power of 1 .

The detection boundary in (3.14) has a simpler form if $\sum_{i}\left\|\Omega_{i}\right\|^{2} \asymp n\|\mu\|^{2}$. In this case, (3.14) is equivalent to $\sqrt{n} \bar{N}\|\mu\| \omega_{n}^{2} \rightarrow \infty$. Additionally, if all entries of μ are at the same order, then $\|\mu\| \asymp 1 / \sqrt{p}$, and (3.14) further reduces to $\sqrt{n \bar{N}^{2} / p} \cdot \omega_{n}^{2} \rightarrow \infty$.

3.6 A discussion of the contiguity regime

Our power analysis in Section 3.2 concerns $\mathrm{SNR}_{n} \rightarrow \infty$, and our lower bound in Section 3.3 concerns $\mathrm{SNR}_{n} \rightarrow 0$. We now study the contiguity regime where SNR_{n} tends to a constant. For illustration, we consider a special choice of parameters, which allows us to obtain a simple expression of the testing risk.

Suppose $K=n$ and $N_{i}=N$ for all $1 \leq i \leq n$. Consider the pair of hypotheses:

$$
\begin{equation*}
H_{0}: \quad \Omega_{i j}=p^{-1}, \quad \text { v.s. } \quad H_{1}: \quad \Omega_{i j}=p^{-1}\left(1+\beta_{n} \delta_{i j}\right) \tag{3.15}
\end{equation*}
$$

where $\left\{\delta_{i j}\right\}_{1 \leq i \leq n, 1 \leq j \leq p}$ satisfy that $\left|\delta_{i j}\right|=1, \sum_{j=1}^{p} \delta_{i j}=0$ and $\sum_{i=1}^{n} \delta_{i j}=0$. Such $\delta_{i j}$ always exist ${ }^{1}$ The SNR_{n} in (3.6) satisfies that $\mathrm{SNR}_{n} \asymp(N \sqrt{n} / \sqrt{p}) \beta_{n}^{2}$. We thereby set

$$
\begin{equation*}
\beta_{n}^{2}=\frac{\sqrt{2 p}}{N \sqrt{n}} \cdot a, \quad \text { for a constant } a>0 \tag{3.16}
\end{equation*}
$$

Since $K=n$ here, we consider the simplified DELVE test statistic ψ^{*} as in Section 3.5.
Theorem 3.8. Consider Model (1.1) with $N_{i}=N$. For a constant $a>0$, let the null and alternative hypotheses be specified as in (3.15)-(3.16). As $n \rightarrow \infty$, if $p=o\left(N^{2} n\right)$, then $\psi^{*} \rightarrow N(0,1)$ under H_{0} and $\psi^{*} \rightarrow N(a, 1)$ under H_{1}.

Let Φ be the cumulative distribution function of the standard normal. By Theorem 3.8 , for any fixed constant $t \in(0, a)$, if we reject the null hypothesis when $\psi^{*}>t$, then the sum of type I and type II errors converges to $[1-\Phi(t)]+[1-\Phi(a-t)]$.

4 Applications

As mentioned in Section 1, our testing problem includes global testing for topic models, authorship attribution, and closeness testing for discrete distributions as special examples. In this section, the DELVE test is applied separately to these three problems.

4.1 Global testing for topic models

Topic modeling Blei et al., 2003 is a popular tool in text mining. It aims to learn a small number of "topics" from a large corpus. Given n documents written using a dictionary of p words, let $X_{i} \sim \operatorname{Multinomial}\left(N_{i}, \Omega_{i}\right)$ denote the word counts of document i, where N_{i} is the length of this document and $\Omega_{i} \in \mathbb{R}^{p}$ contains the population word frequencies. In a topic model, there exist M topic vectors $A_{1}, A_{2}, \ldots, A_{M} \in \mathbb{R}^{p}$, where each A_{k} is a PMF. Let

[^1]$w_{i} \in \mathbb{R}^{M}$ be a nonnegative vector whose entries sum up to 1 , where $w_{i}(k)$ is the "weight" document i puts on topic k. It assumes
\[

$$
\begin{equation*}
\Omega_{i}=\sum_{k=1}^{M} w_{i}(k) A_{k}, \quad 1 \leq i \leq n . \tag{4.1}
\end{equation*}
$$

\]

Under 4.1), the matrix $\Omega=\left[\Omega_{1}, \Omega_{2}, \ldots, \Omega_{n}\right]$ admits a low-rank nonnegative factorization.
Before fitting a topic model, we would like to know whether the corpus indeed involves multiple topics. This is the global testing problem: $H_{0}: M=1$ v.s. $H_{1}: M>1$. When $M=1$, by writing $A_{1}=\mu$, the topic model reduces to the null hypothesis in (3.12). We can apply the DELVE test by treating each X_{i} as a separate group (i.e., $K=n$).

Corollary 4.1. Consider Model (1.1) and define a vector $\xi \in \mathbb{R}^{n}$ by $\xi_{i}=\bar{N}^{-1} N_{i}$. Suppose that $\Omega=\mu \mathbf{1}_{n}^{\prime}$ under the null hypothesis, with $\mu=n^{-1} \Omega \xi$, and that Ω satisfies (4.1) under the alternative hypothesis, with $r:=\operatorname{rank}(\Omega) \geq 2$. Suppose $\bar{N} /\left(\min _{i} N_{i}\right)=O(1)$. Denote by $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}>0$ the singular values of $\Omega[\operatorname{diag}(\xi)]^{1 / 2}$, arranged in the descending order. We further assume that under the alternative hypothesis,

$$
\begin{equation*}
\bar{N} \cdot \frac{\sum_{k=2}^{r} \lambda_{k}^{2}}{\sqrt{\sum_{k=1}^{r} \lambda_{k}^{2}}} \rightarrow \infty \tag{4.2}
\end{equation*}
$$

For any fixed $\alpha \in(0,1)$, the level- α DELVE test has an asymptotic level α and an asymptotic power 1 .

The least-favorable configuration in the proof of Theorem 3.5 is in fact a topic model that follows (4.1) with $M=2$. Transferring the argument yields the following lower bound that confirms the optimality of DELVE for the global testing of topic models.

Corollary 4.2. Let $\mathcal{R}_{n, M}\left(\epsilon_{n}, \delta_{n}\right)$ be the collection of $\left\{\left(N_{i}, \Omega_{i}\right)\right\}_{i=1}^{n}$ satisfying the following conditions: 1) Ω follows the topic model (4.1) with M topics; 2) Condition 3.2 holds with o(1) replaced by $\leq \epsilon_{n}$; 3) $\bar{N}\left(\sum_{k=2}^{r} \lambda_{k}^{2}\right) /\left(\sum_{k=1}^{r} \lambda_{k}^{2}\right)^{1 / 2} \geq \delta_{n}$. If $\epsilon_{n} \rightarrow 0$ and $\delta_{n} \rightarrow 0$, then $\lim \sup _{n \rightarrow \infty} \inf _{\Psi \in\{0,1\}}\left\{\sup _{\mathcal{R}_{n, 1}\left(\epsilon_{n}, 0\right)} \mathbb{P}(\Psi=1)+\sup _{\cup_{M \geq 2} \mathcal{R}_{n, M}\left(\delta_{n}, \delta_{n}\right)} \mathbb{P}(\Psi=0)\right\}=1$.

The detection boundary (4.2) can be simplified when $M=O(1)$. Following Ke and Wang 2022, we define $\Sigma_{A}=A^{\prime} H^{-1} A$ and $\Sigma_{W}=n^{-1} W W^{\prime}$, where $A=\left[A_{1}, A_{2}, \ldots, A_{M}\right]$, $W=\left[w_{1}, w_{2}, \ldots, w_{n}\right]$ and $H=\operatorname{diag}\left(A \mathbf{1}_{M}\right)$. Ke and Wang 2022 argued that it is reasonable to assume that eigenvalues of these two matrices are at the constant order. If this is true, with some mild additional regularity conditions, each λ_{k} is at the order of $\sqrt{n / p}$. Hence, (4.2) reduces to $\sqrt{n} \bar{N} / \sqrt{p} \rightarrow \infty$. In comparison, Ke and Wang 2022] showed that a necessary condition for any estimator $\hat{A}=\left[\hat{A}_{1}, \hat{A}_{2}, \ldots, \hat{A}_{M}\right]$ to achieve $\frac{1}{M} \sum_{k=1}^{M} \| \hat{A}_{k}-$ $A_{k} \|_{1}=o(1)$ is $\sqrt{n \bar{N} / p} \rightarrow \infty$. We conclude that consistent estimation of topic vectors requires strictly stronger conditions than successful testing.

4.2 Authorship attribution

In authorship attribution, given a corpus from a known author, we want to test whether a new document is from the same author. It is a special case of our testing problem
with $K=2$. We can directly apply the results in Section 3.4. However, the setting in Section 3.4 has no sparsity. Kipnis 2022, Donoho and Kipnis 2022] point out that the number of words with discriminating power is often much smaller than p. To see how our test performs under sparsity, we consider a sparse model. As in Section 3.4, let

$$
\begin{equation*}
X_{i} \sim \operatorname{Multinomial}\left(N_{i}, \Omega_{i}\right), 1 \leq i \leq n, \quad \text { and } \quad G_{i} \sim \operatorname{Multinomial}\left(M_{i}, \Gamma_{i}\right), 1 \leq i \leq m . \tag{4.3}
\end{equation*}
$$

Let \bar{N} and \bar{M} be the average of N_{i} 's and M_{i} 's, respectively. Write $\eta=\frac{1}{n N} \sum_{i=1}^{n} N_{i} \Omega_{i}$ and $\theta=\frac{1}{m M} \sum_{i=1}^{m} M_{i} \Gamma_{i}$. We assume for some $\beta_{n}>0$,

$$
\begin{equation*}
\eta_{j}=\theta_{j}, \text { for } j \notin S, \quad \text { and } \quad\left|\sqrt{\eta_{j}}-\sqrt{\theta_{j}}\right| \geq \beta_{n}, \text { for } j \in S . \tag{4.4}
\end{equation*}
$$

Corollary 4.3. Under the model (4.3)-(4.4), consider testing $H_{0}: S=\emptyset$ v.s. $H_{1}: S \neq \emptyset$, where Condition 3.1 is satisfied. Let η_{S} and θ_{S} be the sub-vectors of η and θ restricted to the coordinates in S. Suppose that under the alternative hypothesis,

$$
\begin{equation*}
\frac{\beta_{n}^{2} \cdot\left(\left\|\eta_{S}\right\|_{1}+\left\|\theta_{S}\right\|_{1}\right)}{\left(\frac{1}{n N}+\frac{1}{m M}\right) \max \{\|\eta\|,\|\theta\|\}} \rightarrow \infty . \tag{4.5}
\end{equation*}
$$

As $\min \{n \bar{N}, m \bar{M}\} \rightarrow \infty$, the level- α DELVE test has an asymptotic level α and an asymptotic power 1. Furthermore, if $n \bar{N} \asymp m \bar{M}$ and $\min _{j \in S}\left(\eta_{j}+\theta_{j}\right) \geq c p^{-1}$ for a constant $c>0$, then (4.5) reduces to $n \bar{N} \beta_{n}^{2}|S| / \sqrt{p} \rightarrow \infty$.

Donoho and Kipnis 2022 studied a case where $N=M, n=m=1, p \rightarrow \infty$,

$$
\begin{equation*}
|S|=p^{1-\vartheta}, \quad \text { and } \quad \beta_{n}=c \cdot N^{-1 / 2} \sqrt{\log (p)} . \tag{4.6}
\end{equation*}
$$

When $\vartheta>1 / 2$ (i.e., $|S|=o(\sqrt{p})$), they derived a phase diagram for the aforementioned testing problem (under a slightly different setting where the data distributions are Poisson instead of multinomial). They showed that when $\vartheta>1 / 2$ and c is a properly large constant, a Higher-Criticism-based test has an asymptotically full power. Donoho and Kipnis 2022 did not study the case of $\vartheta \leq 1 / 2$. By Corollary 4.3 , when $\vartheta \leq 1 / 2$ (i.e., $|S| \geq C \sqrt{p}$), the DELVE test has asymptotically full power.

Remark 2. When $\vartheta>1 / 2$ in (4.6), the DELVE test is powerless. However, this issue can be resolved by borrowing the idea of maximum test or Higher Criticism test Donoho and Jin, 2004 from the classical multiple testing. For example, recalling T_{j} in 2.5), we can use $\max _{1 \leq j \leq p}\left\{T_{j} / \sqrt{V_{j}}\right\}$ as the test statistic, where V_{j} is a proper estimator of the variance of T_{j}. We leave a careful study of this idea to future work.

4.3 Closeness testing between discrete distributions

Two-sample closeness testing is a subject of intensive study in discrete distribution inference Bhattacharya and Valiant, 2015, Chan et al., 2014, Diakonikolas and Kane, 2016, Kim et al., 2022. It is a special case of our problem with $K=2$ and $n_{1}=n_{2}=1$. We thereby apply both Theorem 3.6 and Theorem 3.7

Corollary 4.4. Let Y_{1} and Y_{2} be two discrete variables taking values on the same p outcomes. Let $\Omega_{1} \in \mathbb{R}^{p}$ and $\Omega_{2} \in \mathbb{R}^{p}$ be their corresponding PMFs. Suppose we have N_{1} samples of Y_{1} and N_{2} samples of Y_{2}. The data are summarized in two multinomial vectors: $X_{1} \sim \operatorname{Multinomial}\left(N_{1}, \Omega_{1}\right), X_{2} \sim \operatorname{Multinomial}\left(N_{2}, \Omega_{2}\right)$. We test $H_{0}: \Omega_{1}=\Omega_{2}$. Write $\mu=\frac{1}{N_{1}+N_{2}}\left(N_{1} \Omega_{1}+N_{2} \Omega_{2}\right)$. Suppose $\min \left\{N_{1}, N_{2}\right\} \geq 2, \max \left\{\left\|\Omega_{1}\right\|_{\infty},\left\|\Omega_{2}\right\|_{\infty}\right\} \leq 1-c_{0}$, for a constant $c_{0} \in(0,1)$. Suppose $\frac{1}{\left(\sum_{k=1}^{2}\left\|\Omega_{k}\right\|^{2}\right)^{2}} \max \left\{\sum_{k=1}^{2} \frac{\left\|\Omega_{k}\right\|_{3}^{3}}{N_{k}}, \sum_{k=1}^{2} \frac{\left\|\Omega_{k}\right\|^{2}}{N_{k}^{2}}\right\}=o(1)$, and $\frac{1}{n\|\mu\|^{2}} \sum_{k=1}^{2}\left\|\Omega_{k}\right\|_{3}^{3}=o(1)$. We assume that under the alternative hypothesis,

$$
\begin{equation*}
\frac{\left\|\Omega_{1}-\Omega_{2}\right\|^{2}}{\left(N_{1}^{-1}+N_{2}^{-1}\right) \max \left\{\left\|\Omega_{1}\right\|,\left\|\Omega_{2}\right\|\right\}} \rightarrow \infty . \tag{4.7}
\end{equation*}
$$

As $\min \left\{N_{1}, N_{2}\right\} \rightarrow \infty$, the level- α DELVE test has level α and power 1, asymptotically.
We notice that 4.7) matches with the minimum ℓ^{2}-separation condition for two-sample closeness testing Kim et al., 2022, Proposition 4.4]. Therefore, our test is an optimal ℓ^{2}-testor. Although other optimal ℓ^{2}-testors have been proposed Chan et al., 2014, Bhattacharya and Valiant, 2015, Diakonikolas and Kane, 2016, they are not equipped with tractable null distributions.

Remark 3. We can modify the DELVE test to incorporate frequency-dependent weights. Given any nonnegative vector $w=\left(w_{1}, w_{2}, \ldots, w_{p}\right)^{\prime}$, define $T(w):=\sum_{j=1}^{p} w_{j} T_{j}$ where T_{j} is the same as in (2.5). These weights w_{j} serve to adjust the contributions of different words. For example, consider $w_{j}=\left(\max \left\{1 / p, \hat{\mu}_{j}\right\}\right)^{-1}$. This kind of weights have been used in discrete distribution inference Balakrishnan and Wasserman, 2019, Chan et al., 2014 to turn an optimal ℓ^{2} testor to an optimal ℓ^{1} testor. We can similarly study the power of this modified test, except that we need an additional assumption $n \bar{N} \gg p$ to guarantee that $\hat{\mu}_{j}$ is a sufficiently accurate estimator of μ_{j}.

5 Simulations

The proposed DELVE test is computationally efficient and easy to implement. In this section, we investigate its numerical performance in simulation studies. Real data analysis will be carried out in Section 6 ,

Experiment 1 (Asymptotic normality). Given ($n, p, K, N_{\min }, N_{\max }, \alpha$), we generate data as follows: first, we divide $\{1, \ldots, n\}$ into K equal-size groups. Next, we draw $\Omega_{1}^{\text {alt }}, \ldots, \Omega_{n}^{\text {alt }}$ i.i.d. from $\operatorname{Dirichlet}\left(p, \alpha \mathbf{1}_{p}\right)$. Third, we draw $N_{i} \stackrel{i i d}{\sim} \operatorname{Uniform}\left[N_{\min }, N_{\max }\right]$ and set $\Omega_{i}^{\text {null }}=\mu$, where $\mu:=\frac{1}{n N} \sum_{i} N_{i} \Omega_{i}^{\text {alt }}$. Last, we generate X_{1}, \ldots, X_{n} using Model (1.1). We consider three sub-experiments. In Experiment 1.1, ($\left.n, p, K, N_{\min }, N_{\max }, \alpha\right)=(50,100,5,10,20,0.3)$. In Experiment 1.2, α is changed to 1 , and the other parameters are the same. When $\alpha=1, \Omega_{i}^{a l t}$ are drawn from the uniform distribution of the standard probability simplex; in comparison, $\alpha=0.3$ puts more mass near the boundary of the standard probability simplex. In Experiment 1.3, we keep all parameters the same as in Experiment 1.1, except that (p, K) are changed to $(300,50)$. For each sub-experiment, we generate 2000 data sets under the null hypothesis and plot the histogram of the DELVE test statistic ψ (in

Figure 1: Histograms of the DELVE statistic (top three panels) and the DELVE+ statistic (bottom three panels) in Experiments 1.1-1.3. In each plot, the blue and orange histograms correspond to the null and alternative hypotheses, respectively; and the green curve is the density of $N(0,1)$.
blue); similarly, we generate 2000 data sets under the alternative hypothesis and plot the histogram of ψ (in orange). The results are contained on the top three panels of Figure 1 . In Section 2.2, we introduced a variant of DELVE, called DELVE+, in which the variance estimator V is replaced by an adjusted one. DELVE + has similar theoretical properties as DELVE but is more suitable for real data. We plot the histograms of the DELVE + test statistics on the bottom three panels of Figure 1.

We have several observations. In all sub-experiments, when the null hypothesis holds, the histograms of both DELVE and DELVE+ fit the standard normal density reasonably well. This supports our theory in Section 3.1. Second, when (p, K) increase, the finite sample effect becomes slightly more pronounced (c.f., Experiment 1.3 versus Experiment 1.1). Third, the tests have power in differentiating two hypotheses. As α decreases or K increases, the power increases, and the histograms corresponding to two hypotheses become further apart. Last, in the alternative hypothesis, DELVE + has smaller mean and variance than DELVE. By Lemma 2.2, these two have similar asymptotic behaviors. The simulation results suggest that they have noticeable finite-sample differences.

Experiment 2 (Power curve). Similarly as before, we divide $\{1,2, \ldots, n\}$ into K equalsize groups and draw $N_{i} \sim$ Uniform $\left[N_{\min }, N_{\max }\right]$. In this experiment, the PMF's Ω_{i} are generated in a different way. Under the null hypothesis, we generate $\mu \sim \operatorname{Dirichlet}\left(p / 2, \alpha \mathbf{1}_{p / 2}\right)$ and set $\Omega_{i}^{\text {null }}=\tilde{\mu}$, where $\tilde{\mu}_{j}=\frac{1}{2} \mu_{j}$ for $1 \leq j \leq p / 2$ and $\tilde{\mu}_{j}=\frac{1}{2} \mu_{p+1-j}$ for $p / 2+1 \leq j \leq p$. Under the alternative hypothesis, we draw $z_{1}, \ldots, z_{K}, b_{1}, \ldots, b_{p / 2} \stackrel{i i d}{\sim} \operatorname{Rademacher}(1 / 2)$ and then let $\Omega_{i j}^{\text {alt }}=\mu\left(1+\tau_{n} z_{k} b_{j}\right)$, for all i in group k and $1 \leq j \leq p / 2$, and $\Omega_{i j}^{\text {alt }}=\mu\left(1+\tau_{n} z_{k} b_{j}\right)$ for $p / 2+1 \leq j \leq p$. By applying our theory in Section 3.2 together with some calculations, we obtain that the signal-to-noise ratio is captured by $\lambda:=K^{-1 / 2} n \bar{N}\|\mu\| \tau_{n}$. We consider three sub-experiments, Experiment 2.1-2.3, in which the parameter values of

Figure 2: Power diagrams (based on 500 repetitions) at level 5%. The x-axis plots the $\operatorname{SNR} \lambda\left(\omega_{n}\right)=K^{-1 / 2} n \bar{N}\|\mu\| \cdot \omega_{n}$.
$\left(n, p, K, N_{\min }, N_{\max }, \alpha\right)$ are the same as in Experiments 1.1-1.3. For each sub-experiment, we consider a grid of 10 equally-spaced values of λ. When $\lambda=0$, it corresponds to the null hypothesis; when $\lambda>0$, it corresponds to the alternative hypothesis. For each λ, we generate 500 data sets and compute the fraction of rejections of the level- 5% DELVE test. This gives a power curve for the level-5\% DELVE test, in which the first point corresponding to $\lambda=0$ is the actual level of the test. The results are contained on the top three panels of Figure 2. We repeat the same experiments for the DELVE + test, which results are on the bottom three panels of Figure 2, In all three experiments, the actual level of our proposed tests is $\leq 5 \%$, suggesting that our tests perform well at controlling the type-I error. As λ increases, the power gradually increased to 1 , suggesting that λ is a good metric of the signal-to-noise ratio. This supports our theory in Section 3.2.

6 Real Data Analysis

We apply our proposed methods on two real corpora: one consists of abstracts of research papers in four statistics journals, and the other consists of movie reviews on Amazon. For the analysis of real data, we use DELVE + , which modifies the variance estimator in DELVE and reduces the occurrence of extremely small p-values.

6.1 Abstracts of statisticians

We use the data set from Ji and Jin 2016. It contains the bibtex information of all published papers in four top-tier statistics journals, Annals of Statistics, Biometrika, Journal of the American Statistical Association, and Journal of the Royal Statistical Society - Series B, from 2003 to the first half of 2012 . We pre-process the abstracts of papers by tokenization

Figure 3: (Left) Histogram of nonzero DELVE Z-scores for all authors in the dataset. The mean is 4.52 and the standard deviation is 2.94. (Right) Scatter plot of author DELVE scores versus the natural log of the number of papers with five statisticians identified.

Figure 4: Pairwise Z-score plots for Peter Hall (left) and Jianqing Fan (right). In the cell (x, y), we compare the corpus of an author's abstracts from time x with the corpus of that author's abstracts from time y. The heatmap shows the value of DELVE + with $K=2$ for each cell.
and stemming and turn each abstract to a word count vector.
We conduct two experiments. In the first one, we fix an author and treat the collection of his/her co-authored abstracts as a corpus. We apply DELVE+ with $K=n$, where n is the total number of abstracts written by this author. The Z-score measures the "diversity" or "variability" of this authors' abstracts. An author with a high Z-score possesses either diverse research interests or a variable writing style. A number of authors have only 1-2 papers in this data set, and the variance estimator V is often negative; we remove all those authors. In Figure 3 (left panel), we plot the histogram of Z-scores of all retained authors. The mean is 4.52 and the standard deviation is 2.94 . In Figure 3 (right panel), we show the scatter plot of Z-score versus logarithm of the number of abstracts written by this author, and a few prolific authors who have many papers and a large Z-score are labeled. For example, Peter Hall has the most papers in this dataset (82 papers in total). Hall's Z-score is larger than 20 , implying a huge diversity in his abstracts. There is also a positive association between Z-score and total papers. It suggests that senior authors have more diversity in their abstracts, which is as expected.

Year	Title	Journal	Year	Title	Journal
2011	Nonparametric independence screening in sparse ultra-high-dimensional additive models	JASA	2004	Low order approximations in deconvolution and regression with errors in variables	JRSS-B
2011	Penalized composite quasi-likelihood for ultrahigh dimensional variable selection	JRSS-B	2004	Nonparametric inference about service time distribution from indirect measurements	JRSS-B
2011	Multiple testing via FDR_{L} for large-scale imaging data	Ann. Stat.	2004	Cross-validation and the estimation of conditional probability densities	JASA
2012	Vast volatility matrix estimation using highfrequency data for portfolio selection	JASA	2004	Nonparametric confidence intervals for re-	Biometrika
2012	A road to classification in high dimensional space: the regularized optimal affine discriminant	JRSS-B	2004	ceiver operating characteristic curves Bump hunting with non-Gaussian kernels	Ann. Stat.
2012	Variance estimation using refitted cross-validation in ultrahigh dimensional regression	JRSS-B	2004	Attributing a probability to the shape of a probability density	Ann. Stat.

Figure 5: (Left) Jianqing Fan's papers in the dataset of Ji and Jin 2016 from 2011 to 2012. (Right) Peter Hall's papers in the dataset of Ji and Jin 2016 from 2004.

In the second experiment, we divide the abstracts of each author into groups by publication year. We divide Peter Hall's abstracts into 9 groups, and each group corresponds to one year. We divide Jianqing Fan's abstracts into 6 groups, with unequal window sizes to make all groups have roughly equal numbers of abstracts. Our test can be used to detect differences between all groups, but to see more informative results, we do a pairwise comparison: for each pair of groups, we apply DELVE+ with $K=2$. This yields a pairwise plot of Z-scores. The plot reveals the temporal patterns of this author in abstract writing. Figure 4 shows the results for Peter Hall and Jianqing Fan.

There are interesting temporal patterns. For Jianqing Fan (right panel of Figure 4), the group consisting of his 2011-2012 abstracts has comparably large Z-scores in the pairwise comparison with other groups. To interpret this, we gathered the titles and abstracts of all his papers in the dataset and compared the ones before/after 2011. He published six papers in these journals during 2011-2012, whose titles are listed on the left of Figure 5. We see that his papers in this period had a strong emphasis on screening and variable selection: four out of the six papers mention this subject in their titles and/or abstracts. This shows a departure from his previously published topics such as covariance estimation (a focus from 2007-2009) and semiparametric estimation (a focus before 2010). Though Jianqing Fan had previously published papers on variable selection and screening in these journals, he had never published so many in such a short time period. For Peter Hall (left panel of Figure 4), the group of 2004 abstracts have comparably large Z-scores in the pairwise comparison with other groups. We examined the titles and abstracts of his 6 papers published in 2004 in this data set. All of his 2004 papers, except the first one, mention bandwidth selection or smoothing parameters, and in the last 4 papers, bandwidth selection plays a central role. For instance, Bump hunting with non-Gaussian kernels, (Ann. Stat., 2004) studies the relationship between the number of modes of a kernel density estimator and its bandwidth parameter. Though Peter Hall's 2014 papers concern many nonparametric statistics topics, we find that bandwidth selection is a theme underlying his research in these journals in 2004.

Rank	Title	Z-Score	Total reviews
1	Prometheus	34.44	813
2	Expelled: No Intelligence Allowed	34.17	830
3	V for Vendetta	32.24	815
4	Sin City	31.72	828
5	No Country for Old Men	30.57	819
\vdots	\vdots	\vdots	\vdots
16	John Adams	20.78	857
17	Cars	19.98	902
18	Food, Inc.	17.81	876
19	Jeff Dunham: Arguing with Myself	4.96	860
20	Jeff Dunham: Spark of Insanity	4.46	877

Figure 6: (Left) Histogram of Z-scores for the 500 most-reviewed movies. The mean is 19.97 and the standard deviation is 5.07 . (Right) Z-scores for the top 20 most reviewed movies.

Figure 7: Pairwise Z-scores for 3 movies. In each cell, we use DELVE+ to compare reviews associated to a pair of star ratings. For each movie, the title list the number of reviews of each rating from 1-5.

6.2 Amazon movie reviews

We analyze Amazon reviews from the dataset Maurya 2018 that consists of 1,924,471 reviews of 143,007 visual media products (ie, DVDs, Bluray, or streams). We examine products with the largest number of reviews. Each product's review corpus is cleaned and stemming is used to group together words with the same root. We obtain word counts for each review and a term-document matrix of a product's review corpus. In the first experiment, we fix a movie and apply DELVE + with $K=n$ to the corpus consisting of all reviews of this movie. In Figure 6 (left panel), we plot the histogram of Z-scores for the top 500 most reviewed movies. The mean is 19.97 and the standard deviation is 5.07. Compared with the histogram of Z-scores for statistics paper abstracts, there is much larger diversity in movie reviews. In Figure 6 (right panel), we list the 5 movies with the highest Z-scores and lowest Z-scores out of the 20 most reviewed movies. Each movie has more than 800 reviews, but some have surprisingly low Z-scores. The works by comedian Jeff Dunham have the lowest Z-scores, suggesting strong homogeneity among the reviews. The 2012 horror film Prometheus has the highest degree of review diversity among the 20 most reviewed movies. In the second experiment, we divide the reviews of each movie into

5 groups by star rating. We compare each pair of groups using DELVE+ with $K=2$, resulting in a pairwise Z-score plot. In Figure 7, we plot this for 3 popular movies. We see a variety of polarization patterns among the scores. In Harry Potter and the Deathly Hallows Part I, DELVE+ signifies that the reviews with ratings in the range 2-4 stars are all similar. We see a smooth gradation in how the 1-star reviews differ from those from 2-4 stars, and similarly for 5 -star reviews versus those from 2-4 stars. Twilight Saga: Eclipse shows three clusters: 1-2 stars, 3-4 stars, and 5 star, while Night of the living dead shows two clusters: 1-2 stars and 3-5 stars.

7 Discussions

We examine the testing for equality of PMFs of K groups of high-dimensional multinomial distributions. The proposed DELVE statistic has a parameter-free limiting null that allows for computation of Z-scores and p-values on real data. DELVE achieves the optimal detection boundary over the whole range of parameters (n, p, K, \bar{N}), including the high-dimensional case $p \rightarrow \infty$, which is very relevant to applications in text mining.

This work leads to interesting questions for future study. So far the focus is on testing, but one can also consider inference for ρ^{2} from (2.2), which measures the heterogeneity among the group-wise means. Consistent variance estimation under the alternative uses a similar strategy, though we omit the calculations in this paper. Establishing asymptotic normality of DELVE under the alternative would then lead to asymptotic confidence intervals for our heterogeneity metric ρ^{2}. Based on the plots in Section 55 it is possible that stronger regularity conditions are needed to obtain a pivotal distribution under the alternative. As in the two-sample multinomial testing problems described in Kipnis and Donoho [2021, Kipnis 2022, such as author attribution, we may also consider an alternative where all the group means are the same except for a small set of "giveaway words". It is interesting to develop a procedure for identifying these useful words. As discussed in Section 4.2, we may modify DELVE by using a version based on the maximum test or higher criticism. Another extension is to go beyond 'bag-of-words' style analysis and use different types of counts besides raw word frequencies. One option is to apply a suitably modified DELVE to the counts of multi-grams in the corpus and another is to combine words with similar meanings into a 'superword' and use superword counts as the basis for DELVE. To do this, we can combine words that are close together in some word embedding. We leave these interesting tasks for future work.

Acknowledgments The research of T. Tony Cai was supported in part by NSF Grant DMS-2015259 and NIH grant R01-GM129781. The research of Zheng Tracy Ke was supported in part by NSF CAREER Grant DMS-1943902.

Notational conventions for the appendix: We write $A \lesssim B$ (respectively, $A \gtrsim B$) if there exists an absolute constant $C>0$ such that $A \leq C \cdot B$ (respectively $A \geq C \cdot B$). If both $A \lesssim B$ and $B \lesssim A$, we write $A \asymp B$. The implicit constant C may vary from line to line. For sequences a_{t}, b_{t} indexed by an integer $t \in \mathbb{N}$, we write $a_{t} \ll b_{t}$ if $b_{t} / a_{t} \rightarrow \infty$ as $t \rightarrow \infty$, and we write $a_{t} \gg b_{t}$ if $a_{t} / b_{t} \rightarrow \infty$ as $t \rightarrow \infty$. We also may write $a_{t}=o\left(b_{t}\right)$ to denote $a_{t} \ll b_{t}$. In particular, we write $a_{t}=(1+o(1)) b_{t}$ if $a_{t} / b_{t} \rightarrow 1$ as $t \rightarrow \infty$.

A Properties of T and V

We recall that

$$
\begin{equation*}
X_{i} \sim \operatorname{Multinomial}\left(N_{i}, \Omega_{i}\right), \quad 1 \leq i \leq n . \tag{A.1}
\end{equation*}
$$

For each $1 \leq k \leq K$, define

$$
\begin{equation*}
\mu_{k}=\frac{1}{n_{k} \bar{N}_{k}} \sum_{i \in S_{k}} N_{i} \Omega_{i} \in \mathbb{R}^{p}, \quad \Sigma_{k}=\frac{1}{n_{k} \bar{N}_{k}} \sum_{i \in S_{k}} N_{i} \Omega_{i} \Omega_{i}^{\prime} \in \mathbb{R}^{p \times p} . \tag{A.2}
\end{equation*}
$$

Moreover, let

$$
\begin{equation*}
\mu=\frac{1}{n \bar{N}} \sum_{k=1}^{K} n_{k} \bar{N}_{k} \mu_{k}=\frac{1}{n \bar{N}} \sum_{i=1}^{n} N_{i} \Omega_{i}, \quad \Sigma=\frac{1}{n \bar{N}} \sum_{k=1}^{n} n_{k} \bar{N}_{k} \Sigma_{k}=\frac{1}{n \bar{N}} \sum_{i} N_{i} \Omega_{i} \Omega_{i}^{\prime} \tag{A.3}
\end{equation*}
$$

The DELVE test statistic is $\psi=T / \sqrt{V}$, where T is as in (2.5) and V is as in 2.7). As a preparation for the main proofs, in this section, we study T and V separately.

A. 1 The decomposition of T

It is well-known that a multinomial with the number of trials equal to N can be equivalently written as the sum of N independent multinomials each with the number of trials equal to 1. This inspires us to introduce a set of independent, mean-zero random vectors:

$$
\begin{equation*}
\left\{Z_{i r}\right\}_{1 \leq i \leq n, 1 \leq r \leq N_{i}}, \quad \text { with } Z_{i r}=B_{i r}-\mathbb{E} B_{i r}, \text { and } B_{i r} \sim \operatorname{Multinomial}\left(1, \Omega_{i}\right) \tag{A.4}
\end{equation*}
$$

We use them to get a decomposition of T into mutually uncorrelated terms:
Lemma A.1. Let $\left\{Z_{i r}\right\}_{1 \leq i \leq n, 1 \leq r \leq N_{i}}$ be as in A.4). For each $Z_{i r} \in \mathbb{R}^{p}$, let $\left\{Z_{i j r}\right\}_{1 \leq j \leq p}$ denote its p coordinates. Recall that $\rho^{2}=\sum_{k=1}^{K} \bar{n}_{k} \bar{N}_{k}\left\|\mu_{k}-\mu\right\|^{2}$. For $1 \leq j \leq p$, define

$$
\begin{aligned}
U_{1 j} & =2 \sum_{k=1}^{K} \sum_{i \in S_{k}} \sum_{r=1}^{N_{i}}\left(\mu_{k j}-\mu_{j}\right) Z_{i j r}, \\
U_{2 j} & =\sum_{k=1}^{K} \sum_{i \in S_{k}} \sum_{1 \leq r \neq s \leq N_{i}}\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right) \frac{N_{i}}{N_{i}-1} Z_{i j r} Z_{i j s}, \\
U_{3 j} & =-\frac{1}{n \bar{N}} \sum_{1 \leq k \neq \ell \leq K} \sum_{i \in S_{k}} \sum_{m \in S_{\ell}} \sum_{r=1}^{N_{i}} \sum_{s=1}^{N_{m}} Z_{i j r} Z_{m j s},
\end{aligned}
$$

$$
U_{4 j}=\sum_{k=1}^{K} \sum_{\substack{i \in S_{k}, m \in S_{k} \\ i \neq m}} \sum_{r=1}^{N_{i}} \sum_{s=1}^{N_{m}}\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right) Z_{i j r} Z_{m j s} .
$$

Then, $T=\rho^{2}+\sum_{\kappa=1}^{4} \mathbf{1}_{p}^{\prime} U_{\kappa}$. Moreover, $\mathbb{E}\left[U_{\kappa}\right]=\mathbf{0}_{p}$ and $\mathbb{E}\left[U_{\kappa} U_{\zeta}^{\prime}\right]=\mathbf{0}_{p \times p}$ for $1 \leq \kappa \neq \zeta \leq 4$.

A. 2 The variance of T

By Lemma A. 1 , the four terms $\left\{\mathbf{1}_{p}^{\prime} U_{\kappa}\right\}_{1 \leq \kappa \leq 4}$ are uncorrelated with each other. Therefore,

$$
\operatorname{Var}(T)=\operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{1}\right)+\operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{2}\right)+\operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{3}\right)+\operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{4}\right) .
$$

It suffices to study the variance of each of these four terms.
Lemma A.2. Let U_{1} be the same as in Lemma A.1. Define

$$
\begin{align*}
\Theta_{n 1} & =4 \sum_{k=1}^{K} n_{k} \bar{N}_{k}\left\|\operatorname{diag}\left(\mu_{k}\right)^{1 / 2}\left(\mu_{k}-\mu\right)\right\|^{2} \tag{A.5}\\
L_{n} & =4 \sum_{k=1}^{K} n_{k} \bar{N}_{k}\left\|\Sigma_{k}^{1 / 2}\left(\mu_{k}-\mu\right)\right\|^{2} \tag{A.6}
\end{align*}
$$

Then $\operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{1}\right)=\Theta_{n 1}-L_{n}$. Furthermore, if $\max _{1 \leq k \leq K}\left\|\mu_{k}\right\|_{\infty}=o(1)$, then $\operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{1}\right)=$ $o\left(\rho^{2}\right)$.

Lemma A.3. Let U_{2} be the same as in Lemma A.1. Define

$$
\begin{align*}
\Theta_{n 2} & =2 \sum_{k=1}^{K}\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right)^{2} \sum_{i \in S_{k}} \frac{N_{i}^{3}}{N_{i}-1}\left\|\Omega_{i}\right\|^{2} \tag{A.7}\\
A_{n} & =2 \sum_{k=1}^{K}\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right)^{2} \sum_{i \in S_{k}} \frac{N_{i}^{3}}{N_{i}-1}\left\|\Omega_{i}\right\|_{3}^{3} \tag{A.8}
\end{align*}
$$

Then

$$
\Theta_{n 2}-A_{n} \leq \operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{2}\right) \leq \Theta_{n 2}
$$

Furthermore, if

$$
\begin{equation*}
\max _{1 \leq k \leq K}\left\{\frac{\sum_{i \in S_{k}} N_{i}^{2}\left\|\Omega_{i}\right\|_{3}^{3}}{\sum_{i \in S_{k}} N_{i}^{2}\left\|\Omega_{i}\right\|^{2}}\right\}=o(1), \tag{A.9}
\end{equation*}
$$

then $\operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{2}\right)=[1+o(1)] \cdot \Theta_{n 2}$.
Lemma A.4. Let U_{3} be the same as in Lemma A.1. Define

$$
\begin{align*}
\Theta_{n 3} & =\frac{2}{n^{2} \bar{N}^{2}} \sum_{k \neq \ell} \sum_{i \in S_{k}} \sum_{m \in S_{\ell}} \sum_{j} N_{i} N_{m} \Omega_{i j} \Omega_{m j} \tag{A.10}\\
B_{n} & =2 \sum_{k \neq \ell} \frac{n_{k} n_{\ell} \bar{N}_{k} \bar{N}_{\ell}}{n^{2} \bar{N}^{2}} \mathbf{1}_{p}^{\prime}\left(\Sigma_{k} \circ \Sigma_{\ell}\right) \mathbf{1}_{p} \tag{A.11}
\end{align*}
$$

Then

$$
\Theta_{n 3}-B_{n} \leq \operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{3}\right) \leq \Theta_{n 3}+B_{n} .
$$

Lemma A.5. Let U_{4} be the same as in Lemma A.1. Define

$$
\begin{align*}
\Theta_{n 4} & =2 \sum_{k=1}^{K} \sum_{\substack{i \in S_{k}, m \in S_{k} \\
i \neq m}} \sum_{j}\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right)^{2} N_{i} N_{m} \Omega_{i j} \Omega_{m j} . \tag{A.12}\\
E_{n} & =2 \sum_{k} \sum_{\substack{i \in S_{k}, m \in S_{k}, i \neq m}} \sum_{\substack{ \\
j, j^{\prime} \leq p}}\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right)^{2} N_{i} N_{m} \Omega_{i j} \Omega_{i j^{\prime}} \Omega_{m j} \Omega_{m j^{\prime}} \tag{A.13}
\end{align*}
$$

Then

$$
\Theta_{n 4}-E_{n} \leq \operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{4}\right) \leq \Theta_{n 4}+E_{n}
$$

Using Lemmas A.2 A.5, we derive regularity conditions such that the first term in $\operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{k}\right)$ is the dominating term. Observe that $\Theta_{n}=\Theta_{n 1}+\Theta_{n 2}+\Theta_{n 3}+\Theta_{n 4}$, where the quantity Θ_{n} is defined in (2.6). The following intermediate result is useful.
Lemma A.6. Suppose that (3.1) holds. Then

$$
\begin{equation*}
\Theta_{n 2}+\Theta_{n 3}+\Theta_{n 4} \asymp \sum_{k}\left\|\mu_{k}\right\|^{2} . \tag{A.14}
\end{equation*}
$$

Moreover, under the null hypothesis, $\Theta_{n} \asymp K\|\mu\|^{2}$.
The next result is useful in proving that our variance estimator V is asymptotically unbiased.

Lemma A.7. Suppose that (3.1) holds, and recall the definition of Θ_{n} in (2.6). Define

$$
\begin{equation*}
\beta_{n}=\frac{\max \left\{\sum_{k} \sum_{i \in S_{k}} \frac{N_{i}^{2}}{n_{k}^{2} N_{k}^{2}}\left\|\Omega_{i}\right\|_{3}^{3}, \sum_{k}\left\|\Sigma_{k}\right\|_{F}^{2}\right\}}{K\|\mu\|^{2}} . \tag{A.15}
\end{equation*}
$$

If $\beta_{n}=o(1)$, then under the null hypothesis, $\operatorname{Var}(T)=[1+o(1)] \cdot \Theta_{n}$.
We also study the case of $K=2$ more explicitly. In the lemmas below we use the notation from Section [3.4. First we have an intermediate result analogous to Lemma A.6 that holds under weaker conditions.

Lemma A.8. Consider $K=2$ and suppose that $\min N_{i} \geq 2$, $\min M_{i} \geq 2$ Then

$$
\Theta_{n 2}+\Theta_{n 3}+\Theta_{n 4} \asymp\left\|\frac{m \bar{M}}{n \bar{N}+m \bar{M}} \eta+\frac{n \bar{N}}{n \bar{N}+m \bar{M}} \theta\right\|^{2} .
$$

Moreover, under the null hypothesis, $\Theta_{n} \asymp\|\mu\|^{2}$.
The next result is a version of Lemma A. 7 for the case $K=2$ that holds under weaker conditions.

Lemma A.9. Suppose that $\min _{i} N_{i} \geq 2$ and $\min _{i} M_{i} \geq 2$. Define

$$
\begin{equation*}
\beta_{n}^{(2)}=\frac{\max \left\{\sum_{i} N_{i}^{2}\left\|\Omega_{i}\right\|^{3}, \sum_{i} M_{i}^{2}\left\|\Gamma_{i}\right\|^{3},\left\|\Sigma_{1}\right\|_{F}^{2}+\left\|\Sigma_{2}\right\|_{F}^{2}\right\}}{\|\mu\|^{2}} . \tag{A.16}
\end{equation*}
$$

If $\beta_{n}^{(2)}=o(1)$, then under the null hypothesis, $\operatorname{Var}(T)=[1+o(1)] \cdot \Theta_{n}$.

A. 3 The decomposition of V

Lemma A.10. Let $\left\{Z_{i r}\right\}_{1 \leq i \leq n, 1 \leq r \leq N_{i}}$ be as in A.4. Recall that

$$
\begin{align*}
V & =2 \sum_{k=1}^{K} \sum_{i \in S_{k}} \sum_{j=1}^{p}\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right)^{2}\left[\frac{N_{i} X_{i j}^{2}}{N_{i}-1}-\frac{N_{i} X_{i j}\left(N_{i}-X_{i j}\right)}{\left(N_{i}-1\right)^{2}}\right] \tag{A.17}\\
& +\frac{2}{n^{2} \bar{N}^{2}} \sum_{1 \leq k \neq \ell \leq K} \sum_{i \in S_{k}} \sum_{m \in S_{\ell}} \sum_{j=1}^{p} X_{i j} X_{m j}+2 \sum_{k=1}^{K} \sum_{\substack{i \in S_{k}, m \in S_{k}, i \neq m}} \sum_{j=1}^{p}\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right)^{2} X_{i j} X_{m j} .
\end{align*}
$$

Define

$$
\begin{aligned}
\theta_{i} & =\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right)^{2} \frac{N_{i}^{3}}{N_{i}-1} \quad \text { for } i \in S_{k}, \quad \text { and let } \\
\alpha_{i m} & = \begin{cases}\frac{2}{n^{2} \bar{N}^{2}} & \text { if } i \in S_{k}, m \in S_{\ell}, k \neq \ell \\
2\left(\frac{1}{n_{k} N_{k}}-\frac{1}{n N}\right)^{2} & \text { if } i, m \in S_{k}\end{cases}
\end{aligned}
$$

If we let

$$
\begin{align*}
& A_{1}=\sum_{i} \sum_{r=1}^{N_{i}} \sum_{j}\left[\frac{4 \theta_{i} \Omega_{i j}}{N_{i}}+\sum_{m \in[n] \backslash i\}} 2 \alpha_{i m} N_{m} \Omega_{m j}\right] Z_{i j r}, \tag{A.18}\\
& A_{2}=\sum_{i} \sum_{r \neq s \in\left[N_{i}\right]} \frac{2 \theta_{i}}{N_{i}\left(N_{i}-1\right)}\left(\sum_{j} Z_{i j r} Z_{i j s}\right) \tag{A.19}\\
& A_{3}=\sum_{i \neq m} \sum_{r=1}^{N_{i}} \sum_{s=1}^{N_{m}} \alpha_{i m}\left(\sum_{j} Z_{i j r} Z_{m j s}\right), \tag{A.20}
\end{align*}
$$

then these terms are mean zero, are mutually uncorrelated, and satisfy

$$
\begin{equation*}
V=A_{1}+A_{2}+A_{3}+\Theta_{n 2}+\Theta_{n 3}+\Theta_{n 4} . \tag{A.21}
\end{equation*}
$$

A. 4 Properties of V

First we control the variance of V.
Lemma A.11. Let A_{1}, A_{2}, and A_{3} be defined as in Lemma A.10. Then

$$
\begin{aligned}
& \operatorname{Var}\left(A_{1}\right) \lesssim \frac{1}{n \bar{N}}\|\mu\|_{3}^{3}+\sum_{k} \frac{\left\|\mu_{k}\right\|_{3}^{3}}{n_{k} \bar{N}_{k}} \lesssim \sum_{k} \frac{\left\|\mu_{k}\right\|_{3}^{3}}{n_{k} \bar{N}_{k}} \\
& \operatorname{Var}\left(A_{2}\right) \lesssim \sum_{k} \sum_{i \in S_{k}} \frac{N_{i}^{2}\left\|\Omega_{i}\right\|_{2}^{2}}{n_{k}^{4} \bar{N}_{k}^{4}} \lesssim \sum_{k} \frac{\left\|\mu_{k}\right\|^{2}}{n_{k}^{2} \bar{N}_{k}^{2}} \\
& \operatorname{Var}\left(A_{3}\right) \lesssim \sum_{k} \frac{\left\|\mu_{k}\right\|^{2}}{n_{k}^{2} \bar{N}_{k}^{2}}+\frac{1}{n^{2} \bar{N}^{2}}\|\mu\|^{2} \lesssim \sum_{k} \frac{\left\|\mu_{k}\right\|^{2}}{n_{k}^{2} \bar{N}_{k}^{2}}
\end{aligned}
$$

Next we show consistency of V under the null, which is crucial in properly standardizing our test statistic and establishing asymptotic normality.

Proposition A.1. Recall the definition of β_{n} in A.15). Suppose that $\beta_{n}=o(1)$ and that the condition (3.1) holds. If under the null hypothesis we have

$$
\begin{equation*}
K^{2}\|\mu\|^{4} \gg \sum_{k} \frac{\|\mu\|^{2}}{n_{k}^{2} \bar{N}_{k}^{2}} \vee \sum_{k} \frac{\|\mu\|_{3}^{3}}{n_{k} \bar{N}_{k}}, \tag{A.22}
\end{equation*}
$$

then $V / \operatorname{Var} T \rightarrow 1$ in probability.
To later control the type II error, we must also show that V does not dominate the true variance under the alternative. We first state an intermediate result that is useful throughout.

Lemma A.12. Suppose that, under either the null or alternative, $\max _{i}\left\|\Omega_{i}\right\|_{\infty} \leq 1-c_{0}$ holds for an absolute constant $c_{0}>0$. Then

$$
\begin{equation*}
\operatorname{Var}(T) \gtrsim \Theta_{n 2}+\Theta_{n 3}+\Theta_{n 4} \tag{A.23}
\end{equation*}
$$

Proposition A.2. Suppose that under the alternative (3.1) holds and

$$
\begin{equation*}
\left(\sum_{k}\left\|\mu_{k}\right\|^{2}\right)^{2} \gg \sum_{k} \frac{\left\|\mu_{k}\right\|^{2}}{n_{k}^{2} \bar{N}_{k}^{2}} \vee \sum_{k} \frac{\left\|\mu_{k}\right\|_{3}^{3}}{n_{k} \bar{N}_{k}} \tag{A.24}
\end{equation*}
$$

Then $V=O_{\mathbb{P}}(\operatorname{Var}(T))$ under the alternative.
We also require versions of Proposition A. 1 and Proposition A.2 that hold under weaker conditions in the special case $K=2$. We omit the proofs as they are similar. Below we use the notation of Section 3.4.
Proposition A.3. Suppose that $K=2$ and recall the definition of $\beta_{n}^{(2)}$ in A.16. Suppose that $\beta_{n}^{(2)}=o(1), \min _{i} N_{i} \geq 2, \min _{i} M_{i} \geq 2$, and $\max _{i}\left\|\Omega_{i}\right\|_{\infty} \leq 1-c_{0}, \max _{i}\left\|\Gamma_{i}\right\|_{\infty} \leq 1-c_{0}$. If under the null hypothesis

$$
\begin{equation*}
\|\mu\|^{4} \gg \max \left\{\left(\frac{\|\mu\|_{2}^{2}}{n^{2} \bar{N}^{2}}+\frac{\|\mu\|_{2}^{2}}{m^{2} \bar{M}_{2}^{2}}\right),\left(\frac{\|\mu\|_{3}^{3}}{n \bar{N}}+\frac{\|\mu\|_{3}^{3}}{m \bar{M}}\right)\right\} \tag{A.25}
\end{equation*}
$$

then $V / \operatorname{Var}(T) \rightarrow 1$ in probability.
Under the alternative we have the following.
Proposition A.4. Suppose that $K=2, \min _{i} N_{i} \geq 2, \min _{i} M_{i} \geq 2$, and $\max _{i}\left\|\Omega_{i}\right\|_{\infty} \leq$ $1-c_{0}, \max _{i}\left\|\Gamma_{i}\right\|_{\infty} \leq 1-c_{0}$. If under the alternative

$$
\begin{equation*}
\left\|\frac{m \bar{M}}{n \bar{N}+m \bar{M}} \eta+\frac{n \bar{N}}{n \bar{N}+m \bar{M}} \theta\right\|^{4} \gg \max \left\{\left(\frac{\|\eta\|_{2}^{2}}{n^{2} \bar{N}^{2}}+\frac{\|\theta\|_{2}^{2}}{m^{2} \bar{M}_{2}^{2}}\right),\left(\frac{\|\eta\|_{3}^{3}}{n \bar{N}}+\frac{\|\theta\|_{3}^{3}}{m \bar{M}}\right)\right\}, \tag{A.26}
\end{equation*}
$$

then $V=O_{\mathbb{P}}(\operatorname{Var}(T))$.
In the setting of $K=n$ and utilize the variance estimator V^{*}. The next results capture the behavior of V^{*} under the null and alternative. The proofs are given later in this section.

