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Abstract

Motivated by applications in text mining and discrete distribution inference, we
investigate the testing for equality of probability mass functions of K groups of high-
dimensional multinomial distributions. A test statistic, which is shown to have an
asymptotic standard normal distribution under the null, is proposed. The optimal de-
tection boundary is established, and the proposed test is shown to achieve this optimal
detection boundary across the entire parameter space of interest. The proposed method
is demonstrated in simulation studies and applied to analyze two real-world datasets
to examine variation among consumer reviews of Amazon movies and diversity of sta-
tistical paper abstracts.

Keywords: authorship attribution, closeness testing, consumer reviews, martin-
gale central limit theorem, minimax optimality, topic model

1 Introduction

Statistical inference for multinomial data has garnered considerable recent interest [Di-
akonikolas and Kane} 2016, Balakrishnan and Wasserman| 2018]. One important appli-
cation is in text mining, as it is common to model the word counts in a text document
by a multinomial distribution [Blei et al., [2003]. We consider a specific example in mar-
keting, where the study of online customer ratings and reviews has become a trending
topic |Chevalier and Mayzlin, 2006, [Zhu and Zhang, [2010, Leung and Yang, 2020]. Cus-
tomer reviews are a good proxy to the overall word of mouth (WOM) and can significantly
influence customers’ decisions |Zhu and Zhang, 2010]. Many research works aim to under-
stand the patterns in online reviews and their impacts on sales. Classical studies only use
the numerical ratings but ignore the rich text reviews because of their unstructured na-
ture. More recent works have revealed the importance of analyzing text reviews [Chevalier
and Mayzlin, |2006], especially for hedonic products such as books, movies, and hotels. A
question of great interest is to detect the heterogeneity in reviewers’ response styles. For
example, Leung and Yang| [2020] discovered that younger travelers, women, and travelers
with less review expertise tend to give more positive reviews and that guests staying in
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high-class hotels tend to have more extreme response styles than those staying in low-class
hotels. Knowing such differences will offer valuable insights for hotel managers and online
rating/review sites.

The aforementioned heterogeneity detection can be cast as a hypothesis test on multi-
nomial data. Suppose reviews are written on a vocabulary of p distinct words. Let X; € R?
denote the word counts in review i. We model that

X; ~ Multinomial (N, £2;), 1<i<n, (1.1)

where N; is the total length of review i and §2; € RP is a probability mass function (PMF)
containing the population word frequencies. These reviews are divided into K groups by
reviewer characteristics (e.g., age, gender, new/returning customer), product characteristics
(e.g., high-class versus low-class hotels), and numeric ratings (e.g., from 1 star to 5 stars),
where K can be presumably large. We view (2; as representing the ‘true response’ of review
i. The “average response” of a group k is defined by a weighted average of the PMFs:

Wi = (nka)fl Z N;Q;, 1<k <K. (1.2)
1€Sk
Here S, C {1,2,...,n} is the index set of group k, ny = |Sk| is the total number of reviews

in group k, and N, = nlzl Y ic s, IVi Is the average length of reviews in group k. We would
like to test

Ho: pm=pr=...=pxg. (1.3)

When the null hypothesis is rejected, it means there exist statistically significant differences
among the group-wise “average responses”.

We call — the “K-sample testing for equality of average PMFs in multinomials”
or “K-sample testing for multinomials” for short. Interestingly, as K varies, this problem
includes several well-defined problems in text mining and discrete distribution inference as
special cases.

1. Global testing for topic models. Topic modeling [Blei et al., |2003| is a popular text
mining tool. In a topic model, each €2; in is a convex combination of M topic
vectors. Before fitting a topic model to a corpus, it is often desirable to determine
if the corpus indeed contains multiple topics. This boils down to the global testing
problem, which tests M = 1 versus M > 1. Under the null hypothesis, €2;’s are equal
to each other, and in the alternative hypothesis, €2;’s can take continuous values in
a high-dimensional simplex. This is a special case of our problem with K = n and
ne — 1.

2. Authorship attribution [Mosteller and Wallacel |1963, Kipnis, 2022]. In these appli-
cations, the goal is to determine the unknown authorship of an article from other
articles with known authors. A famous example [Mosteller and Wallacel 2012] is to
determine the actual authors of a few Federalist Papers written by three authors but
published under a single pseudonym. It can be formulated [Mosteller and Wallace,
1963}, Kipnis, [2022] as testing the equality of population word frequencies between the



article of interest and the corpus from a known author, a special case of our problem
with K = 2.

3. Closeness between discrete distributions [Chan et al., 2014, |Bhattacharya and Valiant),
2015, Balakrishnan and Wasserman, [2019]. There has been a surge of interest in
discrete distribution inference. Closeness testing is one of most studied problems.
The data from two discrete distributions are summarized in two multinomial vectors
Multinomial(Ny, 1) and Multinomial(Na, 6). The goal is to test u = 6. It is a special
case of our testing problem with K =2 and ny = noe = 1.

In this paper, we provide a unified solution to all the aforementioned problems. The
key to our methodology is a flexible statistic called DELVE (DE-biased and Length-assisted
Variability Estimator). It provides a general similarity measure for comparing groups of
discrete distributions such as count vectors associated with text corpora. Similarity mea-
sures (such as the classical cosine similarity, log-likelihood ratio statistic, and others) are
fundamental in text mining and have been applied to problems in distribution testing [Kim
et al., 2022], computational linguistics [Gomaa et all [2013], econometrics [Hansen et al.,
2018], and computational biology [Kolodziejczyk et al., 2015]. Our method is a new and
flexible similarity measure that is potentially useful in these areas.

We emphasize that our setting does not require that the X;’s in the same group are
drawn from the same distribution. Under the null hypothesis , the group-wise means
are equal, but the €;’s within each group can still be different from each other. As a result,
the null hypothesis is composite and designing a proper test statistic is non-trivial.

1.1 Our results and contributions

The dimensionality of the testing problem is captured by (n,p, K) and N :=n~! S Ni.
We are interested in a high-dimensional setting where

nN — 00, p—oo, and n’N?/(Kp) — occ. (1.4)

In most places of this paper, we use a subscript n to indicate asymptotics, but our method
and theory do apply to the case where n is finite and N — oco. In text applications, nN is
the total count of words in the corpus, and a large nN means either there are sufficiently
many documents, or the documents are sufficiently long. Given that nN — oo, we further
allow (p, K) to grow with n at a speed such that Kp < n?N?. In particular, our settings
allow K to range from 2 to n, so as to cover all the application examples.

We propose a test that enjoys the following properties:

(a) Parameter-free null distribution: We show that the test statistic ¢» — N(0,1) under
Hy. Even under the null hypothesis , the model contains a large number of free
parameters because the null hypothesis is only about the equality of “average” PMFs
but still allows (N;, ;) to differ within each group. As an appealing property, the
null distribution of 1 does not depend on these individual multinomial parameters;
hence, we can always conveniently obtain the asymptotic p-value for our proposed
test.



(b) Minimax optimal detection boundary: We define a quantity wy, := wp (p1, po, - .., iK)
in that measures the difference among the K group-wise mean PMF’s. It sat-
isfies that w, = 0 if and only if the null hypothesis holds, and it has been properly
normalized so that w, is bounded under the alternative hypothesis (provided some
mild regularity conditions hold). We show that the proposed test has an asymptotic
full power if win?N?/(Kp) — co. We also provide a matching lower bound by showing
that the null hypothesis and the alternative hypothesis are asymptotically indistin-
guishable if win?N?2/(Kp) — 0. Therefore, the proposed test is minimax optimal.
Furthermore, in the boundary case where win?N?/(Kp) — co for a constant cq > 0,
for some special settings, we show that ¢» — N(0,1) under Hy, and p — N(c1,1),
under Hyp, with the constant ¢; being an explicit function of ¢g.

To the best of our knowledge, this testing problem for a general K has not been studied
before. The existing works primarily focused on closeness testing and authorship attribution
(see Section , which are special cases with K = 2. In comparison, our test is applicable
to any value of K, offering a unified solution to multiple applications. Even for K = 2,
the existing works do not provide a test statistic that has a tractable null distribution.
They determined the rejection region and calculated p-values using either a (conservative)
large-deviation bound or a permutation procedure. Our test is the first one equipped with a
tractable null distribution. Our results about the optimal detection boundary for a general
K are also new to the literature. By varying K in our theory, we obtain the optimal detec-
tion boundary for different sub-problems. For some of them (e.g., global testing for topic
models, authorship attribution with moderate sparsity), the optimal detection boundary
was not known before; hence, our results help advance the understanding of the statistical
limits of these problems.

1.2 Related literature

First, we make a connection to discrete distribution inference. Let X ~ Multinomial(V, §2)
represent a size-N sample from a discrete distribution with p categories. The one-sample
closeness testing aims to test Hy : Q = u, for a given PMF u. Existing works focus
on finding the minimum separation condition in terms of the ¢'-norm or #?>-norm of Q —
p. Balakrishnan and Wasserman| [2019] derived the minimum ¢!-separation condition and
proposed a truncated chi-square test to achieve it. [Valiant and Valiant| [2017] studied the
“local critical radius”, a local separation condition that depends on the “effective sparsity”
of p, and they proposed a “2/3rd + tail” test to achieve it. In the two-sample closeness
testing problem, given X; ~ Multinomial(/NVy, 1) and X5 ~ Multinomial(Na, 23), it aims
to test Hy : 1 = Q. Again, this literature focuses on finding the minimum separation
condition in terms of the ¢'-norm or ¢>-norm of Q; — Q. When N; = Ny, |Chan et al.
[2014] derived the minimum ¢!-separation condition and proposed a weighted chi-square
test to attain it. [Bhattacharya and Valiant [2015] extended their results to the unbalanced
case where Ny # Ny, assuming ||Q1 — Qofl1 > p~ 112 This assumption was later removed
by Diakonikolas and Kane| [2016], who established the minimum ¢!-separation condition in
full generality. Kim et al.|[2022] proposed a two-sample kernel U-statistic and showed that



it attains the minimum ¢?-separation condition.