Proposition A.5. Define

$$
\begin{equation*}
\beta_{n}^{(n)}=\frac{\sum_{i}\left\|\Omega_{i}\right\|^{3}}{n\|\mu\|^{2}} \tag{A.27}
\end{equation*}
$$

Suppose that (3.1) holds, $\beta_{n}^{(n)}=o(1)$, and

$$
\begin{equation*}
n^{2}\|\mu\|^{4} \gg \sum_{i} \frac{\|\mu\|^{2}}{N_{i}^{2}} \vee \sum_{i} \frac{\|\mu\|_{3}^{3}}{N_{i}} . \tag{A.28}
\end{equation*}
$$

Then $V^{*} / \operatorname{Var}(T) \rightarrow 1$ in probability as $n \rightarrow \infty$.
Proposition A.6. Suppose that under the alternative (3.1) holds and

$$
\begin{equation*}
\left(\sum_{i}\left\|\Omega_{i}\right\|^{2}\right)^{2} \gg \sum_{i} \frac{\left\|\Omega_{i}\right\|^{2}}{N_{i}^{2}} \vee \sum_{i} \frac{\left\|\Omega_{i}\right\|_{3}^{3}}{N_{i}} . \tag{A.29}
\end{equation*}
$$

Then $V^{*}=O_{\mathbb{P}}(\operatorname{Var}(T))$ under the alternative.

A. 5 Proof of Lemma A. 1

We first show that $\mathbb{E}\left[U_{\kappa}\right]=\mathbf{0}_{p}$ and $\mathbb{E}\left[U_{\kappa} U_{\zeta}^{\prime}\right]=\mathbf{0}_{p \times p}$ for $\kappa \neq \zeta$. Note that $\left\{Z_{i r}\right\}_{1 \leq i \leq n, 1 \leq r \leq N_{i}}$ are independent mean-zero random vectors. It follows that each U_{κ} is a mean-zero random vector. We then compute $\mathbb{E}\left[U_{\kappa j_{1}} U_{\zeta j_{2}}\right]$ for $\kappa \neq \zeta$ and all $1 \leq j_{1}, j_{2} \leq p$. By direct calculations,

$$
\mathbb{E}\left[U_{1 j} U_{2 j_{2}}\right]=2 \sum_{(k, i, r, s)} \sum_{\left(k^{\prime}, i^{\prime}, r^{\prime}\right)}\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right)\left(\mu_{k^{\prime} j}-\mu_{j}\right) \frac{N_{i}}{N_{i}-1} \mathbb{E}\left[Z_{i j_{2} r} Z_{i j_{2} s} Z_{i^{\prime} j_{1} r^{\prime}}\right] .
$$

If $i^{\prime} \neq i$, or if $i^{\prime}=i$ and $r^{\prime} \notin\{r, s\}$, then $Z_{i^{\prime} j_{1} r^{\prime}}$ is independent of $Z_{i j_{2} r} Z_{i j_{2} s}$, and it follows that $\mathbb{E}\left[Z_{i j_{2} r} Z_{i j_{2} s} Z_{i^{\prime} j_{1} r^{\prime}}\right]=0$. If $i^{\prime}=i$ and $r=r^{\prime}$, then $\mathbb{E}\left[Z_{i j_{2} r} Z_{i j_{2} s} Z_{i^{\prime} j_{1} r^{\prime}}\right]=\mathbb{E}\left[Z_{i j_{2} r} Z_{i j_{1} r}\right]$. $\mathbb{E}\left[Z_{i j_{2} s}\right]$; since $r \neq s$, we also have $\mathbb{E}\left[Z_{i j_{2} r} Z_{i j_{2} s} Z_{i^{\prime} j_{1} r^{\prime}}\right]=0$. This proves $\mathbb{E}\left[U_{1 j} U_{2 j_{*}}\right]=0$. Since this holds for all $1 \leq j_{1}, j_{2} \leq p$, we immediately have

$$
\mathbb{E}\left[U_{1} U_{2}^{\prime}\right]=\mathbf{0}_{p \times p}
$$

We can similarly show that $\mathbb{E}\left[U_{\kappa} U_{\zeta}^{\prime}\right]=\mathbf{0}_{p \times p}$, for other $\kappa \neq \zeta$. The proof is omitted.
It remains to prove the desirable decomposition of T. Recall that $T=\sum_{j=1}^{p} T_{j}$. Write $\rho^{2}=\sum_{j=1}^{p} \rho_{j}^{2}$, where $\rho_{j}^{2}=2 \sum_{k=1}^{K} n_{k} \bar{N}_{k}\left(\mu_{k j}-\mu_{j}\right)^{2}$. It suffices to show that

$$
\begin{equation*}
T_{j}=\rho_{j}^{2}+U_{1 j}+U_{2 j}+U_{3 j}+U_{4 j}, \quad \text { for all } 1 \leq j \leq p \tag{A.30}
\end{equation*}
$$

To prove A.30, we need some preparation. Define

$$
\begin{equation*}
Y_{i j}:=\frac{X_{i j}}{N_{i}}-\Omega_{i j}=\frac{1}{N_{i}} \sum_{r=1}^{N_{i}} Z_{i j r}, \quad Q_{i j}:=Y_{i j}^{2}-\mathbb{E} Y_{i j}^{2}=Y_{i j}^{2}-\frac{\Omega_{i j}\left(1-\Omega_{i j}\right)}{N_{i}} . \tag{A.31}
\end{equation*}
$$

With these notations, $X_{i j}=N_{i}\left(\Omega_{i j}+Y_{i j}\right)$ and $N_{i} Y_{i j}^{2}=N_{i} Q_{i j}+\Omega_{i j}\left(1-\Omega_{i j}\right)$. Moreover, we can use A.31) to re-write $Q_{i j}$ as a function of $\left\{Z_{i j r}\right\}_{1 \leq r \leq N_{i}}$ as follows:

$$
Q_{i j}=\frac{1}{N_{i}^{2}} \sum_{r=1}^{N_{i}}\left[Z_{i j r}^{2}-\Omega_{i j}\left(1-\Omega_{i j}\right)\right]+\frac{1}{N_{i}^{2}} \sum_{1 \leq r \neq s \leq N_{i}} Z_{i j r} Z_{i j s} .
$$

Note that $Z_{i j r}=B_{i j r}-\Omega_{i j}$, where $B_{i j r}$ can only take values in $\{0,1\}$. Hence, $\left(Z_{i j r}+\Omega_{i j}\right)^{2}=$ $\left(Z_{i j r}+\Omega_{i j}\right)$ always holds. Re-arranging the terms gives $Z_{i j r}^{2}-\Omega_{i j}\left(1-\Omega_{i j}\right)=\left(1-2 \Omega_{i j}\right) Z_{i j r}$. It follows that

$$
\begin{equation*}
Q_{i j}=\left(1-2 \Omega_{i j}\right) \frac{Y_{i j}}{N_{i}}+\frac{1}{N_{i}^{2}} \sum_{1 \leq r \neq s \leq N_{i}} Z_{i j r} Z_{i j s} . \tag{A.32}
\end{equation*}
$$

This is a useful equality which we will use in the proof below.
We now show A.30). Fix j and write $T_{j}=R_{j}-D_{j}$, where

$$
R_{j}=\sum_{k=1}^{K} n_{k} \bar{N}_{k}\left(\hat{\mu}_{k j}-\hat{\mu}_{j}\right)^{2}, \quad \text { and } \quad D_{j}=\sum_{k=1}^{K} \sum_{i \in S_{k}} \xi_{k} \frac{X_{i j}\left(N_{i}-X_{i j}\right)}{n_{k} \bar{N}_{k}\left(N_{i}-1\right)}, \quad \text { with } \xi_{k}=1-\frac{n_{k} \bar{N}_{k}}{n \bar{N}}
$$

First, we study D_{j}. Note that $X_{i j}\left(N_{i j}-X_{i j}\right)=N_{i}^{2}\left(\Omega_{i j}+Y_{i j}\right)\left(1-\Omega_{i j}-Y_{i j}\right)=N_{i}^{2} \Omega_{i j}(1-$ $\left.\Omega_{i j}\right)-N_{i}^{2} Y_{i j}^{2}+N_{i}^{2}\left(1-2 \Omega_{i j}\right) Y_{i j}$, where $Y_{i j}^{2}=Q_{i j}+N_{i}^{-1} \Omega_{i j}\left(1-\Omega_{i j}\right)$. It follows that

$$
\frac{X_{i j}\left(N_{i j}-X_{i j}\right)}{N_{i}\left(N_{i}-1\right)}=\Omega_{i j}\left(1-\Omega_{i j}\right)-\frac{N_{i} Q_{i j}}{N_{i}-1}+\frac{N_{i}}{N_{i}-1}\left(1-2 \Omega_{i j}\right) Y_{i j} .
$$

We apply A.32) to get

$$
\begin{equation*}
\frac{X_{i j}\left(N_{i j}-X_{i j}\right)}{N_{i}\left(N_{i}-1\right)}=\Omega_{i j}\left(1-\Omega_{i j}\right)+\left(1-2 \Omega_{i j}\right) Y_{i j}-\frac{1}{N_{i}\left(N_{i}-1\right)} \sum_{1 \leq r \neq s \leq N_{i}} Z_{i j r} Z_{i j s} \tag{A.33}
\end{equation*}
$$

It follows that

$$
\begin{align*}
& D_{j}=\sum_{k=1}^{K} \sum_{i \in S_{k}} \frac{\xi_{k} N_{i}}{n_{k} \bar{N}_{k}} \Omega_{i j}\left(1-\Omega_{i j}\right)+\sum_{k=1}^{K} \sum_{i \in S_{k}} \frac{\xi_{k} N_{i}}{n_{k} \bar{N}_{k}}\left(1-2 \Omega_{i j}\right) Y_{i j} \\
&-\sum_{k=1}^{K} \sum_{i \in S_{k}} \frac{\xi_{k}}{n_{k} \bar{N}_{k}\left(N_{i}-1\right)} \sum_{1 \leq r \neq s \leq N_{i}} Z_{i j r} Z_{i j s} . \tag{A.34}
\end{align*}
$$

Next, we study R_{j}. Note that $n_{k} \bar{N}_{k}\left(\hat{\mu}_{k j}-\hat{\mu}_{j}\right)=\sum_{i \in S_{k}}\left(X_{i j}-\bar{N}_{k} \hat{\mu}_{j}\right)$. It follows that

$$
R_{j}=\sum_{k=1}^{K} \frac{1}{n_{k} \bar{N}_{k}}\left[\sum_{i \in S_{k}}\left(X_{i j}-\bar{N}_{k} \hat{\mu}_{j}\right)\right]^{2} .
$$

Recall that $X_{i j}=N_{i}\left(\Omega_{i j}+Y_{i j}\right)$. By direct calculations, $\sum_{i \in S_{k}} X_{i j}=n_{k} \bar{N}_{k} \mu_{k j}+\sum_{i \in S_{k}} N_{i} Y_{i j}$, and $\hat{\mu}_{j}=\mu_{j}+(n \bar{N})^{-1} \sum_{m=1}^{n} N_{m} Y_{m j}$. We then have the following decomposition:

$$
\sum_{i \in S_{k}}\left(X_{i j}-\bar{N}_{k} \hat{\mu}_{j}\right)=n_{k} \bar{N}_{k}\left(\mu_{k j}-\mu_{j}\right)+\sum_{i \in S_{k}} N_{i} Y_{i j}-\frac{n_{k} \bar{N}_{k}}{n \bar{N}}\left(\sum_{m=1}^{n} N_{m} Y_{m j}\right)
$$

Using this decomposition, we can expand [$\left.\sum_{i \in S_{k}}\left(X_{i j}-\bar{N}_{k} \hat{\mu}_{j}\right)\right]^{2}$ to a total of 6 terms, where 3 are quadratic terms and 3 are cross terms. It yields a decomposition of R_{j} into 6 terms:

$$
R_{j}=\sum_{k=1}^{K} n_{k} \bar{N}_{k}\left(\mu_{k j}-\mu_{j}\right)^{2}+\sum_{k=1}^{K} \frac{1}{n_{k} \bar{N}_{k}}\left(\sum_{i \in S_{k}} N_{i} Y_{i j}\right)^{2}+\sum_{k=1}^{K} \frac{n_{k} \bar{N}_{k}}{n^{2} \bar{N}^{2}}\left(\sum_{m=1}^{n} N_{m} Y_{m j}\right)^{2}
$$

$$
\begin{align*}
& +2 \sum_{k=1}^{K}\left(\mu_{k j}-\mu_{j}\right)\left(\sum_{i \in S_{k}} N_{i} Y_{i j}\right)-2 \sum_{k=1}^{K} \frac{n_{k} \bar{N}_{k}}{n \bar{N}}\left(\mu_{k j}-\mu_{j}\right)\left(\sum_{m=1}^{n} N_{m} Y_{m j}\right) \\
& -\frac{2}{n \bar{N}} \sum_{k=1}^{K}\left(\sum_{i \in S_{k}} N_{i} Y_{i j}\right)\left(\sum_{m=1}^{n} N_{m} Y_{m j}\right) \\
\equiv & I_{1}+I_{2}+I_{3}+I_{4}+I_{5}+I_{6} . \tag{A.35}
\end{align*}
$$

By definition, $\sum_{k=1}^{K} n_{k} \bar{N}_{k}=n \bar{N}$ and $\sum_{k=1}^{K} n_{k} \bar{N}_{k} \mu_{k j}=n \bar{N} \mu_{j}$. It follows that

$$
I_{3}=\frac{1}{n \bar{N}}\left(\sum_{m=1}^{n} N_{m} Y_{m j}\right)^{2}, \quad I_{5}=0, \quad I_{6}=-\frac{2}{n \bar{N}}\left(\sum_{m=1}^{n} N_{m} Y_{m j}\right)^{2}=-2 I_{3} .
$$

It follows that

$$
\begin{equation*}
R_{j}=I_{1}+I_{2}-I_{3}+I_{4} . \tag{A.36}
\end{equation*}
$$

We further simplify I_{3}. Recall that $\xi_{k}=1-(n \bar{N})^{-1} n_{k} \bar{N}_{k}$. By direct calculations,

$$
\begin{align*}
I_{3} & =\frac{1}{n \bar{N}}\left(\sum_{m=1}^{n} N_{m} Y_{m j}\right)^{2}=\frac{1}{n \bar{N}}\left[\sum_{k=1}^{K}\left(\sum_{i \in S_{k}} N_{i} Y_{i j}\right)\right]^{2} \\
& =\frac{1}{n \bar{N}} \sum_{k=1}^{K}\left(\sum_{i \in S_{k}} N_{i} Y_{i j}\right)^{2}+\frac{1}{n \bar{N}} \sum_{1 \leq k \neq \ell \leq K}\left(\sum_{i \in S_{k}} N_{i} Y_{i j}\right)\left(\sum_{m \in S_{\ell}} N_{m} Y_{m j}\right) \\
& =\sum_{k=1}^{K}\left(1-\xi_{k}\right) \frac{1}{n_{k} \bar{N}_{k}}\left(\sum_{i \in S_{k}} N_{i} Y_{i j}\right)^{2}+\underbrace{\frac{1}{n \bar{N}} \sum_{k \neq \ell} \sum_{i \in S_{k}} \sum_{m \in S_{\ell}} N_{i} N_{m} Y_{i j} Y_{m j}}_{J_{1}} \\
& =I_{2}-\sum_{k=1}^{K} \sum_{i \in S_{k}} \frac{\xi_{k}}{n_{k} \bar{N}_{k}}\left(\sum_{i \in S_{k}} N_{i} Y_{i j}\right)^{2}+\underbrace{J_{1}}_{J_{2}} \\
& =I_{2}+J_{1}-\sum_{k=1}^{K} \frac{\xi_{k}}{n_{k} \bar{N}_{k}}\left(\sum_{i \in S_{k}} N_{i}^{2} Y_{i j}^{2}\right)-\sum_{k=1}^{K} \frac{\xi_{k}}{n_{k} \bar{N}_{k}} \sum_{i \in S_{k}, m \in S_{k}} N_{i \neq m} N_{m} Y_{i j} Y_{m j} . \tag{A.37}
\end{align*}
$$

By A.31), $N_{i} Y_{i j}^{2}=N_{i} Q_{i}+\Omega_{i j}\left(1-\Omega_{i j}\right)$. We further apply A.32) to get

$$
N_{i}^{2} Y_{i j}^{2}=N_{i}\left(1-2 \Omega_{i j}\right) Y_{i j}+\sum_{1 \leq r \neq s \leq N_{i}} Z_{i j r} Z_{i j s}+N_{i} \Omega_{i j}\left(1-\Omega_{i j}\right) .
$$

It follows that

$$
\begin{align*}
& \sum_{k=1}^{K} \frac{\xi_{k}}{n_{k} \bar{N}_{k}}\left(\sum_{i \in S_{k}} N_{i}^{2} Y_{i j}^{2}\right)=\underbrace{\sum_{k=1}^{K} \sum_{i \in S_{k}} \frac{\xi_{k} N_{i}}{n_{k} \bar{N}_{k}}\left(1-2 \Omega_{i j}\right) Y_{i j}}_{J_{3}} \\
&+\underbrace{\sum_{k=1}^{K} \sum_{i \in S_{k}} \frac{\xi_{k}}{n_{k} \bar{N}_{k}} \sum_{r \neq s} Z_{i j r} Z_{i j s}}_{J_{4}}+\underbrace{\sum_{k=1}^{K} \sum_{i \in S_{k}} \frac{\xi_{k} N_{i}}{n_{k} \bar{N}_{k}} \Omega_{i j}\left(1-\Omega_{i j}\right)}_{J_{5}} . \tag{A.38}
\end{align*}
$$

We plug A.38) into A.37) to get $I_{3}=I_{2}+J_{1}-J_{2}-J_{3}-J_{4}-J_{5}$. Further plugging I_{3} into the expression of R_{j} in A.36), we have

$$
\begin{equation*}
R_{j}=I_{1}+I_{4}-J_{1}+J_{2}+J_{3}+J_{4}+J_{5}, \tag{A.39}
\end{equation*}
$$

where I_{1} and I_{4} are defined in A.35, $J_{1}-J_{2}$ are defined in A.37, and $J_{3}-J_{5}$ are defined in (A.38).

Finally, we combine the expressions of D_{j} and R_{j}. By (A.34) and the definitions of $J_{1}-J_{5}$,

$$
\begin{aligned}
D_{j} & =J_{5}+J_{3}-\sum_{k=1}^{K} \sum_{i \in S_{k}} \frac{\xi_{k}}{n_{k} \bar{N}_{k}\left(N_{i}-1\right)} \sum_{r \neq s} Z_{i j r} Z_{i j s} \\
& =J_{5}+J_{3}+J_{4}-\underbrace{\sum_{k=1}^{K} \sum_{i \in S_{k}} \frac{\xi_{k} N_{i}}{n_{k} \bar{N}_{k}\left(N_{i}-1\right)} \sum_{r \neq s} Z_{i j r} Z_{i j s}}_{J_{6}}
\end{aligned}
$$

Combining it with A.39) gives $T_{j}=R_{j}-D_{j}=I_{1}+I_{4}-J_{1}+J_{2}+J_{6}$. We further plug in the definition of each term. It follows that

$$
\begin{align*}
& T_{j}=\sum_{k=1}^{K} n_{k} \bar{N}_{k}\left(\mu_{k j}-\mu_{j}\right)^{2}+2 \sum_{k=1}^{K} \sum_{i \in S_{k}}\left(\mu_{k j}-\mu_{j}\right) N_{i} Y_{i j}-\frac{1}{n \bar{N}} \sum_{k \neq \ell} \sum_{i \in S_{k}, m \in S_{\ell}} N_{i} N_{m} Y_{i j} Y_{m j} \\
&+\sum_{k=1}^{K} \sum_{\substack{i \in S_{k}, m \in S_{k} \\
i \neq m}} \frac{\xi_{k}}{n_{k} \bar{N}_{k}} N_{i} N_{m} Y_{i j} Y_{m j}+\sum_{k=1}^{K} \sum_{i \in S_{k}} \frac{\xi_{k} N_{i}}{n_{k} \bar{N}_{k}\left(N_{i}-1\right)} \sum_{r \neq s} Z_{i j r} Z_{i j s} . \tag{A.40}
\end{align*}
$$

We plug in $Y_{i j}=N_{i}^{-1} \sum_{r=1}^{N_{i}} Z_{i j r}$ and take a sum of $1 \leq j \leq p$. It gives A.30 immediately. The proof is now complete.

A. 6 Proof of Lemma A. 2

Recall that $\left\{Z_{i r}\right\}_{1 \leq i \leq n, 1 \leq r \leq N_{i}}$ are independent random vectors. Write

$$
\mathbf{1}_{p}^{\prime} U_{1}=2 \sum_{k=1}^{K} \sum_{i \in S_{k}} \sum_{r=1}^{N_{i}}\left(\mu_{k}-\mu\right)^{\prime} Z_{i r} .
$$

The covariance matrix of $Z_{i r}$ is $\operatorname{diag}\left(\Omega_{i}\right)-\Omega_{i} \Omega_{i}^{\prime}$. It follows that

$$
\begin{aligned}
\operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{1}\right) & =4 \sum_{k=1}^{K} \sum_{i \in S_{k}} \sum_{r=1}^{N_{i}}\left(\mu_{k}-\mu\right)^{\prime}\left[\operatorname{diag}\left(\Omega_{i}\right)-\Omega_{i} \Omega_{i}^{\prime}\right]\left(\mu_{k}-\mu\right) \\
& =4 \sum_{k}\left(\mu_{k}-\mu\right)^{\prime}\left[\operatorname{diag}\left(\sum_{i \in S_{k}} N_{i} \Omega_{i}\right)-\left(\sum_{i \in S_{k}} N_{i} \Omega_{i} \Omega_{i}^{\prime}\right)\right]\left(\mu_{k}-\mu\right) \\
& =4 \sum_{k}\left(\mu_{k}-\mu\right)^{\prime}\left[\operatorname{diag}\left(n_{k} \bar{N}_{k} \mu_{k}\right)-n_{k} \bar{N}_{k} \Sigma_{k}\right]\left(\mu_{k}-\mu\right)
\end{aligned}
$$

$$
\begin{equation*}
=4 \sum_{k} n_{k} \bar{N}_{k}\left\|\operatorname{diag}\left(\mu_{k}\right)^{1 / 2}\left(\mu_{k}-\mu\right)\right\|^{2}-4 \sum_{k} n_{k} \bar{N}_{k}\left\|\Sigma_{k}^{1 / 2}\left(\mu_{k}-\mu\right)\right\|^{2} .(\tag{A.41}
\end{equation*}
$$

This proves the first claim. Furthermore, by A.41,

$$
\operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{1}\right) \leq 4 \sum_{k} n_{k} \bar{N}_{k}\left\|\operatorname{diag}\left(\mu_{k}\right)^{1 / 2}\left(\mu_{k}-\mu\right)\right\|^{2} \leq 4 \sum_{k} n_{k} \bar{N}_{k}\left\|\operatorname{diag}\left(\mu_{k}\right)\right\|\left\|\mu_{k}-\mu\right\|^{2}
$$

Note that $\left\|\operatorname{diag}\left(\mu_{k}\right)\right\|=\left\|\mu_{k}\right\|_{\infty}$. Therefore, if $\max _{k}\left\|\mu_{k}\right\|_{\infty}=o(1)$, the right hand side above is $o(1) \cdot 4 \sum_{k} n_{k} \bar{N}_{k}\left\|\mu_{k}-\mu\right\|^{2}=o\left(\rho^{2}\right)$. This proves the second claim.

A. 7 Proof of Lemma A. 3

For each $1 \leq k \leq K$, define a set of index triplets: $\mathcal{M}_{k}=\left\{(i, r, s): i \in S_{k}, 1 \leq r<s \leq N_{i}\right\}$. Let $\mathcal{M}=\cup_{k=1}^{K} \mathcal{M}_{k}$. Write for short $\theta_{i}=\left(\frac{1}{n_{k} N_{k}}-\frac{1}{n N}\right)^{2} \frac{N_{i}^{3}}{N_{i}-1}$, for $i \in S_{k}$. It is seen that

$$
\mathbf{1}_{p}^{\prime} U_{2}=2 \sum_{(i, r, s) \in \mathcal{M}} \frac{\sqrt{\theta_{i}}}{\sqrt{N_{i}\left(N_{i}-1\right)}} W_{i r s}, \quad \text { with } \quad W_{i r s}=\sum_{j=1}^{p} Z_{i j r} Z_{i j s} .
$$

For $W_{\text {irs }}$ and $W_{i^{\prime} r^{\prime} s^{\prime}}$, if $i \neq i^{\prime}$, or if $i=i^{\prime}$ and $\{r, s\} \cap\left\{r^{\prime}, s^{\prime}\right\}=\emptyset$, then these two variables are independent; if $i=i^{\prime}, r=r^{\prime}$ and $s \neq s^{\prime}$, then $\mathbb{E}\left[W_{\text {irs }} W_{\text {irs }}\right]=\sum_{j, j^{\prime}} \mathbb{E}\left[Z_{i j r} Z_{i j s} Z_{i j^{\prime} r} Z_{i j^{\prime} s^{\prime}}\right]=$ $\sum_{j, j^{\prime}} \mathbb{E}\left[Z_{i j r} Z_{i j^{\prime} r}\right] \cdot \mathbb{E}\left[Z_{i j s}\right] \cdot \mathbb{E}\left[Z_{i j^{\prime} s^{\prime}}\right]=0$. Therefore, $\left\{W_{i r s}\right\}_{(i, r, s) \in \mathcal{M}}$ is a collection of mutually uncorrelated variables. It follows that

$$
\operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{2}\right)=4 \sum_{(i, r, s) \in \mathcal{M}} \frac{\theta_{i}}{N_{i}\left(N_{i}-1\right)} \operatorname{Var}\left(W_{i r s}\right)
$$

It remains to calculate the variance of each $W_{\text {irs }}$. By direction calculations,

$$
\begin{align*}
\operatorname{Var}\left(W_{i r s}\right) & =\sum_{j} \mathbb{E}\left[Z_{i j r}^{2} Z_{i j s}^{2}\right]+2 \sum_{j<\ell} \mathbb{E}\left[Z_{i j r} Z_{i j s} Z_{i \ell r} Z_{i \ell s}\right] \\
& =\sum_{j}\left[\Omega_{i j}\left(1-\Omega_{i j}\right)\right]^{2}+2 \sum_{j<\ell}\left(-\Omega_{i j} \Omega_{i \ell}\right)^{2} \\
& =\sum_{j} \Omega_{i j}^{2}-2 \sum_{j} \Omega_{i j}^{3}+\left(\sum_{j} \Omega_{i j}^{2}\right)^{2} \\
& =\left\|\Omega_{i}\right\|^{2}-2\left\|\Omega_{i}\right\|_{3}^{3}+\left\|\Omega_{i}\right\|^{4} \tag{A.42}
\end{align*}
$$

Since $\max _{i j} \Omega_{i j} \leq 1$, we have

$$
\left\|\Omega_{i}\right\|^{2}-\left\|\Omega_{i}\right\|_{3}^{3} \leq \operatorname{Var}\left(W_{i r s}\right) \leq\left\|\Omega_{i}\right\|^{2}
$$

Therefore,

$$
\operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{2}\right)=4 \sum_{k=1}^{K} \sum_{i \in S_{k}} \sum_{1 \leq r<s \leq N_{i}} \frac{\theta_{i}}{N_{i}\left(N_{i}-1\right)} \operatorname{Var}\left(W_{i r s}\right)
$$

$$
=2 \sum_{k=1}^{K} \sum_{i \in S_{k}} \theta_{i} \operatorname{Var}\left(W_{i r s}\right) \geq 2 \sum_{k=1}^{K} \sum_{i \in S_{k}} \theta_{i}\left[\left\|\Omega_{i}\right\|^{2}-\left\|\Omega_{i}\right\|_{3}^{3}\right]=\Theta_{n 2}-A_{n},
$$

and similarly $\operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{2}\right) \leq \Theta_{n 2}$, which proves the first claim. To prove the second claim, note that $\operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{2}\right)=\Theta_{n 2}+O\left(A_{n}\right)$. By (A.9) and the assumption min $N_{i} \geq 2$, we have

$$
\begin{aligned}
A_{n} & \lesssim \sum_{k}\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right)^{2} \sum_{i \in S_{k}} N_{i}^{2}\left\|\Omega_{i}\right\|_{3}^{3} \\
& =\sum_{k}\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right)^{2} \cdot o\left(\sum_{i \in S_{k}} N_{i}^{2}\left\|\Omega_{i}\right\|^{2}\right)=o\left(\Theta_{n 2}\right),
\end{aligned}
$$

which implies that $\operatorname{Var}\left(\mathbf{1}_{p} U_{2}\right)=[1+o(1)] \Theta_{n 2}$, as desired.

A. 8 Proof of Lemma A. 4

For each $1 \leq k<\ell \leq K$, define a set of index quadruples: $\mathcal{J}_{k \ell}=\left\{(i, r, m, s): i \in S_{k}, j \in\right.$ $\left.S_{\ell}, 1 \leq r \leq N_{i}, 1 \leq s \leq N_{m}\right\}$. Let $\mathcal{J}=\cup_{(k, \ell): 1 \leq k<\ell \leq K} \mathcal{J}_{k \ell}$. It is seen that

$$
\mathbf{1}_{p}^{\prime} U_{3}=-\frac{2}{n \bar{N}} \sum_{(i, r, m, s) \in \mathcal{J}} V_{i r m s}, \quad \text { where } V_{i r m s}=\sum_{j=1}^{p} Z_{i j r} Z_{m j s} .
$$

For $V_{i r m s}$ and $V_{i^{\prime} r^{\prime} m^{\prime} s^{\prime}}$, if $\{(i, r),(m, s)\} \cap\left\{\left(i^{\prime}, r^{\prime}\right),\left(m^{\prime}, s^{\prime}\right)\right\}=\emptyset$, then the two variables are independent of each other. If $(i, r)=\left(i^{\prime}, r^{\prime}\right)$ and $(m, s) \neq\left(m^{\prime}, s^{\prime}\right)$, then $\mathbb{E}\left[V_{i r m s} V_{i r m^{\prime} s^{\prime}}\right]=$ $\sum_{j, j^{\prime}} \mathbb{E}\left[Z_{i j r} Z_{m j s} Z_{i j^{\prime} r} Z_{m^{\prime} j^{\prime} s^{\prime}}\right]=\sum_{j, j^{\prime}} \mathbb{E}\left[Z_{i j r} Z_{i j^{\prime} r}\right] \cdot \mathbb{E}\left[Z_{m j s}\right] \cdot \mathbb{E}\left[Z_{m^{\prime} j s^{\prime}}\right]=0$. Therefore, the only correlated case is when $(i, r, m, s)=\left(i^{\prime}, r^{\prime}, m^{\prime}, s^{\prime}\right)$. This implies that $\left\{V_{i r m s}\right\}_{(i, r, m, s) \in \mathcal{J}}$ is a collection of mutually uncorrelated variables. Therefore,

$$
\operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{3}\right)=\frac{4}{n^{2} \bar{N}^{2}} \sum_{(i, r, m, s) \in \mathcal{J}} \operatorname{Var}\left(V_{i r m s}\right) .
$$

Note that $\operatorname{Var}\left(V_{i r m s}\right)=\mathbb{E}\left[\left(\sum_{j} Z_{i j r} Z_{m j s}\right)^{2}\right]=\sum_{j, j^{\prime}} \mathbb{E}\left[Z_{i j r} Z_{m j s} Z_{i j^{\prime} r} Z_{m j^{\prime} s}\right]$; also, the covariance matrix of $Z_{i r}$ is $\operatorname{diag}\left(\Omega_{i}\right)-\Omega_{i} \Omega_{i}^{\prime}$. It follows that

$$
\begin{align*}
\operatorname{Var}\left(V_{i r m s}\right) & =\sum_{j} \mathbb{E}\left[Z_{i j r}^{2}\right] \cdot \mathbb{E}\left[Z_{m j s}^{2}\right]+\sum_{j \neq j^{\prime}} \mathbb{E}\left[Z_{i j r} Z_{i j^{\prime} r}\right] \cdot \mathbb{E}\left[Z_{m j s} Z_{m j^{\prime} s}\right] \\
& =\sum_{j} \Omega_{i j}\left(1-\Omega_{i j}\right) \Omega_{m j}\left(1-\Omega_{m j}\right)+\sum_{j \neq j^{\prime}} \Omega_{i j} \Omega_{i j^{\prime}} \Omega_{m j} \Omega_{m j^{\prime}} \\
& =\sum_{j} \Omega_{i j} \Omega_{m j}-2 \sum_{j} \Omega_{i j}^{2} \Omega_{m j}^{2}+\sum_{j, j^{\prime}} \Omega_{i j} \Omega_{i j^{\prime}} \Omega_{m j} \Omega_{m j^{\prime}} . \tag{A.43}
\end{align*}
$$

Write for short $\delta_{i m}=-2 \sum_{j} \Omega_{i j}^{2} \Omega_{m j}^{2}+\sum_{j, j^{\prime}} \Omega_{i j} \Omega_{i j^{\prime}} \Omega_{m j} \Omega_{m j^{\prime}}$. Combining the above gives

$$
\operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{3}\right)=\frac{4}{n^{2} \bar{N}^{2}} \sum_{k<\ell} \sum_{i \in S_{k}} \sum_{m \in S_{\ell}} \sum_{r=1}^{N_{i}} \sum_{s=1}^{N_{m}}\left(\sum_{j} \Omega_{i j} \Omega_{m j}+\delta_{i m}\right)
$$

$$
\begin{equation*}
=\frac{2}{n^{2} \bar{N}^{2}} \sum_{k \neq \ell} \sum_{i \in S_{k}} \sum_{m \in S_{\ell}} \sum_{j} N_{i} N_{m} \Omega_{i j} \Omega_{m j}+\frac{2}{n^{2} \bar{N}^{2}} \sum_{k \neq \ell} \sum_{i \in S_{k}} \sum_{m \in S_{\ell}} N_{i} N_{m} \delta_{i m} . \tag{A.44}
\end{equation*}
$$

It is easy to see that $\left|\delta_{i m}\right| \leq \sum_{j, j^{\prime}} \Omega_{i j} \Omega_{i j^{\prime}} \Omega_{m j} \Omega_{m j^{\prime}}$. Also, by the definition of Σ_{k} in A.2), we have $\Sigma_{k}\left(j, j^{\prime}\right)=\frac{1}{n_{k} \overline{N_{k}}} \sum_{i \in S_{k}} N_{i} \Omega_{i j} \Omega_{i j^{\prime}}$. Using these results, we immediately have

$$
\begin{align*}
\left|\frac{2}{n^{2} \bar{N}^{2}} \sum_{k \neq \ell} \sum_{i \in S_{k}} \sum_{m \in S_{\ell}} N_{i} N_{m} \delta_{i m}\right| & \leq \frac{2}{n^{2} \bar{N}^{2}} \sum_{k \neq \ell} \sum_{i \in S_{k}} \sum_{m \in S_{\ell}} \sum_{j, j^{\prime}} N_{i} N_{m} \Omega_{i j} \Omega_{i j^{\prime}} \Omega_{m j} \Omega_{m j^{\prime}} \\
& =\frac{2}{n^{2} \bar{N}^{2}} \sum_{j, j^{\prime}} \sum_{k \neq \ell}\left(\sum_{i \in S_{k}} N_{i} \Omega_{i j} \Omega_{i j^{\prime}}\right)\left(\sum_{m \in S_{\ell}} N_{i} \Omega_{m j} \Omega_{m j^{\prime}}\right) \\
& =\frac{2}{n^{2} \bar{N}^{2}} \sum_{j, j^{\prime}} \sum_{k \neq \ell} n_{k} \bar{N}_{k} \Sigma_{k}\left(j, j^{\prime}\right) \cdot n_{\ell} \bar{N}_{\ell} \Sigma_{\ell}\left(j, j^{\prime}\right) \\
& =2 \sum_{k \neq \ell} \frac{n_{k} n_{\ell} \bar{N}_{k} \bar{N}_{\ell}}{n^{2} \bar{N}^{2}} \mathbf{1}_{p}^{\prime}\left(\Sigma_{k} \circ \Sigma_{\ell}\right) \mathbf{1}_{p}=: B_{n} \tag{A.45}
\end{align*}
$$

as desired.

A. 9 Proof of Lemma A. 5

For $1 \leq k \leq K$, define a set of index quadruples: $\mathcal{Q}_{k}=\left\{(i, r, m, s): i \in S_{k}, m \in S_{k}, i<\right.$ $\left.m, 1 \leq r \leq N_{i}, 1 \leq s \leq N_{m}\right\}$. Let $\mathcal{Q}=\cup_{k=1}^{K} \mathcal{Q}_{k}$. Write $\kappa_{i m}=\left(\frac{1}{n_{k} N_{k}}-\frac{1}{n N}\right)^{2} N_{i} N_{m}$, for $i \in S_{k}$ and $m \in S_{k}$. It is seen that

$$
\mathbf{1}_{p}^{\prime} U_{4}=2 \sum_{(i, r, m, s) \in \mathcal{Q}} \frac{\sqrt{\kappa_{i m}}}{\sqrt{N_{i} N_{m}}} V_{i r m s}, \quad \text { where } \quad V_{i r m s}=\sum_{j=1}^{p} Z_{i j r} Z_{m j s}
$$

It is not hard to see that $V_{i r m s}$ and $V_{i^{\prime} r^{\prime} m^{\prime} s^{\prime}}$ are correlated only if $(i, r, m, s)=\left(i^{\prime}, r^{\prime}, m^{\prime}, s^{\prime}\right)$. It follows that

$$
\operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{4}\right)=4 \sum_{(i, r, m, s) \in \mathcal{Q}} \frac{\kappa_{i m}}{N_{i} N_{m}} \operatorname{Var}\left(V_{i r m s}\right) .
$$

In the proof of Lemma A.4, we have studied $\operatorname{Var}\left(V_{\text {irms }}\right)$. In particular, by (A.43), we have

$$
\operatorname{Var}\left(V_{i r m s}\right)=\sum_{j} \Omega_{i j} \Omega_{m j}+\delta_{i m}, \quad \text { with } \quad\left|\delta_{i m}\right| \leq \sum_{j, j^{\prime}} \Omega_{i j} \Omega_{i j^{\prime}} \Omega_{m j} \Omega_{m j^{\prime}}
$$

Thus

$$
\begin{aligned}
\operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{4}\right) & =4 \sum_{k=1}^{K} \sum_{\substack{i \in S_{k}, m \in S_{k} \\
i<m}} \sum_{i=1}^{N_{i}} \sum_{r=1}^{N_{m}} \frac{\kappa_{i m}}{N_{i} N_{m}} \operatorname{Var}\left(V_{i r m s}\right) \\
& =4 \sum_{k=1}^{K} \sum_{\substack{i \in S_{k}, m \in S_{k} \\
i<m}} \kappa_{i m}\left(\sum_{j} \Omega_{i j} \Omega_{m j}+\delta_{i m}\right)
\end{aligned}
$$

$$
\begin{align*}
& =2 \sum_{k=1}^{K} \sum_{\substack{i \in S_{k}, m \in S_{k} \\
i \neq m}} \sum_{j} \kappa_{i m} \Omega_{i j} \Omega_{m j} \pm 2 \sum_{k} \sum_{i \neq m \in S_{k}} \kappa_{i m} \sum_{\substack{j, j^{\prime}}} \Omega_{i j} \Omega_{i j^{\prime}} \Omega_{m j} \Omega_{m j^{\prime}} \\
& =\Theta_{n 3} \pm E_{n} . \tag{A.46}
\end{align*}
$$

which proves the lemma.

A. 10 Proof of Lemma A. 6

By assumption (3.1), $N_{i}^{3} /\left(N_{i}-1\right) \asymp N_{i}$ and $\left(\frac{1}{n_{k} N_{k}}-\frac{1}{n N}\right)^{2} \asymp \frac{1}{n_{k}^{2} N_{k}^{2}}$. First, observe that

$$
\begin{align*}
\Theta_{n 2}+\Theta_{n 4}= & 2 \sum_{k=1}^{K}\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right)^{2} \sum_{i \in S_{k}} \frac{N_{i}^{3}}{N_{i}-1}\left\|\Omega_{i}\right\|^{2} \\
& +2 \sum_{k=1}^{K} \sum_{\substack{i \in S_{k}, m \in S_{k} \\
i \neq m}} \sum_{j}\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right)^{2} N_{i} N_{m} \Omega_{i j} \Omega_{m j} \\
& \asymp \sum_{k=1}\left(\frac{1}{n_{k} \bar{N}_{k}}\right)^{2} \sum_{j} \sum_{i, m \in S_{k}} N_{i} \Omega_{i j} \cdot N_{m} \Omega_{i j}=\sum_{k}\left\|\mu_{k}\right\|^{2} . \tag{A.47}
\end{align*}
$$

Recall the definitions of μ_{k} and μ in A.2)-A.3). By direct calculations, we have

$$
\begin{align*}
\Theta_{n 3} & =2 \sum_{j} \sum_{k \neq \ell}\left(\frac{1}{n \bar{N}} \sum_{i \in S_{k}} N_{i} \Omega_{i j}\right)\left(\frac{1}{n \bar{N}} \sum_{m \in S_{\ell}} N_{m} \Omega_{m j}\right) \\
& =2 \sum_{j} \sum_{k \neq \ell} \frac{n_{k} \bar{N}_{k}}{n \bar{N}} \mu_{k j} \cdot \frac{n_{\ell} \bar{N}_{\ell}}{n \bar{N}} \mu_{\ell j} \\
& =2 \sum_{k \neq \ell} \frac{n_{k} n_{\ell} \bar{N}_{k} \bar{N}_{\ell}}{n^{2} \bar{N}^{2}} \cdot \mu_{k}^{\prime} \mu_{\ell} \\
& \leq 2 \sum_{j}\left(\sum_{k} \frac{n_{k} \bar{N}_{k}}{n \bar{N}} \mu_{k j}\right)^{2}=2 \sum_{j} \mu_{j}^{2}=2\|\mu\|^{2} . \tag{A.48}
\end{align*}
$$

By Cauchy-Schwarz,

$$
\begin{align*}
\|\mu\|^{2} & =\sum_{j}\left(\sum_{k}\left(\frac{n_{k} \bar{N}_{k}}{n \bar{N}}\right) \mu_{k j}\right)^{2} \\
& \leq \sum_{j}\left(\sum_{k}\left(\frac{n_{k} \bar{N}_{k}}{n \bar{N}}\right)^{2}\right) \cdot\left(\sum_{k} \mu_{k j}^{2}\right) \\
& \leq \sum_{j}\left(\sum_{k}\left(\frac{n_{k} \overline{N_{k}}}{n \bar{N}}\right)\right) \cdot\left(\sum_{k} \mu_{k j}^{2}\right)=\sum_{j} \sum_{k} \mu_{k j}^{2}=\sum_{k}\left\|\mu_{k}\right\|^{2} . \tag{A.49}
\end{align*}
$$

Combining A.47, A.48, and A.49) yields

$$
c\left(\sum_{k}\left\|\mu_{k}\right\|^{2}\right) \leq \Theta_{n 2}+\Theta_{n 3}+\Theta_{n 4} \leq C\left(\sum_{k}\left\|\mu_{k}\right\|^{2}\right),
$$

for absolute constants $c, C>0$. This completes the proof.

A. 11 Proof of Lemma A. 7

By (3.1), it holds that

$$
\begin{equation*}
\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right)^{2} \asymp \frac{1}{\left(n_{k} \bar{N}_{k}\right)^{2}}, \tag{A.50}
\end{equation*}
$$

and moreover, for all $i \in\{1,2, \ldots, n\}$,

$$
\begin{equation*}
\frac{N_{i}^{3}}{N_{i}-1} \asymp N_{i}^{2} \tag{A.51}
\end{equation*}
$$

Recall the definitions of A_{n}, B_{n}, and E_{n} in A.8, A.11), and A.13), respectively. Note that these are the remainder terms in Lemmas A.3, A.4, and A.5. respectively. Under the null hypothesis (recall $\Theta_{n 1} \equiv 0$ under the null),

$$
\begin{equation*}
\operatorname{Var}(T)=\Theta_{n 2}+\Theta_{n 3}+\Theta_{n 4}+O\left(A_{n}+B_{n}+E_{n}\right) \tag{A.52}
\end{equation*}
$$

It holds that

$$
\begin{equation*}
A_{n} \leq \sum_{k=1}^{K}\left(\frac{1}{n_{k} \bar{N}_{k}}\right)^{2} \sum_{i \in S_{k}} N_{i}^{2}\left\|\Omega_{i}\right\|_{3}^{3} \tag{A.53}
\end{equation*}
$$

Next, by linearity and the definition of Σ_{k}, Σ in A.2), A.3), respectively,

$$
\begin{aligned}
B_{n} & \leq 2 \sum_{k, \ell} \frac{n_{k} n_{\ell} \bar{N}_{k} \bar{N}_{\ell}}{n^{2} \bar{N}^{2}} \mathbf{1}_{p}^{\prime}\left(\Sigma_{k} \circ \Sigma_{\ell}\right) \mathbf{1}_{p} \\
& \leq 2 \mathbf{1}_{p}^{\prime}\left(\frac{1}{n \bar{N}} \sum_{k} n_{k} \bar{N}_{k} \Sigma_{k}\right) \circ\left(\frac{1}{n \bar{N}} \sum_{\ell} n_{\ell} \bar{N}_{\ell} \Sigma_{k} \ell\right) \mathbf{1}_{p} \\
& =2 \mathbf{1}_{p}^{\prime}(\Sigma \circ \Sigma) \mathbf{1}_{p}=2\|\Sigma\|_{F}^{2}
\end{aligned}
$$

By Cauchy-Schwarz,

$$
\begin{align*}
B_{n} & \leq\|\Sigma\|_{F}^{2}=\sum_{j, j^{\prime}}\left(\sum_{k}\left(\frac{n_{k} \bar{N}_{k}}{n \bar{N}} \Sigma_{k}\left(j, j^{\prime}\right)\right)^{2}\right. \\
& \leq \sum_{j, j^{\prime}}\left(\sum_{k}\left(\frac{n_{k} \bar{N}_{k}}{n \bar{N}}\right)^{2}\right) \cdot\left(\sum_{k} \Sigma_{k}\left(j, j^{\prime}\right)^{2}\right) \\
& \leq \sum_{j, j^{\prime}}\left(\sum_{k} \frac{n_{k} \bar{N}_{k}}{n \bar{N}}\right) \cdot\left(\sum_{k} \Sigma_{k}\left(j, j^{\prime}\right)^{2}\right)=\sum_{j, j^{\prime}} \sum_{k} \Sigma_{k}\left(j, j^{\prime}\right)^{2}=\sum_{k}\left\|\Sigma_{k}\right\|_{F}^{2} . \tag{A.54}
\end{align*}
$$

Next by the definition of Σ_{k} in A.2), we have $\Sigma_{k}\left(j, j^{\prime}\right)=\frac{1}{n_{k} N_{k}} \sum_{i \in S_{k}} N_{i} \Omega_{i j} \Omega_{i j^{\prime}}$. It follows that

$$
\begin{align*}
E_{n} & \leq \sum_{k} \sum_{j, j^{\prime}}\left(\frac{1}{n_{k} \bar{N}_{k}} \sum_{i \in S_{k}} N_{i} \Omega_{i j} \Omega_{i j^{\prime}}\right)\left(\frac{1}{n_{k} \bar{N}_{k}} \sum_{m \in S_{k}} N_{m} \Omega_{m j} \Omega_{m j^{\prime}}\right) \\
& =\sum_{k} \sum_{j, j^{\prime}} \Sigma_{k}^{2}\left(j, j^{\prime}\right)=\sum_{k}\left\|\Sigma_{k}\right\|_{F}^{2} . \tag{A.55}
\end{align*}
$$

Next, Lemma A. 6 implies that

$$
\begin{equation*}
\Theta_{n 2}+\Theta_{n 3}+\Theta_{n 4} \asymp \sum_{k}\left\|\mu_{k}\right\|^{2}=K\|\mu\|^{2} \tag{A.56}
\end{equation*}
$$

where we use that the null hypothesis holds. By assumption of the lemma, we have

$$
\beta_{n}=\frac{\max \left\{\sum_{k} \sum_{i \in S_{k}} \frac{N_{i}^{2}}{n_{k}^{2} N_{k}^{2}}\left\|\Omega_{i}\right\|_{3}^{3}, \sum_{k}\left\|\Sigma_{k}\right\|_{F}^{2}\right\}}{K\|\mu\|^{2}}=o(1)
$$

Combining this with A.52, A.53, A.54, A.55, and A.56 completes the proof of the first claim. The second claim follows plugging in $\mu_{k}=\mu$ for all $k \in\{1,2, \ldots, K\}$.

A. 12 Proof of Lemma A. 8

By assumption, $N_{i}^{3} /\left(N_{i}-1\right) \asymp N_{i}, M_{i}^{3} /\left(M_{i}-1\right) \asymp M_{i}$. By direct calculation,

$$
\begin{align*}
\Theta_{n 2}+\Theta_{n 4} & \asymp\left[\frac{m \bar{M}}{(n \bar{N}+m \bar{M}) n \bar{N}}\right]^{2} \sum_{i, m, j} N_{i} N_{m} \Omega_{i j} \Omega_{m j}+\left[\frac{n \bar{N}}{(n \bar{N}+m \bar{M}) m \bar{M}}\right]^{2} \sum_{i, m} N_{i} N_{m} \Gamma_{i j} \Gamma_{m j} \\
& =\frac{1}{(n \bar{N}+m \bar{M})^{2}}\left((m \bar{M})^{2}\|\eta\|^{2}+n \bar{N}^{2}\|\theta\|^{2}\right) . \tag{A.57}
\end{align*}
$$

Next

$$
\begin{align*}
\Theta_{n 3} & =\frac{4}{(n \bar{N}+m \bar{M})^{2}} \sum_{i \in S_{1}} \sum_{m \in S_{2}} \sum_{j} N_{i} \Omega_{i j} \cdot N_{m} \Gamma_{m j} \\
& =\frac{4}{(n \bar{N}+m \bar{M})^{2}} \cdot n \bar{N} m \bar{M}\langle\theta, \eta\rangle . \tag{A.58}
\end{align*}
$$

Combining (A.57) and (A.58) yields

$$
\begin{aligned}
\Theta_{n 2}+\Theta_{n 3}+\Theta_{n 4} & \asymp \frac{1}{(n \bar{N}+m \bar{M})^{2}}\left((m \bar{M})^{2}\|\eta\|^{2}+2 n \bar{N} m \bar{M}\langle\theta, \eta\rangle+n \bar{N}^{2}\|\theta\|^{2}\right) \\
& =\left\|\frac{m \bar{M}}{n \bar{N}+m \bar{M}} \eta+\frac{n \bar{N}}{n \bar{N}+m \bar{M}} \theta\right\|^{2}
\end{aligned}
$$

which proves the first claim. The second follows by plugging in $\theta=\eta=\mu$ under the null.