Since the two-sample closeness testing is a special case of our problem with K = 2 and
n1 = ng = 1, our test is directly applicable. An appealing property of our test is its tractable
asymptotic null distribution of N(0,1). In contrast, for the chi-square statistic in /Chan et al.
[2014] or the U-statistic in [Kim et al.,|[2022], the rejection region is determined by either an
upper bound from concentration inequalities or a permutation procedure, which may lead
to a conservative threshold or need additional computational costs. Regarding the testing
power, we show in Section that our test achieves the minimum ¢?-separation condition,
i.e., our method is an optimal “¢? testor.” Our test can also be turned into an optimal “/!
testor” (a test that achieves the minimum ¢!-separation condition) by re-weighting terms
in the test statistic (see Section [4.3).

Next, we make a connection to text mining. In this literature, a multinomial vector
X ~ Multinomial(N, Q) represents the word counts for a document of length N written
with a dictionary containing p words. In a topic model, each §2; is a convex combination of
M “topic vectors”: Q; = 224: 1 wi(k) Ay, where each Ay, € RP is a PMF and the combination
coefficient vector w; € RX is called the “topic weight” vector for document i. Given a
collection of documents X1, Xo,...,X,,, the global testing problem aims to test M = 1
versus M > 1. Interestingly, the optimal detection boundary for this problem has never
been rigorously studied. As we have explained, this problem a special case of our testing
problem with K = n. Our results (a) provide a test statistic that has a tractable null
distribution and (b) reveal that the optimal detection boundary is w? =< (v/nN)~',/p.
Both (a) and (b) are new results. When comparing our results with those about estimation
of Ay’s [Ke and Wang, [2022], it suggests that global testing requires a strictly lower signal
strength than topic estimation.

For authorship attribution, Kipnis [2022] treats the corpus from a known author as a
single document and tests the null hypothesis that this combined document and a new
document have the same population word frequencies. It is a two-sample closeness testing
problem, except that sparsity is imposed on the difference of two PMFs. Kipnis| [2022]
proposed a test which applies an “exact binomial test” to obtain a p-value for each word
and combines these p-values using Higher Criticism [Donoho and Jin) [2004]. Donoho and
Kipnis| [2022] analyzed this test when the number of “useful words” is o(,/p), and they
derived a sharp phase diagram (a related one-sample setting was studied in |Arias-Castro
and Wang [2015]). In Section we show that our test is applicable to this problem and
has some nice properties: (a) tractable null distribution; (b) allows for s > ¢,/p, where s
is the number of useful words; and (c) does not require documents from the known author
to have identical population word frequencies, making the setting more realistic. On the
other hand, when s = o(/p), our test is less powerful than the one in Kipnis| [2022], Donoho
and Kipnis| [2022], as our test does not utilize sparsity explicitly. We can further improve
our test in this regime by modifying the DELVE statistic to incorporate sparsity (see the
remark in Section .



1.3 Organization

The rest of this paper is arranged as follows. In Section 2] we introduce the test statistic and
explain the rationale behind it. We then present in Section [3| the main theoretical results,
including the asymptotic null distribution, power analysis, a matching lower bound, the
study of two special cases (K = n and K = 2), and a discussion of the contiguity regime.
Section [] applies our results to text mining and discrete distribution testing. Simulations
are in Section [5] and real data analysis is in Section [6] The paper is concluded with a
discussion in Section [7] All proofs are in the appendix.

2 The DELVE Test

Recall that X; ~ Multinomial(N;, §;) for 1 < ¢ < n. There is a known partition {1,2,...,n} =
UK Sk. Write ng, = |Sk|, Ni, = nlzl > ics, Ni, and N =n"13"  N; In (L.2), we have de-
fined the group-wise mean PMF yy, = (n,N;,) ™! >ies, Nifki. We further define the overall
mean PMF p € RP by

1 & 1 &
= — ;nk]\fkuk =% Z;NQ (2.1)
We introduce a quantity p? = p?(u1, ..., uK) by
K
PP = Nkl — pl)*. (2.2)
k=1

This quantity measures the variations across K group-wise mean PMFs. It is true that the
null hypothesis holds if and only if p?> = 0. Inspired by this observation, we hope to
construct an unbiased estimator of p? and develop it to a test statistic.

We can easily obtain the minimum variance unbiased estimators of uj and u:

K

1 1 _ 1 —
[ = _ X, and bh=—= np Ny = —= X;. 2.3
"k Nk zezsk z nN = n ; l 23

For each 1 < j < p, let pgj, pj, fix; and fi; represent the jth entry of py, p, [y, and fi,
respectively. A naive estimator of p? is

N _ N K

T=> T, where Ty =Y npNy(jinj — f1)*. (2.4)

j=1 k=1

This estimator is biased. In Sectionof the appendix , we show that Elfﬂ] = Z?Zl [nk]\_fk(ukj —
i)+ (nklNk — niN) > ies, Nifi(1 — Q;;)]. It motivates us to debias T} by using an unbi-
ased estimate of €2;;(1 — €;;). By elementary properties of the multinomial distribution,
E[XU(NZ — Xzy)] = ]\fl(]\fZ — 1)Qij(1 — Q”) We thereby use le](Nl — Xz‘j) to

estimate €;;(1 — €;;). This gives rise to an unbiased estimator of p? as

K
. 1 1 Xii(N; — Xi5)
T=3T0 T=3 |mMulin; =i - (o~ ow) & N1 ) @5
Pt J J : l[nk K (Awg — i) eNe  nN Zgg: N, 1 (2.5)
- — A




Lemma 2.1. Under Models (1.1)-(1.2)), the estimator in (2.5) satisfies that E[T] = p?.

To use T for hypothesis testing, we need a proper standardization of this statistic. In
Sections of the appendix , we study V(7'), the variance of T'. Under mild regularity
conditions, it can be shown that V(T') = ©,, - [1 4+ o(1)], where

K p K p 1 1 \2 N3
— \ N2 _ ] 2
k=1 j=1 k=11€Sy j=1
2 P K P 142
= HD YD BB ID BLACCIUES) DEED DIED B G iy LS
1<k#l<K i€S meS, j=1 k=1 ’LGS]?,mESk, J=1
i£m

In ©,,, the first term vanishes under the null, so it suffices to estimate the other three terms

in ©,. By properties of multinomial distributions, E[X;;X,,;] = NNy Qmg, E[ij} =

N,?ng + NZQU(l — Qij), and E[XZ](NZ — X”)] = NZ(NZ — 1)(21](1 — ng) It inspires us to
Xij Xomj Xy XyWNi=Xiy) _ X5—Xij

estimate ;;(,; by R/5™* and estimate ij by N T OMNNSD) T N(N=D)- Define

O VTR ACE LT :
VZQkZZZ(nkJVk—nN) Ni(N; — )+n2NQZZ SN XX

=1i€eS;, j=1 kL i€S), meS, j=1

5 S DD ol e @7)
— — ——= i <%myj- .
k=1 i€ S ,meSk, j—1 N, - nN
TFm

The test statistic we propose is as follows (in the rate event V' < 0, we simply set ¢ = 0):
Y =T/VV. (2.8)

We call ¢ the DEbiased and Length-adjusted Variability Estimator (DELVE). In Section
we show that under mild regularity conditions, ©» — N (0, 1) under the null hypothesis. For
any fixed a € (0,1), the asymptotic level-« DELVE test rejects Hy if

Y > Zq, where z, is the (1 — a)-quantile of N (0, 1). (2.9)

2.1 The special cases of K =n and K =2

As seen in Section [I] the application examples of K = n and K = 2 are particularly
intriguing. In these cases, we give more explicit expressions of our test statistic.
When K = n, we have S, = {i} and j; = N[lXij. The null hypothesis becomes

Hy: Q= Q9 = ... =Q,. The statistic in (2.5 reduces to
p n N2
(Xij — Nifij) Ni \ Xij(Ni — Xij)
T = L (1 - — )— . 2.1
JZ:; ;[ N; nN/ N;j(N; —1) (2.10)

Moreover, in the variance estimate (2.7)), the last term is exactly zero, and it can be shown
that the third term is negligible compared to the first term. We thereby consider a simpler



variance estimator by only retaining the first term in (2.7)):

vy 3

=1 j=1

1 )2 X%—XZ]

AV (2.11)

N;

The simplified DELVE test statistic is ¢* = T/V/V*.
When K = 2, we observe two collections of multinomial vectors, denoted by {X;}i<i<n
and {Gi}i<i<m. We assume for 1 <i<nand 1<j<m,

X; ~ Multinomial(N;, §2;), G ~ Multinomial(M;,T';). (2.12)

Write N =n~"1 3"  N; and M =m~1 Y7, M;. The null hypothesis becomes
H 0 here ! nNQ and 6 ! mMF (2.13)
: = where n = — E 1978 =— E il's, :
or = TN & m =

where 6 and 7 are the two group-wise mean PMFs. We estimate them by 7 = (nN)~! S X
and 6 = (mM)™! >, Gi. The statistic in (2.5) has an equivalent form as follows:

nNmM (N; — Xij) & (M; — Gy)
T = —0)? w ” Y Y 2.14
nN +mM [H | ;; n2N2(N, ;gszg 1)] ( )

The variance estimate (2.7) has an equivalent form as follows:

X2—Xi;

V= AT 0 2 XijGj 2m*M?[ 301 NiN—1) T L <n Xig X gl
=TT N RN+ mid)?
G2 -Gy
+ 202N [ 200 wrti=y + Laciziam GisGiyl (2.15)
m2M?2(nN + mM)? . |

The DELVE test statistic is ¢ = T/VV.