A. 13 Proof of Lemma A. 9

As in A.52, we have under the null that

$$
\begin{equation*}
\operatorname{Var}(T)=\Theta_{n 2}+\Theta_{n 3}+\Theta_{n 4}+O\left(A_{n}+B_{n}+E_{n}\right) \tag{A.59}
\end{equation*}
$$

For general K, observe that the proofs of the bounds

$$
A_{n} \leq \sum_{k=1}^{K}\left(\frac{1}{n_{k} \bar{N}_{k}}\right)^{2} \sum_{i \in S_{k}} N_{i}^{2}\left\|\Omega_{i}\right\|_{3}^{3}
$$

$$
\begin{aligned}
& B_{n} \leq \sum_{k=1}^{K}\left\|\Sigma_{k}\right\|_{F}^{2} \\
& E_{n} \leq \sum_{k=1}^{K}\left\|\Sigma_{k}\right\|_{F}^{2}
\end{aligned}
$$

derived in A.53), A.54, and A.55, only use the assumption that $N_{i}, M_{i} \geq 2$ for all i.
Translating these bounds to the notation of the $K=2$ case, we have

$$
\begin{align*}
& A_{n} \leq \sum_{i} N_{i}^{2}\left\|\Omega_{i}\right\|^{3}+\sum_{i} M_{i}^{2}\left\|\Gamma_{i}\right\|^{3} \\
& B_{n} \leq\left\|\Sigma_{1}\right\|_{F}^{2}+\left\|\Sigma_{2}\right\|_{F}^{2} \\
& E_{n} \leq\left\|\Sigma_{1}\right\|_{F}^{2}+\left\|\Sigma_{2}\right\|_{F}^{2} . \tag{A.60}
\end{align*}
$$

Furthermore, we know that $\Theta_{n} \geq c\|\mu\|^{2}$ under the null by Lemma A.8, for an absolute constant $c>0$. Combining this with A.59) and A.60 completes the proof.

A. 14 Proof of Lemma A. 10

Define

$$
\begin{aligned}
& V_{1}=2 \sum_{k=1}^{K} \sum_{i \in S_{k}} \sum_{j=1}^{p}\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right)^{2}\left[\frac{N_{i} X_{i j}^{2}}{N_{i}-1}-\frac{N_{i} X_{i j}\left(N_{i}-X_{i j}\right)}{\left(N_{i}-1\right)^{2}}\right] \\
& V_{2}=\frac{2}{n^{2} \bar{N}^{2}} \sum_{1 \leq k \neq \ell \leq K} \sum_{i \in S_{k}} \sum_{m \in S_{\ell}} \sum_{j=1}^{p} X_{i j} X_{m j} \\
& V_{3}=2 \sum_{k=1}^{K} \sum_{\substack{i \in S_{k}, m \in S_{k}, i \neq m}} \sum_{j=1}^{p}\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right)^{2} X_{i j} X_{m j} .
\end{aligned}
$$

Observe that $V_{1}+V_{2}+V_{3}=V$. Also define

$$
\begin{align*}
& A_{11}=\sum_{i} \sum_{r=1}^{N_{i}} \sum_{j}\left[\frac{4 \theta_{i} \Omega_{i j}}{N_{i}}\right] Z_{i j r} \tag{A.61}\\
& A_{12}=2 \sum_{i} \sum_{r=1}^{N_{i}} \sum_{j}\left[\sum_{m \in[n] \backslash\{i\}} \alpha_{i m} N_{m} \Omega_{m j}\right] Z_{i j r} \tag{A.62}
\end{align*}
$$

and observe that $A_{11}+A_{12}=A_{1}$.
First, we derive the decomposition of V_{1}. Recall that

$$
\begin{equation*}
Y_{i j}:=\frac{X_{i j}}{N_{i}}-\Omega_{i j}=\frac{1}{N_{i}} \sum_{r=1}^{N_{i}} Z_{i j r}, \quad Q_{i j}:=Y_{i j}^{2}-\mathbb{E} Y_{i j}^{2}=Y_{i j}^{2}-\frac{\Omega_{i j}\left(1-\Omega_{i j}\right)}{N_{i}} . \tag{A.63}
\end{equation*}
$$

With these notations, $X_{i j}=N_{i}\left(\Omega_{i j}+Y_{i j}\right)$ and $N_{i} Y_{i j}^{2}=N_{i} Q_{i j}+\Omega_{i j}\left(1-\Omega_{i j}\right)$.

Write

$$
\begin{equation*}
V_{1}=2 \sum_{i=1}^{n} \sum_{i=1}^{n} \frac{\theta_{i}}{N_{i}} \Delta_{i j}, \quad \text { where } \quad \Delta_{i j}:=\frac{X_{i j}^{2}}{N_{i}}-\frac{X_{i j}\left(N_{i}-X_{i j}\right)}{N_{i}\left(N_{i}-1\right)} . \tag{A.64}
\end{equation*}
$$

Note that $X_{i j}=N_{i}\left(\Omega_{i j}+Y_{i j}\right)$ and $Y_{i j}^{2}=Q_{i j}+N_{i}^{-1} \Omega_{i j}\left(1-\Omega_{i j}\right)$. It follows that

$$
\frac{X_{i j}^{2}}{N_{i}}=N_{i} \Omega_{i j}^{2}+2 N_{i} \Omega_{i j} Y_{i j}+N_{i} Q_{i j}+\Omega_{i j}\left(1-\Omega_{i j}\right) .
$$

In A.32), we have shown that $Q_{i j}=\left(1-2 \Omega_{i j}\right) \frac{Y_{i j}}{N_{i}}+\frac{1}{N_{i}^{2}} \sum_{1 \leq r \neq s \leq N_{i}} Z_{i j r} Z_{i j s}$. It follows that

$$
\frac{X_{i j}^{2}}{N_{i}}=N_{i} \Omega_{i j}^{2}+2 N_{i} \Omega_{i j} Y_{i j}+\left(1-2 \Omega_{i j}\right) Y_{i j}+\frac{1}{N_{i}} \sum_{1 \leq r \neq s \leq N_{i}} Z_{i j r} Z_{i j s}+\Omega_{i j}\left(1-\Omega_{i j}\right)
$$

Additionally, by (A.33),

$$
\frac{X_{i j}\left(N_{i j}-X_{i j}\right)}{N_{i}\left(N_{i}-1\right)}=\Omega_{i j}\left(1-\Omega_{i j}\right)+\left(1-2 \Omega_{i j}\right) Y_{i j}-\frac{1}{N_{i}\left(N_{i}-1\right)} \sum_{1 \leq r \neq s \leq N_{i}} Z_{i j r} Z_{i j s} .
$$

Combining the above gives

$$
\begin{align*}
& \Delta_{i j}=N_{i} \Omega_{i j}^{2}+2 N_{i} \Omega_{i j} Y_{i j}+\frac{1}{N_{i}-1} \sum_{1 \leq r \neq s \leq N_{i}} Z_{i j r} Z_{i j s} \\
& =N_{i} \Omega_{i j}^{2}+2 \Omega_{i j} \sum_{r=1}^{N_{i}} Z_{i j r}+\frac{1}{N_{i}-1} \sum_{1 \leq r \neq s \leq N_{i}} Z_{i j r} Z_{i j s} . \tag{A.65}
\end{align*}
$$

Recall the definition of $\Theta_{n 2}$ in (A.7), A_{2} in A.19), and A_{11} in A.61). We have

$$
\begin{align*}
V_{1} & =2 \sum_{k, i \in S_{k}} \sum_{j} \frac{\theta_{i}}{N_{i}}\left[N_{i} \Omega_{i j}^{2}+2 \Omega_{i j} \sum_{r=1}^{N_{i}} Z_{i j r}+\frac{1}{N_{i}-1} \sum_{1 \leq r \neq s \leq N_{i}} Z_{i j r} Z_{i j s}\right] \\
& =\Theta_{n 2}+\sum_{k, i \in S_{k}} \sum_{j} \frac{4 \theta_{i} \Omega_{i j}}{N_{i}} \sum_{r=1}^{N_{i}} Z_{i j r}+\sum_{k, i \in S_{k}} \sum_{j} \frac{2 \theta_{i}}{N_{i}\left(N_{i}-1\right)} \sum_{1 \leq r \neq s \leq N_{i}} Z_{i j r} Z_{i j s} \\
& =\Theta_{n 2}+A_{11}+A_{2} \tag{A.66}
\end{align*}
$$

Next, we have

$$
\begin{aligned}
V_{2}+V_{3} & =\sum_{i \neq m} \alpha_{i m} N_{i} N_{m} \sum_{j}\left[\left(Y_{i j}+\Omega_{i j}\right)\left(Y_{m j}+\Omega_{m j}\right)\right] \\
& =\sum_{i \neq m} \alpha_{i m} N_{i} N_{m} \sum_{j} Y_{i j} Y_{m j}+2 \sum_{i \neq m} \alpha_{i m} N_{i} N_{m} \sum_{j} Y_{i j} \Omega_{m j}+\sum_{i \neq m} \alpha_{i m} N_{i} N_{m} \sum_{j} \Omega_{i j} \Omega_{m j} \\
& =\sum_{i \neq m} \sum_{r=1}^{N_{i}} \sum_{s=1}^{N_{m}} \alpha_{i m}\left(\sum_{j} Z_{i j r} Z_{m j s}\right)+2 \sum_{i} \sum_{r=1}^{N_{i}} \sum_{j}\left[\sum_{m \in[n] \backslash i\}} \alpha_{i m} N_{m} \Omega_{m j}\right] Z_{i j r}+\Theta_{n 3}+\Theta_{n 4} \\
& =A_{3}+A_{12}+\Theta_{n 3}+\Theta_{n 4} .
\end{aligned}
$$

Hence

$$
A_{1}+A_{2}+A_{3}+\Theta_{n 2}+\Theta_{n 3}+\Theta_{n 4}=V,
$$

which verifies A.21. By inspection, we also see that $\mathbb{E} A_{b}=0$ for $b \in\{1,2,3\}$. That A_{1}, A_{2}, A_{3} are mutually uncorrelated follows immediately from the linearity of expectation and the fact that the random variables $\left\{Z_{i j r}\right\}_{i, r} \cup\left\{Z_{i j r} Z_{m j s}\right\}_{(i, r) \neq(m, s)}$ are mutually uncorrelated.

A. 15 Proof of Lemma A. 11

Define

$$
\begin{equation*}
\gamma_{i r j}=\frac{4 \theta_{i} \Omega_{i j}}{N_{i}}+\sum_{m \in[n] \backslash\{i\}} 2 \alpha_{i m} N_{m} \Omega_{m j} \tag{A.67}
\end{equation*}
$$

and recall that $A_{1}=\sum_{i} \sum_{r \in\left[N_{i}\right]} \sum_{j} \gamma_{i r j} Z_{i j r}$. First we develop a bound on $\gamma_{i r j}$. Suppose that $i \in S_{k}$. Then we have

$$
\begin{aligned}
\gamma_{i r j} & \lesssim \frac{N_{i} \Omega_{i j}}{n_{k}^{2} \bar{N}_{k}^{2}}+\sum_{m \in S_{k}, m \neq i} \frac{N_{m} \Omega_{m j}}{n_{k}^{2} \bar{N}_{k}^{2}}+\sum_{k^{\prime} \in[K] \backslash\{k\}} \sum_{m \in S_{k^{\prime}}} \frac{N_{m} \Omega_{m j}}{n^{2} \bar{N}^{2}} \\
& \lesssim \frac{\mu_{k j}}{n_{k} \bar{N}_{k}}+\frac{\mu_{j}}{n \bar{N}} .
\end{aligned}
$$

Next using properties of the covariance matrix of a multinomial vector, we have

$$
\begin{align*}
\operatorname{Var}\left(A_{1}\right) & =\sum_{i, r \in\left[N_{i}\right]} \operatorname{Var}\left(\gamma_{i r:}^{\prime} Z_{i: r}\right)=\sum_{i, r \in\left[N_{i}\right]} \gamma_{i r:}^{\prime} \operatorname{Cov}\left(Z_{i: r}\right) \gamma_{i r:} \\
& \leq \sum_{i, r \in\left[N_{i}\right]} \gamma_{i r:}^{\prime} \operatorname{diag}\left(\Omega_{i:}\right) \gamma_{i r:}=\sum_{i, r \in\left[N_{i}\right]} \sum_{j} \Omega_{i j} \gamma_{i r j}^{2} \\
& \lesssim \sum_{k, j}\left(\frac{\mu_{k j}}{n_{k} \bar{N}_{k}}+\frac{\mu_{j}}{n \bar{N}}\right)^{2} \sum_{i \in S_{k}, r \in\left[N_{i}\right]} \Omega_{i j} \\
& \lesssim \sum_{k, j}\left(\frac{\mu_{k j}}{n_{k} \bar{N}_{k}}\right)^{2} n_{k} \overline{N_{k}} \mu_{k j}+\sum_{k, j}\left(\frac{\mu_{j}}{n \bar{N}}\right)^{2} n_{k} \bar{N}_{k} \mu_{k j} \\
& =\left(\sum_{k} \frac{\left\|\mu_{k}\right\|_{3}^{3}}{n_{k} \bar{N}_{k}}\right)+\frac{\|\mu\|_{3}^{3}}{n \bar{N}} \lesssim \sum_{k} \frac{\left\|\mu_{k}\right\|_{3}^{3}}{n_{k} \bar{N}_{k}} \tag{A.68}
\end{align*}
$$

which proves the first claim. The last inequality follows because by Jensen's inequality (noting that the function $x \mapsto x^{3}$ is convex for $x \geq 0$),

$$
\|\mu\|_{3}^{3}=\sum_{j}\left(\sum_{k}\left(\frac{n_{k} \bar{N}_{k}}{n \bar{N}}\right) \mu_{k j}\right)^{3} \leq \sum_{j} \sum_{k}\left(\frac{n_{k} \bar{N}_{k}}{n \bar{N}}\right) \mu_{k j}^{3} \leq \sum_{k}\left\|\mu_{k}\right\|_{3}^{3} .
$$

Next observe that

$$
\begin{equation*}
A_{2}=\sum_{i} \sum_{r \neq s} \frac{2 \theta_{i}}{N_{i}\left(N_{i}-1\right)} W_{i r s} \tag{A.69}
\end{equation*}
$$

where recall $W_{i r s}=\sum_{j} Z_{i j r} Z_{i j s}$. Also recall that $W_{i r s}$ and $W_{i^{\prime} r^{\prime} s^{\prime}}$ are uncorrelated unless $i=i^{\prime}$ and $\{r, s\}=\left\{r^{\prime}, s^{\prime}\right\}$. By A.42,

$$
\begin{align*}
\operatorname{Var}\left(A_{2}\right) & =\sum_{i} \sum_{r \neq s} \frac{4 \theta_{i}^{2}}{N_{i}^{2}\left(N_{i}-1\right)^{2}} \operatorname{Var}\left(W_{i r s}\right) \\
& \lesssim \sum_{i} \sum_{r \neq s} \frac{4 \theta_{i}^{2}}{N_{i}^{2}\left(N_{i}-1\right)^{2}}\left\|\Omega_{i}\right\|^{2} \\
& \lesssim \sum_{k} \sum_{i \in S_{k}} \cdot\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right)^{4} \frac{N_{i}^{6}}{\left(N_{i}-1\right)^{2}} \cdot \frac{1}{N_{i}\left(N_{i}-1\right)}\left\|\Omega_{i}\right\|^{2} \\
& \lesssim \sum_{k} \sum_{i \in S_{k}} \frac{N_{i}^{2}}{n_{k}^{4} \bar{N}_{k}^{4}}\left\|\Omega_{i}\right\|^{2} \tag{A.70}
\end{align*}
$$

Also observe that

$$
\begin{aligned}
\sum_{k} \frac{1}{n_{k}^{4} \bar{N}_{k}^{4}} \sum_{i \in S_{k}} N_{i}^{2}\left\|\Omega_{i}\right\|_{2}^{2} & \leq \sum_{k} \frac{1}{n_{k}^{2} \bar{N}_{k}^{2}} \sum_{i, m \in S_{k}}\left\langle\left(\frac{N_{i}}{n_{k} \bar{N}_{k}}\right) \Omega_{i},\left(\frac{N_{m}}{n_{m} \bar{N}_{m}}\right) \Omega_{m}\right\rangle \\
& =\sum_{k} \frac{1}{n_{k}^{2} \bar{N}_{k}^{2}}\left\|\mu_{k}\right\|^{2}
\end{aligned}
$$

This establishes the second claim.
Last we study A_{3}. Observe that

$$
A_{3}=\sum_{i \neq m} \sum_{r=1}^{N_{i}} \sum_{s=1}^{N_{m}} \alpha_{i m} V_{i r m s}
$$

where recall $V_{i r m s}=\sum_{j} Z_{i j r} Z_{m j s}$. Recall that $V_{i r m s}$ and $V_{i^{\prime} r^{\prime} m^{\prime} s^{\prime}}$ are uncorrelated unless $(r, s)=\left(r^{\prime}, s^{\prime}\right)$ and $\{i, m\}=\left\{i^{\prime}, m^{\prime}\right\}$.By A.43),

$$
\begin{align*}
\operatorname{Var}\left(A_{3}\right) & \lesssim \sum_{i \neq m} \alpha_{i m}^{2} N_{i} N_{m} \sum_{j} \Omega_{i j} \Omega_{m j} \\
& \lesssim \sum_{k} \sum_{i \neq m \in S_{k}} \frac{1}{n_{k}^{4} \bar{N}_{k}^{4}}\left\langle N_{i} \Omega_{i}, N_{m} \Omega_{m}\right\rangle+\sum_{k \neq \ell} \sum_{i \in S_{k}, m \in S_{\ell}} \frac{1}{n^{4} \bar{N}^{4}}\left\langle N_{i} \Omega_{i}, N_{m} \Omega_{m}\right\rangle \\
& \lesssim \sum_{k} \frac{\left\|\mu_{k}\right\|^{2}}{n_{k}^{2} \bar{N}_{k}^{2}}+\sum_{k, \ell} \frac{1}{n^{4} \bar{N}^{4}}\left\langle n_{k} \bar{N}_{k} \mu_{k}, n_{\ell} \bar{N}_{\ell} \mu_{\ell}\right\rangle \\
& \lesssim \sum_{k} \frac{\left\|\mu_{k}\right\|^{2}}{n_{k}^{2} \bar{N}_{k}^{2}}+\frac{\|\mu\|^{2}}{n^{2} \bar{N}^{2}} \lesssim \sum_{k} \frac{\left\|\mu_{k}\right\|^{2}}{n_{k}^{2} \bar{N}_{k}^{2}} \tag{A.71}
\end{align*}
$$

In the last line we use that $\|\mu\|^{2} \leq 2 \sum\left\|\mu_{k}\right\|^{2}$ as shown in A.49. This proves all required claims.

A. 16 Proof of Proposition A. 1

Under the null hypothesis, we have $\Theta_{n 1} \equiv 0$. Thus, $\mathbb{E} V=\Theta_{n}$ under the null by Lemma A.10. Under (3.1), we have $\operatorname{Var}(T)=[1+o(1)] \Theta_{n}$. Therefore,

$$
\begin{equation*}
\mathbb{E} V=[1+o(1)] \operatorname{Var}(T), \tag{A.72}
\end{equation*}
$$

so V is asymptotically unbiased under the null. Furthermore, by Lemma A.6, we have

$$
\begin{equation*}
\Theta_{n} \asymp K\|\mu\|^{2} . \tag{A.73}
\end{equation*}
$$

In Lemma A.11, we showed that

$$
\operatorname{Var}\left(A_{2}\right) \lesssim \sum_{k} \sum_{i \in S_{k}} \frac{N_{i}^{2}\left\|\Omega_{i}\right\|_{2}^{2}}{n_{k}^{4} \bar{N}_{k}^{4}}
$$

We conclude by Lemma A. 11 that under the null

$$
\begin{equation*}
\operatorname{Var}(V) \lesssim \sum_{k} \frac{\|\mu\|^{2}}{n_{k}^{2} \bar{N}_{k}^{2}} \vee \sum_{k} \frac{\|\mu\|_{3}^{3}}{n_{k} \bar{N}_{k}} . \tag{A.74}
\end{equation*}
$$

By Chebyshev's inequality, A.73, A.74, and assumption A.22) of the theorem statement, we have

$$
\frac{|V-\mathbb{E} V|}{\operatorname{Var}(T)} \asymp \frac{|V-\mathbb{E} V|}{K\|\mu\|^{2}}=o_{\mathbb{P}}(1) .
$$

Thus by A.72,

$$
\frac{V}{\operatorname{Var}(T)}=\frac{(V-\mathbb{E} V)}{\operatorname{Var}(T)}+\frac{\mathbb{E} V}{\operatorname{Var}(T)}=o_{\mathbb{P}}(1)+[1+o(1)],
$$

as desired.

A. 17 Proof of Lemma A. 12

By Lemmas A. 1 A.5, we have

$$
\begin{equation*}
\operatorname{Var}(T)=\sum_{a=1}^{4} \operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{a}\right) \geq\left(\sum_{a=2}^{4} \Theta_{n a}\right)-\left(A_{n}+B_{n}+E_{n}\right) . \tag{A.75}
\end{equation*}
$$

Using that $\max _{i}\left\|\Omega_{i}\right\|_{\infty} \leq 1-c_{0}$, we have $\left\|\Omega_{i}\right\|^{3} \leq\left(1-c_{0}\right)\left\|\Omega_{i}\right\|^{2}$, which implies that

$$
\begin{equation*}
A_{n} \leq\left(1-c_{0}\right) \Theta_{n 2} . \tag{A.76}
\end{equation*}
$$

Again using $\max _{i}\left\|\Omega_{i}\right\|_{\infty} \leq 1-c_{0}$, as well as $\sum_{j^{\prime}} \Omega_{i j^{\prime}}=1$, we have

$$
\begin{align*}
B_{n} & =\frac{2}{n^{2} \bar{N}^{2}} \sum_{k \neq \ell} \sum_{i \in S_{k}} \sum_{m \in S_{\ell}} \sum_{j, j^{\prime}} N_{i} N_{m} \Omega_{i j} \Omega_{i j^{\prime}} \Omega_{m j} \Omega_{m j^{\prime}} \\
& \leq\left(1-c_{0}\right) \cdot \frac{2}{n^{2} \bar{N}^{2}} \sum_{k \neq \ell} \sum_{i \in S_{k}} \sum_{m \in S_{\ell}} \sum_{j, j^{\prime}} N_{i} N_{m} \Omega_{i j} \Omega_{i j^{\prime}} \Omega_{m j} \\
& =\left(1-c_{0}\right) \cdot \frac{2}{n^{2} \bar{N}^{2}} \sum_{k \neq \ell} \sum_{i \in S_{k}} \sum_{m \in S_{\ell}} \sum_{j} N_{i} N_{m} \Omega_{i j} \Omega_{m j} \\
& \leq\left(1-c_{0}\right) \cdot \Theta_{n 3} . \tag{A.77}
\end{align*}
$$

Similarly to control E_{n}, we again use $\max _{i}\left\|\Omega_{i}\right\|_{\infty} \leq 1-c_{0}$ and obtain

$$
\begin{align*}
E_{n} & =2 \sum_{k} \sum_{\substack{i \in S_{k}, m \in S_{k} \\
i \neq m}} \sum_{\substack{1 \leq j, j^{\prime} \leq p}}\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right)^{2} N_{i} N_{m} \Omega_{i j} \Omega_{i j^{\prime}} \Omega_{m j} \Omega_{m j^{\prime}} \\
& \leq\left(1-c_{0}\right) \cdot 2 \sum_{k} \sum_{\substack{i \in S_{k}, m \in S_{k}, i \neq m}} \sum_{1 \leq j, j^{\prime} \leq p}\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right)^{2} N_{i} N_{m} \Omega_{i j} \Omega_{i j^{\prime}} \Omega_{m j} \\
& \leq\left(1-c_{0}\right) \cdot 2 \sum_{k} \sum_{\substack{i \in S_{k}, m \in S_{k}, i \neq m}} \sum_{\substack{\leq j \leq p}}\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right)^{2} N_{i} N_{m} \Omega_{i j} \Omega_{m j} \\
& \leq\left(1-c_{0}\right) \cdot \Theta_{n 4} . \tag{A.78}
\end{align*}
$$

Combining A.75, A.76, A.77, and A.78) finishes the proof.

A. 18 Proof of Proposition A. 2

By Lemmas A. 6 and A. 12 ,

$$
\begin{equation*}
\operatorname{Var}(T) \gtrsim \Theta_{n 2}+\Theta_{n 3}+\Theta_{n 4} \gtrsim \sum_{k}\left\|\mu_{k}\right\|^{2} \tag{A.79}
\end{equation*}
$$

By Lemma A.11,

$$
\begin{equation*}
\operatorname{Var}(V) \lesssim \sum_{k} \frac{\left\|\mu_{k}\right\|^{2}}{n_{k}^{2} \bar{N}_{k}^{2}} \vee \sum_{k} \frac{\left\|\mu_{k}\right\|_{3}^{3}}{n_{k} \bar{N}_{k}} \tag{A.80}
\end{equation*}
$$

Using a similar argument based on Chebyshev's inequality as in the proof of Proposition A. 1 and applying A.79 and A.80, we have

$$
\begin{equation*}
\frac{|V-\mathbb{E} V|}{\operatorname{Var}(T)} \gtrsim \frac{|V-\mathbb{E} V|}{\sum_{k}\left\|\mu_{k}\right\|^{2}}=o_{\mathbb{P}}(1) . \tag{A.81}
\end{equation*}
$$

Next, by Lemma A. 10 and A.79,

$$
\begin{equation*}
\mathbb{E} V=\Theta_{n 2}+\Theta_{n 3}+\Theta_{n 4} \lesssim \operatorname{Var}(T) \tag{A.82}
\end{equation*}
$$

Combining A.81) and A.82 finishes the proof.

A. 19 Proof of Proposition A. 5

From the proof of Lemma A.10, we have

$$
V^{*}=V_{1}=\Theta_{n 2}+A_{11}+A_{2},
$$

and the terms on the right-hand-side are mutually uncorrelated. From A.68, we have

$$
\operatorname{Var}\left(A_{11}\right) \lesssim \sum_{i} \frac{\left\|\Omega_{i}\right\|_{3}^{3}}{N_{i}}
$$

$$
\operatorname{Var}\left(A_{2}\right) \lesssim \sum_{i} \frac{\left\|\Omega_{i}\right\|^{2}}{N_{i}^{2}}
$$

Hence

$$
\begin{align*}
\mathbb{E} V^{*} & =\Theta_{n 2} \\
\operatorname{Var}\left(V^{*}\right) & \lesssim \sum_{i} \frac{\left\|\Omega_{i}\right\|_{3}^{3}}{N_{i}} \vee \sum_{i} \frac{\left\|\Omega_{i}\right\|^{2}}{N_{i}^{2}} . \tag{A.83}
\end{align*}
$$

Since $K=n$ and the null hypothesis holds, we have $\Theta_{n 1} \equiv \Theta_{n 4} \equiv 0$. Moreover, by (A.48), we have

$$
\Theta_{n 3} \lesssim\|\mu\|^{2} \ll \Theta_{n 2} \asymp n\|\mu\|^{2} .
$$

It follows that

$$
\begin{equation*}
\operatorname{Var}(T)=[1+o(1)] \Theta_{n 2} \asymp n\|\mu\|^{2} \tag{A.84}
\end{equation*}
$$

Thus by A.83 and Chebyshev's inequality, we have

$$
\frac{V^{*}}{\operatorname{Var}(T)}=\frac{V^{*}-\mathbb{E} V^{*}}{\operatorname{Var}(T)}+\frac{\mathbb{E} V^{*}}{\operatorname{Var}(T)}=o_{\mathbb{P}}(1)+1+o(1),
$$

as desired.

A. 20 Proof of Proposition A. 6

By Lemmas A. 6 and A.12,

$$
\begin{equation*}
\operatorname{Var}(T) \gtrsim \Theta_{n 2}+\Theta_{n 3} \gtrsim \sum_{i}\left\|\Omega_{i}\right\|^{2} \tag{A.85}
\end{equation*}
$$

By A.83),

$$
\begin{equation*}
\operatorname{Var}\left(V^{*}\right) \lesssim \sum_{i} \frac{\left\|\Omega_{i}\right\|^{2}}{N_{i}^{2}} \vee \sum_{i} \frac{\left\|\Omega_{i}\right\|_{3}^{3}}{N_{i}} \tag{A.86}
\end{equation*}
$$

Using a similar argument based on Chebyshev's inequality as in the proof of Proposition A. 1 and applying A.85 and A.86, we have

$$
\begin{equation*}
\frac{\left|V^{*}-\mathbb{E} V^{*}\right|}{\operatorname{Var}(T)} \gtrsim \frac{\left|V^{*}-\mathbb{E} V^{*}\right|}{\sum_{i}\left\|\Omega_{i}\right\|^{2}}=o_{\mathbb{P}}(1) \tag{A.87}
\end{equation*}
$$

Next, by Lemma A. 10 and A.85,

$$
\begin{equation*}
\mathbb{E} V^{*}=\Theta_{n 2} \lesssim \operatorname{Var}(T) . \tag{A.88}
\end{equation*}
$$

Combining A.81 and A.88 finishes the proof.

B Proofs of asymptotic normality results

The goal of this section is to prove Theorems 3.1 and 3.2. The argument relies on the martingale central limit theorem and the lemmas stated below. As a preliminary, we describe a martingale decomposition of T under the null.

Define

$$
U=\mathbf{1}_{p}^{\prime}\left(U_{3}+U_{4}\right), \quad \text { and } \quad S=\mathbf{1}_{p}^{\prime} U_{2}
$$

By Lemma A.1, we have $T=U+S$ under the null hypothesis. It holds that

$$
\begin{equation*}
U=\sum_{i<i^{\prime}} \sigma_{i, i^{\prime}} \sum_{r=1}^{N_{i}} \sum_{s=1}^{N_{i^{\prime}}}\left(\sum_{j} Z_{i j r} Z_{i^{\prime} j s}\right) . \tag{B.1}
\end{equation*}
$$

where we define

$$
\sigma_{i, i^{\prime}}= \begin{cases}2\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right) & \text { if } i, i^{\prime} \in S_{k} \text { for some } k \\ -\frac{2}{n \bar{N}} & \text { else. }\end{cases}
$$

Define a sequence of random variables

$$
\begin{equation*}
D_{\ell, s}=\sum_{i \in[\ell-1]} \sigma_{i, \ell} \sum_{r=1}^{N_{i}} \sum_{j} Z_{i j r} Z_{\ell j s} \tag{B.2}
\end{equation*}
$$

indexed by $(\ell, s) \in\{(i, r)\}_{1 \leq i \leq n, 1 \leq r \leq N_{i}}$, where these tuples are placed in lexicographical order. Precisely, we define

$$
\left(\ell_{1}, s_{1}\right) \prec\left(\ell_{2}, s_{2}\right)
$$

if either

- $\ell_{1}<\ell_{2}$, or
- $\ell_{1}=\ell_{2}$ and $s_{1}<s_{2}$.

Observe that

$$
\sum_{\ell, s} D_{\ell, s}=U .
$$

Next define $\mathcal{F}_{\prec(\ell, s)}$ to be the σ-field generated by $\left\{Z_{i: r}\right\}_{(i, r) \prec(\ell, s)}$. Observe that

$$
\mathbb{E}\left[D_{\ell, s} \mid \mathcal{F}_{\prec(\ell, s)}\right]=0,
$$

and hence $\left\{D_{\ell, s}\right\}$ is a martingale difference sequence. Turning to S, we have

$$
\begin{equation*}
S=\sum_{i=1}^{n} \sigma_{i} \sum_{r<s} \sum_{j} Z_{i j r} Z_{i j s} \tag{B.3}
\end{equation*}
$$

where we define

$$
\sigma_{i}=2\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right) \frac{N_{i}}{N_{i}-1}
$$

if $i \in S_{k}$. Define

$$
\begin{equation*}
E_{\ell, s}=\sigma_{\ell} \sum_{r \in[s-1]} \sum_{j} Z_{\ell j r} Z_{\ell j s} . \tag{B.4}
\end{equation*}
$$

Note that $E_{\ell, 1}=0$. Order (ℓ, s) lexicographically as above, and recall that $\mathcal{F}_{\prec(\ell, s)}$ is the σ-field generated by $\left\{Z_{i: r}\right\}_{(i, r)} \prec(\ell, s)$. Observe that

$$
\mathbb{E}\left[E_{\ell, s} \mid \mathcal{F}_{\prec(\ell, s)}\right]=0,
$$

and hence $\left\{E_{\ell, s}\right\}$ is a martingale difference sequence. We have

$$
\sum_{(\ell, s)} \sigma_{\ell} \sum_{r \in[s-1]} \sum_{j} Z_{\ell j r} Z_{\ell j s}=\sum_{\ell=1}^{n} \sum_{s=1}^{N_{\ell}} \sigma_{\ell} \sum_{r \in[s-1]} \sum_{j} Z_{\ell j r} Z_{\ell j s}=S .
$$

Define

$$
\begin{equation*}
\mathcal{M}_{\ell, s}=D_{\ell, s}+E_{\ell, s}, \quad \widetilde{\mathcal{M}}_{\ell, s}=\frac{\mathcal{M}_{\ell, s}}{\sqrt{\operatorname{Var}(T)}} \tag{B.5}
\end{equation*}
$$

Thus we obtain the martingale decomposition:

$$
\begin{equation*}
T=U+S=\sum_{(\ell, s)}\left[D_{\ell, s}+E_{\ell, s}\right]=\sum_{(\ell, s)} \mathcal{M}_{\ell, s} . \tag{B.6}
\end{equation*}
$$

The technical results below are crucial to the proof of Theorem 3.1 given in Section B.1. Theorem 3.2 then follows easily from Theorem 3.1 and Theorem A.1.

Lemma B.1. Let $\widetilde{\mathcal{M}}_{\ell, s}$ be defined as in B.5). It holds that

$$
\mathbb{E}\left[\sum_{(\ell, s)} \operatorname{Var}\left(\widetilde{\mathcal{M}}_{\ell, s} \mid \mathcal{F}_{\prec(\ell, s)}\right)\right]=1 .
$$

Lemma B.2. Suppose that $\min N_{i} \geq 2$ and $\max \left\|\Omega_{i}\right\|_{\infty} \leq 1-c_{0}$. Under the null hypothesis, it holds that

$$
\operatorname{Var}\left(\sum_{(\ell, s)} \operatorname{Var}\left(D_{\ell, s} \mid \mathcal{F}_{\prec(\ell, s)}\right)\right) \lesssim\left(\sum_{k} \frac{1}{n_{k} \bar{N}_{k}}\right)\|\mu\|_{3}^{3}+K\|\mu\|_{4}^{4} .
$$

Lemma B.3. Suppose that $\min N_{i} \geq 2$ and $\max \left\|\Omega_{i}\right\|_{\infty} \leq 1-c_{0}$. Under the null hypothesis, it holds that

$$
\sum_{(\ell, s)} \mathbb{E} D_{\ell, s}^{4} \lesssim\left(\sum_{k} \frac{1}{n_{k}^{2} \bar{N}_{k}^{2}}\right)\|\mu\|^{2}+\left(\sum_{k} \frac{1}{n_{k} \bar{N}_{k}}\right)\|\mu\|_{3}^{3}
$$

Lemma B.4. Suppose that $\min N_{i} \geq 2$ and and $\max \left\|\Omega_{i}\right\|_{\infty} \leq 1-c_{0}$. Then we have

$$
\begin{equation*}
\operatorname{Var}\left(\sum_{(\ell, s)} \operatorname{Var}\left(\tilde{E}_{\ell, s} \mid \mathcal{F}_{\prec(\ell, s)}\right)\right) \lesssim \sum_{k} \sum_{i \in S_{k}} \frac{N_{i}^{3}\left\|\Omega_{i}\right\|_{3}^{3}}{n_{k}^{4} \bar{N}_{k}^{4}} \vee \sum_{k} \sum_{i \in S_{k}} \frac{N_{i}^{4}\left\|\Omega_{i}\right\|_{4}^{4}}{n_{k}^{4} \bar{N}_{k}^{4}} \tag{B.7}
\end{equation*}
$$

Lemma B.5. Suppose that $\min N_{i} \geq 2$ and and $\max \left\|\Omega_{i}\right\|_{\infty} \leq 1-c_{0}$. Then we have

$$
\sum_{(\ell, s)} \mathbb{E} E_{\ell, s}^{4} \lesssim \sum_{k} \sum_{i \in S_{k}} \frac{N_{i}^{2}\left\|\Omega_{i}\right\|^{2}}{n_{k}^{4} \bar{N}_{k}^{4}} \vee \sum_{k} \sum_{i \in S_{k}} \frac{N_{i}^{3}\left\|\Omega_{i}\right\|_{3}^{3}}{n_{k}^{4} \bar{N}_{k}^{4}}
$$

Lemma B.6. Under either the null or alternative, it holds that

$$
\begin{aligned}
& \sum_{k} \sum_{i \in S_{k}} \frac{N_{i}^{2}\left\|\Omega_{i}\right\|^{2}}{n_{k}^{4} \bar{N}_{k}^{4}} \leq \sum_{k} \frac{1}{n_{k}^{2} \bar{N}_{k}^{2}}\left\|\mu_{k}\right\|^{2} \\
& \sum_{k} \sum_{i \in S_{k}} \frac{N_{i}^{3}\left\|\Omega_{i}\right\|_{3}^{3}}{n_{k}^{4} \bar{N}_{k}^{4}} \leq \sum_{k} \frac{1}{n_{k} \bar{N}_{k}}\left\|\mu_{k}\right\|_{3}^{3} \\
& \sum_{k} \sum_{i \in S_{k}} \frac{N_{i}^{4}\left\|\Omega_{i}\right\|_{4}^{4}}{n_{k}^{4} \bar{N}_{k}^{4}} \leq \sum_{k}\left\|\mu_{k}\right\|_{4}^{4}
\end{aligned}
$$

B. 1 Proof of Theorem 3.1

By the martingale central limit theorem (see e.g. Hall and Heyde (2014]), we have that $T / \sqrt{\operatorname{Var}(T)} \Rightarrow N(0,1)$ if the following conditions are satisfied:

$$
\begin{align*}
& \sum_{(\ell, s)} \operatorname{Var}\left(\widetilde{\mathcal{M}}_{\ell, s} \mid \mathcal{F}_{\prec(\ell, s)}\right) \xrightarrow{\mathbb{P}} 1 \tag{B.8}\\
& \sum_{(\ell, s)} \mathbb{E}\left[\widetilde{\mathcal{M}}_{\ell, s}^{2} \mathbf{1}_{\left|\widetilde{\mathcal{M}}_{\ell, s}\right|>\varepsilon} \mid \mathcal{F}_{\prec(\ell, s)}\right] \xrightarrow{\mathbb{P}} 0, \quad \text { for any } \varepsilon>0 . \tag{B.9}
\end{align*}
$$

It is known that (B.9), which is a Lindeberg-type condition, is implied by the Lyapunov-type condition

$$
\begin{equation*}
\sum_{(\ell, s)} \mathbb{E} \widetilde{\mathcal{M}}_{\ell, s}^{4}=o(1) . \tag{B.10}
\end{equation*}
$$

See e.g. Jin et al. 2018.
Since (3.1) holds,

$$
\begin{equation*}
\operatorname{Var}(T) \gtrsim \Theta=\Theta_{n 2}+\Theta_{n 3}+\Theta_{n 4} \gtrsim K\|\mu\|^{2} \tag{B.11}
\end{equation*}
$$

Recall that

$$
\widetilde{\mathcal{M}}_{\ell, s}=\frac{\mathcal{M}_{\ell, s}}{\operatorname{Var}(T)}=\frac{D_{\ell, s}+E_{\ell, s}}{\operatorname{Var}(T)},
$$

Note that (B.8) holds if

$$
\begin{align*}
\mathbb{E}\left[\operatorname{Var}\left(\widetilde{\mathcal{M}}_{\ell, s} \mid \mathcal{F}_{\prec(\ell, s)}\right)\right] \rightarrow 1, \text { and } \tag{B.12}\\
\operatorname{Var}\left(\operatorname{Var}\left(\widetilde{\mathcal{M}}_{\ell, s} \mid \mathcal{F}_{\prec(\ell, s)}\right)\right) \rightarrow 0 . \tag{B.13}
\end{align*}
$$

Recall that ($\overline{\mathrm{B} .12}$) holds by Lemma B.1.

Next note that

$$
\mathbb{E}\left(D_{\ell, s} E_{\ell, s} \mid \mathcal{F}_{\prec(\ell, s)}\right)=0,
$$

by inspection of the expressions for $D_{\ell, s}$ and $E_{\ell, s}$ in ($\overline{\text { B.2 }}$) and ($\left.\overline{\text { B.4 }}\right)$. Therefore

$$
\operatorname{Var}\left(\mathcal{M}_{\ell, s} \mid \mathcal{F}_{\prec(\ell, s)}\right)=\operatorname{Var}\left(D_{\ell, s} \mid \mathcal{F}_{\prec(\ell, s)}\right)+\operatorname{Var}\left(E_{\ell, s} \mid \mathcal{F}_{\prec(\ell, s)}\right) .
$$

Hence by (B.11); Lemmas B.2, B.4, and B.6, and the assumption (3.4), under the null hypothesis, we have

$$
\begin{aligned}
\operatorname{Var}\left(\operatorname{Var}\left(\widetilde{\mathcal{M}}_{\ell, s} \mid \mathcal{F}_{\prec(\ell, s)}\right)\right) & \leq \frac{1}{\operatorname{Var}(T)^{2}}\left[\operatorname{Var}\left(\operatorname{Var}\left(D_{\ell, s} \mid \mathcal{F}_{\prec(\ell, s)}\right)\right)+\operatorname{Var}\left(\operatorname{Var}\left(E_{\ell, s} \mid \mathcal{F}_{\prec(\ell, s)}\right)\right)\right] \\
& \left.\lesssim \frac{1}{K^{2}\|\mu\|^{4}}\left[\left(\sum_{k} \frac{1}{n_{k} \bar{N}_{k}}\right)\|\mu\|_{3}^{3}+K\|\mu\|_{4}^{4}\right)\|\mu\|^{2}\right]=o(1) .
\end{aligned}
$$

This proves (B.13). Thus, ($\bar{B} .12$) and (B.13) are established, which proves (B.8).
Similarly, ($\bar{B} .10$) (and thus (B.9) holds by (B.11); Lemmas ($\bar{B} .3$), (B.5), and ($\bar{B} .6$), and the assumption (3.4). Combining (B.8) and (B.9) verifies the conditions of the martingale central limit theorem, so we conclude that $T / \sqrt{\operatorname{Var}(T)} \Rightarrow N(0,1)$. Since $\operatorname{Var}(T)=[1+$ $o(1)] \Theta_{n}$ by (3.4) and Lemma A.7, the proof is complete.

We record a useful proposition that records the weaker conditions under which $T / \sqrt{\operatorname{Var}(T)}$ is asymptotically normal.

Proposition B.1. Recall that α_{n} is defined as

$$
\begin{equation*}
\alpha_{n}:=\max \left\{\sum_{k=1}^{K} \frac{\left\|\mu_{k}\right\|_{3}^{3}}{n_{k} \bar{N}_{k}}, \quad \sum_{k=1}^{K} \frac{\left\|\mu_{k}\right\|^{2}}{n_{k}^{2} \bar{N}_{k}^{2}}\right\} /\left(\sum_{k=1}^{K}\left\|\mu_{k}\right\|^{2}\right)^{2} \tag{B.14}
\end{equation*}
$$

in (3.2). If under the null hypothesis,

$$
\begin{equation*}
\alpha_{n}=\max \left\{\sum_{k=1}^{K} \frac{\left\|\mu_{k}\right\|_{3}^{3}}{n_{k} \bar{N}_{k}}, \quad \sum_{k=1}^{K} \frac{\left\|\mu_{k}\right\|^{2}}{n_{k}^{2} \bar{N}_{k}^{2}}\right\} /\left(K\|\mu\|^{2}\right)^{2} \rightarrow 0, \quad \text { and } \frac{\|\mu\|_{4}^{4}}{K\|\mu\|^{4}} \rightarrow 0 \tag{B.15}
\end{equation*}
$$

then $T / \sqrt{\operatorname{Var}(T)} \Rightarrow N(0,1)$.

B.1.1 Proof of Theorem 3.2

By our assumptions, Proposition A. 1 holds and $V / \operatorname{Var}(T) \rightarrow 1$. Thus the variance estimate V is consistent under the null. Theorem 3.2 follows immediately from Slutsky's theorem and Theorem 3.1.

B. 2 Proof of Lemma B. 1

By Lemma A.1. S and U are uncorrelated, and it holds that

$$
\begin{equation*}
\operatorname{Var}(T)=\operatorname{Var}(S)+\operatorname{Var}(U) \tag{B.16}
\end{equation*}
$$

Next note that

$$
\mathbb{E}\left(D_{\ell, s} E_{\ell, s} \mid \mathcal{F}_{\prec(\ell, s)}\right)=0,
$$

by inspection of the expressions for $D_{\ell, s}$ and $E_{\ell, s}$ in (B.2) and (B.4). Therefore

$$
\operatorname{Var}\left(\mathcal{M}_{\ell, s} \mid \mathcal{F}_{\prec(\ell, s)}\right)=\operatorname{Var}\left(D_{\ell, s} \mid \mathcal{F}_{\prec(\ell, s)}\right)+\operatorname{Var}\left(E_{\ell, s} \mid \mathcal{F}_{\prec(\ell, s)}\right) .
$$

Observe that

$$
\begin{align*}
\mathbb{E}\left[\sum_{(\ell, s)} \operatorname{Var}\left(E_{\ell, s} \mid \mathcal{F}_{\prec(\ell, s)}\right)\right] & =\sum_{(\ell, s)} \mathbb{E} E_{\ell, s}^{2}=\sum_{(\ell, s)} \sigma_{\ell}^{2} \sum_{r, r^{\prime} \in[s-1]} \sum_{j, j^{\prime}} \mathbb{E}\left[Z_{\ell j r} Z_{\ell j s} Z_{\ell j^{\prime} r^{\prime}} Z_{\ell j^{\prime} s}\right] \\
& =\sum_{(\ell, s)} \sigma_{\ell}^{2} \sum_{r \in[s-1]} \sum_{j, j^{\prime}} \mathbb{E}\left[Z_{\ell j r} Z_{\ell j^{\prime} r} Z_{\ell j s} Z_{\ell j^{\prime} s}\right] \\
& =\sum_{\ell=1}^{n} \sigma_{\ell}^{2} \sum_{s \in\left[N_{\ell}\right]} \sum_{r \in[s-1]} \mathbb{E}\left(\sum_{j} Z_{\ell j r} Z_{\ell j s}\right)^{2} \\
& =\operatorname{Var}(S) . \tag{B.17}
\end{align*}
$$

The last line is obtained noting that S as defined in (B.3) is a sum of uncorrelated terms over (i, r, s).

Similarly, we have

$$
\begin{align*}
\mathbb{E}\left[\sum_{(\ell, s)} \operatorname{Var}\left(D_{\ell, s} \mid \mathcal{F}_{\prec(\ell, s)}\right)\right] & =\mathbb{E}\left[\sum_{(\ell, s)} \mathbb{E}\left[D_{\ell, s}^{2} \mid \mathcal{F}_{\prec(\ell, s)}\right]\right]=\sum_{(\ell, s)} \mathbb{E}\left[D_{\ell, s}^{2}\right] \\
& =\sum_{(\ell, s)} \sum_{i \in[\ell-1]} \sigma_{i, \ell}^{2} \operatorname{Var}\left(\sum_{r=1}^{N_{i}} \sum_{j} Z_{i j r} Z_{\ell j s}\right) \\
& =\sum_{\ell} \sum_{i \in[\ell-1]} \sigma_{i, \ell}^{2} \operatorname{Var}\left(\sum_{r=1}^{N_{i}} \sum_{s=1}^{N_{\ell}} Z_{i j r} Z_{\ell j s}\right) \\
& =\operatorname{Var}(U) . \tag{B.18}
\end{align*}
$$

The lemma follows by combining (B.16) $-(\sqrt{\text { B.18 }})$.

B. 3 Proof of Lemma B. 2

Let $M_{k}=n_{k} \bar{N}_{k}$ and $M=n \bar{N}$. Define

$$
\begin{equation*}
\Sigma=\frac{1}{M} \sum_{k} M_{k} \Sigma_{k}=\frac{1}{M} \sum_{\ell \in[n]} N_{\ell} \Omega_{\ell j_{1}} \Omega_{\ell j_{2}} \tag{B.19}
\end{equation*}
$$

Our main goal is to control the conditional variance process. Define

$$
\delta_{j j^{\prime} \ell}=\mathbb{E} Z_{\ell j r} Z_{\ell j^{\prime} r}= \begin{cases}\Omega_{\ell j}\left(1-\Omega_{\ell j}\right) & \text { if } j=j^{\prime} \tag{B.20}\\ -\Omega_{\ell j} \Omega_{\ell j^{\prime}} & \text { else. }\end{cases}
$$

Observe that

$$
\begin{aligned}
\operatorname{Var}\left(D_{\ell, s} \mid \mathcal{F}_{\prec(\ell, s)}\right) & =\mathbb{E}\left[\sum_{i, i^{\prime} \in[\ell-1]} \sum_{r, r^{\prime}} \sum_{j_{1}, j_{2}} \sigma_{i \ell} \sigma_{i^{\prime} \ell} Z_{i j_{1} r} Z_{\ell j_{1} s} Z_{i^{\prime} j_{2} r^{\prime}} Z_{\ell j_{2} s} \mid \mathcal{F}_{\prec(\ell, s)}\right] \\
& =\sum_{i, i^{\prime} \in[\ell-1]} \sum_{r, r^{\prime}} \sum_{j_{1}, j_{2}} \sigma_{i \ell} \sigma_{i^{\prime} \ell} Z_{i j_{1} r} Z_{i^{\prime} j_{2} r^{\prime}} \mathbb{E}\left[Z_{\ell j_{1} s} Z_{\ell j_{2} s}\right] \\
& =\sum_{i, i^{\prime} \in[\ell-1]} \sum_{r, r^{\prime}} \sigma_{i \ell} \sigma_{i^{\prime} \ell} \sum_{j_{1}, j_{2}} \delta_{j_{1} j_{2} \ell} Z_{i j_{1} r} Z_{i^{\prime} j_{2} r^{\prime}}
\end{aligned}
$$

Define

$$
\begin{equation*}
\alpha_{i i^{\prime} j_{1} j_{2}}=\sum_{\ell>i^{\prime}} N_{\ell} \sigma_{i \ell} \sigma_{i^{\prime} \ell} \delta_{j_{1} j_{2} \ell} . \tag{B.21}
\end{equation*}
$$

Thus

$$
\begin{aligned}
\sum_{(\ell, s)} \operatorname{Var}\left(D_{\ell, s} \mid \mathcal{F}_{\prec(\ell, s)}\right)= & \sum_{\ell, s} \sum_{i, i^{\prime} \in[\ell-1]} \sum_{r=1}^{N_{i}} \sum_{r^{\prime}=1}^{N_{i^{\prime}}} \sigma_{i \ell} \sigma_{i^{\prime} \ell} \sum_{j_{1}, j_{2}} \delta_{j_{1} j_{2} \ell} Z_{i j_{1} r} Z_{i^{\prime} j_{2} r^{\prime}} \\
= & \sum_{i} \sum_{r=1}^{N_{i}} \sum_{r^{\prime}=1}^{N_{i}} \sum_{j_{1}, j_{2}}\left(\sum_{\ell>i} N_{\ell} \sigma_{i \ell}^{2} \delta_{j_{1} j_{2} \ell}\right) Z_{i j_{1} r} Z_{i^{\prime} j_{2} r^{\prime}} \\
& +2 \sum_{i<i^{\prime}} \sum_{r=1}^{N_{i}} \sum_{r^{\prime}=1}^{N_{i^{\prime}}} \sum_{j_{1}, j_{2}}\left(\sum_{\ell>i^{\prime}} N_{\ell} \sigma_{i \ell} \sigma_{i^{\prime} \ell} \delta_{j_{1} j_{2} \ell}\right) Z_{i j_{1} r} Z_{i^{\prime} j_{2} r^{\prime}} \\
= & \sum_{i} \sum_{r=1}^{N_{i}} \sum_{r^{\prime}=1}^{N_{i}} \sum_{j_{1}, j_{2}} \alpha_{i j_{1} j_{1} j_{2}} Z_{i j_{1} r} Z_{i^{\prime} j_{2} r^{\prime}} \\
& +2 \sum_{i<i^{\prime}} \sum_{r=1}^{N_{i}} \sum_{r^{\prime}=1}^{N_{i^{\prime}}} \sum_{j_{1}, j_{2}} \alpha_{i i^{\prime} j_{1} j_{2}} Z_{i j_{1} r} Z_{i^{\prime} j_{2} r^{\prime}} .
\end{aligned}
$$

Define

$$
\begin{equation*}
\zeta_{i r i^{\prime} r^{\prime}}=\sum_{j_{1}, j_{2}} \alpha_{i i^{\prime} j_{1} j_{2}} Z_{i j_{1} r} Z_{i^{\prime} j_{2} r^{\prime}} \tag{B.22}
\end{equation*}
$$

Then

$$
\begin{aligned}
\sum_{(\ell, s)} \operatorname{Var}\left(D_{\ell, s} \mid \mathcal{F}_{\prec(\ell, s)}\right) & =\sum_{i} \sum_{r \in\left[N_{i}\right]} \zeta_{\text {irir }}+\left(2 \sum_{i} \sum_{r<r^{\prime} \in\left[N_{i}\right]} \zeta_{i r i r^{\prime}}+2 \sum_{i<i^{\prime}} \sum_{r=1}^{N_{i}} \sum_{r^{\prime}=1}^{N_{i^{\prime}}} \zeta_{i r i^{\prime} r^{\prime}}\right) \\
& =: V_{1}+V_{2}
\end{aligned}
$$

With this decomposition, Lemma B. 2 follows directly from Lemmas B. 7 and B.8 stated below and proved in the next remainder of this subsection.