2.2 A variant: DELVE+

We introduce a variant of the DELVE test statistic to better suit real data. Let fi, T and

V be as in (2.3)), (2.5) and (2.7)). Define
F=T/VVH,  where VT =V (14]lT/VV). (2.16)

We call the DELVE+ test statistic. In theory, this modification has little effect on
the key properties of the test. To see this, we note that ||| = op(1) in high-dimensional
settings. Suppose T/vVV — N(0,1) under Hy. Since |2 — 0, it is seen immediately
that V*/V — 1; hence, the asymptotic normality also holds for 1)*. Suppose T'/v/V — oo
under the alternative hypothesis. It follows that V+ < 2max{V,|/ill2 - TVV} and ¢+ >
% min{T/VV, ||fill3 (T /vVV)/?} = co. We have proved the following lemma:

Lemma 2.2. As nN — oo, suppose ||filla — 0 in probability. Under Hy, if T/NV —
N(0,1), then T/VV+ — N(0,1). Under Hy, if T/VV — oo, then T/VV+ — .



In practice, this modification avoids extremely small p-values. In some real datasets, V is
very small and leads to an extremely small p-value in the original DELVE test. In DELVE+,
as long as T is positive, ¥" is smaller than 1, so that the p-value is adjusted.

In the numerical experiments, we consider both DELVE and DELVE+. For theoretical
analysis, since these two versions have almost identical theoretical properties, we only focus
on the original DELVE test statistic.

3 Theoretical Properties

We first present the regularity conditions. For a constant ¢y € (0, 1), we assume

Ny,
min N; > 2, max ||Qillcc <1 — co, max &

1<i<n 1<i<n 1<k<K nN

<1-c. (3.1)
In (3.1)), the first condition is mild. The second condition is also mild: note that ||€2;||; =1
for each ¢; this condition excludes those cases where one of the p categories has an extremely
dominating probability in the PMF €;. In the third condition, n; N} is the total number of
counts in all multinomials of group k, and this condition excludes the extremely unbalanced
case where one group occupies the majority of counts. Note that in the special case of K = 2,
we relax this condition to allow for severely unbalanced groups (see Section (3.4)).

Recall that pp = ﬁlN’k Y ic s, IVifli is the mean PMF within group k. We also define a
‘covariance’ matrix of PMF’s for group k by X = ﬁlN} Ziesk N Let

} / <k2: rwn?)g, (32)

5n._max{zz 2||Q 2, anknF}/mnuu%. (33)

k=118

R C N7 inukw
" nka - n:N?

and

We assume that as nN — oo,

_ _ el
an = o(1), Brn = 0(1), and KHMﬁ4 =o(1). (3.4)

Here v, and 3, only depend on group-wise quantities, such as g, X and ), s, N2 113
hence, a small number of ‘outliers’ (i.e., extremely large entries) in {2 has little effect on ay,
and 3,. Furthermore, in a simple case where maxy, nj;, < C miny ny, maxy Ny < Cmink N,
and ||Q||max = O(1/p), it holds that «a,, = O(max{nN, RQNQ}) = O(rnaax:{n2 , 1}) and

4
}ﬂm‘@ = O(%p). When nN — oo and p — oo, (3.4) reduces to n?N?/(Kp) — oo. This
condition is necessary for successful testing, because our lower bound in Section [3.3]implies

that the two hypotheses are asymptotically indistinguishable if n>/N?/(Kp) — 0.



3.1 The asymptotic null distribution

Under the null hypothesis, the K group-wise mean PMF’s uq, o, .. ., pxi, are equal to each
other, but this hypothesis is still highly composite, as (N;, £2;) are not necessarily the same
within each group. We show that the DELVE test statistic always enjoys a parameter-free
asymptotic null distribution. Let T, ©,, and V be as in —. The next two theorems
are proved in the appendix.

Theorem 3.1. Consider Models (1.1)-(1.2)), where the null hypothesis (1.3)) holds. Suppose
(3-1) and (3.4) are satisfied. As nN — oo, T/+/©, — N(0,1) in distribution.

Theorem 3.2. Under the conditions of Theorem as nN — oo, V/O,, — 1 in proba-
bility, and 1 := T//V — N(0,1) in distribution.

By Theorem the asymptotic p-value is computed via 1 — ®(¢)), where ®(-) is the
cumulative distribution function of the standard normal. Moreover, for any fixed « € (0, 1),
the rejection region of the asymptotic level-a test is as given in .

The proofs of Theorems [3.13.2| contain two key steps: in the first step, we decompose T’
into the sum of mutually uncorrelated terms. We introduce a set of independent, mean-zero
random vectors {Z;, }1<i<n1<r<n,, Where Z; ~ Multinomial(1, ;) — €2;. By properties of
multinomial distributions, X; = N;{); + Ziv;l Zir in distribution. We plug it into to
obtain T' = Ty +T» + T3+ Ty, where T} is a linear form of {Z;,.}, T», T5 and T are quadratic
forms of {Z;,}, and the four terms are uncorrelated with each other (details are contained
in Section [A|of the appendix ). In the second step, we construct a martingale for each term
T;. This is accomplished by rearranging the double-index sequence Z;. to a single-index
sequence and then successively adding terms in this sequence to T;. We then apply the
martingale central limit theorem (CLT) [Hall and Heyde, |2014] to prove the asymptotic
normality of each T};. The asymptotic normality of T" follows by identifying the dominating
terms in 73-7y (as model parameters change, the dominating terms can be different) and
studying their joint distribution. This step involves extensive calculations to bound the
conditional variance and to verify the Lindeberg conditions of the martingale CLT, as well
as numerous subtle uses of the Cauchy-Schwarz inequality to simplify the moment bounds.

3.2 Power analysis

Under the alternative hypothesis, the PMF’s p1, po, ..., g are not the same. In Section
we introduce a quantity p? (see (2.2])) to capture the total variation in p’s, but this quantity
is not scale-free. We define a scaled version of p? as

1

Wn = W (1, 12,y - -y JUK) = W

K
> e Ngllp — ol (3.5)
=1

Nl — 1l

([l

Theorem 3.3. Consider Models (L.1))-(1.2)), where (3.1) and (3.4)) are satisfied. Then,
E[T] = nN||p|?w?, and V(T) = O(352, [ln]l?) + E[T] - O (maxi<p<k ||l oo) -

It is seen that w, < maxy{ }, which is properly scaled.
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For the DELVE test to have an asymptotically full power, we need E[T] > /V(T). By
Theorem this is satisfied if E[T] > />, [|#&]|? and E[T] > maxy ||tk co- Between

these two requirements, the latter one is weaker; hence, we only need E[T] > 4/ Zszl Il |2
It gives rise to the following theorem:

Theorem 3.4. Under the conditions of Theorem [3.3, we further assume that under the

alternative hypothesis, as nN — oo,

N 2,2
SNR,, ::”I!“”“” — oo (3.6)
>kt el?

The following statements are true. Under the alternative hypothesis, 1 — oo in probability.
For any fired o € (0,1), the level-ao DELVE test has an asymptotic level of o and an
asymptotic power of 1. If we choose o = v, such that o, — 0 and 1 — ®(SNR,,) = o(aw,),
where ® is the CDF of N(0,1), then the sum of type I and type II errors of the DELVE
test converges to 0.

The detection boundary in has simpler forms in some special cases. For example,
if ||px]l < ||u]| for 1 < k < K, then SRN,, < nNw?||u|/vVK. If, furthermore, all entries of
1 are at the same order, which implies ||u|| =< p~'/2, then SRN,, < n?N2w?2/\/Kp. In this
case, the detection boundary simplifies to w;, n2N 2/ (K p) — 0.

Remark 1 (The low-dimensional case p = O(1)). Although we are primarily interested in
the high-dimensional setting p — oo, it is also worth investigating the case p = O(1). We
can show the same detection boundary for our test, but the asymptotic normality may not
hold, because the variance estimator V in is not guaranteed to be consistent. To fix
this issue, we propose a variant of our test by replacmg V' with a refined variance estimator
V which is consistent for a finite p. The expression of V is a little complicated. Due to
space limits, we relegate it to Section [E] of the appendix.

3.3 A matching lower bound

We have seen that the DELVE test successfully separates two hypotheses if SNR,, — oo,
where SNR,, is as defined in . We now present a lower bound to show that the two
hypotheses are asymptotically indistinguishable if SNR,, — 0.