Lemma B.7. It holds that

$$
\operatorname{Var}\left(V_{1}\right) \lesssim\left(\sum_{k} \frac{1}{M_{k}}\right)\|\mu\|_{3}^{3}
$$

Lemma B.8. It holds that

$$
\operatorname{Var}\left(V_{2}\right) \lesssim K\|\mu\|_{4}^{4}
$$

B.3.1 Statement and proof of Lemma B. 9

The proofs of Lemmas B. 7 and B. 8 heavily rely on the following intermediate result that bounds the coefficients $\alpha_{i i^{\prime} j_{1} j_{2}}$ in all cases.
Lemma B.9. It holds that

$$
\alpha_{i i^{\prime} j_{1} j_{2}} \lesssim \begin{cases}\frac{1}{M_{k}} \mu_{j_{1}} & \text { if } i, i^{\prime} \in S_{k}, j_{1}=j_{2} \\ \frac{1}{M_{k}} \Sigma_{k j_{1} j_{2}}+\frac{1}{M} \Sigma_{j_{1} j_{2}} & \text { if } i, i^{\prime} \in S_{k}, j_{1} \neq j_{2} \\ \frac{1}{M} \mu_{j_{1}} & \text { if } i \in S_{k_{1}}, i^{\prime} \in S_{k_{2}}, k_{1} \neq k_{2}, j_{1}=j_{2} \\ \frac{1}{M} \sum_{a=1}^{2} \Sigma_{k_{a} j_{1} j_{2}}+\frac{1}{M} \Sigma_{j_{1} j_{2}} & \text { if } i \in S_{k_{1}}, i^{\prime} \in S_{k_{2}}, k_{1} \neq k_{2}, j_{1} \neq j_{2}\end{cases}
$$

Proof. If $j_{1}=j_{2}$ and $i, i^{\prime} \in S_{k}$, we have

$$
\begin{aligned}
\left|\alpha_{i i^{\prime} j_{1} j_{1}}\right| & =\left|\sum_{\ell>i^{\prime}} N_{\ell} \sigma_{i \ell} \sigma_{i^{\prime} \ell} \delta_{j_{1} j_{1} \ell}\right| \leq \sum_{k^{\prime}=1}^{K} \sum_{\ell \in S_{k^{\prime}}} N_{\ell} \sigma_{i \ell} \sigma_{i^{\prime} \ell} \delta_{j_{1} j_{1} \ell} \\
& \lesssim \frac{1}{M_{k}} \cdot \frac{1}{M_{k}} \sum_{\ell \in S_{k}} N_{\ell} \Omega_{\ell j_{1}}+\frac{1}{M} \cdot \frac{1}{M} \sum_{\ell \in[n]} N_{\ell} \Omega_{\ell j_{1}} \lesssim \frac{1}{M_{k}} \mu_{j_{1}}+\frac{1}{M} \mu_{j_{1}} \lesssim \frac{1}{M_{k}} \mu_{j_{1}} .
\end{aligned}
$$

If $j_{1} \neq j_{2}$ and $i, i^{\prime} \in S_{k}$, we have

$$
\begin{aligned}
\left|\alpha_{i i^{\prime} j_{1} j_{2}}\right| & =\left|\sum_{\ell>i^{\prime}} N_{\ell} \sigma_{i \ell} \sigma_{i^{\prime} \ell} \delta_{j_{1} j_{2} \ell}\right| \leq \sum_{\ell \in[n]} N_{\ell}\left|\sigma_{i \ell} \sigma_{i^{\prime} \ell}\right| \Omega_{\ell j_{1}} \Omega_{\ell j_{2}} \\
& \lesssim \frac{1}{M_{k}} \cdot \frac{1}{M_{k}} \sum_{\ell \in S_{k}} N_{\ell} \Omega_{\ell j_{1}} \Omega_{\ell j_{2}}+\frac{1}{M} \cdot \frac{1}{M} \sum_{\ell \in[n]} N_{\ell} \Omega_{\ell j_{1}} \Omega_{\ell j_{2}} \lesssim \frac{1}{M_{k}} \Sigma_{k j_{1} j_{2}}+\frac{1}{M} \Sigma_{j_{1} j_{2}} .
\end{aligned}
$$

If $i \neq i^{\prime}, j_{1}=j_{2}$, and $i \in S_{k_{1}}, i^{\prime} \in S_{k_{2}}$ where $k_{1} \neq k_{2}$, we have

$$
\begin{aligned}
\left|\alpha_{i i^{\prime} j_{1} j_{1}}\right| & =\left|\sum_{\ell>i^{\prime}} N_{\ell} \sigma_{i \ell} \sigma_{i^{\prime} \ell} \delta_{j_{1} j_{1} \ell}\right| \leq \sum_{\ell} N_{\ell}\left|\sigma_{i \ell} \sigma_{i^{\prime} \ell}\right| \Omega_{\ell j_{1}} \\
& \lesssim \frac{1}{M} \cdot \sum_{a=1}^{2} \frac{1}{M_{k_{a}}} \sum_{\ell \in S_{k_{a}}} N_{\ell} \Omega_{\ell j_{1}}+\frac{1}{M} \cdot \frac{1}{M} \sum_{\ell \in[n]} N_{\ell} \Omega_{\ell j_{1}}=\frac{3}{M} \mu_{j_{1}} .
\end{aligned}
$$

If $i \neq i^{\prime}, j_{1} \neq j_{2}$, and $i \in S_{k_{1}}, i^{\prime} \in S_{k_{2}}$ where $k_{1} \neq k_{2}$, we have

$$
\begin{aligned}
\left|\alpha_{i i^{\prime} j_{1} j_{2}}\right| & =\left|\sum_{\ell>i^{\prime}} N_{\ell} \sigma_{i \ell} \sigma_{i^{\prime} \ell} \delta_{j_{1} j_{2} \ell}\right| \lesssim \sum_{\ell} N_{\ell} \sigma_{i \ell} \sigma_{i^{\prime} \ell} \Omega_{\ell j_{1}} \Omega_{\ell j_{2}} \\
& \lesssim \frac{1}{M} \cdot \sum_{a=1}^{2} \frac{1}{M_{k_{a}}} \sum_{\ell \in S_{k_{a}}} N_{\ell} \Omega_{\ell j_{1}} \Omega_{\ell j_{2}}+\frac{1}{M} \cdot \frac{1}{M} \sum_{\ell \in[n]} N_{\ell} \Omega_{\ell j_{1}} \Omega_{\ell j_{2}} \\
& \leq \frac{1}{M} \sum_{a=1}^{2} \Sigma_{k_{a} j_{1} j_{2}}+\frac{1}{M} \Sigma_{j_{1} j_{2}} .
\end{aligned}
$$

B.3.2 Proof of Lemma B. 7

We have

$$
\operatorname{Var}\left(V_{1}\right)=\sum_{i, r} \mathbb{E} \zeta_{i r i r}^{2} .
$$

Next by symmetry,

$$
\begin{aligned}
\mathbb{E} \zeta_{i r i r}^{2}= & \sum_{j_{1}, j_{2}, j_{3}, j_{4}} \alpha_{i i j_{1} j_{2}} \alpha_{i i j_{3} j_{4}} \mathbb{E} Z_{i j_{1} r} Z_{i j_{3} r} Z_{i j_{2} r} Z_{i j_{4} r} \\
\lesssim & \sum_{j_{1}} \alpha_{i i j_{1} j_{1}}^{2} \Omega_{i j_{1}}+\sum_{j_{1} \neq j_{4}} \alpha_{i i j_{1} j_{1}} \alpha_{i i j_{1} j_{4}} \Omega_{i j_{1}} \Omega_{i j_{4}} \\
& +\sum_{j_{1} \neq j_{3}} \alpha_{i i j_{1} j_{1}} \alpha_{i i j_{3} j_{3}} \Omega_{i j_{1}} \Omega_{i j_{3}}+\sum_{j_{1} \neq j_{2}} \alpha_{i i j_{1} j_{2}}^{2} \Omega_{i j_{1}} \Omega_{i j_{2}} \\
& +\sum_{j_{1}, j_{3}, j_{4}(d i s t .)} \alpha_{i i j_{1} j_{1}} \alpha_{i i j_{3} j_{4}{ }_{4}} \Omega_{i j_{1}} \Omega_{i j_{3}} \Omega_{i j_{4}}+\sum_{j_{1}, j_{2}, j_{4}(d i s t .)} \alpha_{i j_{1} j_{2}} \alpha_{i i j_{1} j_{4}} \Omega_{i j_{1}} \Omega_{i j_{2}} \Omega_{i j_{4}} \\
& +\sum_{j_{1}, j_{2}, j_{3}, j_{4}(d i s t .)} \alpha_{i i j_{1} j_{2}} \alpha_{i i j_{3} j_{4}} \Omega_{i j_{1}} \Omega_{i j_{2}} \Omega_{i j_{3}} \Omega_{i j_{4}}=: \sum_{a=1}^{7} B_{a, i, r}
\end{aligned}
$$

Thus

$$
\operatorname{Var}\left(V_{1}\right) \lesssim \sum_{a}(\underbrace{\sum_{i, r} B_{a, i, r}}_{=: B_{a}}) .
$$

We analyze $B_{1}-B_{7}$ separately, bounding the $\alpha_{i i^{\prime} j_{r} j_{s}}$ coefficients using Lemma B.9.
For B_{1},

$$
\begin{align*}
B_{1} & \lesssim \sum_{i, r} \sum_{j_{1}} \alpha_{i i j_{1} j_{2}}^{2} \Omega_{i j_{1}} \lesssim \sum_{k=1}^{k} \sum_{i \in S_{k}} \sum_{r \in\left[N_{i}\right]} \sum_{j_{1}}\left(\frac{1}{M_{k}} \mu_{j_{1}}\right)^{2} \Omega_{i j_{1}} \\
& \lesssim \sum_{k} \sum_{j_{1}}\left(\frac{1}{M_{k}} \mu_{j_{1}}\right)^{2} M_{k} \mu_{j_{1}} \lesssim\left(\sum_{k} \frac{1}{M_{k}}\right)\|\mu\|_{3}^{3} . \tag{B.23}
\end{align*}
$$

For B_{2},

$$
\begin{aligned}
B_{2} & \lesssim \sum_{i, r} \sum_{j_{1} \neq j_{4}} \alpha_{i i j_{1} j_{1}} \alpha_{i i j_{1} j_{4}} \Omega_{i j_{1}} \Omega_{i j_{4}} \\
& \lesssim \sum_{k} \sum_{i \in S_{k}} \sum_{r \in\left[N_{i}\right]} \sum_{j_{1} \neq j_{4}} \frac{1}{M_{k}} \mu_{j_{1}} \cdot\left(\frac{1}{M_{k}} \Sigma_{k j_{1} j_{4}}+\frac{1}{M} \Sigma_{j_{1} j_{4}}\right) \cdot \Omega_{i j_{1}} \Omega_{i j_{4}} \\
& \lesssim \sum_{k} \sum_{j_{1} \neq j_{4}} \frac{1}{M_{k}} \mu_{j_{1}} \cdot\left(\frac{1}{M_{k}} \Sigma_{k j_{1} j_{4}}+\frac{1}{M} \Sigma_{j_{1} j_{4}}\right) \cdot M_{k} \Sigma_{k j_{1} j_{4}} \\
& \lesssim \sum_{k} \frac{1}{M_{k}} \sum_{j_{1} \neq j_{4}} \Sigma_{k j_{1} j_{4}}^{2} \mu_{j_{1}}+\sum_{k} \frac{1}{M} \sum_{j_{1} \neq j_{4}} \Sigma_{k j_{1} j_{4}} \Sigma_{j_{1} j_{4}} \mu_{j_{1}}
\end{aligned}
$$

$$
\lesssim \sum_{k} \frac{\mathbf{1}^{\prime} \Sigma_{k}^{\circ 2} \mu}{M_{k}}+\sum_{k} \frac{\mathbf{1}^{\prime}\left(\Sigma_{k} \circ \Sigma\right) \mu}{M}=\sum_{k} \frac{\mathbf{1}^{\prime} \Sigma_{k}^{\circ 2} \mu}{M_{k}}
$$

Next,

$$
\begin{align*}
\sum_{j_{1} \neq j_{4}} \Sigma_{k j_{1} j_{4}}^{2} \mu_{j_{1}} & =\sum_{j_{1} \neq j_{4}} \frac{1}{M_{k}^{2}} \sum_{i, i^{\prime} \in S_{k}} N_{i} N_{i^{\prime}} \Omega_{i j_{1}} \Omega_{i^{\prime} j_{1}} \Omega_{i j_{4}} \Omega_{i^{\prime} j_{4}} \cdot \mu_{j_{1}} \\
& \leq \sum_{j_{1}} \frac{1}{M_{k}^{2}} \sum_{i, i^{\prime} \in S_{k}} N_{i} N_{i^{\prime}} \Omega_{i j_{1}} \Omega_{i^{\prime} j_{1}} \mu_{j_{1}} \cdot\left(\sum_{j_{4}} \Omega_{i j_{4}} \Omega_{i^{\prime} j_{4}}\right) \\
& \leq \sum_{j_{1}} \frac{1}{M_{k}^{2}} \sum_{i, i^{\prime} \in S_{k}} N_{i} N_{i^{\prime}} \Omega_{i j_{1}} \Omega_{i^{\prime} j_{1}} \cdot \mu_{j_{1}} \\
& \leq \sum_{j_{1}} \mu_{j_{1}}^{3}=\|\mu\|_{3}^{3} \tag{B.24}
\end{align*}
$$

and similarly

$$
\begin{aligned}
\sum_{j_{1} \neq j_{4}} \Sigma_{k j_{1} j_{4}} \Sigma_{j_{1} j_{4}} \mu_{j_{1}} & =\sum_{j_{1} \neq j_{4}} \frac{1}{M_{k} M} \sum_{i \in S_{k}, i^{\prime} \in[n]} N_{i} N_{i^{\prime}} \Omega_{i j_{1}} \Omega_{i^{\prime} j_{1}} \Omega_{i j_{4}} \Omega_{i^{\prime} j_{4}} \cdot \mu_{j_{1}} \\
& \leq \sum_{j_{1}} \frac{1}{M_{k} M} \sum_{i \in S_{k}, i^{\prime} \in[n]} N_{i} N_{i^{\prime}} \Omega_{i j_{1}} \Omega_{i^{\prime} j_{1}} \mu_{j_{1}} \\
& =\sum_{j_{1}} \mu_{j_{1}}^{3}=\|\mu\|_{3}^{3}
\end{aligned}
$$

Thus

$$
\begin{equation*}
B_{2} \lesssim\left(\sum_{k} \frac{1}{M_{k}}\right)\|\mu\|_{3}^{3} \tag{B.25}
\end{equation*}
$$

For B_{3},

$$
\begin{aligned}
B_{3} & \lesssim \sum_{i, r} \sum_{j_{1} \neq j_{3}} \alpha_{i i j_{1} j_{1}} \alpha_{i i j_{3} j_{3}} \Omega_{i j_{1}} \Omega_{i j_{3}} \\
& \lesssim \sum_{k} \sum_{i \in S_{k}} \sum_{r \in\left[N_{i}\right]} \sum_{j_{1} \neq j_{3}} \frac{1}{M_{k}} \mu_{j_{1}} \cdot \frac{1}{M_{k}} \mu_{j_{3}} \cdot \Omega_{i j_{1}} \Omega_{i j_{3}} \\
& \lesssim \sum_{k} \sum_{j_{1} \neq j_{3}} \frac{1}{M_{k}} \mu_{j_{1}} \cdot \frac{1}{M_{k}} \mu_{j_{3}} \cdot M_{k} \Sigma_{k j_{1} j_{3}} \lesssim \sum_{k} \frac{\mu^{\prime} \Sigma_{k} \mu}{M_{k}}
\end{aligned}
$$

We have by Cauchy-Schwarz,

$$
\begin{aligned}
\mu^{\prime} \Sigma_{k} \mu & =\frac{1}{M_{k}} \sum_{i \in S_{k}} N_{i} \mu^{\prime} \Omega_{i} \Omega_{i^{\prime}}^{\prime} \mu \\
& =\frac{1}{M_{k}} \sum_{i \in S_{k}} N_{i}\left(\sum_{j} \mu_{j} \Omega_{i j}\right)^{2} \\
& \leq \frac{1}{M_{k}} \sum_{i \in S_{k}} N_{i}\left(\sum_{j} \Omega_{i j}\right)\left(\sum_{j} \mu_{j}^{2} \Omega_{i j}\right)
\end{aligned}
$$

$$
\begin{equation*}
=\sum_{j} \mu_{j}^{3}=\|\mu\|_{3}^{3} . \tag{B.26}
\end{equation*}
$$

Thus

$$
\begin{equation*}
B_{3} \lesssim\left(\sum_{k} \frac{1}{M_{k}}\right)\|\mu\|_{3}^{3} \tag{B.27}
\end{equation*}
$$

For B_{4},

$$
\begin{aligned}
B_{4} & \lesssim \sum_{i, r} \sum_{j_{1} \neq j_{2}} \alpha_{i i j_{1} j_{2}}^{2} \Omega_{i j_{1}} \Omega_{i j_{2}} \lesssim \sum_{k} \sum_{i \in S_{k}} \sum_{r \in\left[N_{i}\right]} \sum_{j_{1} \neq j_{2}}\left(\frac{1}{M_{k}} \Sigma_{k j_{1} j_{2}}+\frac{1}{M} \Sigma_{j_{1} j_{2}}\right)^{2} \Omega_{i j_{1}} \Omega_{i j_{2}} \\
& \lesssim \sum_{k} \sum_{j_{1} \neq j_{2}}\left(\frac{1}{M_{k}} \Sigma_{k j_{1} j_{2}}+\frac{1}{M} \Sigma_{j_{1} j_{2}}\right)^{2} \cdot M_{k} \Sigma_{k j_{1} j_{2}} \lesssim \sum_{k} \frac{\mathbf{1}^{\prime}\left(\Sigma_{k}^{\circ 3}\right) \mathbf{1}}{M_{k}}+\sum_{k} \frac{M_{k}}{M^{2}} \mathbf{1}^{\prime}\left(\Sigma_{k} \circ \Sigma^{\circ 2}\right) \mathbf{1} \\
& \lesssim\left(\sum_{k} \frac{\mathbf{1}^{\prime}\left(\Sigma_{k}^{\circ 3}\right) \mathbf{1}}{M_{k}}\right)+\frac{1}{M} \mathbf{1}^{\prime}\left(\Sigma^{\circ 3}\right) \mathbf{1} .
\end{aligned}
$$

First,

$$
\begin{aligned}
\mathbf{1}^{\prime}\left(\Sigma_{k}^{\circ 3}\right) \mathbf{1} & =\frac{1}{M_{k}^{3}} \sum_{i_{1}, i_{2}, i_{3} \in S_{k}} N_{i_{1}} N_{i_{2}} N_{i_{3}}\left(\sum_{j} \Omega_{i_{1} j} \Omega_{i_{2} j} \Omega_{i_{3} j}\right)^{2} \\
& \leq \frac{1}{M_{k}^{3}} \sum_{i_{1}, i_{2}, i_{3} \in S_{k}} N_{i_{1}} N_{i_{2}} N_{i_{3}} \cdot \sum_{j} \Omega_{i_{1} j} \Omega_{i_{2} j} \Omega_{i_{3} j}=\sum_{j} \mu_{j}^{3}=\|\mu\|_{3}^{3},
\end{aligned}
$$

and similarly,

$$
\mathbf{1}^{\prime}\left(\Sigma^{\circ 3}\right) \mathbf{1}=\frac{1}{M^{3}} \sum_{i_{1}, i_{2}, i_{3} \in[n]} N_{i_{1}} N_{i_{2}} N_{i_{3}}\left(\sum_{j} \Omega_{i_{1} j} \Omega_{i_{2} j} \Omega_{i_{3} j}\right)^{2} \leq\|\mu\|_{3}^{3} .
$$

Thus

$$
\begin{equation*}
B_{4} \lesssim\left(\sum_{k} \frac{1}{M_{k}}\right)\|\mu\|_{3}^{3} \tag{B.28}
\end{equation*}
$$

For B_{5},

$$
\begin{aligned}
B_{5} & \lesssim \sum_{i, r} \sum_{j_{1}, j_{3}, j_{4}(d i s t .)} \alpha_{i i j_{1} j_{1}} \alpha_{i i j_{3} j_{4}} \Omega_{i j_{1}} \Omega_{i j_{3}} \Omega_{i j_{4}} \\
& \lesssim \sum_{k} \sum_{i \in S_{k}} N_{i} \sum_{j_{1}, j_{3}, j_{4}} \frac{1}{M_{k}} \mu_{j_{1}} \cdot\left(\frac{1}{M_{k}} \Sigma_{k j_{3} j_{4}}+\frac{1}{M} \Sigma_{j_{3} j_{4}}\right) \cdot \Omega_{i j_{1}} \Omega_{i j_{3}} \Omega_{i j_{4}} \\
& \lesssim \sum_{k} \sum_{i \in S_{k}} \sum_{j_{1}, j_{3}, j_{4}} \frac{N_{i} \mu_{j_{1}} \Sigma_{k j_{3} j_{4}} \Omega_{i j_{1}} \Omega_{i j_{3}} \Omega_{i j_{4}}}{M_{k}^{2}}+\sum_{k} \sum_{i \in S_{k}} \sum_{j_{1}, j_{3}, j_{4}} \frac{N_{i} \mu_{j_{1}} \Sigma_{j_{3} j_{4}} \Omega_{i j_{1}} \Omega_{i j_{3}} \Omega_{i j_{4}}}{M_{k} M} \\
& =: B_{51}+B_{52} .
\end{aligned}
$$

We have

$$
B_{51}=\sum_{k} \frac{1}{M_{k}^{3}} \sum_{i_{1}, i_{2} \in S_{k}} \sum_{j_{1}, j_{3}, j_{4}} N_{i_{1}} N_{i_{2}} \mu_{j_{1}} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{3}} \Omega_{i_{2} j_{3}} \Omega_{i_{1} j_{4}} \Omega_{i_{2} j_{4}}
$$

$$
\begin{align*}
& =\sum_{k} \frac{1}{M_{k}^{3}} \sum_{i_{1}, i_{2} \in S_{k}} N_{i_{1}} N_{i_{2}}\left(\Omega_{i_{1}}^{\prime} \mu\right) \cdot\left(\Omega_{i_{1}}^{\prime} \Omega_{i_{2}}\right)^{2} \\
& \leq \sum_{k} \frac{1}{M_{k}^{3}} \sum_{i_{1}, i_{2} \in S_{k}} N_{i_{1}} N_{i_{2}} \cdot \Omega_{i_{1}}^{\prime} \mu \cdot \Omega_{i_{1}}^{\prime} \Omega_{i_{2}} \\
& =\sum_{k} \frac{1}{M_{k}^{2}} \sum_{i_{1}} N_{i_{1}} \mu^{\prime} \Omega_{i_{1}} \Omega_{i_{1}}^{\prime} \mu=\frac{1}{M_{k}} \mu^{\prime} \Sigma_{k} \mu \leq \sum_{k} \frac{1}{M_{k}}\|\mu\|_{3}^{3} . \tag{B.29}
\end{align*}
$$

In the last line we apply ($\overline{\text { B.26 }}$) Similarly,

$$
\begin{align*}
B_{52} & =\sum_{k} \frac{1}{M_{k} M^{2}} \sum_{i_{1} \in S_{k}, i_{2} \in[n]} \sum_{j_{1}, j_{3}, j_{4}} N_{i_{1}} N_{i_{2}} \mu_{j_{1}} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{3}} \Omega_{i_{2} j_{3}} \Omega_{i_{1} j_{4}} \Omega_{i_{2} j_{4}} \\
& \leq \sum_{k} \frac{1}{M_{k} M^{2}} \sum_{i_{1} \in S_{k}, i_{2} \in[n]} N_{i_{1}} N_{i_{2}} \cdot \Omega_{i_{1}}^{\prime} \mu \cdot \Omega_{i_{1}}^{\prime} \Omega_{i_{2}} \\
& \leq \sum_{k} \frac{1}{M_{k} M} \sum_{i_{1} \in S_{k}} N_{i_{1}} \mu^{\prime} \Omega_{i_{1}} \Omega_{i_{1}}^{\prime} \mu \leq \sum_{k} \frac{1}{M}\|\mu\|_{3}^{3} . \tag{B.30}
\end{align*}
$$

Thus

$$
\begin{equation*}
B_{5} \lesssim\left(\sum_{k} \frac{1}{M_{k}}\right)\|\mu\|_{3}^{3} \tag{B.31}
\end{equation*}
$$

For B_{6},

$$
\begin{aligned}
B_{6} & \lesssim \sum_{k} \sum_{i \in S_{k}} \sum_{r \in\left[N_{i}\right]} \sum_{j_{1}, j_{2}, j_{4}(d i s t .)}\left(\frac{1}{M_{k}} \Sigma_{k j_{1} j_{2}}+\frac{1}{M} \Sigma_{j_{1} j_{2}}\right)\left(\frac{1}{M_{k}} \Sigma_{k j_{1} j_{4}}+\frac{1}{M} \Sigma_{j_{1} j_{4}}\right) \Omega_{i j_{1}} \Omega_{i j_{2}} \Omega_{i j_{4}} \\
\lesssim & \sum_{k} \sum_{i \in S_{k}} \sum_{r \in\left[N_{i}\right]} \sum_{j_{1}, j_{2}, j_{4}} \frac{\Sigma_{k j_{1} j_{2}}^{2} \Omega_{i j_{1}} \Omega_{i j_{2}} \Omega_{i j_{4}}}{M_{k}^{2}}+2 \sum_{k} \sum_{i \in S_{k}} \sum_{r \in\left[N_{i}\right]} \sum_{j_{1}, j_{2}, j_{4}} \frac{\Sigma_{k j_{1} j_{2}} \Sigma_{j_{1} j_{2}} \Omega_{i j_{1}} \Omega_{i j_{2}} \Omega_{i j_{4}}}{M_{k} M} \\
& +\sum_{k} \sum_{i \in S_{k}} \sum_{r \in\left[N_{i}\right]} \sum_{j_{1}, j_{2}, j_{4}} \frac{\Sigma_{j_{1} j_{2}}^{2} \Omega_{i j_{1}} \Omega_{i j_{2}} \Omega_{i j_{4}}}{M^{2}}=: B_{61}+B_{62}+B_{63} .
\end{aligned}
$$

First,

$$
B_{61} \leq \sum_{k} \sum_{i \in S_{k}} \sum_{r \in\left[N_{i}\right]} \sum_{j_{1}, j_{2}, j_{4}} \frac{\Sigma_{k j_{1} j_{2}}^{2} \Omega_{i j_{1}}}{M_{k}^{2}}=\sum_{k} \frac{1}{M_{k}} \mathbf{1}^{\prime} \Sigma_{k}^{\circ 2} \mu \leq \sum_{k} \frac{1}{M_{k}}\|\mu\|_{3}^{3},
$$

where we applied (B.24). Similarly,

$$
\begin{aligned}
B_{62} & \lesssim \sum_{k} \frac{1}{M_{k}}\|\mu\|_{3}^{3}, \text { and } \\
B_{63} & \lesssim \sum_{k} \frac{1}{M_{k}}\|\mu\|_{3}^{3} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
B_{6} \lesssim\left(\sum_{k} \frac{1}{M_{k}}\right)\|\mu\|_{3}^{3} \tag{B.32}
\end{equation*}
$$

For B_{7}, we have

$$
\begin{aligned}
B_{7} & \lesssim \sum_{j_{1}, j_{2}, j_{3}, j_{4}(d i s t .)}\left(\frac{1}{M_{k}} \Sigma_{k j_{1} j_{2}}+\frac{1}{M} \Sigma_{j_{1} j_{2}}\right)\left(\frac{1}{M_{k}} \Sigma_{k j_{3} j_{4}}+\frac{1}{M} \Sigma_{j_{3} j_{4}}\right) \Omega_{i j_{1}} \Omega_{i j_{2}} \Omega_{i j_{3}} \Omega_{i j_{4}} \\
& \lesssim \sum_{k} \sum_{i \in S_{k}} \sum_{r \in\left[N_{i}\right]} \sum_{j_{1}, j_{2}, j_{3}, j_{4}} \frac{\Sigma_{k j_{1} j_{2}} \Sigma_{k j_{3} j_{4}} \Omega_{i j_{1}} \Omega_{i j_{2}} \Omega_{i j_{3}} \Omega_{i j_{4}}}{M_{k}^{2}} \\
& +2 \sum_{k} \sum_{i \in S_{k}} \sum_{r \in\left[N_{i}\right]} \sum_{j_{1}, j_{2}, j_{3}, j_{4}} \frac{\Sigma_{k j_{1} j_{2}} \Sigma_{j_{3} j_{4}} \Omega_{i j_{1}} \Omega_{i j_{2}} \Omega_{i j_{3}} \Omega_{i j_{4}}}{M_{k} M} \\
& +\sum_{k} \sum_{i \in S_{k}} \sum_{r \in\left[N_{i}\right]} \sum_{j_{1}, j_{2}, j_{3}, j_{4}} \frac{\Sigma_{j_{1} j_{2}} \Sigma_{j_{3} j_{4}} \Omega_{i j_{1}} \Omega_{i j_{2}} \Omega_{i j_{3}} \Omega_{i j_{4}}}{M^{2}}=: B_{71}+B_{72}+B_{73} .
\end{aligned}
$$

Note that

$$
\begin{align*}
\Sigma_{k j_{1} j_{2}} & =\frac{1}{M_{k}} \sum_{i \in S_{k}} N_{i} \Omega_{i j_{1}} \Omega_{i j_{2}} \leq \frac{1}{M_{k}} \sum_{i \in S_{k}} N_{i} \Omega_{i j_{1}}=\mu_{j_{1}}, \text { and } \\
\Sigma_{j_{1} j_{2}} & =\frac{1}{M} \sum_{i \in[n]} N_{i} \Omega_{i j_{1}} \Omega_{i j_{2}} \leq \frac{1}{M} \sum_{i \in[n]} N_{i} \Omega_{i j_{1}}=\mu_{j_{1}} . \tag{B.33}
\end{align*}
$$

Thus

$$
\begin{aligned}
B_{71} & \leq \sum_{k} \sum_{i \in S_{k}} \sum_{r \in\left[N_{i}\right]} \sum_{j_{1}, j_{2}, j_{3}, j_{4}} \frac{\mu_{j_{1}} \Sigma_{k j_{3} j_{4}} \Omega_{i j_{1}} \Omega_{i j_{2}} \Omega_{i j_{3}} \Omega_{i j_{4}}}{M_{k}^{2}} \\
& \leq \sum_{k} \sum_{i \in S_{k}} \sum_{j_{1}, j_{3}, j_{4}} \frac{N_{i} \mu_{j_{1}} \Sigma_{k j_{3} j_{4}} \Omega_{i j_{1}} \Omega_{i j_{3}} \Omega_{i j_{4}}}{M_{k}^{2}} \leq \sum_{k} \frac{1}{M_{k}}\|\mu\|_{3}^{3}
\end{aligned}
$$

where we applied (B.29). Similarly,

$$
\begin{aligned}
B_{72} & \lesssim \sum_{k} \frac{1}{M_{k}}\|\mu\|_{3}^{3}, \text { and } \\
B_{73} & \lesssim \sum_{k} \frac{1}{M_{k}}\|\mu\|_{3}^{3} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
B_{7} \lesssim\left(\sum_{k} \frac{1}{M_{k}}\right)\|\mu\|_{3}^{3} . \tag{B.34}
\end{equation*}
$$

Combining the results for $B_{1}-B_{7}$ concludes the proof.

B.3.3 Proof of Lemma B. 8

We have

$$
\operatorname{Var}\left(V_{2}\right) \lesssim 4 \sum_{(i, r) \neq\left(i^{\prime}, r^{\prime}\right)} \mathbb{E} \zeta_{i r i r^{\prime}}^{2}
$$

where $r \in\left[N_{i}\right]$ and $r \in\left[N_{i^{\prime}}\right]$ in the summation above.
By symmetry, if $(i, r) \neq\left(i^{\prime}, r^{\prime}\right)$,

$$
\begin{align*}
& \mathbb{E} \zeta_{i r i^{\prime} r^{\prime}}^{2}=\sum_{j_{1}, j_{2}, j_{3}, j_{4}} \alpha_{i i^{\prime} j_{1} j_{2}} \alpha_{i i^{\prime} j_{3} j_{4}} \mathbb{E} Z_{i j_{1} r} Z_{i j_{3} r} \mathbb{E} Z_{i^{\prime} j_{2} r^{\prime}} Z_{i^{\prime} j_{4} r^{\prime}} \\
& \quad \lesssim \sum_{j_{1}} \alpha_{i i^{\prime} j_{1} j_{1}}^{2} \Omega_{i j_{1}} \Omega_{i^{\prime} j_{1}}+\sum_{j_{1} \neq j_{4}} \alpha_{i i^{\prime} j_{1} j_{1}} \alpha_{i i^{\prime} j_{1} j_{4}} \Omega_{i j_{1}} \Omega_{i^{\prime} j_{1}} \Omega_{i^{\prime} j_{4}} \\
& \quad+\sum_{j_{1} \neq j_{3}} \alpha_{i i^{\prime} j_{1 j} j_{1}} \alpha_{i i^{\prime} j_{3} j_{3}} \Omega_{i j_{1}} \Omega_{i j_{3}} \Omega_{i^{\prime} j_{1}} \Omega_{i^{\prime} j_{3}}+\sum_{j_{1} \neq j_{2}} \alpha_{i i^{\prime} j_{1} j_{2}}^{2} \Omega_{i j_{1}} \Omega_{i^{\prime} j_{2}} \\
& \quad+\sum_{j_{1}, j_{3}, j_{4}(d i s t .)} \alpha_{i i^{\prime} j_{1} j_{1}} \alpha_{i i^{\prime} j_{3} j_{4}{ }_{4}} \Omega_{i j_{1}} \Omega_{i j_{3}} \Omega_{i^{\prime} j_{1}} \Omega_{i^{\prime} j_{4}}+\sum_{j_{1}, j_{2}, j_{4}(d i s t .)} \alpha_{i i^{\prime} j_{1} j_{2}} \alpha_{i i^{\prime} j_{1} j_{4}} \Omega_{i j_{1}} \Omega_{i^{\prime} j_{2}} \Omega_{i^{\prime} j_{4}} \\
& \quad+\sum_{j_{1}, j_{2}, j_{3}, j_{4}(d i s t .)} \alpha_{i i^{\prime} j_{1} j_{2}} \alpha_{i i^{\prime} j_{3} j_{4}} \Omega_{i j_{1}} \Omega_{i j_{3}} \Omega_{i^{\prime} j_{2}} \Omega_{i^{\prime} j_{4}}=: \sum_{a}^{7} C_{a, i, r} . \tag{B.35}
\end{align*}
$$

Thus

$$
\operatorname{Var}\left(V_{2}\right) \lesssim \sum_{a=1}^{7} \sum_{(i, r) \neq\left(i^{\prime}, r^{\prime}\right)} C_{a, i, r} \lesssim \sum_{a=1}^{7} \underbrace{\sum_{i, i^{\prime}} N_{i} N_{i^{\prime}} C_{a, i, r}}_{=: C_{a}}
$$

Next we analyze C_{1}, \ldots, C_{7}, bounding the $\alpha_{i i^{\prime} j_{r} j_{s}}$ coefficients using Lemma B.9.
For C_{1},

$$
\begin{align*}
C_{1} & \lesssim \sum_{k} \sum_{i, i^{\prime} \in S_{k}} \sum_{j_{1}} N_{i} N_{i^{\prime}} \alpha_{i i^{\prime} j_{1} j_{1}}^{2} \Omega_{i j_{1}} \Omega_{i^{\prime} j_{1}}+\sum_{k \neq k^{\prime}} \sum_{i \in S_{k}, i^{\prime} \in S_{k^{\prime}}} \sum_{j_{1}} N_{i} N_{i^{\prime}} \alpha_{i i^{\prime} j_{1} j_{1}}^{2} \Omega_{i j_{1}} \Omega_{i^{\prime} j_{1}} \\
& \lesssim \sum_{k} \sum_{i, i^{\prime} \in S_{k}} \sum_{j_{1}} N_{i} N_{i^{\prime}}\left(\frac{1}{M_{k}} \mu_{j_{1}}\right)^{2} \Omega_{i j_{1}} \Omega_{i j_{1}}+\sum_{k \neq k^{\prime}} \sum_{i \in S_{k}, i^{\prime} \in S_{k^{\prime}}} \sum_{j_{1}}\left(\frac{1}{M} \mu_{j_{1}}\right)^{2} \Omega_{i j_{1}} \Omega_{i^{\prime} j_{1}} \\
& \lesssim \sum_{j_{1}} \mu_{j_{1}}^{4}+\sum_{k \neq k^{\prime}} \sum_{j_{1}} \frac{M_{k} M_{k^{\prime}}}{M^{2}} \mu_{j_{1}}^{4} \lesssim K\|\mu\|_{4}^{4} . \tag{B.36}
\end{align*}
$$

For C_{2},

$$
\begin{aligned}
C_{2} \lesssim & \sum_{k} \sum_{i, i^{\prime} \in S_{k}} N_{i} N_{i^{\prime}} \sum_{j_{1} \neq j_{4}} \alpha_{i i^{\prime} j_{1} j_{1}} \alpha_{i i^{\prime} j_{1} j_{4}} \Omega_{i j_{1}} \Omega_{i^{\prime} j_{1}} \Omega_{i^{\prime} j_{4}} \\
& +\sum_{k \neq k^{\prime}} \sum_{i \in S_{k}, i^{\prime} \in S_{k^{\prime}}} N_{i} N_{i^{\prime}} \sum_{j_{1} \neq j_{4}} \alpha_{i i^{\prime} j_{1} j_{1}} \alpha_{i i^{\prime} j_{1} j_{4}} \Omega_{i j_{1}} \Omega_{i^{\prime} j_{1}} \Omega_{i^{\prime} j_{4}} \\
\lesssim & \sum_{k} \sum_{i, i^{\prime} \in S_{k}} N_{i} N_{i^{\prime}} \sum_{j_{1} \neq j_{4}} \frac{1}{M_{k}} \mu_{j_{1}} \cdot\left(\frac{1}{M_{k}} \Sigma_{k j_{1} j_{4}}+\frac{1}{M} \Sigma_{j_{1} j_{4}}\right) \Omega_{i j_{1}} \Omega_{i^{\prime} j_{1}} \Omega_{i^{\prime} j_{4}} \\
& +\sum_{k \neq k^{\prime}} \sum_{i \in S_{k}, i^{\prime} \in S_{k^{\prime}}} N_{i} N_{i^{\prime}} \sum_{j_{1} \neq j_{4}} \frac{1}{M} \mu_{j_{1}} \cdot\left(\frac{1}{M} \sum_{a \in\left\{k, k^{\prime}\right\}} \Sigma_{a j_{1} j_{4}}+\frac{1}{M} \Sigma_{j_{1} j_{4}}\right) \Omega_{i j_{1}} \Omega_{i^{\prime} j_{1}} \Omega_{i^{\prime} j_{4}} \\
\lesssim & \sum_{k} \sum_{i, i^{\prime} \in S_{k}} N_{i} N_{i^{\prime}} \sum_{j_{1} \neq j_{4}} \frac{1}{M_{k}} \mu_{j_{1}} \cdot\left(\frac{1}{M_{k}} \mu_{j_{1}}+\frac{1}{M} \mu_{j_{1}}\right) \Omega_{i j_{1}} \Omega_{i^{\prime} j_{1}} \Omega_{i^{\prime} j_{4}} \\
& +\sum_{k \neq k^{\prime}} \sum_{i \in S_{k}, i^{\prime} \in S_{k^{\prime}}} N_{i} N_{i^{\prime}} \sum_{j_{1} \neq j_{4}} \frac{1}{M} \mu_{j_{1}} \cdot\left(\frac{2}{M} \mu_{j_{1}}+\frac{1}{M} \mu_{j_{1}}\right) \Omega_{i j_{1}} \Omega_{i^{\prime} j_{1}} \Omega_{i^{\prime} j_{4}}
\end{aligned}
$$

$$
\begin{equation*}
\lesssim \sum_{k} \sum_{j_{1}}\left(\mu_{j_{1}}^{4}+\frac{M_{k}}{M} \mu_{j_{1}}^{4}\right)+\sum_{k \neq k^{\prime}} \sum_{j_{1}} \frac{M_{k} M_{k^{\prime}}}{M^{2}} \mu_{j_{1}}^{4} \lesssim K\|\mu\|_{4}^{4} \tag{B.37}
\end{equation*}
$$

where we applied B.33).
For C_{3},

$$
\begin{aligned}
C_{3} \lesssim & \left(\sum_{k} \sum_{i, i^{\prime} \in S_{k}} N_{i} N_{i^{\prime}}+\sum_{k \neq k^{\prime}} \sum_{i \in S_{k}, i^{\prime} \in S_{k^{\prime}}} N_{i} N_{i^{\prime}}\right) \sum_{j_{1} \neq j_{3}} \alpha_{i i^{\prime} j_{1} j_{1}} \alpha_{i i^{\prime} j_{3} j_{3}} \Omega_{i j_{1}} \Omega_{i j_{3}} \Omega_{i^{\prime} j_{1}} \Omega_{i^{\prime} j_{3}} \\
\lesssim & \sum_{k} \sum_{i, i^{\prime} \in S_{k}} N_{i} N_{i^{\prime}} \sum_{j_{1} \neq j_{3}} \frac{1}{M_{k}} \mu_{j_{1}} \cdot \frac{1}{M_{k}} \mu_{j_{3}} \cdot \Omega_{i j_{1}} \Omega_{i j_{3}} \Omega_{i^{\prime} j_{1}} \Omega_{i^{\prime} j_{3}} \\
& +\sum_{k \neq k^{\prime}} \sum_{i \in S_{k}, i^{\prime} \in S_{k^{\prime}}} N_{i} N_{i^{\prime}} \sum_{j_{1} \neq j_{3}} \frac{1}{M} \mu_{j_{1}} \cdot \frac{1}{M} \mu_{j_{3}} \Omega_{i j_{1}} \Omega_{i j_{3}} \Omega_{i^{\prime} j_{1}} \Omega_{i^{\prime} j_{3}} \\
= & \sum_{k} \sum_{j_{1} \neq j_{3}} \mu_{j_{1}} \mu_{j_{3}} \Sigma_{k j_{1} j_{3}}^{2}+\sum_{k \neq k^{\prime}} \sum_{j_{1} \neq j_{3}} \frac{M_{k} M_{k^{\prime}}}{M^{2}} \mu_{j_{1}} \mu_{j_{3}} \Sigma_{k j_{1} j_{3}} \Sigma_{k^{\prime} j_{1} j_{3}} \\
\leq & \left(\sum_{k} \mu^{\prime} \Sigma_{k}^{22} \mu\right)+\mu^{\prime} \Sigma^{\circ 2} \mu .
\end{aligned}
$$

First, by Cauchy-Schwarz,

$$
\begin{align*}
\mu^{\prime} \Sigma_{k}^{\circ 2} \mu & =\frac{1}{M_{k}^{2}} \sum_{i, i^{\prime} \in S_{k}} N_{i} N_{i^{\prime}}\left(\sum_{j} \mu_{j} \Omega_{i j} \Omega_{i^{\prime} j}\right)^{2} \\
& =\frac{1}{M_{k}^{2}} \sum_{i, i^{\prime} \in S_{k}} N_{i} N_{i^{\prime}}\left(\sum_{j} \Omega_{i j} \Omega_{i^{\prime} j}\right) \sum_{j} \mu_{j}^{2} \Omega_{i j} \Omega_{i^{\prime} j} \\
& \leq \frac{1}{M_{k}^{2}} \sum_{i, i^{\prime} \in S_{k}} N_{i} N_{i^{\prime}} \sum_{j} \mu_{j}^{2} \Omega_{i j} \Omega_{i^{\prime} j}=\sum_{j} \mu_{j}^{4}=\|\mu\|_{4}^{4} . \tag{B.38}
\end{align*}
$$

Similarly

$$
\begin{equation*}
\mu^{\prime} \Sigma^{\circ 2} \mu \lesssim\|\mu\|_{4}^{4} \tag{B.39}
\end{equation*}
$$

Hence

$$
\begin{equation*}
C_{3} \lesssim K\|\mu\|_{4}^{4} \tag{B.40}
\end{equation*}
$$

For C_{4},

$$
\begin{aligned}
C_{4} & \lesssim\left(\sum_{k} \sum_{i, i^{\prime} \in S_{k}} N_{i} N_{i^{\prime}}+\sum_{k \neq k^{\prime}} \sum_{i \in S_{k}, i^{\prime} \in S_{k^{\prime}}} N_{i} N_{i^{\prime}}\right) \sum_{j_{1} \neq j_{2}} \alpha_{i i^{\prime} j_{1} j_{2}}^{2} \Omega_{i j_{1}} \Omega_{i^{\prime} j_{2}} \\
& \lesssim \sum_{k} \sum_{i, i^{\prime} \in S_{k}} N_{i} N_{i^{\prime}} \sum_{j_{1} \neq j_{2}}\left(\frac{1}{M_{k}} \Sigma_{k j_{1} j_{2}}+\frac{1}{M} \Sigma_{j_{1} j_{2}}\right)^{2} \Omega_{i j_{1}} \Omega_{i^{\prime} j_{2}} \\
& +\sum_{k \neq k^{\prime}} \sum_{i \in S_{k}, i^{\prime} \in S_{k^{\prime}}} N_{i} N_{i^{\prime}} \sum_{j_{1} \neq j_{2}}\left(\frac{1}{M} \sum_{a \in\left\{k, k^{\prime}\right\}}^{2} \Sigma_{a j_{1} j_{2}}+\frac{1}{M} \Sigma_{j_{1} j_{2}}\right)^{2} \Omega_{i j_{1}} \Omega_{i^{\prime} j_{2}} \\
& \lesssim \sum_{k} \sum_{i, i^{\prime} \in S_{k}} N_{i} N_{i^{\prime}} \sum_{j_{1} \neq j_{2}}\left(\frac{1}{M_{k}^{2}} \Sigma_{k j_{1} j_{2}}^{2}+\frac{1}{M^{2}} \Sigma_{j_{1} j_{2}}^{2}\right) \Omega_{i j_{1}} \Omega_{i^{\prime} j_{2}}
\end{aligned}
$$

$$
+\sum_{k \neq k^{\prime}} \sum_{i \in S_{k}, i^{\prime} \in S_{k^{\prime}}} N_{i} N_{i^{\prime}} \sum_{j_{1} \neq j_{2}}\left(\frac{1}{M^{2}} \sum_{a \in\left\{k, k^{\prime}\right\}}^{2} \Sigma_{a j_{1} j_{2}}^{2}+\frac{1}{M^{2}} \Sigma_{j_{1} j_{2}}^{2}\right) \Omega_{i j_{1}} \Omega_{i^{\prime} j_{2}}=: C_{41}+C_{42}
$$

First,

$$
\begin{aligned}
C_{41} & \lesssim \sum_{k} \sum_{i, i^{\prime} \in S_{k}} N_{i} N_{i^{\prime}} \sum_{j_{1} \neq j_{2}} \frac{1}{M_{k}^{2}} \Sigma_{k j_{1} j_{2}}^{2} \Omega_{i j_{1}} \Omega_{i^{\prime} j_{2}}+\sum_{k} \sum_{i, i^{\prime} \in S_{k}} N_{i} N_{i^{\prime}} \sum_{j_{1} \neq j_{2}} \frac{1}{M^{2}} \Sigma_{j_{1} j_{2}}^{2} \Omega_{i j_{1}} \Omega_{i^{\prime} j_{2}} \\
& \lesssim \sum_{k} \sum_{j_{1} \neq j_{2}} \Sigma_{k j_{1} j_{2}}^{2} \mu_{j_{1}} \mu_{j_{2}}+\sum_{k} \sum_{j_{1} \neq j_{2}} \frac{M_{k}^{2}}{M^{2}} \Sigma_{j_{1} j_{2}}^{2} \mu_{j_{1}} \mu_{j_{2}} \leq \sum_{k} \mu^{\prime} \Sigma_{k}^{\circ 2} \mu+\sum_{k} \frac{M_{k}^{2}}{M^{2}} \mu^{\prime} \Sigma^{\circ 2} \mu .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
C_{42} & \lesssim \sum_{k \neq k^{\prime}} \sum_{j_{1} \neq j_{2}} \frac{M_{k} M_{k^{\prime}}}{M^{2}} \Sigma_{k j_{1} j_{2}}^{2} \mu_{j_{1}} \mu_{j_{2}}+\sum_{k \neq k^{\prime}} \sum_{j_{1} \neq j_{2}} \frac{M_{k} M_{k^{\prime}}}{M^{2}} \Sigma_{j_{1} j_{2}}^{2} \mu_{j_{1}} \mu_{j_{2}} \\
& \lesssim \sum_{k \neq k^{\prime}} \frac{M_{k} M_{k^{\prime}}}{M^{2}}\left(\mu^{\prime} \Sigma_{k}^{\circ 2} \mu+\mu^{\prime} \Sigma^{\circ 2} \mu\right)
\end{aligned}
$$

Combining the previous two displays and applying (B.38) and (B.39), we have

$$
\begin{equation*}
C_{4} \lesssim K\|\mu\|_{4}^{4} . \tag{B.41}
\end{equation*}
$$

For C_{5},

$$
\begin{aligned}
C_{5} \lesssim & \left(\sum_{k} \sum_{i, i^{\prime} \in S_{k}} N_{i} N_{i^{\prime}}+\sum_{k \neq k^{\prime}} \sum_{i \in S_{k}, i^{\prime} \in S_{k^{\prime}}} N_{i} N_{i^{\prime}}\right) \sum_{j_{1}, j_{3}, j_{4}(d i s t .)} \alpha_{i i^{\prime} j_{1} j_{1}} \alpha_{i i^{\prime} j_{3} j_{4}} \Omega_{i j_{1}} \Omega_{i j_{3}} \Omega_{i^{\prime} j_{1}} \Omega_{i^{\prime} j_{4}} \\
\lesssim & \sum_{k} \sum_{i, i^{\prime} \in S_{k}} N_{i} N_{i^{\prime}} \sum_{j_{1}, j_{3}, j_{4}} \frac{1}{M_{k}} \mu_{j_{1}} \cdot\left(\frac{1}{M_{k}} \Sigma_{k j_{3} j_{4}}+\frac{1}{M} \Sigma_{j_{3} j_{4}}\right) \Omega_{i j_{1}} \Omega_{i j_{3}} \Omega_{i^{\prime} j_{1}} \Omega_{i^{\prime} j_{4}} \\
& +\sum_{k \neq k^{\prime}} \sum_{i \in S_{k}, i^{\prime} \in S_{k^{\prime}}} N_{i} N_{i^{\prime}} \sum_{j_{1}, j_{3}, j_{4}} \frac{1}{M} \mu_{j_{1}}\left(\frac{1}{M} \sum_{a \in\left\{k, k^{\prime}\right\}}^{2} \Sigma_{a j_{3} j_{4}}+\frac{1}{M} \Sigma_{j_{3} j_{4}}\right) \Omega_{i j_{1}} \Omega_{i j_{3}} \Omega_{i^{\prime} j_{1}} \Omega_{i^{\prime} j_{4}} \\
= & \sum_{k} \sum_{j_{1}, j_{3}, j_{4}} \mu_{j_{1}} \Sigma_{k j_{3} j_{4}} \Sigma_{k j_{1} j_{3}} \Sigma_{k j_{1} j_{4}}+\sum_{k} \sum_{j_{1}, j_{3}, j_{4}} \frac{M_{k}}{M} \mu_{j_{1}} \Sigma_{j_{3} j_{4}} \Sigma_{k j_{1} j_{3}} \Sigma_{k j_{1} j_{4}} \\
& +2 \sum_{k \neq k^{\prime}} \sum_{j_{1}, j_{3}, j_{4}} \frac{M_{k} M_{k^{\prime}}}{M^{2}} \mu_{j_{1}} \Sigma_{k j_{3} j_{4}} \Sigma_{k j_{1} j_{3}} \Sigma_{k^{\prime} j_{1} j_{4}}+\sum_{k \not k^{\prime}} \sum_{j_{1}, j_{3}, j_{4}} \frac{M_{k} M_{k^{\prime}}}{M^{2}} \mu_{j_{1}} \Sigma_{j_{3} j_{4}} \Sigma_{k j_{1} j_{3}} \Sigma_{k^{\prime} j_{1} j_{4}} \\
= & C_{51}+C_{52}+2 C_{53}+C_{54}
\end{aligned}
$$