Let ¢; € {1,2,..., K} denote the group label of X;. Write £ = {(N;, i, %) hi<i<n. Let

Uks Qny B, and w, be the same as defined in (|1.2)), (3.2)), (3.3), and (3.5)), respectively. For
each given (n,p, K, N), we write ux = ux(€) to emphasize its dependence on parameters,

and similarly for a,, By, wy. For any ¢y € (0,1) and sequence €, define

Qulcos€n) i= {€ = {(Ni, i, i)}y + (1) holds for co, max(an(€), Bal€)) < en}  (3.7)

Furthermore, for any sequence §,,, we define a parameter class for the null hypothesis and
a parameter class for the alternative hypothesis:

Qon(cos €n) = Qnlco, €n) N{E : wi(§) =0},

11



nN|(€)[?w? (€)
Sk (©)12

Theorem 3.5. Fiz a constant ¢y € (0,1) and two positive sequences €, and 0, such that

Qin(én; €o, En) = Qn(COa en) N 5 : >0 7. (38)

en — 0 asn — co. For any sequence of (n,p, K, N) indexed by n, we consider Models (1.1])-
(1.2) for Q@ € Qy(co,€n). Let QF,,(co,€n) and QF,,(dpn; co, €r) be as in (3.8)). If 6, — 0, then
lim SUP,, 00 inf\ye{oyl}{supge%n(cwn) Pf(\p = 1) + supgegi«n(én;co,en) Pg(‘l’ = 0)} =1

By Theorem the null and alternative hypotheses are asymptotically indistinguish-

able if SRN,, — 0. Combining it with Theorem the DELVE test achieves the minimax
optimal detection boundary.

3.4 The special case of K =2

The special case of K = 2 is found in applications such as closeness testing and authorship
attribution. We study this case more carefully. Given {X;}i1<i<p and {G;}i1<i<m, we assume

X; ~ Multinomial (N, £2;), Gj ~ Multinomial(M;,T';). (3.9)

Write N =n~! 3" | N; and M =m~' Y7, M;. The null hypothesis becomes
1 1 «
Hy: n=290, where n = . ;Nzﬂi, and 0 = v ;Mifi, (3.10)

where 0 and n are the two group-wise mean PMFs. In this case, the test statistic ¥ has a
more explicit form as in —.

In our previous results for a general K, the regularity conditions (e.g., ) impose
restrictions on the balance of sample sizes among groups. For K = 2, the severely unbal-
anced setting is interesting (e.g., in authorship attribution, n = 1 and m can be large). We
relax the regularity conditions to the following ones:

Condition 3.1. Let 0 and n be as in (3.10) and define two matrices ¥, = ﬁ Yo Niy QY
and Yo = mLM Z:il M,T;T. We assume that the following statements are true (a) For
1<i<nandl <j<m, N;>2 [Qloe <1—co, M;j >2, and ||T'j||lc <1 —co, where

co € (0,1) is a contant, (b) max {(”nH3+ ”0”3) (Jgﬂfz 7r|L|29l\|j2)}/HnN+mMn+nN+mM0H

o(1), (¢) max {3, ez Il Xo: oz Tl 151113 + 15203} /lul® = o(1), and (d)
3/ llel* = o(1).

Condition (a) is similar to (3.1]), except that we drop the sample size balance requriement.

Conditions (b)-(d) are equivalent to (3.4]) but have more explicit expressions for K = 2.

Theorem 3.6. In Model (3.9)), we test the null hypothesis Hy: 6 = . Asmin{nN,mM} —
0o, suppose Condition is satisfied. Under the alternative hypothesis, we further assume

In — 0]
(o + mr) max{llnll, 101}

(3.11)
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Consider the DELVE test statistic ¢ = T/\/V The following statements are true. Under
the null hypothesis, 1» — N(0, 1) in distribution. Under the alternative hypothesis, 1) — o0
in probability. Moreover for any fized o € (0,1), the level-aw DELVE test has an asymptotic
level of a and an asymptotic power of 1.

Compared with the theorems for a general K, first, Theorem [3.6] allows the two groups
to be severely unbalanced and reveals that the detection boundary depends on the harmonic
mean of nN and mM. Second, the detection boundary is expressed using || — ||, which
is easier to interpret.

3.5 The special case of K =n

The special case of K = n is interesting for two reasons. First, the application example of

global testing in topic models corresponds to K = n. Second, for any K, when 2;’s within

each group are assumed to be the same (e.g., this is the case in closeness testing of discrete

distributions), it suffices to aggregate the counts in each group, i.e., let Y, = . s, Xi and

operate on Yi,..., Yk instead of the original X;’s; this reduces to the case of K = n.
When K = n, the null hypothesis has a simpler form:

Moreover, under the alternative hypothesis, the quantity w% in (3.5) simplifies to
Wn = wn(Q1, o, ..., Q) NQ 2, 3.13

The DELVE test statistic also has a simplified form as in (2.10)-(2.11)). We can prove the
same theoretical results under weaker conditions:

Condition 3.2. We assume that the following statements are true: (a) For a constant
co €(0,1),2< N; < (1 —co)nN and ||Qloc <1 —co, 1 <i<n, and

(b) max { 30, L5408, 57, 12453 /(5 1901)2 = (1), and (55, I4118)/ (allalP) = o(1)

When K = n, Condition (a) is equivalent to (3.1)); and Condition (b) is weaker than ({3.4]),

13
K]

because the dominant terms in 7" differ from those for K < n.

as we have dropped the requirement 1 = 0(1). We obtain weaker conditions for K =n

Theorem 3.7. In Model (L.1)), we test the null hypothesis (3.12)). As n — 0o, we assume
that Condition[3.9 is satisfied. Under the alternative, we further assume that
N wl2ew2
Nl
2 iz 1]
Let T and V* be the same as in (2.10)-(2.11). Consider the simplified DELVE test statistic

=T/VV*. The following statements are true. Under the null hypothesis, 1* — N(0,1)
in distribution. Under the alternative hypothesis, ¥* — oo in probability. Moreover for any

(3.14)

fized o € (0,1), the level-aw DELVE test has an asymptotic level of a and an asymptotic
power of 1.
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The detection boundary in (3.14) has a simpler form if Y, [|€;||> < n||u||>. In this case,
(3.14) is equivalent to \/nN||u|lw? — oco. Additionally, if all entries of x4 are at the same

order, then ||p| =< 1//p, and (3.14) further reduces to /nN?/p - w? — oco.

3.6 A discussion of the contiguity regime

Our power analysis in Section [3.2] concerns SNR,, — 00, and our lower bound in Section [3.3
concerns SNR,, — 0. We now study the contiguity regime where SNR,, tends to a constant.
For illustration, we consider a special choice of parameters, which allows us to obtain a
simple expression of the testing risk.

Suppose K =n and N; = N for all 1 <¢ < n. Consider the pair of hypotheses:

Ho: Qij=p " V.S, Hy: Qi =p Y1+ Budij), (3.15)

where {5ij}1§i§n,1§j§p satisfy that |5z]| = 1, Z?:l 5ij = 0 and Z?:l (52']‘ = 0. Such (5,7‘
always existﬂ The SNR,, in (3.6) satisfies that SNR,, < (Ny/n/,/p)B2. We thereby set

2: 2p.a
"T N/

Since K = n here, we consider the simplified DELVE test statistic ¢* as in Section [3.5

B

for a constant a > 0. (3.16)

Theorem 3.8. Consider Model (1.1) with N; = N. For a constant a > 0, let the null

and alternative hypotheses be specified as in (3.15)-(3.16). Asn — oo, if p = o(N?n), then
* — N(0,1) under Hy and v* — N(a,1) under Hy.

Let ® be the cumulative distribution function of the standard normal. By Theorem [3.8
for any fixed constant ¢ € (0, a), if we reject the null hypothesis when ¢* > ¢, then the sum
of type I and type II errors converges to [1 — ®(¢)] + [1 — ®(a — t)].

4 Applications

As mentioned in Section [I} our testing problem includes global testing for topic models,
authorship attribution, and closeness testing for discrete distributions as special examples.
In this section, the DELVE test is applied separately to these three problems.

4.1 Global testing for topic models

Topic modeling [Blei et al., [2003| is a popular tool in text mining. It aims to learn a small
number of “topics” from a large corpus. Given n documents written using a dictionary of p
words, let X; ~ Multinomial(N;, ;) denote the word counts of document 7, where Nj is the
length of this document and €2; € RP contains the population word frequencies. In a topic
model, there exist M topic vectors A1, As,..., Ay € RP, where each A is a PMF. Let

!For example, we can first partition the dictionary into two halves and then partition all the documents
into two halves; this divides {1,2,...,p} x {1,2,...,n} into four subsets; we construct J;;’s freely on one
subset and then specify the §;;’s on the other three subsets by symmetry.
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w; € RM be a nonnegative vector whose entries sum up to 1, where w;(k) is the “weight”
document 7 puts on topic k. It assumes

M
Q=Y wi(k)Ap, 1<i<n. (4.1)
k=1

Under , the matrix Q = [Q;,Qs,...,Q,] admits a low-rank nonnegative factorization.

Before fitting a topic model, we would like to know whether the corpus indeed involves
multiple topics. This is the global testing problem: Hy: M =1 v.s. Hy : M > 1. When
M =1, by writing A; = u, the topic model reduces to the null hypothesis in . We
can apply the DELVE test by treating each X; as a separate group (i.e., K = n).

Corollary 4.1. Consider Model and define a vector € € R™ by & = N~'N;. Suppose
that Q = pl!, under the null hypothesis, with u = n~1Q&, and that Q) satisfies under
the alternative hypothesis, with r := rank(2) > 2. Suppose N /(min; N;) = O(1). Denote
by A, A2, ..., A > 0 the singular values of Q[diag(€)]Y/2, arranged in the descending order.
We further assume that under the alternative hypothesis,

>

V k= A

For any fized o € (0,1), the level-ae DELVE test has an asymptotic level o and an asymptotic

— 00. (4.2)

power 1.

The least-favorable configuration in the proof of Theorem [3.5]is in fact a topic model
that follows (4.1) with M = 2. Transferring the argument yields the following lower bound
that confirms the optimality of DELVE for the global testing of topic models.