For C_{51}, we have

$$
\begin{aligned}
C_{51} & =\sum_{k} \frac{1}{M_{k}^{3}} \sum_{i_{1}, i_{2}, i_{3} \in S_{k}} N_{i_{1}} N_{i_{2}} N_{i_{3}}\left\langle\mu \circ \Omega_{i_{1}}, \Omega_{i_{2}}\right\rangle\left\langle\Omega_{i_{1}}, \Omega_{i_{3}}\right\rangle\left\langle\Omega_{i_{2}}, \Omega_{i_{3}}\right\rangle \\
& =\sum_{k} \frac{1}{M_{k}^{2}} \sum_{i_{1}, i_{2} \in S_{k}} N_{i_{1}} N_{i_{2}}\left\langle\mu \circ \Omega_{i_{1}}, \Omega_{i_{2}}\right\rangle \cdot\left\langle\Omega_{i_{1}}, \Sigma_{k} \Omega_{i_{2}}\right\rangle \\
& \leq \sum_{k}\left(\frac{1}{M_{k}^{2}} \sum_{i_{1}, i_{2} \in S_{k}} N_{i_{1}} N_{i_{2}}\left\langle\mu \circ \Omega_{i_{1}}, \Omega_{i_{2}}\right\rangle^{2}\right)^{1 / 2}\left(\frac{1}{M_{k}^{2}} \sum_{i_{1}, i_{2} \in S_{k}} N_{i_{1}} N_{i_{2}}\left\langle\Omega_{i_{1}}, \Sigma_{k} \Omega_{i_{2}}\right\rangle^{2}\right)^{1 / 2}
\end{aligned}
$$

$$
\begin{equation*}
=: \sum_{k} C_{511 k}^{1 / 2} \cdot C_{512 k}^{1 / 2} \tag{B.42}
\end{equation*}
$$

We have by Cauchy-Schwarz that

$$
\begin{aligned}
C_{511 k} & =\frac{1}{M_{k}^{2}} \sum_{i_{1}, i_{2} \in S_{k}} N_{i_{1}} N_{i_{2}}\left(\sum_{j} \mu_{j} \Omega_{i_{1} j} \Omega_{i_{2} j}\right)^{2} \\
& \leq \frac{1}{M_{k}^{2}} \sum_{i_{1}, i_{2} \in S_{k}} N_{i_{1}} N_{i_{2}}\left(\sum_{j} \mu_{j}^{2} \Omega_{i_{1} j} \Omega_{i_{2} j}\right)\left(\sum_{j} \Omega_{i_{1} j} \Omega_{i_{2} j}\right) \leq\|\mu\|_{4}^{4}
\end{aligned}
$$

and similarly

$$
\begin{align*}
C_{512 k} & =\frac{1}{M_{k}^{2}} \sum_{i_{1}, i_{2} \in S_{k}} N_{i_{1}} N_{i_{2}}\left(\sum_{j_{1}, j_{2}} \Omega_{i_{1} j_{1}} \Sigma_{k j_{1} j_{2}} \Omega_{i_{2} j_{2}}\right)^{2} \\
& =\frac{1}{M_{k}^{2}} \sum_{i_{1}, i_{2}} N_{i_{1}} N_{i_{2}}\left(\sum_{j_{1}, j_{2}} \Omega_{i_{1} j_{1}} \Sigma_{k j_{1} j_{2}}^{2} \Omega_{i_{2} j_{2}}\right)\left(\sum_{j_{1}, j_{2}} \Omega_{i_{1} j_{1}} \Omega_{i_{2} j_{2}}\right) \\
& \leq \frac{1}{M_{k}^{2}} \sum_{i_{1}, i_{2}} N_{i_{1}} N_{i_{2}}\left(\sum_{j_{1}, j_{2}} \Omega_{i_{1} j_{1}} \Sigma_{k j_{1} j_{2}}^{2} \Omega_{i_{2} j_{2}}\right)=\mu^{\prime} \Sigma_{k}^{\circ 2} \mu \tag{B.43}
\end{align*}
$$

Since by Cauchy-Schwarz,

$$
\begin{align*}
\mu^{\prime} \Sigma_{k}^{\circ 2} \mu & =\sum_{j_{1}, j_{2}} \mu_{j_{1}} \mu_{j_{2}}\left(\frac{1}{M_{k}} \sum_{i \in S_{k}} N_{i} \Omega_{i j_{1}} \Omega_{i j_{2}}\right)^{2}=\frac{1}{M_{k}^{2}} \sum_{j_{1}, j_{2}} \mu_{j_{1}} \mu_{j_{2}} \sum_{i, i^{\prime} \in S_{k}} N_{i} N_{i^{\prime}} \Omega_{i j_{1}} \Omega_{i j_{2}} \Omega_{i^{\prime} j_{1}} \Omega_{i^{\prime} j_{2}} \\
& =\frac{1}{M_{k}^{2}} \sum_{i, i^{\prime} \in S_{k}}\left(\sum_{j} \mu_{j} \Omega_{i j} \Omega_{i^{\prime} j}\right)^{2} \leq \frac{1}{M_{k}^{2}} \sum_{i, i^{\prime} \in S_{k}} \sum_{j} \mu_{j}^{2} \Omega_{i j} \Omega_{i^{\prime} j} \leq\|\mu\|_{4}^{4} \tag{B.44}
\end{align*}
$$

we have in total $C_{512 k} \lesssim K\|\mu\|_{4}^{4}$. Combining the result with the bound for $C_{511 k}$ implies that

$$
C_{51} \lesssim K\|\mu\|_{4}^{4}
$$

Next we study C_{52} using a similar argument.

$$
\begin{aligned}
C_{52} & =\sum_{k} \sum_{j_{1}, j_{3}, j_{4}} \frac{M_{k}}{M} \mu_{j_{1}} \Sigma_{j_{3} j_{4}} \Sigma_{k j_{1} j_{3}} \Sigma_{k j_{1} j_{4}} \\
& =\sum_{k} \sum_{j_{1}, j_{3}, j_{4}} \frac{M_{k}}{M} \mu_{j_{1}}\left(\frac{1}{M} \sum_{i_{1} \in[n]} N_{i_{1}} \Omega_{i_{1} j_{3}} \Omega_{i_{1} j_{4}}\right)\left(\frac{1}{M_{k}} \sum_{i_{2} \in S_{k}} N_{i_{2}} \Omega_{i_{2} j_{1}} \Omega_{i_{2} j_{3}}\right)\left(\frac{1}{M_{k}} \sum_{i_{3} \in S_{k}} N_{i_{3}} \Omega_{i_{3} j_{1}} \Omega_{i_{3} j_{4}}\right) \\
& =\sum_{k} \frac{1}{M^{2} M_{k}} \sum_{j_{1}, j_{2}, j_{3}} \sum_{\substack{i_{1} \in[n] \\
i_{2}, i_{3} \in S_{k}}} N_{i_{1}} N_{i_{2}} N_{i_{3}}\left\langle\mu \circ \Omega_{i_{2}}, \Omega_{i_{3}}\right\rangle\left\langle\Omega_{i_{1}}, \Omega_{i_{3}}\right\rangle\left\langle\Omega_{i_{1}}, \Omega_{i_{2}}\right\rangle \\
& =\sum_{k} \frac{1}{M^{2}} \sum_{i_{2}, i_{3} \in\left[S_{k}\right]} N_{i_{2}} N_{i_{3}}\left\langle\mu \circ \Omega_{i_{2}}, \Omega_{i_{3}}\right\rangle\left\langle\Omega_{i_{3}}, \Sigma \Omega_{i_{2}}\right\rangle \\
& \leq \sum_{k}\left(\frac{1}{M^{2}} \sum_{i_{2}, i_{3} \in\left[S_{k}\right]} N_{i_{2}} N_{i_{3}}\left\langle\mu \circ \Omega_{i_{2}}, \Omega_{i_{3}}\right\rangle^{2}\right)^{1 / 2}\left(\frac{1}{M^{2}} \sum_{i_{2}, i_{3} \in\left[S_{k}\right]} N_{i_{2}} N_{i_{3}}\left\langle\Omega_{i_{3}}, \Sigma \Omega_{i_{2}}\right\rangle\right)^{1 / 2}
\end{aligned}
$$

$$
\begin{equation*}
=: \sum_{k} C_{521 k}^{1 / 2} C_{522 k}^{1 / 2} \tag{B.45}
\end{equation*}
$$

Observe that $C_{521 k}=C_{511 k}$, and thus $C_{521} \lesssim\|\mu\|^{4}$ by (B.43). With a similar argument as in (B.44) we obtain $C_{522 k} \lesssim\|\mu\|_{4}^{4}$. Hence we obtain

$$
C_{52} \leq \sum_{k} C_{521 k}^{1 / 2} C_{522 k}^{1 / 2} \lesssim K\|\mu\|_{4}^{4}
$$

For C_{53}, we have

$$
\begin{align*}
& C_{53}=\sum_{k \neq k^{\prime}} \sum_{j_{1}, j_{3}, j_{4}} \frac{M_{k} M_{k^{\prime}}}{M^{2}} \mu_{j_{1}} \Sigma_{k j_{3} j_{4}} \Sigma_{k j_{1} j_{3}} \Sigma_{k^{\prime} j_{1} j_{4}} \\
& \leq \sum_{k} \sum_{j_{1}, j_{3}, j_{4}} \frac{M_{k}}{M} \mu_{j_{1}} \Sigma_{k j_{3} j_{4}} \Sigma_{k j_{1} j_{3}} \Sigma_{j_{1} j_{4}} \\
& =\sum_{k} \sum_{j_{1}, j_{3}, j_{4}} \frac{M_{k}}{M} \mu_{j_{1}}\left(\frac{1}{M_{k}} \sum_{i_{1} \in S_{k}} N_{i_{1}} \Omega_{i_{1} j_{3}} \Omega_{i_{1} j_{4}}\right)\left(\frac{1}{M_{k}} \sum_{i_{2} \in S_{k}} N_{i_{2}} \Omega_{i_{2} j_{1}} \Omega_{i_{2} j_{3}}\right)\left(\frac{1}{M} \sum_{i_{3} \in[n]} N_{i_{3}} \Omega_{i_{3} j_{1}} \Omega_{i_{3} j_{4}}\right) \\
& =\sum_{k} \frac{1}{M^{2} M_{k}} \sum_{\substack{i_{1}, i_{2} \in S_{k} \\
i_{3} \in[n]}} N_{i_{1}} N_{i_{2}} N_{i_{3}}\left\langle\mu \circ \Omega_{i_{2}}, \Omega_{i_{3}}\right\rangle\left\langle\Omega_{i_{1}}, \Omega_{i_{2}}\right\rangle\left\langle\Omega_{i_{1}}, \Omega_{i_{3}}\right\rangle \\
& =\sum_{k} \frac{1}{M^{2}} \sum_{i_{2} \in S_{k}, i_{3} \in[n]} N_{i_{2}} N_{i_{3}}\left\langle\mu \circ \Omega_{i_{2}}, \Omega_{i_{3}}\right\rangle\left\langle\Omega_{i_{2}}, \Sigma_{k} \Omega_{i_{3}}\right\rangle \tag{B.46}
\end{align*}
$$

We then upper bound the last line using a similar strategy as in that we used for C_{51} and C_{52}, respectively. We omit the details and state the final bound:

$$
\begin{equation*}
C_{53} \lesssim K\|\mu\|_{4}^{4} \tag{B.47}
\end{equation*}
$$

Finally for C_{54}, summing over k, k^{\prime} we obtain

$$
\begin{equation*}
C_{54} \leq \sum_{j_{1}, j_{3}, j_{4}} \mu_{j_{1}} \Sigma_{j_{3} j_{4}} \Sigma_{j_{1} j_{3}} \Sigma_{j_{1} j_{4}}=\frac{1}{M^{3}} \sum_{i_{1}, i_{2}, i_{3} \in[n]} N_{i_{1}} N_{i_{2}} N_{i_{3}}\left\langle\mu \circ \Omega_{i_{2}}, \Omega_{i_{3}}\right\rangle\left\langle\Omega_{i_{1}}, \Omega_{i_{2}}\right\rangle\left\langle\Omega_{i_{1}}, \Omega_{i_{3}}\right\rangle \tag{B.48}
\end{equation*}
$$

We then proceed as in B.46 to control the right-hand side. We omit the details and state the final bound:

$$
\begin{equation*}
C_{54} \lesssim K\|\mu\|_{4}^{4} \tag{B.49}
\end{equation*}
$$

Combining the results for C_{51}, \ldots, C_{54}, we see that

$$
C_{5} \lesssim K\|\mu\|^{4}
$$

For C_{6}, we have

$$
C_{6} \leq\left(\sum_{k} \sum_{i, i^{\prime} \in S_{k}} N_{i} N_{i^{\prime}}+\sum_{k \neq k^{\prime}} \sum_{i \in S_{k}, i^{\prime} \in S_{k^{\prime}}} N_{i} N_{i^{\prime}}\right) \sum_{j_{1}, j_{2}, j_{4}} \alpha_{i i^{\prime} j_{1} j_{2}} \alpha_{i i^{\prime} j_{1} j_{4}} \Omega_{i j_{1}} \Omega_{i^{\prime} j_{2}} \Omega_{i^{\prime} j_{4}}
$$

$$
\begin{aligned}
& \lesssim \sum_{k} \sum_{\substack{i, i^{\prime} \in S_{k}}} N_{i} N_{i^{\prime}} \sum_{j_{1}, j_{2}, j_{4}}\left(\frac{1}{M_{k}} \Sigma_{k j_{1} j_{2}}+\frac{1}{M} \Sigma_{j_{1} j_{2}}\right)\left(\frac{1}{M_{k}} \Sigma_{k j_{1} j_{4}}+\frac{1}{M} \Sigma_{j_{1} j_{4}}\right) \Omega_{i j_{1}} \Omega_{i^{\prime} j_{2}} \Omega_{i^{\prime} j_{4}} \\
& +\sum_{\substack{k \neq k^{\prime} \\
i \in S_{k}, i^{\prime} \in S_{k^{\prime}} \\
j_{1}, j_{2}, j_{4}}} N_{i} N_{i^{\prime}}\left(\frac{1}{M} \sum_{a \in\left\{k, k^{\prime}\right\}}^{2} \Sigma_{a j_{1} j_{2}}+\frac{1}{M} \Sigma_{j_{1} j_{2}}\right)\left(\frac{1}{M} \sum_{a \in\left\{k, k^{\prime}\right\}}^{2} \Sigma_{a j_{1} j_{4}}+\frac{1}{M} \Sigma_{j_{1} j_{4}}\right) \Omega_{i j_{1}} \Omega_{i^{\prime} j_{2}} \Omega_{i^{\prime} j_{4}} \\
& =: C_{61}+C_{62} .
\end{aligned}
$$

For C_{61}, we have

$$
\begin{aligned}
C_{61}= & \sum_{k} \sum_{i^{\prime} \in S_{k}} N_{i^{\prime}} \sum_{j_{1}, j_{2}, j_{4}} \frac{1}{M_{k}} \Sigma_{k j_{1} j_{2}} \Sigma_{k j_{1} j_{4}} \mu_{j_{1}} \Omega_{i^{\prime} j_{2}} \Omega_{i^{\prime} j_{4}} \\
& +2 \sum_{k} \sum_{i^{\prime} \in S_{k}} N_{i^{\prime}} \sum_{j_{1}, j_{2}, j_{4}} \frac{1}{M} \Sigma_{k j_{1} j_{2}} \Sigma_{j_{1} j_{4}} \mu_{j_{1}} \Omega_{i^{\prime} j_{2}} \Omega_{i^{\prime} j_{4}} \\
+ & \sum_{k} \sum_{i^{\prime} \in S_{k}} N_{i^{\prime}} \sum_{j_{1}, j_{2}, j_{4}} \frac{M_{k}}{M^{2}} \Sigma_{j_{1} j_{2}} \Sigma_{j_{1} j_{4}} \mu_{j_{1}} \Omega_{i^{\prime} j_{2}} \Omega_{i^{\prime} j_{4}}=: C_{611}+2 C_{612}+C_{613} .
\end{aligned}
$$

Relabeling indices, we see that

$$
C_{611}=\sum_{k} \sum_{j_{1}, j_{2}, j_{4}} \mu_{j_{1}} \Sigma_{k j_{1} j_{2}} \Sigma_{k j_{1} j_{4}} \Sigma_{k j_{2} j_{4}}=C_{51}
$$

Hence, $C_{611} \lesssim K\|\mu\|_{4}^{4}$. Next,

$$
C_{612} \leq \sum_{k} \frac{M_{k}}{M} \sum_{j_{1}, j_{2}, j_{4}} \mu_{j_{1}} \Sigma_{k j_{1} j_{2}} \Sigma_{j_{1} j_{4}} \Sigma_{k j_{2} j_{4}} \lesssim K\|\mu\|^{4},
$$

where we applied (B.46). Similarly,

$$
C_{613}=\sum_{k} \frac{M_{k}^{2}}{M^{2}} \sum_{j_{1}, j_{2}, j_{4}} \mu_{j_{1}} \Sigma_{j_{1} j_{2}} \Sigma_{j_{1} j_{4}} \Sigma_{k j_{2} j_{4}} \leq \sum_{j_{1}, j_{2}, j_{4}} \mu_{j_{1}} \Sigma_{j_{1} j_{2}} \Sigma_{j_{1} j_{4}} \Sigma_{j_{2} j_{4}} \lesssim K\|\mu\|^{4}
$$

where in the final bound we apply (B.48) and (B.49). Combining the results above for $C_{611}, C_{612}, C_{613}$, we obtain

$$
\begin{equation*}
C_{61} \lesssim K\|\mu\|_{4}^{4} \tag{B.50}
\end{equation*}
$$

The argument for C_{62} is very similar, so we omit proof and state the final bound. We have

$$
C_{62} \lesssim K\|\mu\|_{4} .
$$

Thus

$$
C_{6} \lesssim K\|\mu\|_{4}^{4}
$$

For C_{7}, we have

$$
C_{7} \lesssim\left(\sum_{k} \sum_{i, i^{\prime} \in S_{k}} N_{i} N_{i^{\prime}}+\sum_{k \neq k^{\prime}} \sum_{i \in S_{k}, i^{\prime} \in S_{k^{\prime}}} N_{i} N_{i^{\prime}}\right) \sum_{j_{1}, j_{2}, j_{3}, j_{4}} \alpha_{i i^{\prime} j_{1} j_{2}} \alpha_{i i^{\prime} j_{3} j_{4}} \Omega_{i j_{1}} \Omega_{i j_{3}} \Omega_{i^{\prime} j_{2}} \Omega_{i^{\prime} j_{4}}
$$

$$
\begin{aligned}
& \lesssim \sum_{k} \sum_{\substack{i, i^{\prime} \in S_{k}}} N_{i} N_{i^{\prime}} \sum_{j_{1}, j_{2}, j_{3}, j_{4}}\left(\frac{1}{M_{k}} \Sigma_{k j_{1} j_{2}}+\frac{1}{M} \Sigma_{j_{1} j_{2}}\right)\left(\frac{1}{M_{k}} \Sigma_{k j_{3} j_{4}}+\frac{1}{M} \Sigma_{j_{3} j_{4}}\right) \Omega_{i j_{1}} \Omega_{i j_{3}} \Omega_{i^{\prime} j_{2}} \Omega_{i^{\prime} j_{4}} \\
& +\sum_{k \neq k^{\prime}} \sum_{\substack{j_{1}, j_{2}, j_{3}, j_{4} \\
i \in S_{k}, i^{\prime} \in S_{k^{\prime}}}} N_{i} N_{i^{\prime}}\left(\frac{1}{M} \sum_{a \in\left\{k, k^{\prime}\right\}}^{2} \Sigma_{a j_{1} j_{2}}+\frac{1}{M} \Sigma_{j_{1} j_{2}}\right)\left(\frac{1}{M} \sum_{a \in\left\{k, k^{\prime}\right\}}^{2} \Sigma_{a j_{3} j_{4}}+\frac{1}{M} \Sigma_{j_{3} j_{4}}\right) \Omega_{i j_{1}} \Omega_{i j_{3}} \Omega_{i^{\prime} j_{2}} \Omega_{i^{\prime} j_{4}} \\
& =: C_{71}+C_{72}
\end{aligned}
$$

Write

$$
\begin{aligned}
C_{71}= & \sum_{k} \sum_{i, i^{\prime} \in S_{k}} N_{i} N_{i^{\prime}} \sum_{j_{1}, j_{2}, j_{3}, j_{4}} \frac{1}{M_{k}^{2}} \Sigma_{k j_{1} j_{2}} \Sigma_{k j_{3} j_{4}} \Omega_{i j_{1}} \Omega_{i j_{3}} \Omega_{i^{\prime} j_{2}} \Omega_{i^{\prime} j_{4}} \\
& +2 \sum_{k} \sum_{i, i^{\prime} \in S_{k}} N_{i} N_{i^{\prime}} \sum_{j_{1}, j_{2}, j_{3}, j_{4}} \frac{1}{M_{k} M} \Sigma_{j_{1} j_{2}} \Sigma_{k j_{3} j_{4}} \Omega_{i j_{1}} \Omega_{i j_{3}} \Omega_{i^{\prime} j_{2}} \Omega_{i^{\prime} j_{4}} \\
& +\sum_{k} \sum_{i, i^{\prime} \in S_{k}} N_{i} N_{i^{\prime}} \sum_{j_{1}, j_{2}, j_{3}, j_{4}} \frac{1}{M^{2}} \Sigma_{j_{1} j_{2}} \Sigma_{j_{3} j_{4}} \Omega_{i j_{1}} \Omega_{i j_{3}} \Omega_{i^{\prime} j_{2}} \Omega_{i^{\prime} j_{4}}=: C_{711}+2 C_{712}+C_{713} .
\end{aligned}
$$

For C_{711}, we have

$$
\begin{align*}
C_{711} & =\sum_{k} \sum_{j_{1}, j_{2}, j_{3}, j_{4}} \Sigma_{k j_{1} j_{2}} \Sigma_{k j_{3} j_{4}} \Sigma_{k j_{1} j_{3}} \Sigma_{k j_{2} j_{4}} \\
& =\sum_{k} \frac{1}{M_{k}^{4}} \sum_{i_{1}, i_{2}, i_{3}, i_{4} \in S_{k}} N_{i_{1}} N_{i_{2}} N_{i_{3}} N_{i_{4}}\left\langle\Omega_{i_{1}}, \Omega_{i_{3}}\right\rangle\left\langle\Omega_{i_{1}}, \Omega_{i_{4}}\right\rangle\left\langle\Omega_{i_{2}}, \Omega_{i_{3}}\right\rangle\left\langle\Omega_{i_{2}}, \Omega_{i_{4}}\right\rangle \\
& =\frac{1}{M_{k}^{2}} \sum_{k} \sum_{i_{3}, i_{4}} N_{i_{3}} N_{i_{4}}\left(\Omega_{i_{3}}^{\prime} \Sigma_{k} \Omega_{i_{4}}\right)^{2}=\sum_{k} \frac{1}{M_{k}^{2}} \sum_{i_{3}, i_{4}} N_{i_{3}} N_{i_{4}}\left(\sum_{j, j^{\prime}} \Omega_{i_{3} j}^{\prime} \Sigma_{k j j^{\prime}} \Omega_{i_{4} j^{\prime}}\right)^{2} \\
& \leq \sum_{k} \frac{1}{M_{k}^{2}} \sum_{i_{3}, i_{4}} N_{i_{3}} N_{i_{4}} \sum_{j, j^{\prime}} \Omega_{i_{3} j}^{\prime} \Sigma_{k j j^{\prime}}^{2} \Omega_{i_{4} j^{\prime}} \leq \sum_{k} \sum_{j, j^{\prime}} \mu_{j} \Sigma_{k j j^{\prime}}^{2} \mu_{j^{\prime}} \lesssim K\|\mu\|_{4}^{4} . \tag{B.51}
\end{align*}
$$

In the last line we applied Cauchy-Schwarz and ($\overline{\mathrm{B} .44}$). For C_{712}, we have similarly

$$
\begin{align*}
C_{712} & =\sum_{k} \frac{M_{k}}{M} \sum_{j_{1}, j_{2}, j_{3}, j_{4}} \Sigma_{j_{1} j_{2}} \Sigma_{k j_{3} j_{4}} \Sigma_{k j_{1} j_{3}} \Sigma_{k j_{2} j_{4}} \\
& =\sum_{k} \frac{1}{M^{2} M_{k}} \sum_{\substack{i_{1} \in[n] \\
i_{2}, i_{3}, i_{4} \in S_{k}}} N_{i_{1}} N_{i_{2}} N_{i_{3}} N_{i_{4}}\left\langle\Omega_{i_{1}}, \Omega_{i_{3}}\right\rangle\left\langle\Omega_{i_{1}}, \Omega_{i_{4}}\right\rangle\left\langle\Omega_{i_{2}}, \Omega_{i_{3}}\right\rangle\left\langle\Omega_{i_{2}}, \Omega_{i_{4}}\right\rangle \\
& =\sum_{k} \frac{M_{k}}{M^{2}} \sum_{i_{1} \in[n], i_{2} \in S_{k}} N_{i_{1}} N_{i_{2}}\left\langle\Omega_{i_{1}}, \Sigma_{k} \Omega_{i_{2}}\right\rangle^{2} \leq \sum_{k} \frac{M_{k}}{M^{2}} \sum_{i_{1} \in[n], i_{2} \in S_{k}} N_{i_{1}} N_{i_{2}} \sum_{j, j^{\prime}} \Omega_{i_{1} j} \Sigma_{k j j^{\prime}}^{2} \Omega_{i_{2} j^{\prime}} \\
& \leq \sum_{k} \frac{M_{k}^{2}}{M^{2}} \sum_{j, j^{\prime}} \mu_{j} \Sigma_{k j j^{\prime}}^{2} \mu_{j^{\prime}} \lesssim K\|\mu\|_{4}^{4} . \tag{B.52}
\end{align*}
$$

Next,

$$
C_{713}=\sum_{k} \frac{M_{k}^{2}}{M^{2}} \sum_{j_{1}, j_{2}, j_{3}, j_{4}} \Sigma_{j_{1} j_{2}} \Sigma_{j_{3} j_{4}} \Sigma_{k j_{1} j_{3}} \Sigma_{k j_{2} j_{4}}
$$

$$
=\sum_{k} \frac{1}{M^{4}} \sum_{\substack{i_{1}, i_{2} \in[n] \\ i_{3}, i_{4} \in S_{k}}} N_{i_{1}} N_{i_{2}} N_{i_{3}} N_{i_{4}}\left\langle\Omega_{i_{1}}, \Omega_{i_{3}}\right\rangle\left\langle\Omega_{i_{1}}, \Omega_{i_{4}}\right\rangle\left\langle\Omega_{i_{2}}, \Omega_{i_{3}}\right\rangle\left\langle\Omega_{i_{2}}, \Omega_{i_{4}}\right\rangle
$$

and applying a similar strategy as in (B.51), B.52) leads to the bound $C_{713} \lesssim K\|\mu\|_{4}^{4}$.
Thus

$$
C_{71} \lesssim K\|\mu\|_{4}^{4} .
$$

Next, by symmetry and summing over $i \in S_{k}, i^{\prime} \in S_{k^{\prime}}$, we have

$$
\begin{aligned}
C_{72} & =\sum_{k \neq k^{\prime}} \frac{M_{k} M_{k^{\prime}}}{M^{2}} \sum_{j_{1}, j_{2}, j_{3}, j_{4}}\left[2 \Sigma_{k j_{1} j_{2}} \Sigma_{k j_{3} j_{4}}+2 \Sigma_{k^{\prime} j_{1} j_{2}} \Sigma_{k j_{3} j_{4}}+4 \Sigma_{k j_{1} j_{2}} \Sigma_{j_{3} j_{4}}+\Sigma_{j_{1} j_{2}} \Sigma_{j_{3} j_{4}}\right] \Sigma_{k j_{1} j_{3}} \Sigma_{k^{\prime} j_{2} j_{4}} \\
& =: 2 C_{721}+2 C_{722}+4 C_{723}+C_{724}
\end{aligned}
$$

First,

$$
C_{721} \leq \sum_{k} \frac{M_{k}}{M} \sum_{j_{1}, j_{2}, j_{3}, j_{4}} \Sigma_{k j_{1} j_{2}} \Sigma_{k j_{3} j_{4}} \Sigma_{k j_{1} j_{3}} \Sigma_{j_{2} j_{4}}=C_{712} \lesssim K\|\mu\|_{4}^{4}
$$

by (B.52). Next,

$$
\begin{align*}
C_{722} & =\sum_{k \neq k^{\prime}} \frac{M_{k} M_{k^{\prime}}}{M^{2}} \sum_{j_{1}, j_{2}, j_{3}, j_{4}} \Sigma_{k^{\prime} j_{1} j_{2}} \Sigma_{k j_{3} j_{4}} \Sigma_{k j_{1} j_{3}} \Sigma_{k^{\prime} j_{2} j_{4}} \\
& \leq \sum_{k, k^{\prime}} \frac{1}{M^{2} M_{k} M_{k^{\prime}}} \sum_{\substack{i_{1}, i_{2} \in S_{k} \\
i_{3}, i_{4} \in S_{k^{\prime}}}} N_{i_{1}} N_{i_{2}} N_{i_{3}} N_{i_{4}}\left\langle\Omega_{i_{1}}, \Omega_{i_{3}}\right\rangle\left\langle\Omega_{i_{1}}, \Omega_{i_{4}}\right\rangle\left\langle\Omega_{i_{2}}, \Omega_{i_{3}}\right\rangle\left\langle\Omega_{i_{2}}, \Omega_{i_{4}}\right\rangle \\
& =\sum_{k, k^{\prime}} \frac{M_{k}}{M^{2} M_{k^{\prime}}} \sum_{i_{3}, i_{4} \in S_{k^{\prime}}} N_{i_{3}} N_{i_{4}}\left\langle\Omega_{i_{3}}, \Sigma_{k} \Omega_{i_{4}}\right\rangle^{2} \leq \sum_{k, k^{\prime}} \frac{M_{k}}{M^{2} M_{k^{\prime}}} \sum_{i_{3}, i_{4} \in S_{k^{\prime}}} N_{i_{3}} N_{i_{4}} \sum_{j, j^{\prime}} \Omega_{i_{3} j} \Sigma_{k j j^{\prime}}^{2} \Omega_{i_{4} j^{\prime}} \\
& \leq \sum_{k, k^{\prime}} \frac{M_{k} M_{k^{\prime}}}{M^{2}} \mu^{\prime} \Sigma_{k}^{\circ 2} \mu \leq\|\mu\|_{4}^{4}, \tag{B.53}
\end{align*}
$$

where we applied Cauchy-Schwarz in the penultimate line and $(\overline{B .44})$ in the last line.
For C_{723}, we have

$$
\begin{aligned}
C_{723} & =\sum_{k \neq k^{\prime}} \frac{M_{k} M_{k^{\prime}}}{M^{2}} \sum_{j_{1}, j_{2}, j_{3}, j_{4}} \Sigma_{k j_{1} j_{2}} \Sigma_{j_{3} j_{4}} \Sigma_{k j_{1} j_{3}} \Sigma_{k^{\prime} j_{2} j_{4}} \leq \sum_{k} \frac{M_{k}}{M} \sum_{j_{1}, j_{2}, j_{3}, j_{4}} \Sigma_{k j_{1} j_{2}} \Sigma_{j_{3} j_{4}} \Sigma_{k j_{1} j_{3}} \Sigma_{j_{2} j_{4}} \\
& =\sum_{k} \frac{1}{M^{3} M_{k}} \sum_{\substack{i_{1}, i_{3} \in S_{k} \\
i_{2}, i_{4} \in[n]}} N_{i_{1}} N_{i_{2}} N_{i_{3}} N_{i_{4}}\left\langle\Omega_{i_{1}}, \Omega_{i_{3}}\right\rangle\left\langle\Omega_{i_{1}}, \Omega_{i_{4}}\right\rangle\left\langle\Omega_{i_{2}}, \Omega_{i_{3}}\right\rangle\left\langle\Omega_{i_{2}}, \Omega_{i_{4}}\right\rangle \\
& =\sum_{k} \frac{1}{M^{2}} \sum_{i_{3} \in S_{k}, i_{4} \in[n]} N_{i_{3}} N_{i_{4}}\left\langle\Omega_{i_{3}}, \Sigma_{k} \Omega_{i_{4}}\right\rangle\left\langle\Omega_{i_{3}}, \Sigma \Omega_{i_{4}}\right\rangle \\
& \leq \frac{1}{2} \sum_{k} \frac{1}{M^{2}} \sum_{i_{3} \in S_{k}, i_{4} \in[n]} N_{i_{3}} N_{i_{4}}\left(\left\langle\Omega_{i_{3}}, \Sigma_{k} \Omega_{i_{4}}\right\rangle^{2}+\left\langle\Omega_{i_{3}}, \Sigma \Omega_{i_{4}}\right\rangle^{2}\right)
\end{aligned}
$$

Using a similar technique as in (B .51$)-(\overline{\mathrm{B} .53})$ and applying $(\overline{\mathrm{B} .38}),(\overline{\mathrm{B} .39})$ we obtain

$$
C_{723} \lesssim\|\mu\|_{4}^{4} .
$$

Finally, for C_{724} we have

$$
\begin{aligned}
C_{724} & =\sum_{k \neq k^{\prime}} \frac{M_{k} M_{k^{\prime}}}{M^{2}} \sum_{j_{1}, j_{2}, j_{3}, j_{4}} \Sigma_{j_{1} j_{2}} \Sigma_{j_{3} j_{4}} \Sigma_{k j_{1} j_{3}} \Sigma_{k^{\prime} j_{2} j_{4}} \leq \sum_{j_{1}, j_{2}, j_{3}, j_{4}} \Sigma_{j_{1} j_{2}} \Sigma_{j_{3} j_{4}} \Sigma_{j_{1} j_{3}} \Sigma_{j_{2} j_{4}} \\
& =\frac{1}{M^{4}} \sum_{i_{1}, i_{2}, i_{3}, i_{4} \in[n]} N_{i_{1}} N_{i_{2}} N_{i_{3}} N_{i_{4}}\left\langle\Omega_{i_{1}}, \Omega_{i_{3}}\right\rangle\left\langle\Omega_{i_{1}}, \Omega_{i_{4}}\right\rangle\left\langle\Omega_{i_{2}}, \Omega_{i_{3}}\right\rangle\left\langle\Omega_{i_{2}}, \Omega_{i_{4}}\right\rangle
\end{aligned}
$$

The details are very similar to (B.51)-B.53), so we omit them and simply state the final bound:

$$
C_{724} \lesssim\|\mu\|_{4}^{4}
$$

Combining the bounds for $C_{721}, C_{722}, C_{723}$, and C_{724} yields

$$
C_{7} \lesssim K\|\mu\|_{4}^{4}
$$

Combining the bounds for $C_{1}-C_{7}$ proves the result.

B. 4 Proof of Lemma B. 3

We have

$$
\begin{align*}
& \mathbb{E} D_{\ell, s}^{4}=\mathbb{E}\left[\left(\sum_{i \in[\ell-1]} \sigma_{i, \ell} \sum_{r=1}^{N_{i}} \sum_{j} Z_{i j r} Z_{\ell j_{s} s}\right)^{4}\right] \\
& =\sum_{i_{1}, i_{2}, i_{3}, i_{4} \in[\ell-1]} \sigma_{i_{1} \ell} \sigma_{i_{2} \ell} \sigma_{i_{3} \ell} \sigma_{i_{4} \ell} \sum_{\substack{r_{1}, r_{2}, r_{3}, r_{4} \\
j_{1}, j_{2}, j_{3}, j_{4}}} \mathbb{E}\left[Z_{i_{1} j_{1} r_{1}} Z_{\ell j_{1} s} Z_{i_{2} j_{2} r_{2}} Z_{\ell j_{2} s} Z_{i_{3} j_{3} r_{3}} Z_{\ell j_{3} s} Z_{i_{4} j_{4} r_{4}} Z_{\ell j_{4} s}\right] \\
& =\sum_{i_{1}, i_{2}, i_{3}, i_{4} \in[\ell-1]} \sigma_{i_{1} \ell} \sigma_{i_{2} \ell} \sigma_{i_{3} \ell} \sigma_{i_{4} \ell} \sum_{\substack{r_{1}, r_{2}, r_{3}, r_{4} \\
j_{1}, j_{2}, j_{3}, j_{4}}} \mathbb{E}\left[Z_{i_{1} j_{1} r_{1}} Z_{i_{2} j_{2} r_{2}} Z_{i_{3} j_{3} r_{3} r_{3}} Z_{\left.i_{4} j_{4} r_{4}\right]}\right] \mathbb{E}\left[Z_{\ell j_{1} s} Z_{\ell j_{2} s} Z_{\ell j_{3} s} Z_{\ell j_{4} s}\right] \\
& =\sum_{j_{1}, j_{2}, j_{3}, j_{4}} \mathbb{E}\left[Z_{\ell j_{1} s} Z_{\ell j_{2} s} Z_{\ell j_{3} s} Z_{\ell j_{4} s}\right] \sum_{\substack{\left.i_{1}, i_{2}, i_{3}, i_{4} \in \ell \ell-1\right] \\
r_{1}, r_{2}, r_{3}, r_{4}}} \sigma_{i_{1} \ell} \sigma_{i_{2} \ell} \sigma_{i_{3} \ell} \sigma_{i_{4} \ell} \mathbb{E}\left[Z_{i_{1} j_{1} r_{1}} Z_{i_{2} j_{2} r_{2}} Z_{i_{3} j_{3} r_{3}} Z_{\left.i_{4} j_{4} r_{4} r_{4}\right]}\right] \\
& =: \sum_{j_{1}, j_{2}, j_{3}, j_{4}} \mathbb{E}\left[Z_{\ell j_{1} s} Z_{\ell j_{2} s} Z_{\ell j_{3} s} Z_{\ell j_{4} s} A_{j_{1}, j_{2}, j_{3}, j_{4}}\right. \tag{B.54}
\end{align*}
$$

In the summations above, r_{t} ranges over $\left[N_{i_{t}}\right]$.
Observe that

$$
\left|\mathbb{E}\left[Z_{\ell j_{1} s} Z_{\ell j_{2} s} Z_{\ell j_{3} s} Z_{\ell j_{4} s}\right]\right| \lesssim \begin{cases}\Omega_{\ell j_{1}} & \text { if } j_{1}=j_{2}=j_{3}=j_{4} \tag{B.55}\\ \Omega_{\ell j_{1}} \Omega_{\ell j_{4}} & \text { if } j_{1}=j_{2}=j_{3}, j_{4} \neq j_{1} \\ \Omega_{\ell j_{1}} \Omega_{\ell j_{3}} & \text { if } j_{1}=j_{2}, j_{3}=j_{4}, j_{1} \neq j_{3} \\ \Omega_{\ell j_{1}} \Omega_{\ell j_{3}} \Omega_{\ell j_{4}} & \text { if } j_{1}=j_{2}, j_{1}, j_{3}, j_{4} \text { dist } \\ \Omega_{\ell j_{1}} \Omega_{\ell j_{2}} \Omega_{\ell j_{3}} \Omega_{\ell j_{4}} & \text { if } j_{1}, j_{2}, j_{3}, j_{4} \text { dist } .\end{cases}
$$

Up to permutation of the indices j_{1}, \ldots, j_{4}, this accounts for all possible cases.
To proceed we also bound $A_{j_{1}, j_{2}, j_{3}, j_{4}}$ by casework on the number of distinct j indices. For brevity we define $\omega_{t}=\left(i_{t}, r_{t}\right)$ and slightly abuse notation, letting $Z_{\omega_{t}, j}=Z_{i_{t} j r_{t}}$. Further let $\mathcal{I}_{\ell}=\left\{\omega=(i, r): i \in[\ell], 1 \leq r \leq N_{i}\right\}$. Our goal is to control

$$
\begin{equation*}
A_{j_{1}, j_{2}, j_{3}, j_{4}}=\sum_{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4} \in \mathcal{I}_{\ell-1}} \sigma_{i_{1} \ell} \sigma_{i_{2} \ell} \sigma_{i_{3} \ell} \sigma_{i_{4}} \mathbb{E}\left[Z_{\omega_{1} j_{1}} Z_{\omega_{2} j_{2}} Z_{\omega_{3} j_{3}} Z_{\omega_{4} j_{4}}\right] . \tag{B.56}
\end{equation*}
$$

To do this, we study (B.56) in five cases that cover all possibilities (up to permutation of the indices $\left.j_{1}, \ldots, j_{4}\right)$.

Case 1: $j_{1}=j_{2}=j_{3}=j_{4}$. Define $j=j_{1}$. It holds that

$$
\begin{align*}
& \sigma_{i_{1} \ell} \sigma_{i_{2} \ell} \sigma_{i_{3} \ell} \sigma_{i_{4} \ell} \mathbb{E}\left[Z_{\omega_{1} j} Z_{\omega_{2} j} Z_{\omega_{3} j} Z_{\omega_{4} j}\right] \\
& \quad= \begin{cases}\sigma_{i_{1} \ell}^{4} \mathbb{E} Z_{\omega_{1} j}^{4} \lesssim \sigma_{i_{1} \ell}^{4} \Omega_{i_{1} j} & \text { if } \omega_{1}=\omega_{2}=\omega_{3}=\omega_{4} \\
\sigma_{i_{1} \ell}^{2} \sigma_{i_{3} \ell}^{2} \mathbb{E} Z_{\omega_{1} j}^{2} \mathbb{E} Z_{\omega_{3} j}^{2} \lesssim \sigma_{i_{1} \ell}^{2} \sigma_{i_{3} \ell}^{2} \Omega_{i_{1} j} \Omega_{i_{3} j} & \text { if } \omega_{1}=\omega_{2}, \omega_{3}=\omega_{4}, \omega_{1} \neq \omega_{3}\end{cases} \tag{B.57}
\end{align*}
$$

Up to permutation of the indices $\omega_{1}, \ldots, \omega_{4}$, this accounts for all cases such that (B.57) is nonvanishing. To be precise, by symmetry, it also holds that for all permutations $\pi:[4] \rightarrow$ [4] that if $\omega_{\pi(1)}=\omega_{\pi(2)}, \omega_{\pi(3)}=\omega_{\pi(4)}, \omega_{\pi(1)} \neq \omega_{\pi(3)}$, then

$$
\sigma_{i_{1} \ell} \sigma_{i_{2} \ell} \sigma_{i_{3} \ell} \sigma_{i_{4} \ell} \mathbb{E}\left[Z_{\omega_{1} j} Z_{\omega_{2} j} Z_{\omega_{3} j} Z_{\omega_{4} j}\right] \lesssim \sigma_{i_{\pi(1)} \ell}^{2} \sigma_{i_{\pi(3)} \ell}^{2} \Omega_{i_{\pi(1)} j} \Omega_{i_{\pi(3)} j}
$$

In all other cases besides those considered above, we have

$$
\sigma_{i_{1} \ell} \sigma_{i_{2} \ell} \sigma_{i_{3} \ell} \sigma_{i_{4} \ell} \mathbb{E}\left[Z_{\omega_{1} j} Z_{\omega_{2} j} Z_{\omega_{3} j} Z_{\omega_{4} j}\right]=0
$$

by independence.
Therefore,

$$
\begin{equation*}
A_{j j j j} \lesssim \sum_{\omega \in \mathcal{I}_{\ell-1}} \sigma_{i \ell}^{4} \Omega_{i j}+\sum_{\omega_{1} \neq \omega_{3} \in \mathcal{I}_{\ell-1}} \sigma_{i_{1} \ell}^{2} \sigma_{i_{3} \ell}^{2} \Omega_{i_{1} j} \Omega_{i_{3} j} \tag{B.58}
\end{equation*}
$$

In the remaining Cases 2-6, we follow the same strategy of writing out bounds for

$$
\sigma_{i_{1} \ell} \sigma_{i_{2} \ell} \sigma_{i_{3} \ell} \sigma_{i_{4} \ell} \mathbb{E}\left[Z_{\omega_{1} j_{1}} Z_{\omega_{2} j_{2}} Z_{\omega_{3} j_{3}} Z_{\omega_{4} j_{4}}\right]
$$

that cover all nonzero cases, up to permutation of the indices $\omega_{1}, \ldots, \omega_{4}$.
Case 2: $j_{1}=j_{2}=j_{3}, j_{1} \neq j_{4}$. It holds that

$$
\begin{align*}
& \sigma_{i_{1} \ell} \sigma_{i_{2} \ell} \sigma_{i_{3} \ell} \sigma_{i_{4} \ell} \mathbb{E}\left[Z_{\omega_{1} j_{1}} Z_{\omega_{2} j_{1}} Z_{\omega_{3} j_{1}} Z_{\omega_{4} j_{4}}\right] \\
& \quad= \begin{cases}\sigma_{i_{1} \ell}^{4} \mathbb{E}\left[Z_{\omega_{1} j_{1}}^{3} Z_{\omega_{1} j_{4}}\right] \lesssim \sigma_{i_{1} \ell}^{4} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{4}} & \text { if } \omega_{1}=\omega_{2}=\omega_{3}=\omega_{4} \\
\sigma_{i_{1} \ell}^{2} \sigma_{i_{3} \ell}^{2} \mathbb{E} Z_{\omega_{1} j_{1}}^{2} \mathbb{E} Z_{\omega_{3} j_{1}} Z_{\omega_{3} j_{4}} \lesssim \sigma_{i_{1} \ell}^{2} \sigma_{i_{3} \ell}^{2} \Omega_{i_{1} j_{1}} \Omega_{i_{3} j_{1}} \Omega_{i_{3} j_{4}} & \text { if } \omega_{1}=\omega_{2}, \omega_{3}=\omega_{4}, \omega_{1} \neq \omega_{3}\end{cases} \tag{B.59}
\end{align*}
$$

Up to permutation of the indices $\omega_{1}, \ldots, \omega_{4}$, this accounts for all cases such that (B.59) is nonvanishing. Thus

$$
\begin{equation*}
A_{j_{1}, j_{1}, j_{1}, j_{4}} \lesssim \sum_{\omega \in \mathcal{I}_{\ell-1}} \sigma_{i \ell}^{4} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{4}}+\sum_{\omega_{1} \neq \omega_{3} \in \mathcal{I}_{\ell-1}} \sigma_{i_{1}}^{2} \sigma_{i_{3} \ell}^{2} \Omega_{i_{1} j_{1}} \Omega_{i_{3} j_{1}} \Omega_{i_{3} j_{4}} \tag{B.60}
\end{equation*}
$$

Case 3: $j_{1}=j_{2}, j_{3}=j_{4}, j_{1} \neq j_{3}$. It holds that

$$
\begin{align*}
& \sigma_{i_{1} \ell} \sigma_{i_{2} \ell} \sigma_{i_{3} \ell} \sigma_{i_{4} \ell} \mathbb{E}\left[Z_{\omega_{1} j_{1}} Z_{\omega_{2} j_{1}} Z_{\omega_{3} j_{3}} Z_{\omega_{4} j_{3}}\right] \\
& = \begin{cases}\sigma_{i_{1} \ell}^{4} \mathbb{E} Z_{\omega_{1} j_{1}}^{2} Z_{\omega_{1} j_{3}}^{2} \lesssim \sigma_{i_{1} \ell}^{4} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{3}} & \text { if } \omega_{1}=\omega_{2}=\omega_{3}=\omega_{4} \\
\sigma_{i_{1} \ell}^{2} \sigma_{i_{3}}^{2} \mathbb{E} Z_{\omega_{1} j_{1}}^{2} \mathbb{E} Z_{\omega_{3} j_{3}}^{2} \lesssim \sigma_{i_{1} \ell}^{2} \sigma_{i_{3} \ell}^{2} \Omega_{i_{1} j_{1}} \Omega_{i_{3} j_{3}} & \text { if } \omega_{1}=\omega_{2}, \omega_{3}=\omega_{4}, \omega_{1} \neq \omega_{3} \\
\sigma_{i_{1} \ell}^{2} \sigma_{i_{3} \ell}^{2} \mathbb{E} Z_{\omega_{1} j_{1}} Z_{\omega_{1} j_{3}} \mathbb{E} Z_{\omega_{2} j_{1}} Z_{\omega_{2} j_{3}} \lesssim \sigma_{i_{1} \ell}^{2} \sigma_{i_{3} \ell}^{2} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{3}} \Omega_{i_{2} j_{1}} \Omega_{i_{2} j_{3}} & \text { if } \omega_{1}=\omega_{3}, \omega_{2}=\omega_{4}, \omega_{1} \neq \omega_{2} .\end{cases} \tag{B.61}
\end{align*}
$$

Up to permutation of the indices $\omega_{1}, \ldots, \omega_{4}$, this accounts for all cases such that (B.61) is nonvanishing. Thus by symmetry,

$$
\begin{align*}
A_{j_{1}, j_{1}, j_{3}, j_{3}} \lesssim & \sum_{\omega \in \mathcal{I}_{\ell-1}} \sigma_{i_{1} \ell}^{4} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{3}}+\sum_{\omega_{1} \neq \omega_{3} \in \mathcal{I}_{\ell-1}} \sigma_{i_{1} \ell}^{2} \sigma_{i_{3} \ell}^{2} \Omega_{i_{1} j_{1}} \Omega_{i_{3} j_{3}} \tag{B.62}\\
& +\sum_{\omega_{1} \neq \omega_{3} \in \mathcal{I}_{\ell-1}} \sigma_{i_{1} \ell}^{2} \sigma_{i_{3} \ell}^{2} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{3}} \Omega_{i_{3} j_{1}} \Omega_{i_{3} j_{3}}
\end{align*}
$$

Case 4: $j_{1}=j_{2}$ and j_{1}, j_{3}, j_{4} distinct. We have

$$
\begin{align*}
& \sigma_{i_{1} \ell} \sigma_{i_{2} \ell} \sigma_{i_{3} \ell} \sigma_{i_{4} \ell} \mathbb{E}\left[Z_{\omega_{1} j_{1}} Z_{\omega_{2} j_{1}} Z_{\omega_{3} j_{3}} Z_{\omega_{4} j_{4}}\right] \\
& = \begin{cases}\sigma_{i_{1} \ell}^{4} \mathbb{E} Z_{\omega_{1} j_{1}}^{2} Z_{\omega_{1} j_{3}} Z_{\omega_{1} j_{4}} \lesssim \sigma_{i_{1} \ell}^{4} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{3}} \Omega_{i_{1} j_{4}} & \text { if } \omega_{1}=\omega_{2}=\omega_{3}=\omega_{4} \\
\sigma_{i_{1} \ell}^{2} \sigma_{i_{3}}^{2} \mathbb{E} Z_{\omega_{1} j_{1}}^{2} \mathbb{E} Z_{\omega_{3} j_{3}} Z_{\omega_{3} j_{4}} \lesssim \sigma_{i_{1} \ell}^{2} \sigma_{i_{3} \ell}^{2} \Omega_{i_{1} j_{1}} \Omega_{i_{3} j_{3}} \Omega_{i_{3} j_{4}} & \text { if } \omega_{1}=\omega_{2}, \omega_{3}=\omega_{4}, \omega_{1} \neq \omega_{3} \\
\sigma_{i_{1} \ell}^{2} \sigma_{i_{2} \ell}^{2} \mathbb{E} Z_{\omega_{1} j_{1}} Z_{\omega_{1} j_{3}} \mathbb{E} Z_{\omega_{2} j_{1}} Z_{\omega_{2} j_{4}} \lesssim \sigma_{i_{1} \ell}^{2} \sigma_{i_{2} \ell}^{2} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{3}} \Omega_{i_{2} j_{1}} \Omega_{i_{2} j_{4}} & \text { if } \omega_{1}=\omega_{3}, \omega_{2}=\omega_{4}, \omega_{1} \neq \omega_{2}\end{cases} \tag{B.63}
\end{align*}
$$

Up to permutation of the indices $\omega_{1}, \ldots, \omega_{4}$, this accounts for all cases such that (B.63) is nonvanishing. Thus

$$
\begin{align*}
A_{j_{1}, j_{1}, j_{3}, j_{4}} \lesssim & \sum_{\omega \in \mathcal{I}_{\ell-1}} \sigma_{i_{1} \ell}^{4} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{3}} \Omega_{i_{1} j_{4}}+\sum_{\omega_{1} \neq \omega_{3} \in \mathcal{I}_{\ell-1}} \sigma_{i_{1} \ell}^{2} \sigma_{i_{3} \ell}^{2} \Omega_{i_{1} j_{1}} \Omega_{i_{3} j_{3}} \Omega_{i_{3} j_{4}} \tag{B.64}\\
& \sum_{\omega \neq \omega_{3} \in \mathcal{I}_{\ell-1}} \sigma_{i_{1} \ell}^{2} \sigma_{i_{2} \ell}^{2} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{3}} \Omega_{i_{3} j_{1}} \Omega_{i_{3} j_{4}} .
\end{align*}
$$

Case 5: $j_{1}, j_{2}, j_{3}, j_{4}$ distinct. For this final case, it holds that

$$
\begin{aligned}
& \sigma_{i_{1} \ell} \sigma_{i_{2} \ell} \sigma_{i_{3} \ell} \sigma_{i_{4} \ell} \mathbb{E}\left[Z_{\omega_{1} j_{1}} Z_{\omega_{2} j_{2}} Z_{\omega_{3} j_{3}} Z_{\omega_{4} j_{4}}\right] \\
& = \begin{cases}\sigma_{i_{1} \ell}^{4} \mathbb{E} Z_{\omega_{1} j_{1}} Z_{\omega_{1} j_{2}} Z_{\omega_{1} j_{3}} Z_{\omega_{1} j_{4}} \lesssim \sigma_{i_{1} \ell}^{4} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{2}} \Omega_{i_{1} j_{3}} \Omega_{i_{1} j_{4}} & \text { if } \omega_{1}=\omega_{2}=\omega_{3}=\omega_{4} \\
\sigma_{i_{1} \ell}^{2} \sigma_{i_{3}}^{2} \mathbb{E} Z_{\omega_{1} j_{1}} Z_{\omega_{1} j_{2}} \mathbb{E} Z_{\omega_{3} j_{3}} Z_{\omega_{3} j_{4}} \lesssim \sigma_{i_{1} \ell}^{2} \sigma_{i_{3} \ell}^{2} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{2}} \Omega_{i_{3} j_{3}} \Omega_{i_{3} j_{4}} & \text { if } \omega_{1}=\omega_{2}, \omega_{3}=\omega_{4}, \omega_{1} \neq \omega_{3}\end{cases}
\end{aligned}
$$

The above accounts for all nonzero cases, up to permutation of $\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}$. Hence

$$
\begin{equation*}
A_{j_{1}, j_{2}, j_{3}, j_{4}} \lesssim \sum_{\omega \in \mathcal{I}_{\ell-1}} \sigma_{i_{1} \ell}^{4} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{2}} \Omega_{i_{1} j_{3}} \Omega_{i_{1} j_{4}}+\sum_{\omega \neq \omega_{3} \in \mathcal{I}_{\ell-1}} \sigma_{i_{1} \ell}^{2} \sigma_{i_{3} \ell}^{2} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{2}} \Omega_{i_{3} j_{3}} \Omega_{i_{3} j_{4}} . \tag{B.65}
\end{equation*}
$$

Finally we control the fourth moment using the casework above. By (B .54) and symmetry,

$$
\begin{align*}
\mathbb{E} D_{\ell, s}^{4} \lesssim & \sum_{j} \mathbb{E}\left[Z_{\ell j_{s}} Z_{\ell j_{s}} Z_{\ell j_{s}} Z_{\ell j s}\right] A_{j, j, j, j}+\sum_{j_{1} \neq j_{4}} \mathbb{E}\left[Z_{\ell j_{1} s} Z_{\ell j_{1} s} Z_{\ell j_{1} s} Z_{\ell j_{4} s}\right] A_{j_{1}, j_{1}, j_{1}, j_{4}} \\
& +\sum_{j_{1} \neq j_{3}} \mathbb{E}\left[Z_{\ell j_{1} s} Z_{\ell j_{1} s} Z_{\ell j_{3} s} Z_{\ell j_{3} s}\right] A_{j_{1}, j_{1}, j_{3}, j_{3}}+\sum_{j_{1}, j_{3}, j_{4} d i s t .} \mathbb{E}\left[Z_{\ell j_{1} s} Z_{\ell j_{1} s} Z_{\ell j_{3} s} Z_{\ell j_{4} s}\right] A_{j_{1}, j_{1}, j_{3}, j_{4}} \\
& +\sum_{j_{1}, j_{2}, j_{3}, j_{4} \text { dist. }} \mathbb{E}\left[Z_{\ell j_{1} s} Z_{\ell j_{2} s} Z_{\ell j_{3} s} Z_{\ell j_{4} s}\right] A_{j_{1}, j_{2}, j_{3}, j_{4}} \\
= & F_{1 \ell s}+F_{2 \ell s}+F_{3 \ell s}+F_{4 \ell s}+F_{5 \ell s} \tag{B.66}
\end{align*}
$$

By (B.55), (B.58), (B.60), (B.62), (B.64), and (B.65),

$$
\begin{aligned}
F_{1 \ell s} \lesssim & \sum_{j} \Omega_{\ell j}\left(\sum_{\omega \in \mathcal{I}_{\ell-1}} \sigma_{i \ell}^{4} \Omega_{i j}+\sum_{\omega_{1} \neq \omega_{3} \in \mathcal{I}_{\ell-1}} \sigma_{i_{1} \ell}^{2} \sigma_{i_{3} \ell}^{2} \Omega_{i_{1} j} \Omega_{i_{3} j}\right) \\
F_{2 \ell s} \lesssim & \sum_{j_{1} \neq j_{4}} \Omega_{\ell j_{1}} \Omega_{\ell j_{4}}\left(\sum_{\omega \in \mathcal{I}_{\ell-1}} \sigma_{i \ell}^{4} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{4}}+\sum_{\omega_{1} \neq \omega_{3} \in \mathcal{I}_{\ell-1}} \sigma_{i_{1} \ell}^{2} \sigma_{i_{3} \ell}^{2} \Omega_{i_{1} j_{1}} \Omega_{i_{3} j_{1}} \Omega_{i_{3} j_{4}}\right) \\
F_{3 \ell s} \lesssim & \sum_{j_{1} \neq j_{3}} \Omega_{\ell j_{1}} \Omega_{\ell j_{3}}\left(\sum_{\omega \in \mathcal{I}_{\ell-1}} \sigma_{i_{1} \ell}^{4} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{3}}+\sum_{\omega_{1} \neq \omega_{3} \in \mathcal{I}_{\ell-1}} \sigma_{i_{1} \ell}^{2} \sigma_{i_{3} \ell}^{2} \Omega_{i_{1} j_{1}} \Omega_{i_{3} j_{3}}\right. \\
& \left.+\sum_{\omega_{1} \neq \omega_{3} \in \mathcal{I}_{\ell-1}} \sigma_{i_{1} \ell}^{2} \sigma_{i_{3} \ell}^{2} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{3}} \Omega_{i_{3} j_{1}} \Omega_{i_{3} j_{3}}\right) \\
F_{4 \ell s} \lesssim & \sum_{j_{1}, j_{3}, j_{4} d i s t .} \Omega_{\ell j_{1}} \Omega_{\ell j_{3}} \Omega_{\ell j_{4}}\left(\sum_{\omega \in \mathcal{I}_{\ell-1}} \sigma_{i_{1} \ell}^{4} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{3}} \Omega_{i_{1} j_{4}}+\sum_{\omega_{1} \neq \omega_{3} \in \mathcal{I}_{\ell-1}} \sigma_{i_{1} \ell}^{2} \sigma_{i_{3} \ell}^{2} \Omega_{i_{1} j_{1}} \Omega_{i_{3} j_{3}} \Omega_{i_{3} j_{4}}\right. \\
& \left.\quad+\sum_{\omega_{1} \neq \omega_{3} \in \mathcal{I}_{\ell-1}} \sigma_{i_{1} \ell}^{2} \sigma_{i_{3} \ell}^{2} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{3}} \Omega_{i_{3} j_{1}} \Omega_{i_{3} j_{4}}\right) \\
& \sum_{F_{5 \ell s} \lesssim}^{\lesssim} \Omega_{j_{1}, j_{2}, j_{3}, j_{4} d i s t .} \Omega_{\ell_{j_{1}}} \Omega_{\ell j_{2}} \Omega_{\ell j_{3}} \Omega_{\ell j_{4}}\left(\sum_{\omega \in \mathcal{I}_{\ell-1}} \sigma_{i_{1} \ell}^{4} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{2}} \Omega_{i_{1} j_{3}} \Omega_{i_{1} j_{4}}\right. \\
& \left.+\sum_{\omega_{1} \neq \omega_{3} \in \mathcal{I}_{\ell-1}} \sigma_{i_{1} \ell}^{2} \sigma_{i_{3} \ell}^{2} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{2}} \Omega_{i_{3} j_{3}} \Omega_{i_{3} j_{4}}\right) .
\end{aligned}
$$

Define

$$
\begin{aligned}
& F_{11 \ell s}=\sum_{\omega \in \mathcal{I}_{\ell-1}} \sigma_{i \ell}^{4} \sum_{j} \Omega_{\ell j} \Omega_{i j} \\
& F_{21 \ell s}=\sum_{\omega \in \mathcal{I}_{\ell-1}} \sigma_{i \ell}^{4} \sum_{j_{1} \neq j_{4}} \Omega_{\ell j_{1}} \Omega_{\ell j_{4}} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{4}}
\end{aligned}
$$

$$
\begin{aligned}
& F_{31 \ell s}=\sum_{\omega \in \mathcal{I}_{\ell-1}} \sigma_{i_{1} \ell}^{4} \sum_{j_{1} \neq j_{3}} \Omega_{\ell j_{1}} \Omega_{\ell j_{3}} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{3}} \\
& F_{41 \ell s}=\sum_{\omega \in \mathcal{I}_{\ell-1}} \sigma_{i_{1} \ell}^{4} \sum_{j_{1}, j_{3}, j_{4} d i s t .} \Omega_{\ell j_{1}} \Omega_{\ell j_{3}} \Omega_{\ell j_{4}} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{3}} \Omega_{i_{1} j_{4}} \\
& F_{51 \ell s}=\sum_{\omega \in \mathcal{I}_{\ell-1}} \sigma_{i_{1} \ell}^{4} \sum_{j_{1}, j_{2}, j_{3}, j_{4} \text { dist. }} \Omega_{\ell j_{1}} \Omega_{\ell j_{2}} \Omega_{\ell j_{3}} \Omega_{\ell j_{4}} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{2}} \Omega_{i_{1} j_{3}} \Omega_{i_{1} j_{4}}
\end{aligned}
$$

and

$$
\begin{aligned}
& F_{12 \ell s}=\sum_{\omega_{1} \neq \omega_{3} \in \mathcal{I}_{\ell-1}} \sigma_{i_{1} \ell}^{2} \sigma_{i_{3} \ell}^{2} \sum_{j} \Omega_{\ell j} \Omega_{i_{1} j} \Omega_{i_{3} j} \\
& F_{22 \ell s}=\sum_{\omega_{1} \neq \omega_{3} \in \mathcal{I}_{\ell-1}} \sigma_{i_{1} \ell}^{2} \sigma_{i_{3} \ell}^{2} \sum_{j_{1} \neq j_{4}} \Omega_{\ell j_{1}} \Omega_{\ell j_{4}} \Omega_{i_{1} j_{1}} \Omega_{i_{3} j_{1}} \Omega_{i_{3} j_{4}} \\
& F_{32 \ell s}=\sum_{\omega_{1} \neq \omega_{3} \in \mathcal{I}_{\ell-1}} \sigma_{i_{1} \ell}^{2} \sigma_{i_{3} \ell}^{2} \sum_{j_{1} \neq j_{3}}\left[\Omega_{\ell j_{1}} \Omega_{\ell j_{3}} \Omega_{i_{1} j_{1}} \Omega_{i_{3} j_{3}}+\Omega_{\ell j_{1}} \Omega_{\ell j_{3}} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{3}} \Omega_{i_{3} j_{1}} \Omega_{i_{3} j_{3}}\right] \\
& F_{42 \ell s}=\sum_{\omega_{1} \neq \omega_{3} \in \mathcal{I}_{\ell-1}} \sigma_{i_{1} \ell}^{2} \sigma_{i_{3} \ell}^{2} \sum_{j_{1}, j_{3}, j_{4} d i s t .}\left[\Omega_{\ell j_{1}} \Omega_{\ell j_{3}} \Omega_{\ell j_{4}} \Omega_{i_{1} j_{1}} \Omega_{i_{3} j_{3}} \Omega_{i_{3} j_{4}}\right. \\
& \left.+\Omega_{\ell j_{1}} \Omega_{\ell j_{3}} \Omega_{\ell j_{4}} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{3}} \Omega_{i_{3} j_{1}} \Omega_{i_{3} j_{4}}\right] \\
& F_{52 \ell s}=\sum_{\omega_{1} \neq \omega_{3} \in \mathcal{I}_{\ell-1}} \sigma_{i_{1} \ell}^{2} \sigma_{i_{3} \ell}^{2} \sum_{j_{1}, j_{2}, j_{3}, j_{4} d i s t .} \Omega_{\ell j_{1}} \Omega_{\ell j_{2}} \Omega_{\ell j_{3}} \Omega_{\ell j_{4}} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{2} \Omega_{i_{3} j_{3}} \Omega_{i_{3} j_{4}}}
\end{aligned}
$$

Note that $\sum_{x=1}^{2} F_{t x \ell s}=F_{t \ell s}$ for all $t \in[5]$. Using the fact that $\sum_{j} \Omega_{i j}=1$, we have

$$
\begin{equation*}
\sum_{t} F_{t 1 \ell s} \lesssim F_{11 \ell s}=\sum_{\omega \in \mathcal{I}_{\ell-1}} \sigma_{i \ell}^{4} \sum_{j} \Omega_{\ell j} \Omega_{i j}=\sum_{\omega \in \mathcal{I}_{\ell-1}} \sigma_{i \ell}^{4}\left\langle\Omega_{\ell}, \Omega_{i}\right\rangle . \tag{B.67}
\end{equation*}
$$

To control $\sum_{t} F_{t 2 \ell s}$, observe that, since $\Omega_{i j} \leq 1$ for all i, j,

$$
\begin{aligned}
& \sum_{j} \Omega_{\ell j} \Omega_{i_{1} j}=\left\langle\Omega_{\ell}, \Omega_{i_{1}} \circ \Omega_{i_{3}}\right\rangle \\
& \sum_{j_{1} \neq j_{4}} \Omega_{\ell j_{1}} \Omega_{\ell j_{4}} \Omega_{i_{1} j_{1}} \Omega_{i_{3} j_{1}} \Omega_{i_{3} j_{4}} \leq\left\langle\Omega_{\ell}, \Omega_{i_{1}} \circ \Omega_{i_{3}}\right\rangle \cdot\left\langle\Omega_{\ell}, \Omega_{i_{3}}\right\rangle \\
& \sum_{j_{1} \neq j_{3}}\left[\Omega_{\ell j_{1}} \Omega_{\ell j_{3}} \Omega_{i_{1} j_{1}} \Omega_{i_{3} j_{3}}+\Omega_{\ell j_{1}} \Omega_{\ell j_{3}} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{3}} \Omega_{i_{3} j_{1}} \Omega_{i_{3} j_{3}}\right] \leq 2\left\langle\Omega_{\ell}, \Omega_{i_{1}}\right\rangle \cdot\left\langle\Omega_{\ell}, \Omega_{i_{3}}\right\rangle \\
& \sum_{j_{1}, j_{3}, j_{4} \text { dist. }}\left[\Omega_{\ell j_{1}} \Omega_{\ell j_{3}} \Omega_{\ell j_{4}} \Omega_{i_{1} j_{1}} \Omega_{i_{3} j_{3}} \Omega_{i_{3} j_{4}}+\Omega_{\ell j_{1}} \Omega_{\ell j_{3}} \Omega_{\ell j_{4}} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{3}} \Omega_{i_{3} j_{1}} \Omega_{i_{3} j_{4}}\right] \leq 2\left\langle\Omega_{\ell}, \Omega_{i_{1}}\right\rangle\left\langle\Omega_{\ell}, \Omega_{i_{3}}\right\rangle^{2} \\
& \sum_{j_{1}, j_{2}, j_{3}, j_{4} d i s t .} \Omega_{\ell j_{1}} \Omega_{\ell j_{2}} \Omega_{\ell j_{3}} \Omega_{\ell j_{4}} \Omega_{i_{1} j_{1}} \Omega_{i_{1} j_{2}} \Omega_{i_{3} j_{3}} \Omega_{i_{3} j_{4}} \leq\left\langle\Omega_{\ell}, \Omega_{i_{1}}\right\rangle^{2}\left\langle\Omega_{\ell}, \Omega_{i_{3}}\right\rangle^{2} .
\end{aligned}
$$

These bounds are relatively sharp, and it is clear that the first and third lines dominate.
Furthermore as. Hence,

$$
\begin{equation*}
\sum_{t} F_{t 2 \ell s} \lesssim F_{12 \ell s}+F_{32 \ell s} \lesssim \sum_{\omega_{1} \neq \omega_{3} \in \mathcal{I}_{\ell-1}} \sigma_{i_{1} \ell}^{2} \sigma_{i_{3} \ell}^{2}\left[\left\langle\Omega_{\ell}, \Omega_{i_{1}} \circ \Omega_{i_{3}}\right\rangle+\left\langle\Omega_{\ell}, \Omega_{i_{1}}\right\rangle \cdot\left\langle\Omega_{\ell}, \Omega_{i_{3}}\right\rangle\right] \tag{B.68}
\end{equation*}
$$

Observe that if $\ell \in S_{k}$, then

$$
\begin{align*}
\sum_{\omega} \sigma_{i \ell}^{4} \Omega_{i j} & \leq \sum_{i \in S_{k}} \frac{1}{n_{k}^{4} \bar{N}_{k}^{4}} N_{i} \Omega_{i j}+\sum_{k^{\prime}=1}^{K} \sum_{i \in S_{k^{\prime}}} \frac{1}{n^{4} \bar{N}^{4}} N_{i} \Omega_{i j} \tag{B.69}\\
& \leq \frac{1}{n_{k}^{3} \bar{N}_{k}^{3}} \mu_{k j}+\frac{1}{n^{3} \bar{N}^{3}} \mu_{j}, \tag{B.70}
\end{align*}
$$

and

$$
\begin{aligned}
\sum_{\omega} \sigma_{i \ell}^{2} \Omega_{i j} & \leq \sum_{i \in S_{k}} \frac{1}{n_{k}^{2} \bar{N}_{k}^{2}} N_{i} \Omega_{i j}+\sum_{k^{\prime}=1}^{K} \sum_{i \in S_{k^{\prime}}} \frac{1}{n \bar{N}} N_{i} \Omega_{i j} \\
& \leq \frac{1}{n_{k} \bar{N}_{k}} \mu_{k j}+\frac{1}{n \bar{N}} \mu_{j}
\end{aligned}
$$

Next,

$$
\begin{align*}
\sum_{(\ell, s)} \sum_{t} F_{t 1 \ell s} & \lesssim \sum_{(\ell, s)} \sum_{\omega \in \mathcal{I}_{\ell-1}} \sigma_{i \ell}^{4}\left\langle\Omega_{\ell}, \Omega_{i}\right\rangle . \\
& \lesssim \sum_{(\ell, s)} \sum_{j} \Omega_{\ell j}\left(\frac{1}{n_{k}^{3} \bar{N}_{k}^{3}} \mu_{k j}+\frac{1}{n^{3} \bar{N}^{3}} \mu_{j}\right) \\
& \lesssim \sum_{j} \sum_{k} \frac{1}{n_{k}^{2} \bar{N}_{k}^{2}} \mu_{k j}^{2}+\sum_{j} \sum_{k} \frac{1}{n^{2} \bar{N}^{2}} \mu_{j}^{2} \lesssim \sum_{k} \frac{1}{n_{k}^{2} \bar{N}_{k}^{2}}\left\|\mu_{k}\right\|^{2} \tag{B.71}
\end{align*}
$$

where we applied that $\|\mu\|^{2} \lesssim \sum_{k}\left\|\mu_{k}\right\|^{2}$ (see A.49). Furthermore,

$$
\begin{aligned}
& \sum_{(\ell, s)} \sum_{t} F_{t 2 \ell s} \leq \sum_{k=1}^{K} \sum_{\ell \in S_{k}} N_{\ell} \sum_{\omega_{1}, \omega_{3}} \sigma_{i_{1} \ell}^{2} \sigma_{i_{3} \ell}^{2}\left[\left\langle\Omega_{\ell}, \Omega_{i_{1}} \circ \Omega_{i_{3}}\right\rangle+\left\langle\Omega_{\ell}, \Omega_{i_{1}}\right\rangle \cdot\left\langle\Omega_{\ell}, \Omega_{i_{3}}\right\rangle\right] \\
& \lesssim \sum_{k} \sum_{\ell \in S_{k}} N_{\ell}\left[\sum_{j} \Omega_{\ell_{j}}\left(\frac{1}{n_{k} \bar{N}_{k}} \mu_{k j}+\frac{1}{n \bar{N}} \mu_{j}\right)^{2}+\left(\sum_{j} \Omega_{\ell j} \cdot\left(\frac{1}{n_{k} \bar{N}_{k}} \mu_{k j}+\frac{1}{n \bar{N}} \mu_{j}\right)\right)^{2}\right] \\
& \lesssim \sum_{k} \sum_{\ell \in S_{k}} N_{\ell} \sum_{j} \Omega_{\ell_{j}}\left(\frac{1}{n_{k} \bar{N}_{k}} \mu_{k j}+\frac{1}{n \bar{N}} \mu_{j}\right)^{2}
\end{aligned}
$$

In the last line we apply Cauchy-Schwarz. Continuing, we have

$$
\begin{align*}
\sum_{(\ell, s)} \sum_{t} F_{t 2 \ell s} & \lesssim \sum_{k} \sum_{\ell \in S_{k}} N_{\ell} \sum_{j} \Omega_{\ell_{j}}\left(\frac{1}{n_{k} \bar{N}_{k}} \mu_{k j}+\frac{1}{n \bar{N}} \mu_{j}\right)^{2} \\
& \lesssim \sum_{k} \sum_{\ell \in S_{k}} N_{\ell} \sum_{j} \Omega_{\ell_{j}}\left(\frac{1}{n_{k} \bar{N}_{k}} \mu_{k j}\right)^{2}+\sum_{k} \sum_{\ell \in S_{k}} N_{\ell} \sum_{j} \Omega_{\ell_{j}}\left(\frac{1}{n \bar{N}} \mu_{j}\right)^{2} \\
& \lesssim \sum_{k} \frac{\left\|\mu_{k}\right\|_{3}^{3}}{n_{k} \bar{N}_{k}}+\sum_{k} \frac{\|\mu\|_{3}^{3}}{n \bar{N}} \lesssim \sum_{k} \frac{\left\|\mu_{k}\right\|_{3}^{3}}{n_{k} \bar{N}_{k}} \tag{B.72}
\end{align*}
$$

where we applied A.68). Combining (B.66), (B.71) and (B.72), we have

$$
\sum_{(\ell, s)} \mathbb{E} D_{\ell, s}^{4} \lesssim \sum_{(\ell, s)} \sum_{x=1}^{2} \sum_{t=1}^{5} F_{t x \ell s} \lesssim \sum_{k} \frac{\left\|\mu_{k}\right\|^{2}}{n_{k}^{2} \bar{N}_{k}^{2}}+\sum_{k} \frac{\left\|\mu_{k}\right\|_{3}^{3}}{n_{k} \bar{N}_{k}}
$$

as desired.

B. 5 Proof of Lemma B. 4

$$
\begin{equation*}
\operatorname{Var}\left[\sum_{(\ell, s)} \operatorname{Var}\left(\tilde{E}_{\ell, s} \mid \mathcal{F}_{\prec(\ell, s)}\right)\right] \rightarrow 0 \tag{B.73}
\end{equation*}
$$

Next we study (B.73). We have

$$
\begin{align*}
\operatorname{Var}\left(E_{\ell, s} \mid \mathcal{F}_{\prec(\ell, s)}\right) & =\mathbb{E}\left[E_{\ell, s}^{2} \mid \mathcal{F}_{\prec(\ell, s)}\right]=\sigma_{\ell}^{2} \sum_{r, r^{\prime} \in[s-1]} \sum_{j, j^{\prime}} \mathbb{E}\left[Z_{\ell j r} Z_{\ell j s} Z_{\ell j^{\prime} r^{\prime}} Z_{\ell j^{\prime} s} \mid \mathcal{F}_{\prec(\ell, s)}\right] \\
& =\sigma_{\ell}^{2} \sum_{r, r^{\prime} \in[s-1]} \sum_{j, j^{\prime}} Z_{\ell j r} Z_{\ell j^{\prime} r^{\prime}} \mathbb{E}\left[Z_{\ell j s} Z_{\ell j^{\prime} s}\right] \\
& =\sigma_{\ell}^{2} \sum_{r, r^{\prime} \in[s-1]} \sum_{j, j^{\prime}} \delta_{j j^{\prime} \ell} Z_{\ell j r} Z_{\ell j^{\prime} r^{\prime}} \tag{B.74}
\end{align*}
$$

where we let

$$
\delta_{j j^{\prime} \ell}=\mathbb{E} Z_{\ell j s} Z_{\ell j^{\prime} s}= \begin{cases}\Omega_{\ell j}\left(1-\Omega_{\ell j}\right) & \text { if } j=j^{\prime} \tag{B.75}\\ -\Omega_{\ell j} \Omega_{\ell j^{\prime}} & \text { else. }\end{cases}
$$

Define

$$
\begin{equation*}
\varphi_{\ell r \ell r^{\prime}}=\sum_{j, j^{\prime}} \delta_{j j^{\prime} \ell} Z_{\ell j r} Z_{\ell j^{\prime} r^{\prime}} \tag{B.76}
\end{equation*}
$$

By (B.74) we have

$$
\begin{aligned}
\sum_{(\ell, s)} \operatorname{Var}\left(E_{\ell, s} \mid \mathcal{F}_{\prec(\ell, s)}\right) & =\sum_{\ell=1}^{n} \sum_{s=1}^{N_{\ell}} \sum_{r, r^{\prime} \in[s-1]} \sigma_{\ell}^{2} \varphi_{\ell r \ell r^{\prime}} \\
& =\sum_{\ell=1}^{n} \sum_{s=1}^{N_{\ell}}\left[\sum_{r \in[s-1]} \sigma_{\ell}^{2} \varphi_{\ell r \ell r}+2 \sum_{r<r^{\prime} \in[s-1]} \sigma_{\ell}^{2} \varphi_{\ell r \ell r^{\prime}}\right] \\
& =\sum_{\ell=1}^{n} \sum_{r=1}^{N_{\ell}} \sum_{s \in\left[N_{\ell}\right]: s>r} \sigma_{\ell}^{2} \varphi_{\ell r \ell r}+2 \sum_{\ell=1}^{s} \sum_{r<r^{\prime} \in\left[N_{\ell}\right]} \sum_{s \in\left[N_{\ell}\right]: s>r^{\prime}} \sigma_{\ell}^{2} \varphi_{\ell r \ell r^{\prime}} \\
& =\sum_{\ell=1}^{n} \sum_{r=1}^{N_{\ell}}\left(N_{\ell}-r\right) \sigma_{\ell}^{2} \varphi_{\ell r \ell r}+2 \sum_{\ell=1}^{s} \sum_{r<r^{\prime} \in\left[N_{\ell}\right]}\left(N_{\ell}-r^{\prime}\right) \sigma_{\ell}^{2} \varphi_{\ell r \ell r^{\prime}} \\
& \equiv S_{1}+S_{2}
\end{aligned}
$$

Observe that S_{1} and S_{2} are uncorrelated. In addition, the terms in the summation defining S_{1} are uncorrelated; the same holds for S_{2} also.

First we study S_{2}. Next,

$$
\begin{align*}
\mathbb{E} \varphi_{\ell r \ell r^{\prime}}^{2} & =\sum_{j_{1}, j_{2}, j_{3}, j_{4}} \delta_{j_{1} j_{2}, \ell} \delta_{j_{3} j_{4}, \ell} \mathbb{E} Z_{\ell j_{1} r} Z_{\ell j_{2} r^{\prime}} Z_{\ell j_{3} r} Z_{\ell j_{4} r^{\prime}} \\
& =\sum_{j_{1}, j_{2}, j_{3}, j_{4}} \delta_{j_{1} j_{2} \ell} \delta_{j_{3} j_{4} \ell} \mathbb{E} Z_{\ell j_{1} r} Z_{\ell j_{3} r} \mathbb{E} Z_{\ell j_{2} r^{\prime}} Z_{\ell j_{4} r^{\prime}} \tag{B.77}
\end{align*}
$$

First we study V_{2}. By casework,

$$
\begin{align*}
& \left|\delta_{j_{1} j_{2} \ell} \delta_{j_{3} j_{4}} \mathbb{E} Z_{\ell j_{1} r} Z_{\ell j_{3} r} \mathbb{E} Z_{\ell j_{2} r^{\prime}} Z_{\ell j_{4} r^{\prime}}\right| \tag{B.78}\\
& \\
& = \begin{cases}\delta_{j j_{1}}^{2} \mathbb{E} Z_{\ell j_{r}}^{2} \mathbb{E} Z_{\ell j^{\prime}}^{2} \lesssim \Omega_{\ell j}^{4} & \text { if } j_{1}=\cdots=j_{4} \\
\delta_{j_{1} j_{1} \ell} \delta_{j_{1} j_{4} \ell}\left|\mathbb{E} Z_{\ell j_{1} r}^{2} \mathbb{E} Z_{\ell j_{1} r^{\prime}} Z_{\ell j_{4} r^{\prime}}\right| \lesssim \Omega_{\ell j_{1}}^{4} \Omega_{\ell j_{4}}^{2}{\text { if } j_{1}=j_{2}=j_{3}, j_{1} \neq j_{4}}_{\delta_{j_{1} j_{1} \ell} \delta_{j_{3} j_{3} \ell} \mathbb{E} Z_{\ell j_{1} r} Z_{\ell j_{3} r} \mathbb{E} Z_{\ell j_{1} r^{\prime}} Z_{\ell j_{3} r^{\prime}} \lesssim \Omega_{\ell j_{1}}^{3} \Omega_{\ell j_{3}}^{3}} \quad \text { if } j_{1}=j_{2}, j_{3}=j_{4}, j_{1} \neq j_{3} \\
\delta_{j_{1} j_{2} \ell}^{2} \mathbb{E} Z_{\ell j_{1} r}^{2} \mathbb{E} Z_{\ell j_{2} r^{\prime}}^{2} \lesssim \Omega_{\ell j_{1}}^{3} \Omega_{\ell j_{2}}^{3} & \text { if } j_{1}=j_{3}, j_{2}=j_{4}, j_{1} \neq j_{2} \\
\delta_{j_{1} j_{1} \ell} \delta_{j_{3} j_{4}} \mathbb{E} Z_{\ell j_{1} r} Z_{\ell j_{3} r} \mathbb{E} Z_{\ell j_{1} r^{\prime}} Z_{\ell j_{4} r^{\prime}} \lesssim \Omega_{\ell j_{1}}^{3} \Omega_{\ell j_{3}}^{2} \Omega_{\ell j_{4}}^{2} & \text { if } j_{1}=j_{2}, j_{1}, j_{3}, j_{4} \text { dist. } \\
\delta_{j_{1} j_{2} \ell} \delta_{j_{1} j_{4} \ell} \mathbb{E} Z_{\ell j_{1} r}^{2} \mathbb{E} Z_{\ell j_{2} r^{\prime}} Z_{\ell j_{4} r^{\prime}} \lesssim \Omega_{\ell j_{1}}^{3} \Omega_{\ell j_{2}}^{2} \Omega_{\ell j_{4}}^{2} & \text { if } j_{1}=j_{3}, j_{1}, j_{2}, j_{4} \text { dist. } \\
{\delta j_{1} j_{2} \ell} \delta_{j_{3} j_{4} \ell} \mathbb{E} Z_{\ell j_{1} r} Z_{\ell j_{3} r} \mathbb{E} Z_{\ell j_{2} r^{\prime}} Z_{\ell j_{4} r^{\prime}} \lesssim \Omega_{\ell j_{1}}^{2} \Omega_{\ell \ell_{2}}^{2} \Omega_{\ell \ell_{3}}^{2} \Omega_{\ell j_{4}}^{2} & \text { if } j_{1}, j_{2}, j_{3}, j_{4} \text { dist. } .\end{cases}
\end{align*}
$$

Up to permutation of the indices j_{1}, \ldots, j_{4}, all nonzero terms of (B.77) take one of the forms above. By (B.78) and Cauchy-Schwarz, we have

$$
\begin{equation*}
\mathbb{E} \varphi_{\ell r \ell r^{\prime}}^{2} \lesssim\left\|\Omega_{\ell}\right\|_{4}^{4}+\left\|\Omega_{\ell}\right\|_{4}^{4}\left\|\Omega_{\ell}\right\|^{2}+2\left\|\Omega_{\ell}\right\|_{3}^{6}+2\left\|\Omega_{\ell}\right\|_{3}^{3}\left\|\Omega_{\ell}\right\|^{4}+\left\|\Omega_{\ell}\right\|^{8} \lesssim\left\|\Omega_{\ell}\right\|_{4}^{4} \tag{B.79}
\end{equation*}
$$

Recalling that $\left\{\varphi_{\ell r \ell r^{\prime}}\right\}_{\ell, r<r^{\prime} \in\left[N_{\ell}\right]}$ are mutually uncorrelated, it follows that

$$
\begin{align*}
\operatorname{Var}\left(S_{2}\right) & \lesssim \sum_{\ell} \sum_{r<r^{\prime} \in\left[N_{\ell}\right]}\left(N_{\ell}-r^{\prime}\right)^{2} \sigma_{\ell}^{2} \mathbb{E} \varphi_{\ell r \ell r^{\prime}}^{2} \\
& \lesssim \sum_{\ell} \sum_{r<r^{\prime} \in\left[N_{\ell}\right]}\left(N_{\ell}-r^{\prime}\right)^{2} \sigma_{\ell}^{4}\left\|\Omega_{\ell}\right\|_{4}^{4} \\
& \lesssim \sum_{k} \sum_{\ell \in S_{k}} N_{\ell}^{4} \cdot \frac{1}{n_{k}^{4} \bar{N}_{k}^{4}}\left\|\Omega_{\ell}\right\|_{4}^{4} \tag{B.80}
\end{align*}
$$

Next we study S_{1}. We have

$$
\mathbb{E} \varphi_{\ell r \ell r}^{2}=\sum_{j_{1}, j_{2}, j_{3}, j_{4}} \delta_{j_{1} j_{2} \ell} \delta_{j_{3} j_{4} \ell} \mathbb{E} Z_{\ell j_{1} r} Z_{\ell j_{2} r} Z_{\ell j_{3} r} Z_{\ell j_{4} r}
$$

We have the following bounds by casework.

$$
\begin{align*}
& \left|\delta_{j_{1} j_{2} \ell} \delta_{j_{3} j_{4} \ell} \mathbb{E} Z_{\ell j_{1} r} Z_{\ell j_{2} r} Z_{\ell j_{3} r} Z_{\ell j_{4} r}\right| \tag{B.81}\\
& = \begin{cases}\delta_{j_{j} \ell}^{2} \mathbb{E} Z_{\ell j_{r} r}^{4} \lesssim \Omega_{\ell j_{1}}^{3} & \text { if } j_{1}=\cdots=j_{4} \\
\delta_{j_{1} j_{1} \ell} \delta_{j_{1} j_{4} \ell}\left|\mathbb{E} Z_{\ell j_{1} r}^{3} Z_{\ell j_{4} r}\right| \lesssim \Omega_{\ell j_{1}}^{3} \Omega_{\ell j_{4}}^{2} & \text { if } j_{1}=j_{2}=j_{3}, j_{1} \neq j_{4} \\
\delta_{j_{1} j_{1} \ell} \delta_{j_{3} j_{3}} \mathbb{E} Z_{\ell j_{1} r}^{2} Z_{\ell j_{3} r}^{2} \lesssim \Omega_{\ell j_{1}}^{2} \Omega_{\ell j_{3}}^{2} & \text { if } j_{1}=j_{2}, j_{3}=j_{4}, j_{1} \neq j_{3} \\
\delta_{j_{1} j_{2}}^{2} \mathbb{E} Z_{\ell j_{1} r}^{2} Z_{\ell j_{2} r}^{2} \lesssim \Omega_{\ell j_{1}}^{3} \Omega_{\ell j_{2}}^{3} & \text { if } j_{1}=j_{3}, j_{2}=j_{4}, j_{1} \neq j_{3} \\
\delta_{j_{1} j_{1} \ell} \delta_{j_{3} j_{4}}\left|\mathbb{E} Z_{\ell j_{1} r}^{2} Z_{\ell j_{3} r} Z_{\ell j_{4} r}\right| \lesssim \Omega_{\ell j_{1}}^{2} \Omega_{\ell j_{3}}^{2} \Omega_{\ell j_{4}}^{2} & \text { if } j_{1}=j_{2}, j_{1}, j_{3}, j_{4} \text { dist. } \\
\delta_{j_{1} j_{2} \ell} \delta_{j_{1} j_{4} \ell}\left|\mathbb{E} Z_{\ell j_{1} r}^{2} Z_{\ell j_{2} r} Z_{\ell j_{4}}\right| \lesssim \Omega_{\ell j_{1}}^{3} \Omega_{\ell j_{2}}^{2} \Omega_{\ell j_{4}}^{2} & \text { if } j_{1}=j_{3}, j_{1}, j_{2}, j_{4} \text { dist. } \\
\delta_{j_{1} j_{2} \ell} \delta_{j_{3} j_{4} \ell}\left|\mathbb{E} Z_{\ell j_{1} r} Z_{\ell j_{2} r} Z_{\ell j_{3} r} Z_{\ell j_{4} r}\right| \lesssim \Omega_{\ell j_{1}}^{2} \Omega_{\ell j_{2}}^{2} \Omega_{\ell j_{3}}^{2} \Omega_{\ell j_{4}}^{2} & \text { if } j_{1}, j_{2}, j_{3}, j_{4} \text { dist. } .\end{cases}
\end{align*}
$$

Up to symmetry, this accounts for all possible (nonzero) cases. Hence by Cauchy-Schwarz,

$$
\begin{equation*}
\mathbb{E} \varphi_{\ell r \ell r}^{2} \lesssim\left\|\Omega_{\ell}\right\|_{3}^{3}+\left\|\Omega_{\ell}\right\|_{3}^{3}\left\|\Omega_{\ell}\right\|^{2}+\left\|\Omega_{\ell}\right\|^{4}+\left\|\Omega_{\ell}\right\|_{3}^{6}+\left\|\Omega_{\ell}\right\|^{6}+\left\|\Omega_{\ell}\right\|_{3}^{3}\left\|\Omega_{\ell}\right\|^{4}+\left\|\Omega_{\ell}\right\|^{8} \lesssim\left\|\Omega_{\ell}\right\|_{3}^{3} \tag{B.82}
\end{equation*}
$$

Recalling that $\left\{\varphi_{\ell \ell \ell r}\right\}_{\ell, r \in\left[N_{\ell}\right]}$ is an uncorrelated collection of random variables, we have

$$
\begin{align*}
\operatorname{Var}\left(S_{1}\right) & \lesssim \sum_{\ell} \sum_{r \in\left[N_{\ell}\right]}\left(N_{\ell}-r\right)^{2} \sigma_{\ell}^{4} \mathbb{E} \varphi_{\ell r \ell r}^{2} \\
& \lesssim \sum_{\ell} \sum_{r \in\left[N_{\ell}\right]}\left(N_{\ell}-r\right)^{2} \sigma_{\ell}^{4}\left\|\Omega_{\ell}\right\|_{3}^{3} \\
& \lesssim \sum_{k} \sum_{\ell \in S_{k}} N_{\ell}^{3} \cdot \frac{1}{n_{k}^{4} \bar{N}_{k}^{4}}\left\|\Omega_{\ell}\right\|_{3}^{3} . \tag{B.83}
\end{align*}
$$

Combining $(\overline{\mathrm{B} .83})$ and $(\overline{\mathrm{B} .80})$ proves the result.

B. 6 Proof of Lemma B. 5

We have

$$
\begin{align*}
\mathbb{E} E_{\ell, s}^{4} & =\sum_{r_{1}, r_{2}, r_{3}, r_{4} \in[s-1]} \sigma_{\ell}^{4} \sum_{j_{1}, j_{2}, j_{3}, j_{4}} \mathbb{E} Z_{\ell j_{1} r_{1}} Z_{\ell j_{1} s} Z_{\ell j_{2} r_{2}} Z_{\ell j_{2} s} Z_{\ell j_{3} r_{3}} Z_{\ell j_{3} s} Z_{\ell j_{4} r_{4}} Z_{\ell j_{4} s} \\
& =\sigma_{\ell}^{4} \sum_{j_{1}, j_{2}, j_{3}, j_{4}}[\mathbb{E}\left[Z_{\ell j_{1} s} Z_{\ell j_{2} s} Z_{\ell j_{3} s} Z_{\ell j_{4} s}\right] \cdot \underbrace{\underbrace{}_{r_{1}, r_{2}, r_{3}, r_{4} \in[s-1]} \mathbb{E}\left[Z_{\ell j_{1} r_{1}} Z_{\ell j_{2} r_{2}} Z_{\ell j_{3} r_{3}} Z_{\ell j_{4} r_{4}}\right]}_{=: B_{\ell, s ; j_{1}, j_{2}, j_{3}, j_{4}}}] \tag{B.84}
\end{align*}
$$

We have by exhaustive casework that

$$
\begin{align*}
& \left|\mathbb{E}\left[Z_{\ell j_{1 r_{1}}} Z_{\ell j_{2} r_{2}} Z_{\ell j_{3} r_{3}} Z_{\ell j_{4} r_{4}}\right]\right| \tag{B.85}\\
& \left(\begin{array}{l}
\mathbb{E} Z_{\ell j_{1} r_{1}}^{4} \lesssim \Omega_{\ell j_{1}} \\
\mathbb{E} Z_{\ell j_{1} r_{1}}^{2} \mathbb{E} Z_{\ell j_{1} r_{3}}^{2} \lesssim \Omega_{\ell j_{1}}^{2}
\end{array}\right. \\
& \left|\mathbb{E}\left[Z_{\ell j_{1} r_{1}}^{3} Z_{\ell j_{4} r_{1}}\right]\right| \lesssim \Omega_{\ell j_{1}} \Omega_{\ell j_{4}} \\
& \left|\mathbb{E}\left[Z_{\ell j_{1} r_{1}}^{2} \mathbb{E} Z_{\ell j_{1} r_{3}} Z_{\ell j_{4} r_{3}}\right]\right| \lesssim \Omega_{\ell j_{1}}^{2} \Omega_{\ell j_{4}} \\
& =\left\{\begin{array}{l}
\left|\mathbb{E} Z_{\ell j_{1} r_{1}}^{2} Z_{\ell j_{3} r_{1}}^{2}\right| \lesssim \Omega_{\ell j_{1}} \Omega_{\ell j_{3}} \\
\left|\mathbb{E}\left[Z_{\ell j_{1} r_{1}}^{2} Z_{\ell \ell_{3} r_{3}}^{2}\right]\right| \lesssim \Omega_{\ell j_{1}} \Omega_{\ell j_{3}} \\
\left|\mathbb{E}\left[Z_{\ell j_{1} r_{1}} Z_{\ell j_{3} r_{1}} \mathbb{E} Z_{\ell j_{1} r_{2}} Z_{\ell j_{3} r_{2}}\right]\right| \lesssim \Omega_{\ell j_{1}}^{2} \Omega_{\ell j_{3}}^{2} \\
\mid \mathbb{E}\left[Z_{{ }^{2}}^{2} Z_{\ell{ }_{l}}\right.
\end{array}\right. \\
& \left|\mathbb{E}\left[Z_{\ell j_{1} r_{1}}^{2} Z_{\ell j_{3} r_{1}} Z_{\ell j_{4} r_{1}}\right]\right| \lesssim \Omega_{\ell j_{1}} \Omega_{\ell j_{3}} \Omega_{\ell j_{4}} \\
& \left|\mathbb{E}\left[Z_{\ell j_{1} r_{1}}^{2} \mathbb{E} Z_{\ell j_{3} r_{3}} Z_{\ell j_{4} r_{3}}\right]\right| \lesssim \Omega_{\ell j_{1}} \Omega_{\ell_{j_{3}}} \Omega_{\ell_{j_{4}}} \\
& \left|\mathbb{E}\left[Z_{\ell j_{1} r_{1}} Z_{\ell j_{3} r_{1}} \mathbb{E} Z_{\ell j_{1} r_{2}} Z_{\ell j_{4} r_{2}}\right]\right| \lesssim \Omega_{\ell j_{1}}^{2} \Omega_{\ell j_{3}} \Omega_{\ell j_{4}} \\
& \text { if } \begin{array}{c}
j_{1}=j_{2}=j_{3}=j_{4} ; \\
r_{1}=r_{2}=r_{3}=r_{4}
\end{array} \\
& \text { if } \begin{array}{c}
j_{1}=j_{2}=j_{3}=j_{4} ; \\
r_{1}=r_{2}, r_{3}=r_{4}, r_{1} \neq r_{3}
\end{array}
\end{align*}
$$

$$
\begin{aligned}
& \text { if } \begin{array}{c}
j_{1}=j_{2}=j_{3}, j_{1} \neq j_{4} ; \\
r_{1}=r_{2}, r_{3}=r_{4}, r_{1} \neq r_{3}
\end{array} \\
& \text { if } \begin{array}{l}
j_{1}=j_{2}, j_{3}=j_{4}, j_{1} \neq j_{3} ; \\
r_{1}=r_{2}=r_{3}=r_{4}
\end{array} \\
& \text { if } \begin{array}{l}
j_{1}=j_{2}, j_{3}=j_{4}, j_{1} \neq j_{3} ; \\
r_{1}=r_{2}, r_{3}=r_{4}, r_{1} \neq r_{3}
\end{array} \\
& \text { if } \begin{array}{l}
j_{1}=j_{2}, j_{3}=j_{4},,_{1} \neq j_{1} ; \\
r_{1}=r_{3}, r_{2}=r_{2}, r_{1} \neq r_{2}
\end{array} \\
& \text { if } \begin{array}{l}
j_{1}=j_{2}, j_{1}, j_{3}, j_{1} \text { dist. } \\
r_{1}=r_{2}=r_{3}=r_{4}
\end{array} \\
& \text { if } \begin{array}{l}
j_{1}=j_{2}, j_{1}, j_{3}, j_{4} \text { dist. } \\
r_{1}=r_{2}, r_{3}=r_{4}, r_{1} \neq r_{3}
\end{array} \\
& \text { if } \begin{array}{l}
j_{1}=j_{2}, j_{1}, j_{3}, j_{4} \text { dist.; } \\
r_{1}=r_{3}, r_{2}=r_{4}, r_{1} \neq r_{2}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left|\mathbb{E}\left[Z_{\ell j_{1} r_{1}} Z_{\ell j_{2} r_{1}} \mathbb{E} Z_{\ell j_{3} r_{3}} Z_{\ell j_{4} r_{3}}\right]\right| \lesssim \Omega_{\ell j_{1}} \Omega_{\ell j_{2}} \Omega_{\ell j_{3}} \Omega_{\ell j_{4}} \quad \text { if } \begin{array}{r}
{ }_{r_{1}=r_{2}, r_{3}=r_{4}, r_{1} \neq r_{3}}^{j_{1}, j_{2}, j_{3}, j_{4}} \text { dist }
\end{array}
\end{aligned}
$$

Up to permutation of the indices $j_{1}, j_{2}, j_{3}, j_{4}$ and $r_{1}, r_{2}, r_{3}, r_{4}$, this accounts for all possible cases such that (B.85) is nonzero. Therefore,

$$
B_{\ell, s j_{1}, j_{2}, j_{3}, j_{4}} \lesssim \begin{cases}s \Omega_{\ell j_{1}}+s^{2} \Omega_{\ell j_{1}}^{2} & \text { if } j_{1}=j_{2}=j_{3}=j_{4} \\ s \Omega_{\ell j_{1}} \Omega_{\ell j_{4}}+s^{2} \Omega_{\ell j_{1}}^{2} \Omega_{\ell j_{4}} & \text { if } j_{1}=j_{2}=j_{3}, j_{1} \neq j_{4} \\ s \Omega_{\ell j_{1}} \Omega_{\ell j_{3}}+s^{2} \Omega_{\ell j_{1}} \Omega_{\ell j_{3}} & \text { if } j_{1}=j_{2}, j_{3}=j_{4}, j_{1} \neq j_{3} \\ s \Omega_{\ell j_{1}} \Omega_{\ell j_{3}} \Omega_{\ell j_{4}}+s^{2} \Omega_{\ell j_{1}} \Omega_{\ell j_{3}} \Omega_{\ell j_{4}} & \text { if } j_{1}=j_{2}, j_{1}, j_{3}, j_{4} \text { dist. } \\ s \Omega_{\ell j_{1}} \Omega_{\ell j_{2}} \Omega_{\ell j_{3}} \Omega_{\ell j_{4}}+s^{2} \Omega_{\ell j_{1}} \Omega_{\ell j_{2}} \Omega_{\ell j_{3}} \Omega_{\ell j_{4}} & \text { if } j_{1}, j_{2}, j_{3}, j_{4} \text { dist. }\end{cases}
$$

Up to permutation of $j_{1}, j_{2}, j_{3}, j_{4}$, this accounts for all possible cases. Returning to (B.84), we have by applying (B.55) and the previous display that

$$
\begin{aligned}
\mathbb{E} E_{\ell, s}^{4} \lesssim & \sigma_{\ell}^{4}\left(\sum_{j} \Omega_{\ell j}\left(s \Omega_{\ell j}+s^{2} \Omega_{\ell j}^{2}\right)+\sum_{j_{1} \neq j_{4}} \Omega_{\ell j_{1}} \Omega_{\ell j_{4}}\left(s \Omega_{\ell j_{1}} \Omega_{\ell j_{4}}+s^{2} \Omega_{\ell j_{1}}^{2} \Omega_{\ell j_{4}}\right)\right. \\
& +\sum_{j_{1} \neq j_{3}} \Omega_{\ell j_{1}} \Omega_{\ell j_{3}}\left(s \Omega_{\ell j_{1}} \Omega_{\ell j_{3}}+s^{2} \Omega_{\ell j_{1}} \Omega_{\ell j_{3}}\right) \\
& +\sum_{j_{1}, j_{3}, j_{4}(d i s t .)} \Omega_{\ell j_{1}} \Omega_{\ell j_{3}} \Omega_{\ell j_{4}}\left(s \Omega_{\ell j_{1}} \Omega_{\ell j_{3}} \Omega_{\ell j_{4}}+s^{2} \Omega_{\ell j_{1}} \Omega_{\ell j_{3}} \Omega_{\ell j_{4}}\right) \\
& \left.+\sum_{j_{1}, j_{2}, j_{3}, j_{4} d i s t .} \Omega_{\ell j_{1}} \Omega_{\ell j_{2}} \Omega_{\ell j_{3}} \Omega_{\ell j_{4}}\left(s \Omega_{\ell j_{1}} \Omega_{\ell j_{2}} \Omega_{\ell j_{3}} \Omega_{\ell_{4}}+s^{2} \Omega_{\ell j_{1}} \Omega_{\ell j_{2}} \Omega_{\ell j_{3}} \Omega_{\ell_{4}}\right)\right) \\
& \lesssim s \sigma_{\ell}^{4}\left\|\Omega_{\ell}\right\|^{2}+s^{2} \sigma_{\ell}^{4}\left\|\Omega_{\ell}\right\|_{3}^{3} .
\end{aligned}
$$

In the third line we group the coefficients of s and s^{2} and use the fact that $\left\|\Omega_{\ell}\right\|^{4} \leq\left\|\Omega_{\ell}\right\|_{3}^{3}$ by Cauchy-Schwarz. Therefore

$$
\begin{aligned}
\sum_{(\ell, s)} \mathbb{E} E_{\ell, s}^{4} & \lesssim \sum_{(\ell, s)} s \sigma_{\ell}^{4}\left\|\Omega_{\ell}\right\|^{2}+\sum_{(\ell, s)} s^{2} \sigma_{\ell}^{4}\left\|\Omega_{\ell}\right\|_{3}^{3} \\
& =\sum_{k} \sum_{\ell \in S_{k}} \sum_{s \in\left[N_{\ell}\right]} s \sigma_{\ell}^{4}\left\|\Omega_{\ell}\right\|^{2}+\sum_{k} \sum_{\ell \in S_{k}} \sum_{s \in\left[N_{\ell}\right]} s^{2} \sigma_{\ell}^{4}\left\|\Omega_{\ell}\right\|_{3}^{3} \\
& \lesssim \sum_{k} \sum_{\ell \in S_{k}} N_{\ell}^{2} \cdot \frac{1}{n_{k}^{4} \bar{N}_{k}^{4}}\left\|\Omega_{\ell}\right\|^{2}+\sum_{k} \sum_{\ell \in S_{k}} N_{\ell}^{3} \cdot \frac{1}{n_{k}^{4} \bar{N}_{k}^{4}}\left\|\Omega_{\ell}\right\|_{3}^{3},
\end{aligned}
$$

as desired.