Corollary 4.2. Let Ry nr(€n, 0n) be the collection of {(N;, )}, satisfying the following
conditions: 1) Q follows the topic model (4.1)) with M topics; 2) Condition 3.3 holds with
o(1) replaced by < en; 3) N(X o A2)/(Oroy A)Y2 > 6, If e, — 0 and 6, — 0, then

lim sup,, inf\IfE{Oyl}{SupRn,l(EmO) P(U=1)+ SUPU 9 Rn, 1 (81,6n) P = 0)} =L

The detection boundary can be simplified when M = O(1). Following |[Ke and
Wang] [2022], we define ¥4 = A’/H 'A and Sy = n '\WW’, where A = [Ay, As, ..., Ay,
W = [wy,wa,...,w,] and H = diag(A1,s). Ke and Wang|[2022] argued that it is reasonable
to assume that eigenvalues of these two matrices are at the constant order. If this is
true, with some mild additional regularity conditions, each Ay is at the order of \/1%
Hence, reduces to /nN/\/p — co. In comparison, [Ke and Wang| [2022] showed that
a necessary condition for any estimator A = [A}, Ay, ..., Ap/] to achieve e SV A —
Aglli = o(1) is v/nN/p — oco. We conclude that consistent estimation of topic vectors
requires strictly stronger conditions than successful testing.

4.2 Authorship attribution

In authorship attribution, given a corpus from a known author, we want to test whether
a new document is from the same author. It is a special case of our testing problem

15



with K = 2. We can directly apply the results in Section [3.4, However, the setting in
Section has no sparsity. Kipnis| [2022], Donoho and Kipnis| [2022] point out that the
number of words with discriminating power is often much smaller than p. To see how our
test performs under sparsity, we consider a sparse model. As in Section [3.4] let

X; ~ Multinomial(N;,Q;), 1 <i<n, and G;~ Multinomial(M;,T;), 1 <i<m.
(4.3)
Let N and M be the average of N;’s and M;’s, respectively. Write n = ﬁ Sor Ni and
0= ﬁ Yo, MiT;. We assume for some 3, > 0,

nj =46;, forj ¢S, and ‘\/E— \/@| > B, forjes. (4.4)

Corollary 4.3. Under the model (4.3)-(4.4]), consider testing Hy : S =0 v.s. Hy : S # 0,
where Condition |3.1| is satisfied. Let ng and g be the sub-vectors of n and 6 restricted to
the coordinates in S. Suppose that under the alternative hypothesis,

B2 (Insll + 10s11) |
(L + =L7) max{][n]|, 1|6}

(4.5)

As min{nN,mM} — oo, the level-ac DELVE test has an asymptotic level o and an asymp-
totic power 1. Furthermore, if nN =< mM and minjes(n;+6;) > cp~t for a constant ¢ > 0,
then ([4.5) reduces to nNB2|S|//p — 0.

Donoho and Kipnis| [2022] studied a case where N =M, n=m =1, p — oo,

S| =p*?, and B, =c- N"Y2\/log(p). (4.6)

When ¢ > 1/2 (ie., |S| = o(,/p)), they derived a phase diagram for the aforementioned
testing problem (under a slightly different setting where the data distributions are Poisson
instead of multinomial). They showed that when ¢ > 1/2 and ¢ is a properly large constant,
a Higher-Criticism-based test has an asymptotically full power. Donoho and Kipnis| [2022]
did not study the case of ¥ < 1/2. By Corollary when ¥ < 1/2 (ie., |S| > C\/p), the
DELVE test has asymptotically full power.

Remark 2. When ¢ > 1/2 in , the DELVE test is powerless. However, this issue can
be resolved by borrowing the idea of maximum test or Higher Criticism test [Donoho and
Jin, 2004] from the classical multiple testing. For example, recalling 7T} in , we can use
maxi<j<p{Tj/ \/7] } as the test statistic, where Vj} is a proper estimator of the variance of
T;. We leave a careful study of this idea to future work.

4.3 Closeness testing between discrete distributions

Two-sample closeness testing is a subject of intensive study in discrete distribution inference
|[Bhattacharya and Valiant} 2015, |Chan et al., 2014} |Diakonikolas and Kane, 2016, [Kim et al.,
2022|. It is a special case of our problem with K = 2 and n; = ng = 1. We thereby apply
both Theorem B.6] and Theorem
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Corollary 4.4. Let Y1 and Ys be two discrete variables taking values on the same p out-
comes. Let 1 € RP and Qo € RP be their corresponding PMFs. Suppose we have Ny
samples of Y1 and No samples of Yo. The data are summarized in two multinomial vec-
tors: X1 ~ Multinomial(Ny, 1), Xo ~ Multinomial(Ng, Q9). We test Hy : Q1 = Qo. Write
W= N1+N2 (N1921 + NoQs). Suppose min{ Ny, No} > 2, max{||Q1||c0, [|[22]lcc} <1 —co, for

a constant ¢y € (0,1). Suppose Wmax{zk 1 |Q"”3 S |Q’“H2} = o(1), and

W S22 %13 = o(1). We assume that under the altematwe hypothests,

191 — Q2

4.7
(N7 T+ Ny ) masc{ [ ], [} 4.7

As min{ Ny, Na} — oo, the level-oo DELVE test has level o and power 1, asymptotically.

We notice that matches with the minimum ¢?-separation condition for two-sample
closeness testing [Kim et al. [2022, Proposition 4.4]. Therefore, our test is an optimal
{%-testor. Although other optimal /2-testors have been proposed |[Chan et al. [2014, Bhat-
tacharya and Valiant| 2015, |Diakonikolas and Kane, 2016], they are not equipped with
tractable null distributions.

Remark 3. We can modify the DELVE test to incorporate frequency-dependent weights.
Given any nonnegative vector w = (wy,ws, ..., wp)’, define T'(w) := Z§:1 w;T; where Tj is
the same as in (2.5)). These weights w; serve to adjust the contributions of different words.
For example, consider w; = (max{1/p, ﬂj})_l. This kind of weights have been used in
discrete distribution inference [Balakrishnan and Wasserman| 2019, Chan et al., |2014] to
turn an optimal £? testor to an optimal ¢! testor. We can similarly study the power of this
modified test, except that we need an additional assumption nN > p to guarantee that fij
is a sufficiently accurate estimator of y;.

5 Simulations

The proposed DELVE test is computationally efficient and easy to implement. In this
section, we investigate its numerical performance in simulation studies. Real data analysis
will be carried out in Section [6l

Ezperiment 1 (Asymptotic normality) . Given (n,p, K, Nmin, Nmax, @), we generate data
as follows: first, we divide {1,...,n} into K equal—s1ze groups. Next, we draw Q3 ... Qalt
i.i.d. from Dirichlet(p, aly). Third, we draw N; ~ Unlform[Nmin, Npax) and set QP4 = gy,
where y = niN > NZ-Qflt. Last, we generate X1, ..., X, using Model . We consider
three sub-experiments. In Experiment 1.1, (n, p, K, Nmin, NVNmax, @) = (50,100, 5, 10, 20, 0.3).
In Experiment 1.2, a is changed to 1, and the other parameters are the same. When
a =1, Q?lt are drawn from the uniform distribution of the standard probability simplex;
in comparison, & = 0.3 puts more mass near the boundary of the standard probability
simplex. In Experiment 1.3, we keep all parameters the same as in Experiment 1.1, except
that (p, K) are changed to (300,50). For each sub-experiment, we generate 2000 data
sets under the null hypothesis and plot the histogram of the DELVE test statistic ¢ (in
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Figure 1: Histograms of the DELVE statistic (top three panels) and the DELVE+ statistic
(bottom three panels) in Experiments 1.1-1.3. In each plot, the blue and orange histograms

correspond to the null and alternative hypotheses, respectively; and the green curve is the
density of N(0,1).

blue); similarly, we generate 2000 data sets under the alternative hypothesis and plot the
histogram of ¥ (in orange). The results are contained on the top three panels of Figure .
In Section we introduced a variant of DELVE, called DELVE+, in which the variance
estimator V is replaced by an adjusted one. DELVE+ has similar theoretical properties as
DELVE but is more suitable for real data. We plot the histograms of the DELVE+ test
statistics on the bottom three panels of Figure

We have several observations. In all sub-experiments, when the null hypothesis holds,
the histograms of both DELVE and DELVE+ fit the standard normal density reasonably
well. This supports our theory in Section Second, when (p, K) increase, the finite
sample effect becomes slightly more pronounced (c.f., Experiment 1.3 versus Experiment
1.1). Third, the tests have power in differentiating two hypotheses. As « decreases or K
increases, the power increases, and the histograms corresponding to two hypotheses become
further apart. Last, in the alternative hypothesis, DELVE+ has smaller mean and variance
than DELVE. By Lemma[2.2] these two have similar asymptotic behaviors. The simulation
results suggest that they have noticeable finite-sample differences.

Ezxperiment 2 (Power curve). Similarly as before, we divide {1,2,...,n} into K equal-
size groups and draw N; ~ Uniform[Npyin, Nmax]. In this experiment, the PMF’s ; are gen-
erated in a different way. Under the null hypothesis, we generate p ~ Dirichlet(p/2, al,/5)
and set Q! = [ where ji; = %,uj for 1 <j<p/2and fij = %Mpﬂ—j forp/2+1<j<p.
Under the alternative hypothesis, we draw 21, ..., 2k, b1,..., b,/ u Rademacher(1/2) and
then let Q?}t = p(1+ 12b;), for all 4 in group k and 1 < j < p/2, and Qf}t = (14 7,2,b5)
for p/24+ 1 < j < p. By applying our theory in Section together with some cal-
culations, we obtain that the signal-to-noise ratio is captured by A := K ~V/2nN||pu||7,.
We consider three sub-experiments, Experiment 2.1-2.3, in which the parameter values of
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Figure 2: Power diagrams (based on 500 repetitions) at level 5%. The z-axis plots the
SNR Aw,) = K~1Y20N ||| - wp.