B. 7 Proof of Lemma B. 6

We have

$$
\begin{aligned}
\sum_{k} \sum_{i \in S_{k}} \frac{N_{i}^{2}\left\|\Omega_{i}\right\|^{2}}{n_{k}^{4} \bar{N}_{k}^{4}} & \leq \sum_{k} \frac{1}{n_{k}^{4} \bar{N}_{k}^{4}} \sum_{i, m \in S_{k}} N_{i} N_{m}\left\langle\Omega_{i}, \Omega_{m}\right\rangle \\
& =\sum_{k} \frac{1}{n_{k}^{2} \bar{N}_{k}^{2}}\left\|\mu_{k}\right\|^{2},
\end{aligned}
$$

which establishes the first claim.

Similarly,

$$
\begin{aligned}
\sum_{k} \sum_{i \in S_{k}} \frac{N_{i}^{3}\left\|\Omega_{i}\right\|_{3}^{3}}{n_{k}^{4} \bar{N}_{k}^{4}} & \leq \sum_{k} \frac{1}{n_{k}^{4} \bar{N}_{k}^{4}} \sum_{i, m, m^{\prime} \in S_{k}} N_{i} N_{m} N_{m^{\prime}} \sum_{j} \Omega_{i j} \Omega_{m j} \Omega_{m^{\prime} j} \\
& \leq \sum_{k} \frac{1}{n_{k} \bar{N}_{k}}\left\|\mu_{k}\right\|_{3}^{3},
\end{aligned}
$$

which proves the second claim.
The third claim follows similarly and we omit the proof.

C Proofs of other main lemmas and theorems

C. 1 Proof of Lemma 2.1

We start from computing $\mathbb{E}\left[\left(\hat{\mu}_{k j}-\hat{\mu}_{j}\right)^{2}\right]$. Write $X_{i j}=N_{i}\left(\Omega_{i j}+Y_{i j}\right)$. It follows by elementary calculation that

$$
\hat{\mu}_{k j}-\hat{\mu}_{j}=\mu_{k j}-\mu_{j}+\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right) \sum_{i \in S_{k}} N_{i} Y_{i j}-\sum_{1 \leq \ell \leq K: \ell \neq k} \frac{1}{n_{\ell} \bar{N}_{\ell}} \sum_{i \in S_{\ell}} N_{i} Y_{i j} .
$$

For different k, the variables $\sum_{i \in S_{k}} N_{i} Y_{i j}$ are independent of each other. It follows that

$$
\begin{align*}
& \mathbb{E}\left[\left(\hat{\mu}_{k j}-\hat{\mu}_{j}\right)^{2}\right]=\left(\mu_{k j}-\mu_{j}\right)^{2}+\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right)^{2} \mathbb{E}\left[\left(\sum_{i \in S_{k}} N_{i} Y_{i j}\right)^{2}\right]+\sum_{\ell: \ell \neq k} \frac{1}{n^{2} \bar{N}^{2}} \mathbb{E}\left[\left(\sum_{i \in S_{\ell}} N_{i} Y_{i j}\right)^{2}\right] \\
&=\left(\mu_{k j}-\mu_{j}\right)^{2}+\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right)^{2} \sum_{i \in S_{k}} N_{i} \Omega_{i j}\left(1-\Omega_{i j}\right)+\sum_{\ell: \ell \neq k} \frac{1}{n^{2} \bar{N}^{2}} \sum_{i \in S_{\ell}} N_{i} \Omega_{i j}\left(1-\Omega_{i j}\right) \\
&=\left(\mu_{k j}-\mu_{j}\right)^{2}+\frac{1}{n_{k}^{2} \bar{N}_{k}^{2}}\left(1-\frac{n_{k} \bar{N}_{k}}{n \bar{N}}\right) \sum_{i \in S_{k}} N_{i} \Omega_{i j}\left(1-\Omega_{i j}\right) \\
&+\frac{1}{n^{2} \bar{N}^{2}}\left[\left(1-\frac{n \bar{N}}{n_{k} \bar{N}_{k}}\right) \sum_{i \in S_{k}} N_{i} \Omega_{i j}\left(1-\Omega_{i j}\right)+\sum_{\ell: \ell \neq k} \sum_{i \in S_{\ell}} N_{i} \Omega_{i j}\left(1-\Omega_{i j}\right)\right] \\
&=\left(\mu_{k j}-\mu_{j}\right)^{2}+\frac{1}{n_{k}^{2} \bar{N}_{k}^{2}}\left(1-\frac{n_{k} \bar{N}_{k}}{n \bar{N}}\right) \sum_{i \in S_{k}} N_{i} \Omega_{i j}\left(1-\Omega_{i j}\right) \\
& \quad-\frac{1}{n \bar{N} n_{k} \bar{N}_{k}} \underbrace{\left[\sum_{i \in S_{k}} N_{i} \Omega_{i j}\left(1-\Omega_{i j}\right)-\frac{n_{k} \bar{N}_{k}}{n \bar{N}} \sum_{\ell=1}^{K} \sum_{i \in S_{\ell}} N_{i} \Omega_{i j}\left(1-\Omega_{i j}\right)\right] .}_{\delta_{k j}} \tag{C.1}
\end{align*}
$$

Since $X_{i j}$ follows a binomial distribution, it is easy to see that $\mathbb{E}\left[X_{i j}\right]=N_{i} \Omega_{i j}$ and $\mathbb{E}\left[X_{i j}^{2}\right]=$ $\left(\mathbb{E}\left[X_{i j}\right]\right)^{2}+\operatorname{Var}\left(X_{i j}\right)=N_{i}^{2} \Omega_{i j}^{2}+N_{i} \Omega_{i j}\left(1-\Omega_{i j}\right)$. Combining them gives

$$
\begin{equation*}
\mathbb{E}\left[X_{i j}\left(N_{i}-X_{i j}\right)\right]=N_{i}\left(N_{i}-1\right) \Omega_{i j}\left(1-\Omega_{i j}\right) . \tag{C.2}
\end{equation*}
$$

Define

$$
\hat{\zeta}_{k j}=\left(\hat{\mu}_{k j}-\hat{\mu}_{j}\right)^{2}-\frac{1}{n_{k}^{2} \bar{N}_{k}^{2}}\left(1-\frac{n_{k} \bar{N}_{k}}{n \bar{N}}\right) \sum_{i \in S_{k}} \frac{X_{i j}\left(N_{i}-X_{i j}\right)}{N_{i}-1}
$$

It follows from (C.1)-(C.2) that

$$
\begin{equation*}
\mathbb{E}\left[\hat{\zeta}_{k j}\right]=\left(\mu_{k j}-\mu_{j}\right)^{2}-\frac{1}{n \bar{N} n_{k} \bar{N}_{k}} \delta_{k j} \tag{C.3}
\end{equation*}
$$

We are ready to compute $\mathbb{E}[T]$. By definition, $T=\sum_{j=1}^{p} \sum_{k=1}^{K} n_{k} \bar{N}_{k} \hat{\zeta}_{k j}$ and $\rho^{2}=\sum_{j, k}\left(\mu_{k j}-\right.$ $\left.\mu_{j}\right)^{2}$. Consequently,

$$
\begin{equation*}
\mathbb{E}[T]=\sum_{j=1}^{p} \sum_{k=1}^{K} n_{k} \bar{N}_{k}\left[\left(\mu_{k j}-\mu_{j}\right)^{2}-\frac{1}{n \bar{N} n_{k} \bar{N}_{k}} \delta_{k j}\right]=\rho^{2}-\frac{1}{n \bar{N}} \sum_{j=1}^{p} \sum_{k=1}^{K} \delta_{k j} \tag{C.4}
\end{equation*}
$$

We use the definition of $\delta_{k j}$ in C.1. It is seen that for each $1 \leq j \leq p$,

$$
\begin{equation*}
\sum_{k=1}^{K} \delta_{k j}=\sum_{k=1}^{K} \sum_{i \in S_{k}} N_{i} \Omega_{i j}\left(1-\Omega_{i j}\right)-\left(\sum_{k=1}^{K} \frac{n_{k} \bar{N}_{k}}{n \bar{N}}\right) \sum_{\ell=1}^{K} \sum_{i \in S_{\ell}} N_{i} \Omega_{i j}\left(1-\Omega_{i j}\right)=0 \tag{C.5}
\end{equation*}
$$

Combining (C.4)-(C.5) gives $\mathbb{E}[T]=\rho^{2}$. This proves the claim.

C. 2 Proof of Theorem 3.3

First we show that

$$
\begin{equation*}
\operatorname{Var}(T) \lesssim \Theta_{n} \tag{C.6}
\end{equation*}
$$

Recall

$$
\begin{aligned}
& \Theta_{n 1}=4 \sum_{k=1}^{K} \sum_{j=1}^{p} n_{k} \bar{N}_{k}\left(\mu_{k j}-\mu_{j}\right)^{2} \mu_{k j} \\
& \Theta_{n 2}=2 \sum_{k=1}^{K} \sum_{i \in S_{k}} \sum_{j=1}^{p}\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right)^{2} \frac{N_{i}^{3}}{N_{i}-1} \Omega_{i j}^{2} \\
& \Theta_{n 3}=\frac{2}{n^{2} \bar{N}^{2}} \sum_{1 \leq k \neq \ell \leq K} \sum_{i \in S_{k}} \sum_{m \in S_{\ell}} \sum_{j=1}^{p} N_{i} N_{m} \Omega_{i j} \Omega_{m j} \\
& \left.\Theta_{n 4}=2 \sum_{k=1}^{K} \sum_{\substack{i \in S_{k}, m \in S_{k}, j=1 \\
i \neq m}}^{p} \sum_{j=1}^{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right)^{2} N_{i} N_{m} \Omega_{i j} \Omega_{m j}
\end{aligned}
$$

and that $\sum_{a=1}^{4} \Theta_{n a}=\Theta_{n}$.
By Lemma A.2, we immediately have

$$
\begin{equation*}
\operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{1}\right) \leq \Theta_{n 1} \tag{C.7}
\end{equation*}
$$

For U_{2}, it is shown in the Proof of Lemma A. 3 that

$$
\operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{2}\right)=4 \sum_{k=1}^{K} \sum_{i \in S_{k}} \sum_{1 \leq r<s \leq N_{i}} \frac{\theta_{i}}{N_{i}\left(N_{i}-1\right)}\left[\left\|\Omega_{i}\right\|^{2}+O\left(\left\|\Omega_{i}\right\|_{3}^{3}\right)\right]
$$

Thus

$$
\begin{align*}
\operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{2}\right) & \lesssim 4 \sum_{k=1}^{K} \sum_{i \in S_{k}} \sum_{1 \leq r<s \leq N_{i}} \frac{\theta_{i}}{N_{i}\left(N_{i}-1\right)}\left\|\Omega_{i}\right\|^{2} \\
& =2 \sum_{k=1}^{K} \sum_{i \in S_{k}} \theta_{i}\left\|\Omega_{i}\right\|^{2}=\Theta_{n 2} \tag{C.8}
\end{align*}
$$

Next we study U_{3}. Using that $\Omega_{m j^{\prime}} \leq 1$ and $\left\|\Omega_{i}\right\|_{1}=1$, we have

$$
\begin{aligned}
\sum_{k \neq \ell} \frac{n_{k} n_{\ell} \bar{N}_{k} \bar{N}_{\ell}}{n^{2} \bar{N}^{2}} \mathbf{1}_{p}^{\prime}\left(\Sigma_{k} \circ \Sigma_{\ell}\right) \mathbf{1}_{p} & =\frac{2}{n^{2} \bar{N}^{2}} \sum_{k \neq \ell} \sum_{i \in S_{k}} \sum_{m \in S_{\ell}} \sum_{j, j^{\prime}} N_{i} N_{m} \Omega_{i j} \Omega_{i j^{\prime}} \Omega_{m j} \Omega_{m j^{\prime}} \\
& \leq \frac{2}{n^{2} \bar{N}^{2}} \sum_{k \neq \ell} \sum_{i \in S_{k}} \sum_{m \in S_{\ell}} \sum_{j} N_{i} N_{m} \Omega_{i j} \Omega_{m j} \sum_{j^{\prime}} \Omega_{i j^{\prime}} \\
& =\frac{2}{n^{2} \bar{N}^{2}} \sum_{k \neq \ell} \sum_{i \in S_{k}} \sum_{m \in S_{\ell}} \sum_{j} N_{i} N_{m} \Omega_{i j} \Omega_{m j} .
\end{aligned}
$$

Therefore by Lemma A.4,

$$
\begin{equation*}
\operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{3}\right) \lesssim \frac{2}{n^{2} \bar{N}^{2}} \sum_{1 \leq k \neq \ell \leq K} \sum_{i \in S_{k}} \sum_{m \in S_{\ell}} \sum_{j=1}^{p} N_{i} N_{m} \Omega_{i j} \Omega_{m j}=\Theta_{n 3} \tag{C.9}
\end{equation*}
$$

Similarly for U_{4}, we have by the Proof of Lemma A. 5 that

$$
\begin{align*}
\operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{4}\right) & =4 \sum_{k=1}^{K} \sum_{\substack{i \in S_{k}, m \in S_{k} \\
i<m}} \kappa_{i m}\left(\sum_{j} \Omega_{i j} \Omega_{m j}+\delta_{i m}\right) \\
& \lesssim \sum_{k=1}^{K} \sum_{\substack{i \in S_{k}, m \in S_{k} \\
i<m}} \kappa_{i m} \sum_{j} \Omega_{i j} \Omega_{m j}=\Theta_{n 4} . \tag{C.10}
\end{align*}
$$

Above we use that $\left|\delta_{i m}\right| \leq \sum_{j} \Omega_{i j} \Omega_{m j}$ and recall that $\kappa_{i m}=\left(\frac{1}{n_{k} N_{k}}-\frac{1}{n N}\right)^{2} N_{i} N_{m}$.
Observe that by Lemma 2.1.

$$
\begin{equation*}
\Theta_{n 1}=4 \sum_{k=1}^{K} \sum_{j=1}^{p} n_{k} \bar{N}_{k}\left(\mu_{k j}-\mu_{j}\right)^{2} \mu_{k j} \lesssim \max _{k}\left\|\mu_{k}\right\|_{\infty} \cdot \rho^{2}=\max _{k}\left\|\mu_{k}\right\|_{\infty} \cdot \mathbb{E} T \tag{C.11}
\end{equation*}
$$

Since (3.1) holds, Lemma A. 6 applies and

$$
\begin{equation*}
\Theta_{n_{2}}+\Theta_{n 3}+\Theta_{n 4} \asymp \sum_{k}\left\|\mu_{k}\right\|^{2} . \tag{C.12}
\end{equation*}
$$

Combining (C.6), (C.11), and (C.12) proves the theorem.

C. 3 Proof of Theorem 3.4

To prove Theorem 3.4, we must prove the following claims:
(a) Under the alternative hypothesis, $\psi \rightarrow \infty$ in probability.
(b) For any fixed $\alpha \in(0,1)$, the level- α DELVE test has an asymptotic level of α and an asymptotic power of 1 .
(c) If we choose $\alpha=\alpha_{n}$ such that $\alpha_{n} \rightarrow 0$ and $1-\Phi\left(\operatorname{SNR}_{n}\right)=o\left(\alpha_{n}\right)$, where Φ is the CDF of $N(0,1)$, then the sum of type I and type II errors of the DELVE test converges to 0.

We show the first claim, that $\psi \rightarrow \infty$, under the alternative hypothesis and the conditions of Theorem 3.4. In particular, recall we assume that

$$
\begin{equation*}
\frac{\rho^{2}}{\sqrt{\sum_{k=1}^{K}\left\|\mu_{k}\right\|^{2}}}=\frac{n \bar{N}\|\mu\|^{2} \omega_{n}^{2}}{\sqrt{\sum_{k=1}^{K}\left\|\mu_{k}\right\|^{2}}} \rightarrow \infty . \tag{C.13}
\end{equation*}
$$

Our first goal is to show that

$$
\begin{equation*}
T / \sqrt{\operatorname{Var}(T)} \xrightarrow{\mathbb{P}} \infty \tag{C.14}
\end{equation*}
$$

under the alternative. By Chebyshev's inequality, it suffices to show that

$$
\begin{equation*}
\mathbb{E} T \gg \sqrt{\operatorname{Var}(T)} \tag{C.15}
\end{equation*}
$$

By Theorem 3.3,

$$
\begin{equation*}
\operatorname{Var}(T) \lesssim \sum_{k}\left\|\mu_{k}\right\|^{2}+\max _{k}\left\|\mu_{k}\right\|_{\infty} \cdot \mathbb{E} T=\sum_{k}\left\|\mu_{k}\right\|^{2}+\max _{k}\left\|\mu_{k}\right\|_{\infty} \cdot \rho^{2} \tag{C.16}
\end{equation*}
$$

By (C.13),

$$
\mathbb{E} T=\rho^{2} \gg \sqrt{\sum_{k=1}^{K}\left\|\mu_{k}\right\|^{2}} \geq \max _{1 \leq k \leq K}\left\|\mu_{k}\right\|_{\infty}
$$

Therefore,

$$
\begin{equation*}
\sqrt{\max _{1 \leq k \leq K}\left\|\mu_{k}\right\|_{\infty}} \cdot \rho \ll \rho^{2}=\mathbb{E} T \tag{C.17}
\end{equation*}
$$

Moreover, by C.13),

$$
\begin{equation*}
\sum_{k}\left\|\mu_{k}\right\|^{2} \ll \rho^{4}=(\mathbb{E} T)^{2} . \tag{C.18}
\end{equation*}
$$

Combining (C.16, C.17), and C.18 implies (C.14).
Next we show that $V>0$ with high probability (i.e., with probability tending to 1 as $n \bar{N} \rightarrow \infty$). Recall that by Lemmas A.6, A.10, and A.11,

$$
\begin{equation*}
\mathbb{E} V=\Theta_{n 2}+\Theta_{n 3}+\Theta_{n 4} \gtrsim \sum_{k}\left\|\mu_{k}\right\|^{2}>0, \text { and } \tag{C.19}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Var}(V) \lesssim \sum_{k} \frac{\left\|\mu_{k}\right\|^{2}}{n_{k}^{2} \bar{N}_{k}^{2}} \vee \sum_{k} \frac{\left\|\mu_{k}\right\|_{3}^{3}}{n_{k} \bar{N}_{k}} . \tag{C.20}
\end{equation*}
$$

Using this, the Markov inequality, and (3.4), we have

$$
\begin{equation*}
\mathbb{P}(V<\mathbb{E}[V] / 2) \leq \mathbb{P}(|V-\mathbb{E}[V]| \geq \mathbb{E}[V] / 2) \leq \frac{4 \operatorname{Var}(V)}{(\mathbb{E}[V])^{2}}=o(1) \tag{C.21}
\end{equation*}
$$

which implies that $V>0$ with high probability.
To finish the proof of the first claim, note that the assumptions of Proposition A.2 are satisfied and we have $V / \operatorname{Var}(T)=O_{\mathbb{P}}(1)$. By this, (C.14), and C.21), we have

$$
\psi=\frac{T \mathbf{1}_{V>0}}{\sqrt{V}}=\frac{\sqrt{\operatorname{Var}(T)}}{\sqrt{V}} \cdot \frac{T}{\sqrt{\operatorname{Var}(T)}} \cdot \mathbf{1}_{V>0} \gtrsim \frac{T}{\sqrt{\operatorname{Var}(T)}} \rightarrow \infty
$$

in probability.
The second claim follows directly from the first claim and Theorem 3.2.
To prove the third claim, by Chebyshev's inequality and $T / \sqrt{\operatorname{Var}(T)} \rightarrow \infty$, it follows that $T>(1 / 2) \mathbb{E} T=(1 / 2) \rho^{2}$ with high probability as $n \bar{N} \rightarrow \infty$. By a similar Chebyshev argument as above, it also holds that $V<(3 / 2) \mathbb{E} V$ with high probability as $n \bar{N} \rightarrow \infty$. Recall that $\mathbb{E} V=\Theta_{n 2}+\Theta_{n 3}+\Theta_{n 4} \lesssim \sum_{k}\left\|\mu_{k}\right\|^{2}$ by Lemmas A.6 and A.10. Thus, with high probability as $n \bar{N} \rightarrow \infty$, we have

$$
\psi=T \mathbf{1}_{V>0} / \sqrt{V} \gtrsim \rho^{2} / \sqrt{\mathbb{E} V} \gtrsim \frac{n \bar{N}\|\mu\|^{2} \omega_{n}^{2}}{\sqrt{\sum_{k}\left\|\mu_{k}\right\|^{2}}}=\operatorname{SNR}_{n}
$$

Choosing α_{n} as specified yield the third claim. The proof is complete since all three claims are established.

C. 4 Proof of Theorem 3.5

Without loss of generality, we assume p is even and write $m=p / 2$. Let $\mu \in \mathbb{R}^{m}$ be a nonnegative vector with $\|\mu\|_{1}=1 / 2$. Let $\tilde{\mu}=\left(\mu^{\prime}, \mu^{\prime}\right)^{\prime} \in \mathbb{R}^{p}$. We consider the null hypothesis:

$$
\begin{equation*}
H_{0}: \quad \Omega_{i}=\tilde{\mu}, \quad 1 \leq i \leq n . \tag{C.22}
\end{equation*}
$$

We pair it with a random alternative hypothesis. Let $b_{1}, b_{2}, \ldots, b_{m}$ be a collection of i.i.d. Rademacher variables. Let $z_{1}, z_{2}, \ldots, z_{K}$ denote an independent collection of i.i.d. Rademacher random variables conditioned on the event $\left|\sum_{k} z_{k}\right| \leq 100 \sqrt{K}$. For a properly small sequence $\omega_{n}>0$ of positive numbers, let
$H_{1}: \quad \Omega_{i j}= \begin{cases}\mu_{j}\left(1+\omega_{n}\left(n_{k} \bar{N}_{k}\right)^{-1}\left(\frac{1}{K} \sum_{k \in K} n_{k} \bar{N}_{k}\right) z_{k} b_{j}\right), & \text { if } 1 \leq j \leq m, i \in S_{k} \\ \tilde{\mu}_{j}\left(1-\omega_{n}\left(n_{k} \bar{N}_{k}\right)^{-1}\left(\frac{1}{K} \sum_{k \in K} n_{k} \bar{N}_{k}\right) z_{k} b_{j-m}\right), & \text { if } m+1 \leq j \leq 2 m, i \in S_{k}\end{cases}$

In this section we slightly abuse notation, using ω_{n} to refer to the (deterministic) sequence above and reserving $\omega(\Omega)$ for the random quantity

$$
\begin{equation*}
\omega(\Omega)=\sqrt{\frac{1}{n \bar{N}\|\mu\|^{2}} \sum_{k=1}^{K} n_{k} \bar{N}_{k}\left\|\mu_{k}-\mu\right\|^{2}} \tag{C.24}
\end{equation*}
$$

As long as

$$
\omega_{n} \leq \frac{\min _{k} n_{k} \bar{N}_{k}}{\frac{1}{K} \sum_{k \in[K]} n_{k} \bar{N}_{k}}=\frac{\min _{k} n_{k} \bar{N}_{k}}{n \bar{N} / K}
$$

then $\Omega_{i j} \geq 0$ for all $i \in[n], j \in[p]$. Furthermore, for each $1 \leq i \leq n$, we have $\left\|\Omega_{i}\right\|_{1}=$ $2\|\mu\|_{1}=1$. We suppose there exists a constant $c \in(0,1)$ such that

$$
\begin{equation*}
c K^{-1} n \bar{N} \leq n_{k} \bar{N}_{k} \leq c^{-1} K^{-1} n \bar{N} \quad \text { for all } k \in[K] \tag{C.25}
\end{equation*}
$$

With C.25 in hand, we may assume without loss of generality that

$$
\begin{equation*}
\omega_{n} \leq c / 2 \tag{C.26}
\end{equation*}
$$

This assumption implies that (C.23) is well-defined and moreover $\Omega_{i j} \asymp \mu_{j}$.
Next we characterize the random quantity $\omega(\Omega)$ in terms of ω_{n}.
Lemma C.1. Let $\omega^{2}(\Omega)$ be as in C.24. When Ω follows Model (C.23), there exists a constant $c_{1} \in(0,1)$ such that $c_{1} \omega_{n}^{2} \leq \omega^{2}(\Omega) \leq c_{1}^{-1} \omega_{n}^{2}$ with probability 1 .

The proof of Lemma C. 1 is given in Section C.4.1. By Lemma C.1, under the model (C.23) it holds with probability 1 that

$$
\begin{equation*}
\frac{n \bar{N}\|\mu\|^{2} \omega^{2}(\Omega)}{\sqrt{\sum_{k=1}^{K}\left\|\mu_{k}\right\|^{2}}} \asymp K^{-1 / 2} n \bar{N}\|\mu\| \omega_{n}^{2} \tag{C.27}
\end{equation*}
$$

Above we use that $\Omega_{i j} \asymp \mu_{j}$, since we assume C.26
We also require Proposition C. 1 below, whose proof is given in Section C.4.2,
Proposition C.1. Suppose that (C.25 and C.26 hold. Consider the pair of hypotheses in (C.22)-C.23) and let \mathbb{P}_{0}, and \mathbb{P}_{1} be the respective probability measures. If

$$
\frac{n \bar{N}\|\mu\|^{2} \omega^{2}(\Omega)}{\sqrt{\sum_{k=1}^{K}\left\|\mu_{k}\right\|^{2}}} \asymp K^{-1 / 2} n \bar{N}\|\mu\| \omega_{n}^{2} \rightarrow 0
$$

then the chi-square distance between \mathbb{P}_{0} and \mathbb{P}_{1} converges to 0 .
Now we prove Theorem 3.5. Let δ_{n} denote an arbitrary sequence tending to 0 . Without loss of generality, we may assume that $\delta_{n} \leq c^{*}$ for a small absolute constant $c^{*} \in(0,1)$. Note that $K^{-1 / 2} n \bar{N} \geq 1$ since $K \leq n$. Thus for appropriate choice of sequences of $\mu=\mu_{n}$ and $\omega_{n} \leq c / 2$ in models (C.22), C.23 and applying (C.27), we obtain

$$
\begin{equation*}
2 \delta_{n} \geq \frac{n \bar{N}\|\mu\|^{2} \omega^{2}(\Omega)}{\sqrt{\sum_{k=1}^{K}\left\|\mu_{k}\right\|^{2}}} \geq \delta_{n} \tag{C.28}
\end{equation*}
$$

Recall the definitions of $\mathcal{Q}_{0 n}^{*}$ and $\mathcal{Q}_{1 n}^{*}$ in 3.8. Let Π denote the distribution on $\xi=$ $\left\{\left(N_{i}, \Omega_{i}, \ell_{i}\right)\right\} \in \mathcal{Q}_{1 n}^{*}$ induced by C.23). Let ξ_{0} denote the parameter associated to the simple null hypothesis in (C.22) associated to our choice of μ and ω_{n} satisfying (C.28). We have by standard manipulations,

$$
\begin{aligned}
\mathcal{R}\left(\mathcal{Q}_{0 n}^{*}, \mathcal{Q}_{1 n}^{*}\right) & :=\inf _{\Psi \in\{0,1\}}\left\{\sup _{\xi \in \mathcal{Q}_{0 n}^{*}\left(c_{0}, \epsilon_{n}\right)} \mathbb{P}_{\xi}(\Psi=1)+\sup _{\xi \in \mathcal{Q}_{1 n}^{*}\left(\delta_{n} ; c_{0}, \epsilon_{n}\right)} \mathbb{P}_{\xi}(\Psi=0)\right\} \\
& =\inf _{\Psi \in\{0,1\}}\left\{\begin{array}{l}
\sup _{\xi \in \mathcal{Q}_{0 n}^{*}\left(c_{0}, \epsilon_{n}\right), \xi^{\prime} \in \mathcal{Q}_{1 n}^{*}\left(\delta_{n} ; c_{0}, \epsilon_{n}\right)}\left[\mathbb{P}_{\xi}(\Psi=1)+\mathbb{P}_{\xi}(\Psi=0)\right] \\
\\
\end{array}\right. \\
& \geq \inf _{\Psi \in\{0,1\}}\left\{\sup _{\xi \in \mathcal{Q}_{0 n}^{*}\left(c_{0}, \epsilon_{n}\right)} \mathbb{E}_{\xi^{\prime} \sim \Pi}\left[\mathbb{P}_{\xi}(\Psi=1)+\mathbb{P}_{\xi^{\prime}}(\Psi=0)\right]\right\} \\
& =\inf _{\Psi \in\{0,1\}}\left\{\mathbb{E}_{\xi^{\prime} \sim \Pi}\left[\mathbb{P}_{\xi_{0}}(\Psi=1)+\mathbb{P}_{\xi^{\prime}}(\Psi=0)\right]\right\} \\
& \left\{\mathbb{P}_{0}(\Psi=1)+\mathbb{P}_{1}(\Psi=0)\right\} .
\end{aligned}
$$

In the last line we recall the definition of \mathbb{P}_{0} and \mathbb{P}_{1} in C.22) and (C.23), noting that for all events E,

$$
\mathbb{P}_{1}(E)=\mathbb{E}_{\xi^{\prime} \sim \pi} \mathbb{P}_{\xi^{\prime}}(E)
$$

Next, by the Neyman-Pearson lemma and the standard inequality $\mathrm{TV}(P, Q) \leq \sqrt{\chi^{2}(P, Q)}$ (see e.g. Chapter 2 of Tsybakov 2008),

$$
\begin{aligned}
\mathcal{R}\left(\mathcal{Q}_{0 n}^{*}, \mathcal{Q}_{1 n}^{*}\right) & \geq \inf _{\Psi \in\{0,1\}}\left\{\mathbb{P}_{0}(\Psi=1)+\mathbb{P}_{1}(\Psi=0)\right\} \\
& =1-\mathrm{TV}\left(\mathbb{P}_{0}, \mathbb{P}_{1}\right) \geq 1-\sqrt{\chi^{2}\left(\mathbb{P}_{0}, \mathbb{P}_{1}\right)}
\end{aligned}
$$

By Proposition C. 1 , as $\delta_{n} \rightarrow 0$ we have $\chi^{2}\left(\mathbb{P}_{0}, \mathbb{P}_{1}\right) \rightarrow 0$ and thus $\mathcal{R}\left(\mathcal{Q}_{0 n}^{*}, \mathcal{Q}_{1 n}^{*}\right) \rightarrow 1$, as desired.

C.4.1 Proof of Proposition C. 1

Next, we perform a change of parameters that preserves the signal strength and chi-squared distance. The testing problem (C.22) and (C.23) has parameters $\Omega_{i j}, N_{i}, \bar{N}_{k}, n_{k}, n$, and K. Let \mathbb{P}_{0} and \mathbb{P}_{1} denote the distributions corresponding to the null and alternative hypotheses, respectively. For each $k \in[K]$, we combine all documents in sample k to obtain new null and alternative distributions $\tilde{\mathbb{P}}_{0}$ and $\tilde{\mathbb{P}}_{1}$ with parameters $\tilde{\Omega}_{i j}, \tilde{N}_{i}, \tilde{N}_{i}, \tilde{n}_{i}, \tilde{n}$, and \tilde{K} such that

$$
\begin{array}{rlr}
\tilde{K} & =K=\tilde{n} & \\
\tilde{N}_{i} & =n_{i} \bar{N}_{i} & \\
\tilde{\tilde{N}}_{i} & \equiv \tilde{N}_{i} & \\
\tilde{n}_{i} & =1 & \text { for } i \in[\tilde{K}] \tag{C.29}\\
& \text { for } i \in[\tilde{K}] \\
&
\end{array}
$$

For notational ease, we define $\tilde{N}:=\overline{\tilde{N}}=\frac{1}{K} \sum_{k \in[K]} n_{k} \bar{N}_{k}$. Furthermore, we have $\tilde{\Omega}_{i}=\mu$ for all $i \in[\tilde{n}]$ under the null $\tilde{\Omega}_{i}=\mu_{i}$ for all $i \in[\tilde{n}]$ under the alternative. Explicitly, in the reparameterized model, we have the null hypothesis

$$
\begin{equation*}
H_{0}: \quad \Omega_{i}=\tilde{\mu}, \quad 1 \leq i \leq n . \tag{C.30}
\end{equation*}
$$

and alternative hypothesis

$$
H_{1}: \quad \Omega_{i j}= \begin{cases}\mu_{j}\left(1+\omega_{n} \tilde{N}_{i}^{-1} \tilde{N} z_{i} b_{j}\right), & \text { if } 1 \leq j \leq m \tag{C.31}\\ \tilde{\mu}_{j}\left(1-\omega_{n} \tilde{N}_{i}^{-1} \tilde{N} z_{i} b_{j-m}\right), & \text { if } m+1 \leq j \leq 2 m\end{cases}
$$

for all $i \in[\tilde{K}]=[K]=[\tilde{n}]$. Observe that the likelihood ratio is preserved: $\frac{d \mathbb{P}_{0}}{d \mathbb{P}_{1}}=\frac{\tilde{d} \mathbb{P}_{0}}{d \mathbb{P}_{1}}$ and also $\omega(\Omega)=\omega(\widetilde{\Omega})$. For simplicity we work with this reparameterized model in this proof.

If $z_{1}, \ldots, z_{\tilde{n}}$ are independent Rademacher random variables then with probability at least $1 / 2$ it holds that

$$
\begin{equation*}
\left|\sum_{i} z_{i}\right| \leq 100 \sqrt{\tilde{n}} \tag{C.32}
\end{equation*}
$$

by Hoeffding's inequality. Recall that our random model is defined in (C.23) where (i) $z_{1}, \ldots, z_{\tilde{n}}$ are independent Rademacher random variables conditioned on the event $\left|\sum_{i} z_{i}\right| \leq$ $100 \sqrt{\tilde{n}}$, and (ii) b_{1}, \ldots, b_{m} are independent Rademacher random variables.

Now we study $\omega^{2}(\widetilde{\Omega})$. For each $1 \leq j \leq m$, we have $\widetilde{\Omega}_{i j}=\mu_{j}\left(1+\omega_{n} \tilde{N}_{i}^{-1} \tilde{N} z_{i} b_{j}\right)$. Define $\eta_{j}=(\tilde{n} \tilde{N})^{-1} \sum_{i=1}^{\tilde{n}} \tilde{N}_{i} \widetilde{\Omega}_{i j}=\mu_{j}\left(1+\omega_{n} \bar{z} b_{j}\right)$ for $1 \leq j \leq m$ and $\eta_{j}=(\tilde{n} \tilde{N})^{-1} \sum_{i=1}^{\tilde{n}} \tilde{N}_{i} \widetilde{\Omega}_{i j}=$ $\tilde{\mu}_{j}\left(1-\omega_{n} \bar{z} b_{j}\right)$ for $m<j \leq 2 m$. We have

$$
\begin{aligned}
\sum_{i=1}^{\tilde{n}} \sum_{j=1}^{p} \tilde{N}_{i}\left(\widetilde{\Omega}_{i j}-\eta_{j}\right)^{2} & =2 \sum_{i=1}^{\tilde{n}} \sum_{j=1}^{m} \tilde{N}_{i} \cdot \mu_{j}^{2} \omega_{n}^{2} \frac{\tilde{N}^{2}}{\tilde{N}_{i}^{2}}\left(z_{i}-\bar{z}\right)^{2} b_{j}^{2} \\
& =2 \omega_{n}^{2} \tilde{N}^{2}\|\mu\|^{2} \sum_{i=1}^{\tilde{n}} \tilde{N}_{i}^{-1}\left(z_{i}-\bar{z}\right)^{2}
\end{aligned}
$$

By $(\overline{\mathrm{C} .32}),|\bar{z}| \leq 100 \sqrt{\tilde{n}}$. Thus $\left|z_{i}-\bar{z}\right| \asymp 1$. Write $\tilde{N}_{*}=\left(\tilde{n}^{-1} \sum_{i=1}^{\tilde{n}} \tilde{N}_{i}^{-1}\right)$. It follows that

$$
\sum_{i=1}^{\tilde{n}} \sum_{j=1}^{p} \tilde{N}_{i}\left(\widetilde{\Omega}_{i j}-\eta_{j}\right)^{2} \asymp \omega_{n}^{2} \tilde{N}^{2}\|\mu\|^{2} \cdot \tilde{n} \tilde{N}_{*}^{-1}
$$

Note that $\tilde{N} \geq \tilde{N}_{*}$. Additionally, by assumption C.25, $\tilde{N}_{i} \asymp \tilde{N} \leq c^{-1} \tilde{N}_{*}$. It follows that

$$
\begin{equation*}
\sum_{i=1}^{\tilde{n}} \sum_{j=1}^{p} \tilde{N}_{i}\left(\widetilde{\Omega}_{i j}-\eta_{j}\right)^{2} \asymp \tilde{n} \tilde{N}\|\mu\|^{2} \omega_{n}^{2} \tag{C.33}
\end{equation*}
$$

Moreover, $\|\eta\|^{2}=\sum_{j=1}^{p} \mu_{j}^{2}\left(1+\omega_{n} \bar{z} b_{j}\right)^{2}$. By our conditioning on the event in C.32),

$$
\left|\omega_{n} \bar{z} b_{j}\right| \lesssim \omega_{n} \tilde{n}^{-1 / 2}
$$

Since $\omega_{n} \leq 1$ and $\sum_{j} b_{j}=0$, we have

$$
\begin{equation*}
\|\eta\|^{2}=\|\mu\|^{2}+\sum_{j=1}^{p} \mu_{j}^{2} \omega_{n}^{2} \bar{z}^{2}=\|\mu\|^{2}\left[1+O\left(\tilde{n}^{-1}\right)\right] \asymp\|\mu\|^{2} . \tag{C.34}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\omega^{2}(\widetilde{\Omega})=\omega^{2}(\Omega) \asymp \omega_{n}^{2}, \quad \text { where recall } \quad \omega(\widetilde{\Omega})=\frac{\sum_{i=1}^{\tilde{n}} \sum_{j=1}^{p} \tilde{N}_{i}\left(\widetilde{\Omega}_{i j}-\eta_{j}\right)^{2}}{\tilde{n} \tilde{N}\|\eta\|^{2}} \tag{C.35}
\end{equation*}
$$

This finishes the proof.

C.4.2 Proof of Proposition C. 1

In this proof, we continue to employ the reparametrization in C.29). As discussed there, this reparametrization preserves the likelihood ratio and thus the chi-square distance.

By definition, $\chi^{2}\left(\mathbb{P}_{0}, \mathbb{P}_{1}\right)=\int\left(\frac{d \mathbb{P}_{1}}{d \mathbb{P}_{0}}\right)^{2} d \mathbb{P}_{0}-1$. It suffices to show that

$$
\begin{equation*}
\int\left(\frac{d \mathbb{P}_{1}}{d \mathbb{P}_{0}}\right)^{2} d \mathbb{P}_{0}=1+o(1) . \tag{C.36}
\end{equation*}
$$

From the density of of multinomial distribution, $d \mathbb{P}_{0}=\prod_{i, j} \tilde{\mu}_{j}^{X_{i j}}$, and $d \mathbb{P}_{1}=\mathbb{E}_{b, z}\left[\prod_{i, j} \widetilde{\Omega}_{i j}^{X_{i j}}\right]$. It follows that

$$
\frac{d \mathbb{P}_{1}}{d \mathbb{P}_{0}}=\mathbb{E}_{b, z}\left[\prod_{i=1}^{\tilde{n}} \prod_{j=1}^{p}\left(\frac{\tilde{\Omega}_{i j}}{\tilde{\mu}_{j}}\right)^{X_{i j}}\right]
$$

Let $b^{(0)}=\left(b_{1}^{(0)}, \ldots, b_{m}^{(0)}\right)^{\prime}$ and $z^{(0)}=\left(z_{1}^{(0)}, \ldots, z_{\tilde{n}}^{(0)}\right)^{\prime}$ be independent copies of b and z. We construct $\widetilde{\Omega}_{i j}^{(0)}$ similarly as in (C.31). It is seen that

$$
\begin{align*}
\int\left(\frac{d \mathbb{P}_{1}}{d \mathbb{P}_{0}}\right)^{2} d \mathbb{P}_{0} & =\mathbb{E}_{X} \mathbb{E}_{b, z, b^{(0)}, z^{(0)}}\left[\prod_{i=1}^{\tilde{n}} \prod_{j=1}^{p}\left(\frac{\widetilde{\Omega}_{i j} \widetilde{\Omega}_{i j}^{(0)}}{\tilde{\mu}_{j}^{2}}\right)^{X_{i j}}\right] \\
& =\mathbb{E}_{b, z, b^{(0)}, z^{(0)}}\left\{\prod_{i=1}^{\tilde{n}} \mathbb{E}_{X_{i}}\left[\prod_{j=1}^{p}\left(\frac{\widetilde{\Omega}_{i j} \widetilde{\Omega}_{i j}^{(0)}}{\tilde{\mu}_{j}^{2}}\right)^{X_{i j}}\right]\right\} \\
& \left.=\mathbb{E}_{b, z, b^{(0)}, z^{(0)}}\left\{\prod_{i=1}^{\tilde{n}}\left(\sum_{j=1}^{p} \tilde{\mu}_{j} \cdot \frac{\widetilde{\Omega}_{i j} \widetilde{\Omega}_{i j}^{(0)}}{\tilde{\mu}_{j}^{2}}\right)^{\tilde{N}_{i}}\right]\right\} \\
& =\mathbb{E}[\exp (M)], \quad \text { with } \quad M:=\sum_{i=1}^{\tilde{n}} \tilde{N}_{i} \log \left(\sum_{j=1}^{p} \tilde{\mu}_{j}^{-1} \widetilde{\Omega}_{i j} \widetilde{\Omega}_{i j}^{(0)}\right) . \tag{C.37}
\end{align*}
$$

Here, the third line follows from the moment generating function of a multinomial distribution. We plug in the expression of $\widetilde{\Omega}_{i j}$ in (C.23). By direct calculations,

$$
\sum_{j=1}^{p} \tilde{\mu}_{j}^{-1} \widetilde{\Omega}_{i j} \widetilde{\Omega}_{i j}^{(0)}=\sum_{j=1}^{m} \mu_{j}\left(1+\omega_{n} \tilde{N}_{i}^{-1} \tilde{N} z_{i} b_{j}\right)\left(1+\omega_{n} \tilde{N}_{i}^{-1} \tilde{N} z_{i}^{(0)} b_{j}^{(0)}\right)
$$

$$
\begin{aligned}
& +\sum_{j=1}^{m} \mu_{j}\left(1-\omega_{n} \tilde{N}_{i}^{-1} \tilde{N} z_{i} b_{j}\right)\left(1-\omega_{n} \tilde{N}_{i}^{-1} \tilde{N} z_{i}^{(0)} b_{j}^{(0)}\right) \\
= & 2\|\mu\|_{1}+2 \sum_{j=1}^{m} \mu_{j} \omega_{n}^{2} \tilde{N}_{i}^{-2} \tilde{N}^{2} z_{i} z_{i}^{(0)} b_{j} b_{j}^{(0)} \\
= & 1+2 \sum_{j=1}^{m} \mu_{j} \omega_{n}^{2} \tilde{N}_{i}^{-2} \tilde{N}^{2} z_{i} z_{i}^{(0)} b_{j} b_{j}^{(0)} .
\end{aligned}
$$

We plug it into M and notice that $\log (1+t) \leq t$ is always true. It follows that

$$
\begin{equation*}
M \leq \sum_{i=1}^{\tilde{n}} \tilde{N}_{i} \cdot 2 \sum_{j=1}^{m} \mu_{j} \omega_{n}^{2} \frac{\tilde{N}^{2}}{\tilde{N}_{i}^{2}} z_{i} z_{i}^{(0)} b_{j} b_{j}^{(0)}=2 \tilde{N} \omega_{n}^{2}\left(\sum_{i=1}^{\tilde{n}} \frac{\tilde{N}}{\tilde{N}_{i}} z_{i} z_{i}^{(0)}\right)\left(\sum_{j=1}^{m} \mu_{j} b_{j} b_{j}^{(0)}\right)=: M^{*} . \tag{C.38}
\end{equation*}
$$

We combine C.38 with C.37). It is seen that to show C.36, it suffices to show that

$$
\begin{equation*}
\mathbb{E}\left[\exp \left(M^{*}\right)\right]=1+o(1) \tag{C.39}
\end{equation*}
$$

We now show C.39. Write $M_{1}=\sum_{i=1}^{\tilde{n}}\left(\tilde{N}_{i}^{-1} \tilde{N}\right) z_{i} z_{i}^{(0)}$ and $M_{2}=\sum_{j=1}^{p} \mu_{j} b_{j} b_{j}^{(0)}$.
Recall that we condition on the event (C.32). By Hoeffding's inequality, Bayes's rule, and (C.32),

$$
\begin{aligned}
\mathbb{P}\left(\left|M_{1}\right|>t\right) & =\mathbb{P}\left(\left|\sum_{i} \frac{\tilde{N}}{\tilde{N}_{i}} z_{i} z_{i}^{(0)} \geq t\right|\left|\sum_{i} z_{i}\right| \leq 100 \sqrt{\tilde{n}},\left|\sum_{i} z_{i}^{(0)}\right| \leq 100 \sqrt{\tilde{n}}\right) \\
& =\frac{\mathbb{P}\left(\left|\sum_{i} \frac{\tilde{N}}{\tilde{N}_{i}} z_{i} z_{i}^{(0)}\right| \geq t\right)}{\mathbb{P}\left(\left|\sum_{i} z_{i}\right| \leq 100 \sqrt{\tilde{n}}\right) \mathbb{P}\left(\left|\sum_{i} z_{i}^{(0)}\right| \leq 100 \sqrt{\tilde{n}}\right)} \\
& \leq 4 \cdot 2 \exp \left(-\frac{t^{2}}{8 \sum_{i=1}^{\tilde{n}}\left(\tilde{N}_{i}^{-1} \tilde{N}\right)^{2}}\right) \\
& =8 \exp \left(-\frac{t^{2}}{8 \tilde{n}}\right) .
\end{aligned}
$$

for all $t>0$. In the last line, we have used the assumption of $\tilde{N}_{i} \asymp \tilde{N}$. By Hoeffding's inequality again, we also have

$$
\mathbb{P}\left(\left|M_{2}\right|>t\right) \leq 2 \exp \left(-\frac{t^{2}}{8 \sum_{j=1}^{p} \mu_{j}^{2}}\right)=2 \exp \left(-\frac{t^{2}}{8\|\mu\|^{2}}\right)
$$

for all $t>0$. Write $s_{\tilde{n}}^{2}=\sqrt{\tilde{n}} \tilde{N} \omega_{n}^{2}\|\mu\|$. It follows that

$$
\begin{align*}
\mathbb{P}\left(M^{*}>t\right) & =\mathbb{P}\left(2 \tilde{N} \omega_{n}^{2} M_{1} M_{2}>t\right)=\mathbb{P}\left(M_{1} M_{2}>t \cdot \sqrt{\tilde{n}}\|\mu\| s_{\tilde{n}}^{-2}\right) \\
& \leq \mathbb{P}\left(M_{1}>\sqrt{t} \cdot \sqrt{\tilde{n}} s_{\tilde{n}}^{-1}\right)+\mathbb{P}\left(M_{2}>\sqrt{t} \cdot\|\mu\| s_{\tilde{n}}^{-1}\right) \\
& \leq 8 \exp \left(-\frac{t}{8 s_{\tilde{n}}^{2}}\right)+2 \exp \left(-\frac{t}{8 s_{\tilde{n}}^{2}}\right) \\
& \leq 4 \exp \left(-c_{1} t / s_{\tilde{n}}^{2}\right), \tag{C.40}
\end{align*}
$$

for some constant $c_{1}>0$. Here, in the last line, we have used the assumption of $\tilde{N}_{i} \asymp \tilde{N}$.

Let $f(x)$ and $F(x)$ be the density and distribution function of M^{*}. Write $\bar{F}(x)=1-$ $F(x)$. Using integration by part, we have $\mathbb{E}\left[\exp \left(M^{*}\right)\right]=\int_{0}^{\infty} \exp (x) f(x) d x=-\left.\exp (x) \bar{F}(x)\right|_{0} ^{\infty}+$ $\int_{0}^{\infty} \exp (x) \bar{F}(x) d x=1+\int_{0}^{\infty} \exp (x) \bar{F}(x) d x$, provided that the integral exists. As a result, when $s_{\tilde{n}}=o(1)$,

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(M^{*}\right)\right]-1 & =\int_{0}^{\infty} \exp (t) \cdot \mathbb{P}\left(M^{*}>t\right) \\
& \leq 4 \int_{0}^{\infty} \exp \left(-\left[c_{1} s_{\tilde{n}}^{-2}-1\right] t\right) d t \\
& \leq 4\left(c_{1} s_{\tilde{n}}^{-1}-1\right)^{-1}=4 s_{\tilde{n}} /\left(c_{1}-s_{\tilde{n}}\right) .
\end{aligned}
$$

It implies $\mathbb{E}\left[\exp \left(M^{*}\right)\right]=1+o(1)$, which is exactly (C.39). This completes the proof. because

$$
s_{\tilde{n}}^{2}=\sqrt{\tilde{n}} \tilde{N} \omega_{n}^{2}\|\mu\|=\frac{n \bar{N}\|\mu\| \omega_{n}^{2}}{\sqrt{K}} \asymp \frac{n \bar{N}\|\mu\| \omega_{n}^{2}}{\sqrt{\sum_{k \in K}\left\|\mu_{k}\right\|^{2}}}
$$

C. 5 Proof of Theorem 3.6

First we show that

$$
\begin{align*}
& T / \sqrt{\operatorname{Var}(T)} \Rightarrow N(0,1), \quad \text { and } \tag{C.41}\\
& V / \operatorname{Var}(T) \rightarrow 1 \tag{C.42}
\end{align*}
$$

If (C.41) and C.42 hold, then by mimicking the proof of Theorem 3.2, we see that ψ is asymptotically normal and the level- α DELVE test has asymptotic level α. We omit the details as they are quite similar.