(n,p, K, Nmin, Nmax, @) are the same as in Experiments 1.1-1.3. For each sub-experiment,
we consider a grid of 10 equally-spaced values of A. When A = 0, it corresponds to the null
hypothesis; when A > 0, it corresponds to the alternative hypothesis. For each )\, we gener-
ate 500 data sets and compute the fraction of rejections of the level-5% DELVE test. This
gives a power curve for the level-5% DELVE test, in which the first point corresponding to
A = 0 is the actual level of the test. The results are contained on the top three panels of
Figure [2 We repeat the same experiments for the DELVE+ test, which results are on the
bottom three panels of Figure [2| In all three experiments, the actual level of our proposed
tests is < 5%, suggesting that our tests perform well at controlling the type-I error. As
A increases, the power gradually increased to 1, suggesting that A is a good metric of the
signal-to-noise ratio. This supports our theory in Section 3.2

6 Real Data Analysis

We apply our proposed methods on two real corpora: one consists of abstracts of research
papers in four statistics journals, and the other consists of movie reviews on Amazon. For
the analysis of real data, we use DELVE+, which modifies the variance estimator in DELVE
and reduces the occurrence of extremely small p-values.

6.1 Abstracts of statisticians

We use the data set from |Ji and Jin| [2016]. It contains the bibtex information of all pub-
lished papers in four top-tier statistics journals, Annals of Statistics, Biometrika, Journal of
the American Statistical Association, and Journal of the Royal Statistical Society - Series B,
from 2003 to the first half of 2012. We pre-process the abstracts of papers by tokenization
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Figure 3: (Left) Histogram of nonzero DELVE Z-scores for all authors in the dataset. The
mean is 4.52 and the standard deviation is 2.94. (Right) Scatter plot of author DELVE
scores versus the natural log of the number of papers with five statisticians identified.
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Figure 4: Pairwise Z-score plots for Peter Hall (left) and Jianging Fan (right). In the cell
(x,y), we compare the corpus of an author’s abstracts from time = with the corpus of that
author’s abstracts from time y. The heatmap shows the value of DELVE+ with K = 2 for
each cell.

and stemming and turn each abstract to a word count vector.

We conduct two experiments. In the first one, we fix an author and treat the collection
of his/her co-authored abstracts as a corpus. We apply DELVE+ with K = n, where n is
the total number of abstracts written by this author. The Z-score measures the “diversity”
or “variability” of this authors’ abstracts. An author with a high Z-score possesses either
diverse research interests or a variable writing style. A number of authors have only 1-2
papers in this data set, and the variance estimator V' is often negative; we remove all those
authors. In Figure [3| (left panel), we plot the histogram of Z-scores of all retained authors.
The mean is 4.52 and the standard deviation is 2.94. In Figure [3| (right panel), we show
the scatter plot of Z-score versus logarithm of the number of abstracts written by this
author, and a few prolific authors who have many papers and a large Z-score are labeled.
For example, Peter Hall has the most papers in this dataset (82 papers in total). Hall’s
Z-score is larger than 20, implying a huge diversity in his abstracts. There is also a positive
association between Z-score and total papers. It suggests that senior authors have more
diversity in their abstracts, which is as expected.
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Year Title Journal Year Title Journal

2011 Nonparametric independence screening in sparse JASA 2004 Low order approximations in deconvolution JRSS-B
ultra-high-dimensional additive models and regression with errors in variables
2011 Penalized composite quasi-likelihood for ultrahigh JRSS-B 2004 Nonparametric inference about service time JRSS-B

dimensional variable selection s . .
distribution from indirect measurements

2004 Cross-validation and the estimation of condi- JASA
tional probability densities

2004 Nonparametric confidence intervals for re- Biometrika
ceiver operating characteristic curves

2011 Multiple testing via FDR, for large-scale imaging Ann. Stat.
data

2012 Vast volatility matrix estimation using high- JASA
frequency data for portfolio selection

2012 A road to classification in high dimensional space: JRSS-B

the regularized optimal affine discriminant 2004 Bump hunting with non-Gaussian kernels Ann. Stat.
2012 Variance estimation using refitted cross-validation JRSS-B 2004 Attributing a probability to the shape of a Ann. Stat.
in ultrahigh dimensional regression probability density

Figure 5: (Left) Jianqing Fan’s papers in the dataset of |[Ji and Jin [2016] from 2011 to
2012. (Right) Peter Hall’s papers in the dataset of |Ji and Jin| [2016] from 2004.

In the second experiment, we divide the abstracts of each author into groups by publi-
cation year. We divide Peter Hall’s abstracts into 9 groups, and each group corresponds to
one year. We divide Jianqing Fan’s abstracts into 6 groups, with unequal window sizes to
make all groups have roughly equal numbers of abstracts. Our test can be used to detect
differences between all groups, but to see more informative results, we do a pairwise com-
parison: for each pair of groups, we apply DELVE+ with K = 2. This yields a pairwise
plot of Z-scores. The plot reveals the temporal patterns of this author in abstract writing.
Figure {4] shows the results for Peter Hall and Jianqing Fan.

There are interesting temporal patterns. For Jianqing Fan (right panel of Figure [4)), the
group consisting of his 2011-2012 abstracts has comparably large Z-scores in the pairwise
comparison with other groups. To interpret this , we gathered the titles and abstracts of all
his papers in the dataset and compared the ones before/after 2011. He published six papers
in these journals during 2011-2012, whose titles are listed on the left of Figure [5} We see
that his papers in this period had a strong emphasis on screening and variable selection:
four out of the six papers mention this subject in their titles and/or abstracts. This shows a
departure from his previously published topics such as covariance estimation (a focus from
2007-2009) and semiparametric estimation (a focus before 2010). Though Jianqing Fan had
previously published papers on variable selection and screening in these journals, he had
never published so many in such a short time period. For Peter Hall (left panel of Figure {4)),
the group of 2004 abstracts have comparably large Z-scores in the pairwise comparison with
other groups. We examined the titles and abstracts of his 6 papers published in 2004 in
this data set. All of his 2004 papers, except the first one, mention bandwidth selection or
smoothing parameters, and in the last 4 papers, bandwidth selection plays a central role.
For instance, Bump hunting with non-Gaussian kernels, (Ann. Stat., 2004) studies the
relationship between the number of modes of a kernel density estimator and its bandwidth
parameter. Though Peter Hall’s 2014 papers concern many nonparametric statistics topics,
we find that bandwidth selection is a theme underlying his research in these journals in
2004.
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Rank Title Z-Score  Total reviews

Zscores of top 500 most reviewed movies 1 Prometheus 34.44 813

* 2 Expelled: No Intelligence Allowed 34.17 830
* 3V for Vendetta 32.24 815
* 4 Sin City 31.72 828
* 5 No Country for Old Men 30.57 819
40 . . . .
? 16 John Adams 20.78 857
° 17 Cars 19.98 902
m 18 Food, Inc. 17.81 876
s 10 5 2 3 30 E3 19 Jeff Dunham: Arguing with Myself 4.96 860

20 Jeff Dunham: Spark of Insanity 4.46 877

Figure 6: (Left) Histogram of Z-scores for the 500 most-reviewed movies. The mean is
19.97 and the standard deviation is 5.07. (Right) Z-scores for the top 20 most reviewed
movies.

Night of the living dead, Harry Potter and the Deathly Hallows Part 1, Twilight Saga: Eclipse,
[44,17,17, 33, 163] [98, 76, 83, 143, 432] [75, 43, 73, 88, 324]
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Figure 7: Pairwise Z-scores for 3 movies. In each cell, we use DELVE+ to compare reviews
associated to a pair of star ratings. For each movie, the title list the number of reviews of
each rating from 1-5.

6.2 Amazon movie reviews

We analyze Amazon reviews from the dataset that consists of 1,924,471
reviews of 143,007 visual media products (ie, DVDs, Bluray, or streams). We examine
products with the largest number of reviews. Each product’s review corpus is cleaned and
stemming is used to group together words with the same root. We obtain word counts
for each review and a term-document matrix of a product’s review corpus. In the first
experiment, we fix a movie and apply DELVE+ with K = n to the corpus consisting
of all reviews of this movie. In Figure [6] (left panel), we plot the histogram of Z-scores
for the top 500 most reviewed movies. The mean is 19.97 and the standard deviation is
5.07. Compared with the histogram of Z-scores for statistics paper abstracts, there is much
larger diversity in movie reviews. In Figure [6] (right panel), we list the 5 movies with the
highest Z-scores and lowest Z-scores out of the 20 most reviewed movies. Each movie has
more than 800 reviews, but some have surprisingly low Z-scores. The works by comedian
Jeff Dunham have the lowest Z-scores, suggesting strong homogeneity among the reviews.
The 2012 horror film Prometheus has the highest degree of review diversity among the 20
most reviewed movies. In the second experiment, we divide the reviews of each movie into
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5 groups by star rating. We compare each pair of groups using DELVE+ with K = 2,
resulting in a pairwise Z-score plot. In Figure [7] we plot this for 3 popular movies. We
see a variety of polarization patterns among the scores. In Harry Potter and the Deathly
Hallows Part I, DELVE+ signifies that the reviews with ratings in the range 2—4 stars are
all similar. We see a smooth gradation in how the 1-star reviews differ from those from 2-4
stars, and similarly for 5-star reviews versus those from 2-4 stars. Twilight Saga: Eclipse
shows three clusters: 1-2 stars, 3—4 stars, and 5 star, while Night of the living dead shows
two clusters: 1-2 stars and 3-5 stars.

7 Discussions

We examine the testing for equality of PMFs of K groups of high-dimensional multino-
mial distributions. The proposed DELVE statistic has a parameter-free limiting null that
allows for computation of Z-scores and p-values on real data. DELVE achieves the op-
timal detection boundary over the whole range of parameters (n,p, K, N), including the
high-dimensional case p — oo, which is very relevant to applications in text mining.

This work leads to interesting questions for future study. So far the focus is on testing,
but one can also consider inference for p? from (2.2)), which measures the heterogeneity
among the group-wise means. Consistent variance estimation under the alternative uses a
similar strategy, though we omit the calculations in this paper. Establishing asymptotic
normality of DELVE under the alternative would then lead to asymptotic confidence in-
tervals for our heterogeneity metric p?. Based on the plots in Section [5], it is possible that
stronger regularity conditions are needed to obtain a pivotal distribution under the alterna-
tive. As in the two-sample multinomial testing problems described in [Kipnis and Donoho
[2021], Kipnis| [2022], such as author attribution, we may also consider an alternative where
all the group means are the same except for a small set of “giveaway words”. It is interest-
ing to develop a procedure for identifying these useful words. As discussed in Section
we may modify DELVE by using a version based on the maximum test or higher criticism.
Another extension is to go beyond ‘bag-of-words’ style analysis and use different types of
counts besides raw word frequencies. One option is to apply a suitably modified DELVE
to the counts of multi-grams in the corpus and another is to combine words with similar
meanings into a ‘superword’ and use superword counts as the basis for DELVE. To do this,
we can combine words that are close together in some word embedding. We leave these
interesting tasks for future work.
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Notational conventions for the appendix: We write A < B (respectively, A > B) if
there exists an absolute constant C' > 0 such that A < C' - B (respectively A > C - B). If
both A < B and B < A, we write A < B. The implicit constant C' may vary from line to
line. For sequences a;, by indexed by an integer t € N, we write a; < b; if b;/a; — oo as
t — oo, and we write a; > b, if a;/by — o0 as t — oo. We also may write a; = o(b;) to
denote a; < by. In particular, we write a; = (1 + o(1))b; if a;/by — 1 as t — oo.

A Properties of 7" and V

We recall that
X; ~ Multinomial (N, £2;), 1<i<n. (A.1)

For each 1 < k < K, define

1 1
pe=—=> N € R, Tp=—=3% N € R™. (A2)
kVk €S kiVk 1€Sk

Moreover, let
1 & 1 & 1 & 1
= — N = — N,;Q; Y= — N.Y, = — N, Q. Q. A3
7 nN;nk kel nN; i nN;nk 2k nN; 2 (A3)

The DELVE test statistic is ¢ = T/v/V, where T is as in ([2.5) and V is as in (2.7). As a
preparation for the main proofs, in this section, we study 7" and V separately.

A.1 The decomposition of T’

It is well-known that a multinomial with the number of trials equal to IV can be equivalently
written as the sum of N independent multinomials each with the number of trials equal to
1. This inspires us to introduce a set of independent, mean-zero random vectors:

{Zir}lgign,lgrgN“ with Z;. = B;, —EB;, and By ~ Multinomial(l, Qz) (A4)
We use them to get a decomposition of T into mutually uncorrelated terms:

Lemma A.1. Let {Zir}lgign,lgrgNi be as in " For each Z;. € RP, let {Zijr}lgjgp
denote its p coordinates. Recall that p? = Zszl Nl — ). For 1 < j < p, define

K N
Uy = 22 Z Z(,Ukj — 15) Zijr,

k=11€S} r=1
1 1 N;

K
By = XY Y (om ww) w1l B

k=14i€Sk 1<r#s<N;

1
Usj = ——= > > > D> ZipZmjs

1<k£0<K i€S, meS, r=1 s=1
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N; Npm

Z > ZZ(nka T>Z¢ermjs.

k=11i€SE,meS, r=1 s=1
i£m

Then, T = p* + Y4, 1,Us. Moreover, E[Uy] = 0, and E[UU{] = Opxp for 1 <k # ( < 4.

A.2 The variance of T'

By Lemma the four terms {].;)Un}lgngzl are uncorrelated with each other. Therefore,
Var(T') = Var(1,,U1) + Var(1,Us) 4 Var(1,Us) + Var(1,Uy).

It suffices to study the variance of each of these four terms.

Lemma A.2. Let Uy be the same as in Lemma[A 1. Define
K

On1 =4 np Ny || diag () V(i — )| (A.5)
k=1
K

L,=4 Z nkaHE;lc/Q(Mk - M)H2 (A.6)
k=1

Then Var(1,U1) = On1 — Ly. Furthermore, if maxi<p<i [|prllco = 0(1), then Var(1,U;) =
o(p?).
Lemma A.3. Let Uy be the same as in Lemma[A 1. Define

K 2 N3
S SRR .
= 1€SK v
K N3
Ap=2) (= ) S el (A8)
1 kYR T €Sy,

Then
@ng — An S Var(l;UQ) S @ng.

Furthermore, if
N2 I3

ZESk } o
NZ||€]12

1SKEK {Z

€S
then Var(1,Us) = [1 + o(1)] - Opa.
Lemma A.4. Let U3 be the same as in Lemma[A 1. Define

Ons = 5= Z SN NiNg i (A.10)

k#Li€SE, meS,y j

nneNy Ny
B, = QZWI;(EkOEg)lp (A.11)

Then
O,3 — B, < Var(lngg) < Op3 + By,
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Lemma A.5. Let Uy be the same as in Lemma[A 1. Define

K
1 112
O, =2 ( _ —7_) NN, Qi A12
4 kz—l Z Z nka niN J J ( )
= zESk,mESk Vi
1 112
E.=2 Y 3 (nka _W) NNy Q43257 s Yy (A.13)
k iESE;émESk,lSj,j’Sp

Then
Ops — B, < Var(1;U4) <Ops+ B,

Using Lemmas we derive regularity conditions such that the first term in
Var(I;Un) is the dominating term. Observe that ©,, = ©,1 + ©,3 + O,3 + ©,,4, where the
quantity ©,, is defined in (2.6)). The following intermediate result is useful.

Lemma A.6. Suppose that (3.1)) holds. Then

On2 + Onz + Ona =< > ||| (A.14)
k

Moreover, under the null hypothesis, ©, < K| u|?.

The next result is useful in proving that our variance estimator V' is asymptotically
unbiased.

Lemma A.7. Suppose that (3.1)) holds, and recall the definition of ©,, in (2.6)). Define

N? 3 2
max | T Sies, otz |01, S 12l
Bn = .
Kl|pll?
If Br, = o(1), then under the null hypothesis, Var(T) = [1 + o(1)] - ©,,.

(A.15)

We also study the case of K = 2 more explicitly. In the lemmas below we use the
notation from Section [3.4] First we have an intermediate result analogous to Lemma,
that holds under weaker conditions.

Lemma A.8. Consider K =2 and suppose that min N; > 2, min M; > 2 Then
mM nN 2

— =1 + — —

nN +mM nN +mM

9n2 + 9n3 + @n4 = H

Moreover, under the null hypothesis, ©, =< ||u||*.

The next result is a version of Lemma [A.7] for the case K = 2 that holds under weaker
conditions.

Lemma A.9. Suppose that min; N; > 2 and min; M; > 2. Define

5 max{zianw, S, M2 2, ||zln%+||zzu%}

- . A.
& e (4.16)

If ﬁg) = o(1), then under the null hypothesis, Var(T) = [1 + o(1)] - O,
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A.3 The decomposition of V'
Lemma A.10. Let {Z;;}i1<i<ni<r<n, be as in (A.4). Recall that

=23 5 S (k) [ - N )] "
- A_ T 1)2 :
L&\, aN/ [Ni-1 (N; — 1)
2 2
o 2 2 2 > XXy +2Z > Z(nka ) XX,
1<k#l<K 1€S, meS, j=1 k= 1z€Sk,m€Sk,] 1
1£m
Define
1 1 N3
0, = _ )2 €S d let
i (nka nN) N1 forie S, , andle
{nfm ifi € Sp,m € Sy, k #4
im = .
2(7%11\7;@ — ﬁ)Q if i,m € S,
If we let

A=YYY P 20N Zip (A.18)

ior=1j meln]\{i}
=> Z _1 ZZWZ”S (A.19)
i r#s€[N,
N; Nm
A3 =33 aim( szzm]s (A.20)
i#m r=1 s=1

then these terms are mean zero, are mutually uncorrelated, and satisfy

V=A+A9+ A3+ 0,0 + 0,3 + O,4. (A.21)

A.4 Properties of V
First we control the variance of V.

Lemma A.11. Let Ay, As, and Ag be defined as in Lemma[A.10. Then

Var(A < 1 H#szg < [
i) g+ 3 Ll < 5 Dok
NQHQ Hz HMkHQ
Var(Az) Z Z ni N2 S Z nZN?
k €Sk
HMkH I? [ o ||
Var(A Z 2N2 QNQH wl <Z nINZ

Next we show consistency of V' under the null, which is crucial in properly standardizing
our test statistic and establishing asymptotic normality.
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Proposition A.1. Recall the definition of B, in (A.15). Suppose that B, = o(1) and that
the condition (3.1)) holds. If under the null hypothesis we have

K2HuH4 > Z Héuuz y Z HMH_% ’ (A.QQ)
- ny N . nE N

then V/VarT — 1 in probability.