Recall the martingale decomposition of T described in Section B. Observe that, under our assumptions, Lemmas B. 1 B. 6 are valid. Moreover, by Lemmas A. 8 and A. 12

$$
\begin{equation*}
\operatorname{Var}(T) \gtrsim \Theta_{n 2}+\Theta_{n 3}+\Theta_{n 4} \gtrsim\left\|\frac{m \bar{M}}{n \bar{N}+m \bar{M}} \eta+\frac{n \bar{N}}{n \bar{N}+m \bar{M}} \theta\right\|^{2} . \tag{C.43}
\end{equation*}
$$

Combining (C.43) with Lemmas B.1 B. 6 and mimicking the argument in Section B.1 implies that $T / \sqrt{V} \Rightarrow N(0,1)$. Thus (C.41) is established.

Moreover, (C.42) is a direct consequence of our assumptions and Proposition A.3. The claims of Theorem 3.6 regarding the null hypothesis follow.

To prove the claims about the alternative hypothesis, it suffices to show

$$
\begin{align*}
& T / \sqrt{\operatorname{Var}(T)} \rightarrow \infty \tag{C.44}\\
& V>0 \text { with high probability, and } \tag{C.45}\\
& V=O_{\mathbb{P}}(\operatorname{Var}(T)) . \tag{C.46}
\end{align*}
$$

Once these claims are established, we prove that $\psi=T \mathbf{1}_{V>0} / \sqrt{V} \rightarrow \infty$ under the alternative by mimicking the last step of the proof of Theorem 3.4 in Section C.3. We omit the details as they are very similar.

Note that (C.46) follows directly from our assumptions and Proposition A. 4 .
As in the proof of Theorem 3.4 in Section C.3, to establish (C.44), it suffices to prove that

$$
\begin{equation*}
\mathbb{E} T=\rho^{2} \gg \operatorname{Var}(T) \tag{C.47}
\end{equation*}
$$

Our main assumption under the alternative when $K=2$ is

$$
\begin{equation*}
\frac{\|\eta-\theta\|^{2}}{\left(\frac{1}{n N}+\frac{1}{m M}\right) \max \{\|\eta\|,\|\theta\|\}} \rightarrow \infty . \tag{C.48}
\end{equation*}
$$

As shown in Section C.2, we have that

$$
\begin{equation*}
\operatorname{Var}(T) \lesssim \Theta_{n}=\Theta_{n 1}+\sum_{t=2}^{4} \Theta_{n t} \tag{C.49}
\end{equation*}
$$

Applying (C.17) to the first term and Lemma A.8 to the remaining terms, we have

$$
\begin{align*}
\operatorname{Var}(T) & \lesssim \max \left\{\|\eta\|_{\infty},\|\theta\|_{\infty}\right\} \cdot \rho^{2}+\left\|\frac{m \bar{M}}{n \bar{N}+m \bar{M}} \eta+\frac{n \bar{N}}{n \bar{N}+m \bar{M}} \theta\right\|^{2} \\
& \lesssim \max \{\|\eta\|,\|\theta\|\} \cdot \rho^{2}+\max \left\{\|\eta\|^{2},\|\theta\|^{2}\right\} \tag{C.50}
\end{align*}
$$

Next, note that

$$
\begin{align*}
\rho^{2}= & n \bar{N}\|\eta-\mu\|^{2}+m \bar{M}\|\theta-\mu\|^{2} \\
= & n \bar{N}\left\|\eta-\left(\frac{n \bar{N}}{n \bar{N}+m \bar{M}} \eta+\frac{m \bar{M}}{n \bar{N}+m \bar{M}} \theta\right)\right\|^{2} \\
& +m \bar{M}\left\|\theta-\left(\frac{n \bar{N}}{n \bar{N}+m \bar{M}} \eta+\frac{m \bar{M}}{n \bar{N}+m \bar{M}} \theta\right)\right\|^{2} \\
= & n \bar{N} \cdot\left(\frac{m \bar{M}}{n \bar{N}+m \bar{M}}\right)^{2}\|\eta-\theta\|^{2}+m \bar{M} \cdot\left(\frac{n \bar{N}}{n \bar{N}+m \bar{M}}\right)^{2}\|\eta-\theta\|^{2} \\
= & \frac{n \bar{N} m \bar{M}}{(n \bar{N}+m \bar{M})}\|\eta-\theta\|^{2}=\left(\frac{1}{n \bar{N}}+\frac{1}{m \bar{M}}\right)^{-1}\|\eta-\theta\|^{2} . \tag{C.51}
\end{align*}
$$

By (C.48), C.50), and (C.51), we have

$$
\begin{aligned}
\frac{(\mathbb{E} T)^{2}}{\operatorname{Var}(T)} & \gtrsim \frac{\rho^{4}}{\max \{\|\eta\|,\|\theta\|\} \cdot \rho^{2}+\max \left\{\|\eta\|^{2},\|\theta\|^{2}\right\}} \\
& \gtrsim \frac{\|\eta-\theta\|^{2}}{\left(\frac{1}{n N}+\frac{1}{m M}\right) \max \{\|\eta\|,\|\theta\|\}}+\left(\frac{\|\eta-\theta\|^{2}}{\left(\frac{1}{n N}+\frac{1}{m M}\right) \max \{\|\eta\|,\|\theta\|\}}\right)^{2} \rightarrow \infty,
\end{aligned}
$$

which proves (C.47) and thus (C.44).
To prove (C.45), we mimick the Markov argument in (C.21) and use that under our assumptions, $\operatorname{Var}(V) /(\mathbb{E} V)^{2}=o(1)$. We omit the details as they are similar. Since we have established (C.44), (C.45), and C.46), the proof is complete.

C. 6 Proof of Theorem 3.7

Note that $T / \sqrt{\operatorname{Var}(T)} \Rightarrow N(0,1)$ by our assumptions and Proposition B.1. In particular, using that $n \rightarrow \infty$ and the monotonicity of the ℓ_{p} norms we have

$$
\frac{\|\mu\|_{4}^{4}}{K\|\mu\|^{4}}=\frac{\|\mu\|_{4}^{4}}{n\|\mu\|^{4}} \leq \frac{1}{n} \cdot \frac{\|\mu\|^{4}}{\|\mu\|^{4}}=\frac{1}{n} \rightarrow 0
$$

Moreover, $V^{*} / \operatorname{Var}(T) \rightarrow 1$ in probability by Proposition A.5. It follows by Slutsky's theorem that $\psi^{*}=T / \sqrt{V^{*}} \Rightarrow N(0,1)$ and that the level- α DELVE test has an asymptotic level α.

To conclude the proof, it suffices to show that $\psi^{*} \rightarrow \infty$ under the alternative. As in the proof of Theorem 3.4 , this follows immediately if we can show

$$
\begin{align*}
& T / \sqrt{\operatorname{Var}(T)} \rightarrow \infty \tag{C.52}\\
& V^{*}>0 \text { with high probability, and } \tag{C.53}\\
& V^{*}=O_{\mathbb{P}}(\operatorname{Var}(T)) \tag{C.54}
\end{align*}
$$

Note that (C.52) follows from (C.14), and (C.54) is the content of Proposition A.6. Since our assumptions imply that $\mathbb{E} V^{*} \gg \sqrt{\operatorname{Var}\left(V^{*}\right)}$, C.53 follows by a Markov argument as in (C.21).

C. 7 Proof of Theorem 3.8

We apply Theorem 3.2 to get the asymptotic null distribution. Since $N_{i}=N$ and $\mu=$ $p^{-1} \mathbf{1}_{p}$, it is easy to see that Condition 3.2 is satisfied under our assumption of $p=o\left(N^{2} n\right)$. Therefore, by Theorem $3.2, \psi^{*} \rightarrow N(0,1)$ under H_{0}.

We now show the asymptotic alternative distribution. By direct calculations and using $\sum_{i=1}^{n} \delta_{i j}=0$ and $\sum_{j=1}^{p} \delta_{i j}=0$, we have

$$
\sum_{i, j} N_{i}\left(\Omega_{i j}-\mu_{j}\right)^{2}=\frac{n N \beta_{n}^{2}}{p}, \quad \sum_{i, j} N_{i}\left(\Omega_{i j}-\mu_{j}\right)^{2} \Omega_{i j}=\frac{n N \beta_{n}^{2}}{p^{2}}, \quad \sum_{i}\left\|\Omega_{i}\right\|^{2}=\frac{n\left(1+\beta_{n}^{2}\right)}{p}
$$

We apply Lemmas A.1 A. 5 and plug in the above expressions. Let $S=\mathbf{1}_{p}^{\prime} U_{2}$. It follows that

$$
\begin{equation*}
T=\frac{n N \beta_{n}^{2}}{p}+S+O_{\mathbb{P}}\left(\frac{\sqrt{n N} \beta_{n}}{p}+\frac{1}{\sqrt{p}}\right), \quad \text { where } \operatorname{Var}(S)=2 p^{-1} n[1+o(1)] \tag{C.55}
\end{equation*}
$$

First, we plug in $\beta_{n}^{2}=a \sqrt{2 p} /(N \sqrt{n})$. It gives $p^{-1} n N \beta_{n}^{2}=\sqrt{2 n / p}$. Second, $p^{-1} \sqrt{n N} \beta_{n} \asymp$ $(n p)^{-1 / 4} \sqrt{n / p}=o(\sqrt{n / p})$. It follows that

$$
\begin{equation*}
T=a \sqrt{2 n / p}+S+o_{\mathbb{P}}(\sqrt{n / p}), \quad \text { where } \operatorname{Var}(S)=(2 n / p)[1+o(1)] \tag{C.56}
\end{equation*}
$$

Recall the martingale decomposition $S=\sum_{(\ell, s)} E_{\ell, s}$ where $E_{\ell, s}$ is defined in (B.4). Observe that Lemmas B.4 and B.5 hold (even under the alternative). Define $\widetilde{E}_{\ell, s}=$
$E_{\ell, s} / \sqrt{\operatorname{Var}(S)}$. Using $\operatorname{Var}(S) \gtrsim n \sum_{i}\left\|\Omega_{i}\right\|^{2}$ and these lemmas, it is straightforward to verify that the following conditions hold:

$$
\begin{align*}
& \sum_{(\ell, s)} \operatorname{Var}\left(\widetilde{E}_{\ell, s} \mid \mathcal{F}_{\prec(\ell, s)}\right) \xrightarrow{\mathbb{P}} 1 \tag{C.57}\\
& \sum_{(\ell, s)} \mathbb{E} \widetilde{E}_{\ell, s}^{4} \xrightarrow{\mathbb{P}} 0 . \tag{C.58}
\end{align*}
$$

As in Section B.1, the martingale CLT applies and we have

$$
S / \sqrt{\operatorname{Var}(S)} \Rightarrow N(0,1)
$$

By C.55.

$$
\begin{equation*}
T / \sqrt{\operatorname{Var}(S)} \rightarrow N(a, 1) . \tag{C.59}
\end{equation*}
$$

By Lemma A. 3 and A.84,

$$
\operatorname{Var}(S)=[1+o(1)] \Theta_{n 2}=[1+o(1)] \operatorname{Var}(T)
$$

By Proposition A.6, we have that $V^{*} / \operatorname{Var}(T) \rightarrow 1$ in probability. As a result,

$$
\begin{equation*}
V^{*} / \operatorname{Var}(S) \rightarrow 1, \quad \text { in probability. } \tag{C.60}
\end{equation*}
$$

We combine (C.59) and C.60 to conclude that $\psi=T / \sqrt{V^{*}} \rightarrow N(a, 1)$.

D Proofs of the corollaries for text analysis

D. 1 Proof of Corollary 4.1

Note that Corollary 4.1 follows immediately from the slightly more general result stated below.

Corollary D.1. Consider Model (1.1) and suppose that $\Omega=\mu \mathbf{1}_{n}^{\prime}$ under the null hypothesis and that Ω satisfies (4.1) under the alternative hypothesis. Define $\xi \in \mathbb{R}^{n}$ by $\xi_{i}=\bar{N}^{-1} N_{i}$ and let $\widetilde{\Omega}=\Omega[\operatorname{diag}(\xi)]^{1 / 2}$. Let $\lambda_{1}, \ldots, \lambda_{M}>0$ and $\widetilde{\lambda}_{1}, \ldots, \widetilde{\lambda}_{M}>0$ denote the singular values of Ω and $\widetilde{\Omega}$, respectively, arranged in decreasing order. We further assume that under the alternative hypothesis,

$$
\begin{equation*}
\frac{\bar{N} \cdot \sum_{k=2}^{M} \widetilde{\lambda}_{k}^{2}}{\sqrt{\sum_{k=1}^{M} \lambda_{k}^{2}}} \rightarrow \infty \tag{D.1}
\end{equation*}
$$

For any fixed $\alpha \in(0,1)$, the level- α DELVE test has an asymptotic level α and an asymptotic power 1. Moreover if $N_{i} \asymp \bar{N}$ for all i, we may replace $\sum_{k=2}^{M} \widetilde{\lambda}_{k}^{2}$ with $\sum_{k=2}^{M} \lambda_{k}^{2}$ in the numerator of (D.1).

Proof of Corollary D.1. This is a special case of our testing problem with $K=n$. Moreover, $\mu=n^{-1} \Omega \xi$ matches with the definition of μ in (1.2). Therefore, we can apply Theorem 3.7 directly. It remains to verify that the condition

$$
\begin{equation*}
\frac{\bar{N} \cdot \sum_{k=2}^{M} \widetilde{\lambda}_{k}^{2}}{\sqrt{\sum_{k=1}^{M} \lambda_{k}^{2}}} \rightarrow \infty \tag{D.2}
\end{equation*}
$$

is sufficient to lead to the condition

$$
\begin{equation*}
\frac{n \bar{N}\|\mu\|^{2} \omega_{n}^{2}}{\sqrt{\sum_{i}\left\|\Omega_{i}\right\|^{2}}} \rightarrow \infty \tag{D.3}
\end{equation*}
$$

If we show this then Theorem 3.7 applies directly. We first calculate ω_{n}^{2}. Recall $\xi_{i}=N_{i} / \bar{N}$ for $1 \leq i \leq n$. Write

$$
\widetilde{\Omega}=\Omega[\operatorname{diag}(\xi)]^{1 / 2}, \quad \widetilde{\xi}=[\operatorname{diag}(\xi)]^{1 / 2} \mathbf{1}_{n}
$$

For $K=n$, by (3.13), $\omega_{n}^{2}=\frac{1}{n N\|\mu\|^{2}} \sum_{i=1}^{n} N_{i}\left\|\Omega_{i}-\mu\right\|^{2}$. It follows that

$$
\begin{equation*}
\omega_{n}^{2}=\frac{1}{n\|\mu\|^{2}}\left\|\left(\Omega-\mu \mathbf{1}_{n}^{\prime}\right)[\operatorname{diag}(\xi)]^{1 / 2}\right\|_{F}^{2}=\frac{1}{n\|\mu\|^{2}}\left\|\widetilde{\Omega}-\mu \widetilde{\xi}^{\prime}\right\|_{F}^{2} \tag{D.4}
\end{equation*}
$$

Recall that $\widetilde{\lambda_{1}}, \ldots, \widetilde{\lambda}_{M}$ are the singular values of $\widetilde{\Omega}$. We apply a well-known result in linear algebra Horn and Johnson, 1985, namely Weyl's inequality: For any rank-1 matrix Δ, $\|\widetilde{\Omega}-\Delta\|_{F}^{2} \geq \sum_{k \neq 1} \widetilde{\lambda}_{k}^{2}$. In (D.4), $\mu \widetilde{\xi}^{\prime}$ is a rank-1 matrix. It follows that

$$
\begin{equation*}
\left\|\widetilde{\Omega}-\mu \widetilde{\xi}^{\prime}\right\|_{F}^{2} \geq \sum_{k=2}^{M} \widetilde{\lambda}_{k}^{2} \tag{D.5}
\end{equation*}
$$

Hence

$$
\frac{n \bar{N}\|\mu\|^{2} \omega_{n}^{2}}{\sqrt{\sum_{i}\left\|\Omega_{i}\right\|^{2}}} \geq \frac{\bar{N} \cdot \sum_{k=2}^{M} \widetilde{\lambda}_{k}^{2}}{\|\Omega\|_{F}}=\frac{\bar{N} \cdot \sum_{k=2}^{M} \widetilde{\lambda}_{k}^{2}}{\sqrt{\sum_{k=1}^{M} \lambda_{k}^{2}}},
$$

which implies (D.3) by our assumption. The first claim is proved.
Next we prove the second claim. Observe that if $N_{i} \asymp \bar{N}$, then by Weyl's inequality:

$$
\begin{aligned}
\omega_{n}^{2} & =\frac{1}{\|\mu\|^{2} n \bar{N}} \sum_{i} N_{i}\left\|\Omega_{i}-\left.\mu\right|^{2} \gtrsim \frac{1}{\|\mu\|^{2}} \sum_{i}\right\| \Omega_{i}-\mu \|^{2} \\
& =\frac{1}{\|\mu\|^{2}}\left\|\Omega-\mu \mathbf{1}_{n}^{\prime}\right\|_{F}^{2} \geq \frac{1}{\|\mu\|^{2}} \sum_{k=2}^{M} \lambda_{k}^{2} .
\end{aligned}
$$

Thus

$$
\frac{n \bar{N}\|\mu\|^{2} \omega_{n}^{2}}{\sqrt{\sum_{i}\left\|\Omega_{i}\right\|^{2}}} \geq \frac{\bar{N} \cdot \sum_{k=2}^{M} \lambda_{k}^{2}}{\|\Omega\|_{F}}=\frac{\bar{N} \cdot \sum_{k=2}^{M} \lambda_{k}^{2}}{\sqrt{\sum_{k=1}^{M} \lambda_{k}^{2}}} .
$$

We see that the assumption

$$
\begin{equation*}
\frac{\bar{N} \cdot \sum_{k=2}^{M} \lambda_{k}^{2}}{\sqrt{\sum_{k=1}^{M} \lambda_{k}^{2}}} \rightarrow \infty \tag{D.6}
\end{equation*}
$$

implies (D.3). The second claim is established and the proof is complete.

D. 2 Proof of Corollary 4.2

Recall the construction of a simple null and simple (random) alternative model from Section C.4.2, specialized below to the case of $K=n$ and $N_{i} \equiv N$:

$$
\begin{gather*}
H_{0}: \quad \Omega_{i}=\tilde{\mu}, \quad 1 \leq i \leq n . \tag{D.7}\\
H_{1}: \quad \Omega_{i j}= \begin{cases}\mu_{j}\left(1+\omega_{n} z_{i} b_{j}\right), & \text { if } 1 \leq j \leq m \\
\tilde{\mu}_{j}\left(1-\omega_{n} z_{i} b_{j-m}\right), & \text { if } m+1 \leq j \leq 2 m\end{cases} \tag{D.8}
\end{gather*}
$$

where b_{1}, \ldots, b_{m} are i.i.d. Rademacher random variables and z_{1}, \ldots, z_{n} are i.i.d Rademacher random variables conditioned to satisfy $\left|\sum_{i} z_{i}\right| \leq 100 \sqrt{n}$. Define

$$
\tilde{b}=\left(b_{1}, \ldots, b_{m}, b_{1}, \ldots, b_{m}\right)^{\prime}
$$

To derive the lower bound of Corollary 4.2, we assume without loss of generality that ω_{n} is a sufficiently small absolute constant.

We claim that H_{1} prescribes a topic model with $M=2$ topics. To see this, under the alternative,

$$
\Omega_{i}= \begin{cases}\mu \circ\left(\mathbf{1}_{p}+\omega_{n} \tilde{b}\right) & \text { if } z_{i}=1 \tag{D.9}\\ \mu \circ\left(\mathbf{1}_{p}-\omega_{n} \tilde{b}\right) & \text { if } z_{i}=-1\end{cases}
$$

Moreover, we showed in Section C.4.2 that $\Omega_{i j} \geq 0$ for all i, j and that $\left\|\Omega_{i j}\right\|_{1}=1$. From (D.9), we see that $\Omega=A W$ where $A \in \mathbb{R}^{p \times 2}$ and $W \in \mathbb{R}^{2 \times n}$ are defined as follows:

$$
\begin{aligned}
& A_{: 1}=\mu \circ\left(\mathbf{1}_{p}+\omega_{n} \tilde{b}\right), \quad A_{: 2}=\mu \circ\left(\mathbf{1}_{p}-\omega_{n} \tilde{b}\right) \\
& W_{: i}= \begin{cases}(1,0)^{\prime} & \text { if } z_{i}=1 \\
(0,1)^{\prime} & \text { if } z_{i}=-1 .\end{cases}
\end{aligned}
$$

Moreover, under the null hypothesis, Ω clearly prescribes a topic model with $K=1$. Therefore Ω follows the topic model (4.1). Moreover, since $N_{i} \equiv N$, we have $\Omega[\operatorname{diag}(\xi)]^{1 / 2}=$ Ω.

By Proposition C. 1 specialized to our setting, we know that the χ^{2} distance between the null and alternative goes to zero if

$$
\sqrt{n} N\|\mu\| \omega_{n}^{2} \rightarrow 0
$$

Thus to prove Corollary 4.2 it suffices to show that

$$
\begin{equation*}
\frac{N \sum_{k \geq 2}^{M} \lambda_{k}^{2}}{\sqrt{\sum_{k=1}^{M} \lambda_{k}^{2}}}=\frac{N \lambda_{2}^{2}}{\sqrt{\sum_{k=1}^{M} \lambda_{k}^{2}}} \gtrsim \sqrt{n} N\|\mu\| \omega_{n}^{2} \tag{D.10}
\end{equation*}
$$

Accordingly we study the second largest singular value of Ω. First we have some preliminary calculations. Let $U=\left\{i: z_{i}=1\right\}$, and let $V=\left\{i: z_{i}=-1\right\}$. Define

$$
u=\mu \circ\left(\mathbf{1}_{p}+\omega_{n} \tilde{b}\right), \quad \text { and }
$$

$$
v=\mu \circ\left(\mathbf{1}_{p}-\omega_{n} \tilde{b}\right) .
$$

Observe that

$$
\langle u, v\rangle=\|\mu\|^{2}-\omega_{n}^{2}\|\mu \circ \tilde{b}\|^{2}=\|\mu\|^{2}\left(1-\omega_{n}^{2}\right) .
$$

Also, since ω_{n} is a sufficiently small absolute constant,

$$
\begin{align*}
& \|u\|^{2}=\|\mu\|^{2}+2 \omega_{n}\langle\mu, \mu \circ \tilde{b}\rangle+\omega_{n}^{2}\|\mu \circ \tilde{b}\|^{2}=\left(1+\omega_{n}^{2}\right)\|\mu\|^{2}+2 \omega_{n} \sum_{j} \mu_{j}^{2} \tilde{b}_{j} \gtrsim\|\mu\|^{2}, \quad \text { and } \\
& \|v\|^{2}=\|\mu\|^{2}-2 \omega_{n}\langle\mu, \mu \circ \tilde{b}\rangle+\omega_{n}^{2}\|\mu \circ \tilde{b}\|^{2}=\left(1+\omega_{n}^{2}\right)\|\mu\|^{2}-2 \omega_{n} \sum_{j} \mu_{j}^{2} \tilde{b}_{j} \gtrsim\|\mu\|^{2} . \quad \text { (D.1 } \tag{D.11}
\end{align*}
$$

Again, since we assume that ω_{n} is a sufficiently small absolute constant,

$$
\begin{align*}
\delta^{2}:=\frac{\langle u, v\rangle^{2}}{\|u\|^{2}\|v\|^{2}} & =\frac{\|\mu\|^{4}\left(1-\omega_{n}^{2}\right)^{2}}{\left(1+\omega_{n}^{2}\right)^{2}\|\mu\|^{4}-4 \omega_{n}^{2}\langle\mu, \mu \circ b\rangle^{2}} \leq \frac{\|\mu\|^{4}\left(1-\omega_{n}^{2}\right)^{2}}{\left(1+\omega_{n}^{2}\right)^{2}\|\mu\|^{4}-4 \omega_{n}^{2}\|\mu\|^{4}} \\
& =\frac{\|\mu\|^{4}\left(1-\omega_{n}^{2}\right)^{2}}{\|\mu\|^{4}\left(1+2 \omega_{n}^{2}-3 \omega_{n}^{4}\right)}=\frac{\left(1-\omega_{n}^{2}\right)^{2}}{1+2 \omega_{n}^{2}-3 \omega_{n}^{4}} \tag{D.12}
\end{align*}
$$

Note that

$$
\begin{aligned}
\|a u+b v\|^{2} & =a^{2}\|u\|^{2}+2 a b\langle u, v\rangle+b^{2}\|v\|^{2} \geq a^{2}\|u\|^{2}+b^{2}\|v\|^{2}-2 a b \delta\|u\|\|v\| \\
& \geq(1-\delta)\left(a^{2}\|u\|^{2}+b^{2}\|v\|^{2}\right)+\|a u-b v\|^{2} \geq(1-\delta)\left(a^{2}\|u\|^{2}+b^{2}\|v\|^{2}\right) .
\end{aligned}
$$

By (D.12), we have for ω_{n} sufficiently small that

$$
\begin{aligned}
1-\delta & \geq 1-\frac{1-\omega_{n}^{2}}{\sqrt{1+2 \omega_{n}^{2}-3 \omega_{n}^{4}}}=\frac{\sqrt{1+2 \omega_{n}^{2}-3 \omega_{n}^{4}}-1+\omega_{n}^{2}}{\sqrt{1+2 \omega_{n}^{2}-3 \omega_{n}^{4}}} \\
& \geq \frac{\omega_{n}^{2}}{\sqrt{1+2 \omega_{n}^{2}-3 \omega_{n}^{4}}} \gtrsim \omega_{n}^{2} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\|a u+b v\|^{2} \geq \omega_{n}^{2}\left(a^{2}\|u\|^{2}+b^{2}\|v\|^{2}\right) \gtrsim \omega_{n}^{2}\|\mu\|^{2}\left(a^{2}+b^{2}\right) \tag{D.13}
\end{equation*}
$$

Recall that if M is a rank k matrix, then

$$
\begin{equation*}
\lambda_{k}(M)=\sup _{y:\|y\|=1, y \in \operatorname{Ker}(M)^{\perp}}\|M y\|=\sup _{y:\|y\|=1, y \in \operatorname{Im}\left(M^{\prime}\right)}\|M y\| . \tag{D.14}
\end{equation*}
$$

We have

$$
\Omega \Omega^{\prime}=\sum_{i \in U} u u^{\prime}+\sum_{i \in V} v v^{\prime}=|U| u u^{\prime}+|V| v v^{\prime} .
$$

Let $y \in \mathbb{R}^{n}$ satisfy $\|y\|=1$ and $y=\Omega^{\prime} x$ for some x. We have

$$
\Omega y=\Omega \Omega^{\prime} x=|U|\langle u, x\rangle u+|V|\langle v, x\rangle v .
$$

By the previous equation and (D.13),

$$
\|\Omega y\|^{2}=\left\|\Omega \Omega^{\prime} x\right\|^{2}=\||U|\langle u, x\rangle u+|V|\langle v, x\rangle v\|^{2} \gtrsim \omega_{n}^{2}\|\mu\|^{2}\left(|U|^{2}\langle u, x\rangle^{2}+|V|^{2}\langle v, x\rangle^{2}\right) .
$$

By our conditioning on z, we have $\min (|U|,|V|) \gtrsim n$. Moreover

$$
1=\|y\|^{2}=\left\|\Omega^{\prime} x\right\|^{2}=|U|\langle u, x\rangle^{2}+|V|\langle v, x\rangle^{2}
$$

Applying these facts and $\overline{\mathrm{D} .14}$, we obtain

$$
\lambda_{2}^{2} \geq\|\Omega y\|^{2}=\left\|\Omega \Omega^{\prime} x\right\|^{2} \gtrsim \omega_{n}^{2}\|\mu\|^{2} n\left(|U|\langle u, x\rangle^{2}+|V|\langle v, x\rangle^{2}\right)=\omega_{n}^{2}\|\mu\|^{2} n
$$

Next,

$$
\begin{equation*}
\sum_{k=1}^{M} \lambda_{k}^{2}=\|\Omega\|_{F}^{2}=\sum_{i \in U}\|u\|^{2}+\sum_{i \in V}\|v\|^{2}=|U| \cdot\|u\|^{2}+|V| \cdot\|v\|^{2} \asymp n\|\mu\|^{2} \tag{D.15}
\end{equation*}
$$

We conclude that

$$
\frac{N \sum_{k \geq 2}^{M} \lambda_{k}^{2}}{\sqrt{\sum_{k=1}^{M} \lambda_{k}^{2}}}=\frac{N \lambda_{2}^{2}}{\sqrt{\sum_{k=1}^{M} \lambda_{k}^{2}}} \gtrsim \frac{N \cdot \omega_{n}^{2}\|\mu\|^{2} n}{\sqrt{n}\|\mu\|}=\sqrt{n} N\|\mu\| \omega_{n}^{2}
$$

which establishes (D.10). The proof is complete.

D. 3 Proof of Corollary 4.3

This is a special case of our testing problem with $K=2$, we can apply Theorem 3.6 directly. It remains to verify that the condition

$$
\begin{equation*}
\frac{\beta_{n}^{2} \cdot\left(\left\|\eta_{S}\right\|_{1}+\left\|\theta_{S}\right\|_{1}\right)}{\left(\frac{1}{n \bar{N}}+\frac{1}{m \bar{M}}\right) \max \{\|\eta\|,\|\theta\|\}} \rightarrow \infty \tag{D.16}
\end{equation*}
$$

is sufficient to yield the condition (3.11) in Theorem 3.6. This is done by calculating $\|\eta-\theta\|^{2}$ directly. By our sparse model 4.4 , for $j \in S,\left|\sqrt{\eta_{j}}-\sqrt{\theta_{j}}\right| \geq \beta_{n}$. It follows that for $j \in S$,

$$
\left|\eta_{j}-\theta_{j}\right|^{2}=\left(\sqrt{\eta_{j}}+\sqrt{\theta_{j}}\right)^{2}\left(\sqrt{\eta_{j}}-\sqrt{\theta_{j}}\right)^{2} \geq \beta_{n}^{2}\left(\sqrt{\eta_{j}}+\sqrt{\theta_{j}}\right)^{2} \geq \beta_{n}^{2}\left(\eta_{j}+\theta_{j}\right)
$$

It follows that

$$
\begin{equation*}
\|\eta-\theta\|^{2} \geq \beta_{n}^{2} \sum_{j \in S}\left(\eta_{j}+\theta_{j}\right) \geq \beta_{n}^{2}\left(\left\|\eta_{S}\right\|_{1}+\left\|\theta_{S}\right\|_{1}\right) \tag{D.17}
\end{equation*}
$$

We plug it into (3.11) and see immediately that (D.16 implies this condition. The claim follows directly from Theorem 3.6.

E A modification of DELVE for finite p

Below we write out the variance of the terms of the raw DELVE statistic under the null, using the proofs of Lemmas A.3 A.5.

$$
\begin{align*}
& \operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{2}\right)=2 \sum_{k=1}^{K} \sum_{i \in S_{k}} \sum_{1 \leq r<s \leq N_{i}}\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right)^{2} \frac{N_{i}^{2}}{\left(N_{i}-1\right)^{2}}\left[\left\|\Omega_{i}\right\|^{2}-2\left\|\Omega_{i}\right\|_{3}^{3}+\left\|\Omega_{i}\right\|^{4}\right] \quad \text { E.1) } \tag{E.1}\\
& \operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{3}\right)=\frac{2}{n^{2} \bar{N}^{2}} \sum_{k \neq \ell} \sum_{i \in S_{k}} \sum_{m \in S_{\ell}} N_{i} N_{m}\left(\sum_{j} \Omega_{i j} \Omega_{m j}-2 \sum_{j} \Omega_{i j}^{2} \Omega_{m j}^{2}+\sum_{j, j^{\prime}} \Omega_{i j} \Omega_{i j^{\prime}} \Omega_{m j} \Omega_{m j^{\prime}}\right) \\
& \operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{4}\right)=2 \sum_{k=1}^{K} \sum_{\substack{ \\
\sum_{k}, m \in S_{k} \\
i \neq m}}\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right)^{2} N_{i} N_{m}\left(\sum_{j} \Omega_{i j} \Omega_{m j}-2 \sum_{j} \Omega_{i j}^{2} \Omega_{m j}^{2}+\sum_{j, j^{\prime}} \Omega_{i j} \Omega_{i j^{\prime}} \Omega_{m j} \Omega_{m j^{\prime}}\right) .
\end{align*}
$$

In this section we develop an unbiased estimator for each term above, which leads to an unbiased estimator of $\operatorname{Var}(T)$ by taking their sum. We require some preliminary results proved later in this section. Recall that Lemma E. 2 was established in the proof of Lemma A. 1 .

Lemma E.1. If $j \neq j^{\prime}$, an unbiased estimator of $\Omega_{i j} \Omega_{i j^{\prime}}$ is

$$
\widehat{\Omega_{i j} \Omega_{i j^{\prime}}}:=\frac{X_{i j} X_{i j^{\prime}}}{N_{i}\left(N_{i}-1\right)}
$$

Lemma E.2. An unbiased estimator of $\Omega_{i j}^{2}$ is

$$
\begin{equation*}
\widehat{\Omega_{i j}^{2}}:=\frac{X_{i j}^{2}-X_{i j}}{N_{i}\left(N_{i}-1\right)} . \tag{E.2}
\end{equation*}
$$

Lemma E.3. If $j \neq j^{\prime}$, an unbiased estimator for $\Omega_{i j}^{2} \Omega_{i j^{\prime}}^{2}$ is

$$
\widehat{\Omega_{i j}^{2} \Omega_{i j^{\prime}}^{2}}=\frac{\left(X_{i j}^{2}-X_{i j}\right)\left(X_{i j^{\prime}}^{2}-X_{i j^{\prime}}\right)}{N_{i}\left(N_{i}-1\right)\left(N_{i}-2\right)\left(N_{i}-3\right)}
$$

Lemma E.4. An unbiased estimator of $\Omega_{i j}^{3}$ is

$$
\begin{equation*}
\widehat{\Omega_{i j}^{3}}:=\frac{X_{i j}^{3}-3 X_{i j}^{2}+2 X_{i j}}{N_{i}\left(N_{i}-1\right)\left(N_{i}-2\right)} . \tag{E.3}
\end{equation*}
$$

Lemma E.5. An unbiased estimator of $\Omega_{i j}^{4}$ is

$$
\begin{equation*}
\widehat{\Omega_{i j}^{4}}:=\frac{X_{i j}^{4}-3 X_{i j}^{3}-X_{i j}^{2}+3 X_{i j}}{N_{i}\left(N_{i}-1\right)\left(N_{i}-2\right)\left(N_{i}-3\right)} . \tag{E.4}
\end{equation*}
$$

Define

$$
\widehat{\left\|\Omega_{i}\right\|^{2}}:=\sum_{j} \widehat{\Omega_{i j}^{2}}
$$

$$
\begin{align*}
& \widehat{\left\|\Omega_{i}\right\|_{3}^{3}}:=\sum_{j} \widehat{\Omega_{i j}^{3}} \\
& \widehat{\left\|\Omega_{i}\right\|^{4}}:=\sum_{j} \widehat{\Omega_{i j}^{4}}+\sum_{j \neq j^{\prime}} \widehat{\Omega_{i j}^{2} \Omega_{i j^{\prime}}^{2}} . \tag{E.5}
\end{align*}
$$

Using Lemmas E. 1 E. 5 and (E.5), we define an unbiased estimator for each term of (E.1).
Let $\widehat{\Omega_{i j}}=X_{i j} / N_{i}$ and define

$$
\begin{align*}
& \left.\left.\widehat{\operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{2}\right.}\right)=2 \sum_{k=1}^{K} \sum_{i \in S_{k}} \sum_{1 \leq r<s \leq N_{i}}\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right)^{2} \frac{N_{i}^{2}}{\left(N_{i}-1\right)^{2}} \widehat{\left\|\Omega_{i}\right\|^{2}}-2 \widehat{\left\|\Omega_{i}\right\|_{3}^{3}}+\widehat{\left\|\Omega_{i}\right\|^{4}}\right] \quad \text { (E.6) } \tag{E.6}\\
& \left.\widehat{\operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{3}\right.}\right)=\frac{2}{n^{2} \bar{N}^{2}} \sum_{k \neq \ell} \sum_{i \in S_{k}} \sum_{m \in S_{\ell}} N_{i} N_{m}\left(\sum_{j} \widehat{\Omega_{i j}} \widehat{\Omega_{m j}}-2 \widehat{\left.\sum_{j} \widehat{\Omega_{i j}^{2}} \widehat{\Omega_{m j}^{2}}+\sum_{j, j^{\prime}} \widehat{\Omega_{i j} \Omega_{i j^{\prime}}} \widehat{\Omega_{m j} \Omega_{m j^{\prime}}}\right)}\right. \\
& \left.\widehat{\operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{4}\right.}\right)=2 \sum_{k=1}^{K} \sum_{\substack{i \in S_{k}, m \in S_{k} \\
i \neq m}}\left(\frac{1}{n_{k} \bar{N}_{k}}-\frac{1}{n \bar{N}}\right)^{2} N_{i} N_{m}\left(\sum_{j} \widehat{\Omega_{i j}} \widehat{\Omega_{m j}}-2 \sum_{j} \widehat{\Omega_{i j}^{2}} \widehat{\Omega_{m j}^{2}}+\sum_{j, j^{\prime}} \widehat{\Omega_{i j} \Omega_{i j^{\prime}}} \widehat{\Omega_{m j} \Omega_{m j^{\prime}}}\right) .
\end{align*}
$$

Define

$$
\begin{equation*}
\widetilde{V}=\widehat{\operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{2}\right)}+\widehat{\operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{3}\right)}+\widehat{\operatorname{Var}\left(\mathbf{1}_{p}^{\prime} U_{4}\right)} . \tag{E.7}
\end{equation*}
$$

We define exact DELVE as $\tilde{\psi}=T / \widetilde{V}^{1 / 2}$. Combining our results above, we obtain the following.
Proposition E.1. Consider the statistic \widetilde{V} defined in (E.7). Under the null hypothesis, \widetilde{V} is an unbiased estimator for $\operatorname{Var}(T)$.

With this result in hand, it is possible to derive consistency of \tilde{V} as an estimator of $\operatorname{Var}(T)$ under certain regularity conditions. We omit the details.

E. 1 Proof of Lemma E. 1

Recall that $B_{i j r}$ is the Bernoulli random variable $B_{i j r}=Z_{i j r}+\Omega_{i j}$ and satisfies $X_{i j r}=$ $\sum_{r=1}^{N_{i}} B_{i j r}$. Observe that

$$
X_{i j} X_{i j^{\prime}}=\sum_{r, s} B_{i j r} B_{i j^{\prime} s}=\sum_{r} B_{i j r} B_{i j^{\prime} r}+\sum_{r \neq s} B_{i j r} B_{i j^{\prime} s}=0+\sum_{r \neq s} B_{i j r} B_{i j^{\prime} s}
$$

Thus

$$
\mathbb{E} X_{i j} X_{i j^{\prime}}=N_{i}\left(N_{i}-1\right) \Omega_{i j} \Omega_{i j^{\prime}}
$$

and we obtain

$$
\widehat{\Omega_{i j} \Omega_{i j^{\prime}}}=\frac{X_{i j} X_{i j^{\prime}}}{N_{i}\left(N_{i}-1\right)}
$$

is an unbiased estimator for $\Omega_{i j} \Omega_{i j^{\prime}}$, as desired.

E. 2 Proof of Lemma E. 3

Note that

$$
\begin{aligned}
X_{i j}^{2} X_{i j^{\prime}}^{2}= & \left(\sum_{r} B_{i j r}+\sum_{r \neq s} B_{i j r} B_{i j s}\right)\left(\sum_{r} B_{i j^{\prime} r}+\sum_{r \neq s} B_{i j^{\prime} r} B_{i j^{\prime} s}\right) \\
= & \sum_{r} B_{i j r} B_{i j^{\prime} r}+\sum_{r_{1} \neq r_{2}} B_{i j r} B_{i j^{\prime} s}+\sum_{r_{1} \neq s} B_{i j r_{1}} B_{i j s} \sum_{r_{2}} B_{i j^{\prime} r_{2}}+\sum_{r_{1} \neq s} B_{i j^{\prime} r_{1}} B_{i j^{\prime} s} \sum_{r_{2}} B_{i j r_{2}} \\
& +\left(\sum_{r \neq s} B_{i j r} B_{i j s s}\right)\left(\sum_{r \neq s} B_{i j^{\prime} r} B_{i j^{\prime} s}\right) \\
= & \sum_{r_{1} \neq r_{2}} B_{i j r} B_{i j^{\prime} s}+\sum_{r_{1} \neq s} B_{i j r_{1}} B_{i j s} \sum_{r_{2}} B_{i j^{\prime} r_{2}}+\sum_{r_{1} \neq s} B_{i j^{\prime} r_{1}} B_{i j^{\prime} s} \sum_{r_{2}} B_{i j r_{2}} \\
& +\left(\sum_{r \neq s} B_{i j r} B_{i j s}\right)\left(\sum_{r \neq s} B_{i j^{\prime} r} B_{i j^{\prime} s}\right)
\end{aligned}
$$

Since $B_{i j r} B_{i j^{\prime} r}=0$, note that

$$
\begin{aligned}
\left(X_{i j}^{2}-X_{i j}\right)\left(X_{i j^{\prime}}^{2}-X_{i j^{\prime}}\right) & =\sum_{r_{1} \neq s_{1}} \sum_{r_{2} \neq s_{2}} B_{i j r_{1}} B_{i j s_{1}} B_{i j^{\prime} r_{2}} B_{i j^{\prime} s_{2}} \\
& =\sum_{r_{1}, s_{1}, r_{2}, s_{2} \text { dist. }} B_{i j r_{1}} B_{i j s_{1}} B_{i j^{\prime} r_{2}} B_{i j^{\prime} s_{2}} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\mathbb{E}\left(X_{i j}^{2}-X_{i j}\right)\left(X_{i j^{\prime}}^{2}-X_{i j^{\prime}}\right) & =\sum_{r_{1}, s_{1}, r_{2}, s_{2} \text { dist. }} \mathbb{E}\left[B_{i j r_{1}} B_{i j s_{1}} B_{i j^{\prime} r_{2}} B_{i j^{\prime} s_{2}}\right] \\
& =N_{i}\left(N_{i}-1\right)\left(N_{i}-2\right)\left(N_{i}-3\right) \cdot \Omega_{i j^{2}}^{2} \Omega_{i j^{\prime}}^{2} .
\end{aligned}
$$

It follows that

$$
\widehat{\Omega_{i j}^{2} \Omega_{i j^{\prime}}^{2}}=\frac{\left(X_{i j}^{2}-X_{i j}\right)\left(X_{i j^{\prime}}^{2}-X_{i j^{\prime}}\right)}{N_{i}\left(N_{i}-1\right)\left(N_{i}-2\right)\left(N_{i}-3\right)}
$$

is an unbiased estimator for $\Omega_{i j}^{2} \Omega_{i j^{\prime}}^{2}$.

E. 3 Proof of Lemma E. 4

Recall that $B_{i j r}$ is the Bernoulli random variable $B_{i j r}=Z_{i j r}+\Omega_{i j}$ and satisfies $X_{i j r}=$ $\sum_{r=1}^{N_{i}} B_{i j r}$. Observe that

$$
X_{i j}^{3}=\sum_{r} B_{i j r}+3 \sum_{r_{1} \neq r_{2}} B_{i j r_{1}} B_{i j r_{2}}+\sum_{r_{1} \neq r_{2} \neq r_{3}} B_{i j r_{1}} B_{i j r_{2}} B_{i j r_{3}} .
$$

Thus

$$
\mathbb{E} X_{i j}^{3}=N_{i} \Omega_{i j}+3 N_{i}\left(N_{i}-1\right) \Omega_{i j}^{2}+N_{i}\left(N_{i}-1\right)\left(N_{i}-2\right) \Omega_{i j}^{3} .
$$

Unbiased estimators for $\Omega_{i j}$ and $\Omega_{i j}^{2}$ are

$$
\begin{aligned}
& \frac{X_{i j}}{N_{i}} \\
& \frac{X_{i j}^{2}}{N_{i}^{2}}-\frac{X_{i j}\left(N_{i}-X_{i j}\right)}{N_{i}^{2}\left(N_{i}-1\right)}=\frac{1}{N_{i}\left(N_{i}-1\right)}\left(X_{i j}^{2}-X_{i j}\right),
\end{aligned}
$$

respectively. Hence

$$
X_{i j}^{3}-X_{i j}-3\left(X_{i j}^{2}-X_{i j}\right)=X_{i j}^{3}-3 X_{i j}^{2}+2 X_{i j}
$$

is an unbiased estimator for $N_{i}\left(N_{i}-1\right)\left(N_{i}-2\right) \Omega_{i j}^{3}$, as desired.

E. 4 Proof of Lemma E. 5

Observe that

$$
\begin{aligned}
X_{i j}^{4}= & \sum_{r} B_{i j r}^{4}+4 \sum_{r_{1} \neq r_{2}} B_{i j r_{1}}^{3} B_{i j r_{2}}+6 \sum_{r_{1} \neq r_{2}} B_{i j r_{1}}^{2} B_{i j r_{2}}^{2} \\
& +3 \sum_{r_{1} \neq r_{2} \neq r_{3}} B_{i j r_{1}}^{2} B_{i j r_{2}} B_{i j r_{3}}+\sum_{r_{1} \neq r_{2} \neq r_{3} \neq r_{4}} B_{i j r_{1}} B_{i j r_{2}} B_{i j r_{3}} B_{i j r_{4}} \\
= & \sum_{r} B_{i j r}+10 \sum_{r_{1} \neq r_{2}} B_{i j r_{1}} B_{i j r_{2}}+3 \sum_{r_{1} \neq r_{2} \neq r_{3}} B_{i j r_{1}} B_{i j r_{2}} B_{i j r_{3}} \\
& +\sum_{r_{1} \neq r_{2} \neq r_{3} \neq r_{4}} B_{i j r_{1}} B_{i j r_{2}} B_{i j r_{3}} B_{i j r_{4}} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\mathbb{E} X_{i j}^{4}= & N_{i} \Omega_{i j}+10 N_{i}\left(N_{i}-1\right) \Omega_{i j}^{2}+3 N_{i}\left(N_{i}-1\right)\left(N_{i}-2\right) \Omega_{i j}^{3} \\
& +N_{i}\left(N_{i}-1\right)\left(N_{i}-2\right)\left(N_{i}-3\right) \Omega_{i j}^{4} .
\end{aligned}
$$

Plugging in unbiased estimators for the first three terms, we have

$$
X_{i j}^{4}-X_{i j}-10\left(X_{i j}^{2}-X_{i j}\right)-3\left(X_{i j}^{3}-3 X_{i j}^{2}+2 X_{i j}\right)=X_{i j}^{4}-3 X_{i j}^{3}-X_{i j}^{2}+3 X_{i j}
$$

is an unbiased estimator for $N_{i}\left(N_{i}-1\right)\left(N_{i}-2\right)\left(N_{i}-3\right)$, as desired.

References

Ery Arias-Castro and Meng Wang. The sparse poisson means model. Electronic Journal of Statistics, 9(2):2170-2201, 2015.

Sivaraman Balakrishnan and Larry Wasserman. Hypothesis testing for high-dimensional multinomials: A selective review. The Annals of Applied Statistics, 12(2):727-749, 2018.

Sivaraman Balakrishnan and Larry Wasserman. Hypothesis testing for densities and highdimensional multinomials: Sharp local minimax rates. The Annals of Statistics, 47(4): 1893-1927, 2019.

Bhaswar Bhattacharya and Gregory Valiant. Testing closeness with unequal sized samples. Advances in Neural Information Processing Systems, 28, 2015.

David Blei, Andrew Ng, and Michael Jordan. Latent dirichlet allocation. Journal of Machine Learning Research, 3:993-1022, 2003.

Siu-On Chan, Ilias Diakonikolas, Paul Valiant, and Gregory Valiant. Optimal algorithms for testing closeness of discrete distributions. In Proc. 25th symposium on discrete algorithms. SIAM, 2014.

Judith A Chevalier and Dina Mayzlin. The effect of word of mouth on sales: Online book reviews. Journal of Marketing Research, 43(3):345-354, 2006.

Ilias Diakonikolas and Daniel M Kane. A new approach for testing properties of discrete distributions. In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pages 685-694. IEEE, 2016.

David Donoho and Jiashun Jin. Higher criticism for detecting sparse heterogeneous mixtures. The Annals of Statistics, pages 962-994, 2004.

David L Donoho and Alon Kipnis. Higher criticism to compare two large frequency tables, with sensitivity to possible rare and weak differences. The Annals of Statistics, 50(3): 1447-1472, 2022.

Wael H Gomaa, Aly A Fahmy, et al. A survey of text similarity approaches. International Journal of Computer Applications, 68(13):13-18, 2013.

Peter Hall and Christopher C Heyde. Martingale limit theory and its application. Academic press, 2014.

Stephen Hansen, Michael McMahon, and Andrea Prat. Transparency and deliberation within the fomc: a computational linguistics approach. The Quarterly Journal of Economics, 133(2):801-870, 2018.

Roger Horn and Charles Johnson. Matrix Analysis. Cambridge University Press, 1985.
Pengsheng Ji and Jiashun Jin. Coauthorship and citation networks for statisticians. The Annals of Applied Statistics, 10(4):1779-1812, 2016.

Jiashun Jin, Zheng Ke, and Shengming Luo. Network global testing by counting graphlets. In International conference on machine learning, pages 2333-2341. PMLR, 2018.

Zheng Tracy Ke and Minzhe Wang. Using SVD for topic modeling. Journal of the American Statistical Association, pages 1-16, 2022.

Ilmun Kim, Sivaraman Balakrishnan, and Larry Wasserman. Minimax optimality of permutation tests. The Annals of Statistics, 50(1):225-251, 2022.

Alon Kipnis. Higher criticism for discriminating word-frequency tables and authorship attribution. The Annals of Applied Statistics, 16(2):1236-1252, 2022.

Alon Kipnis and David L Donoho. Two-sample testing of discrete distributions under rare/weak perturbations. In 2021 IEEE Int'l Symposium on Information Theory. IEEE, 2021.

Aleksandra A Kolodziejczyk, Jong Kyoung Kim, Valentine Svensson, John C Marioni, and Sarah A Teichmann. The technology and biology of single-cell RNA sequencing. Molecular cell, 58(4):610-620, 2015.

Xi Y Leung and Yang Yang. Are all five points equal? Scaling heterogeneity in hotel online ratings. International Journal of Hospitality Management, 88:102539, 2020.

Dharmendra Maurya. Web data: Amazon movie reviews. Electronic, 2018. https://www.kaggle.com/datasets/dm4006/amazon-movie-reviews/metadata.

Frederick Mosteller and David L Wallace. Inference in an authorship problem: A comparative study of discrimination methods applied to the authorship of the disputed federalist papers. Journal of the American Statistical Association, 58(302):275-309, 1963.

Frederick Mosteller and David L Wallace. Applied Bayesian and classical inference: the case of the Federalist papers. Springer Science \& Business Media, 2012.
A.B. Tsybakov. Introduction to Nonparametric Estimation. Springer Series in Statistics. Springer New York, 2008. ISBN 9780387790527. URL https://books.google.com/ books?id=mwB8rUBsbqoC.

Gregory Valiant and Paul Valiant. An automatic inequality prover and instance optimal identity testing. SIAM Journal on Computing, 46(1):429-455, 2017.

Feng Zhu and Xiaoquan Zhang. Impact of online consumer reviews on sales: The moderating role of product and consumer characteristics. Journal of Marketing, 74(2):133-148, 2010.

[^0]: *University of Pennsylvania
 ${ }^{\dagger}$ Harvard University

[^1]: ${ }^{1}$ For example, we can first partition the dictionary into two halves and then partition all the documents into two halves; this divides $\{1,2, \ldots, p\} \times\{1,2, \ldots, n\}$ into four subsets; we construct $\delta_{i j}$'s freely on one subset and then specify the $\delta_{i j}$'s on the other three subsets by symmetry.