To later control the type II error, we must also show that V' does not dominate the
true variance under the alternative. We first state an intermediate result that is useful
throughout.

Lemma A.12. Suppose that, under either the null or alternative, max; ||Qillcc < 1 — co
holds for an absolute constant co > 0. Then

Var(T) z ©,2 + 6,3+ 6,4. (A.23)

Proposition A.2. Suppose that under the alternative (3.1) holds and
(3 Il®)? > S lell” |, 3 el (A.24)

Then V = Op(Var(T)) under the alternative.

We also require versions of Proposition and Proposition that hold under weaker
conditions in the special case K = 2. We omit the proofs as they are similar. Below we use
the notation of Section 3.4l

Proposition A.3. Suppose that K = 2 and recall the definition of @(12) m . Suppose
that @(12) = o(1), min; N; > 2, min; M; > 2, and max; ||Qi]|cc < 1—co, max; |[|Tillcc <1 —co.
If under the null hypothesis

2 2 3 3
lellz ez ), (Ilulls n ||u|[3)}7 (A.25)

4
il > max{ (05 + i) GOy + o

then V/Var(T) — 1 in probability.

Under the alternative we have the following.

Proposition A.4. Suppose that K = 2, min; N; > 2,min; M; > 2, and max; [|Q;||cc <
1 — co,max; [|Tilloc <1 —co. If under the alternative

4
Inll3 11613 ) (HWH§+ 19113

mM N 0| > ma { (
— X — £ -
n2N? = m2M2 nN  mM

nN+m]\7[n+nN+mM

)}, (A.26)

then V- = Op(Var(T)).

In the setting of K’ = n and utilize the variance estimator V*. The next results capture
the behavior of V* under the null and alternative. The proofs are given later in this section.
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Proposition A.5. Define

50
57(171) — L Pl A.27
e (A.27)

Suppose that (3.1) holds, qun) =o(1), and

et > Y UL 5 Ao
Il > 3 T v R (4.28)

Then V*/Var(T) — 1 in probability as n — oo.
Proposition A.6. Suppose that under the alternative (3.1) holds and

Q 25 9l

Then V* = Op(Var(T')) under the alternative.

A.5 Proof of Lemma [A. 1]

We first show that E[U,] = 0,, and E[UnUé] = 0, for k # (. Note that {Z;, hi<i<n,1<r<n,
are independent mean-zero random vectors. It follows that each Uy is a mean-zero random
vector. We then compute E[U,;, U¢j,| for & # Cand all 1 < ji, jo < p. By direct calculations,

N;
[UIJUQJQ =2 (kz )(klz;l (nka nN) (/ij M])WE[ZZJZTZZESZZUN'/]

If ¢/ # 4, or if i’ =i and r' ¢ {r, s}, then Zy; ,» is independent of Z;j,,Z;;,s, and it follows
that E[Zijg'rZistZi’jlr’] =0. If/ =iand r = 7“/ then E[ZijerijQSZi/jlrr] = E[Zijngijlr] .
E[Zij,s; since r # s, we also have E[Z;j,Zij,sZirj,/] = 0. This proves E[U;;Us;,] = 0.
Since this holds for all 1 < j1, jo < p, we immediately have

E[UlUé] = Opxp-

We can similarly show that E[UNUé] = 0pxp, for other xk # (. The proof is omitted.
It remains to prove the desirable decomposition of T'. Recall that T' = Z§:1 T;. Write

P’ = L p3, where p? = 25N kN (ks — 117)?. Tt suffices to show that
T; = PJZ + Uy + Uzj + Usj + Uy, forall 1 <j <p. (A.30)
To prove (A.30)), we need some preparation. Define

Qij(1 = Qyy)
N, '

N.
Xij 1 &
Y =28 Q= N Y Zige, Qi =Y —EY] =Y - (A.31)
r=1

N;

With these notations, X;; = N;(Q;; + Y;;) and Nng = N;Qi; +24;(1 — €45). Moreover, we
can use ([A.31) to re-write Q;; as a function of {Z;;, }1<,<n, as follows:

1 & 1
72 Z ijr - QZ])] + F Z ZijTZijs~

z r=1 T 1<r#£s<N;
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Note that Z;;, = Bjj, —2;;, where By, can only take values in {0, 1}. Hence, (ZijT+Qij)2 =
(Zijr +Qij;) always holds. Re-arranging the terms gives ZZ.QJ-T — Qi (1=Qy5) = (1—2Q45) Zijr-
It follows that Vi, 1
Qij = (1 — 292])% + W Z Zierijs- (A32)
v i 1<r#£s<N;
This is a useful equality which we will use in the proof below.
We now show . Fix j and write T; = R; — D;, where

K —

< a N (N; — Xi5) . NN,
R:§ Ny (i — fu:)? dD—§:§j Xig(Ns — Xij) th &, =1— ——
j 2 ng k(ﬂk] ,“]) , all e &k n Nk 1) with & N

First, we study Dj. Note that le (NZ] X’LJ) NZQ(Q” + Y;j)(l — Qij — Y;J) = leﬂlj(l —
Qz’j) — NZQYZ + sz(l — QQ,L‘J)Y;J, where Y = Qij + N,L-_IQZ'j(l — QZ]) It follows that

Xij(Nij — Xij5) NiQij N
S = %= ) - G+ (- 2%y
We apply (A.32)) to get
Xii(Nij — Xij) 1
1<r#s<N;
It follows that
D, 5’“ Q O 3 SN 90y
ZZ N, W o ZJ)+ZanNk( - 1]) ij
k=1 ZESk k=11i€Sk
- Z Yo Y ZinZis (A.34)
k=14€S) e N ( N -1 1<r#s<N;

Next, we study R;. Note that ngNg(fig; — fi;) = > ies, (Xij — Niiij). It follows that

k=1 1€SE
Recall that X” = NZ(Qzﬂ—YiJ) By direct calculations, ZzESk nkal‘kj"‘EieSk N;Yi;,
and fi; = p; + (nN)"1 3" | N, Yy, We then have the followmg decomposition:
nka
Z(XU Nkﬂj) = ”ka(MkJ HJ )+ Z NiYij — (Z N, Ym])
1€S 1€Sk

Using this decomposition, we can expand [} ;. g, (Xij — Niiij)]? to a total of 6 terms, where

3 are quadratic terms and 3 are cross terms. It yields a decomposition of R; into 6 terms:

K K
=St 3 (5 ) S (S )
=1 1

nkk

30



=

+23 (g — ) (30 NiYsg) — 53 PR s (3 i)

k=1 1€Sy k=1 m=1
9 K
TVZ(Z NiYy) (Z NonYong)
=1 €Sk
=L+ +1I3+ 14+ Is + Is. (A.35)

By definition, Zszl npNi = nN and zgzl ngNipg; = nNp;. It follows that

= niv(mzn:l Nmij)Q, =0, Ig= —niv(mznjl Nmij>2 = 213,

It follows that
Rj =L+1— I3+ 1. (A36)

We further simplify I3. Recall that & = 1 — (nN)~!n;N;. By direct calculations,

I 2
fg:nfﬁ(zfvmym» - L)
= k=1 €Sy
1
(T ) T () (X )
k 1 ieSg 1<k#l<K 1i€Sk meSy
K
1
= (1—§k)n N (ZNZYU) ZZ Z NilNu,
k=1 kVk ey, k;«éZZESkmESg
be
K
Y Y S (Y) e
k=11€Sy 1E€SE
3 Ny
k k
=T+ Ji — Z (YN =Y e ST NN YV (AST)
T wlVe NS =1 "REVE g mes,
Jo

By (A.31])), Nle = N;Q; + Qi;(1 — Q;5). We further apply (A.32)) to get
NfYﬁ = Nz(l — QQZ])YZ-] + Z Zierijs + NZQW(l — Qz])
1<r#s<N;

It follows that

K
&N

N2 = - z )Y;

k=1 nk k (ZEZS;c ) l;zezsk ka ! !
T3
+ Z Z f’“ ZZWZ”S +Z Z f’“ _ Q” — Q). (A38)
k= lzGSk 7‘7&5 k= 1'L€Sk
Ja Js
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We plug (A.38)) into (A.37)) to get Is = Io + J; — Jo — J3 — Jy — J5. Further plugging I3
into the expression of R; in ({A.36]), we have

Rj211+14—J1+J2—|—J3+J4—|—J5, (A.39)

where I1 and I, are defined in (A.35]), J1-J2 are defined in (A.37)), and J3-J5 are defined in
(A-39).

Finally, we combine the expressions of D; and R;. By (A.34) and the definitions of
Jl_J5a

D; —J5+J3—Zznka N, —1) ZZzngz]s

k=11i€eS r;és
Ek Vi
—J5+J3+J4—Zznka N, —1) ZZZ]TZ’LJS
k=118
J6

Combining it with (A.39) gives Tj = R; — D; = Iy + 14 — J1 + J2 + Js. We further plug in
the definition of each term. It follows that

T; = anNk i — 1) +QZZ (trg — 1) N;Ys %Z Z NiNwYii Y

k=14i€Sk k#L €S, mESy

+ Z > 5}“\7 NiNpYiiYos + Z > nkN]f’“N Y ZZWZUS

n
k=1icSy.mesS, 'k k—14€S),

(A.40)

We plug in Y;; = NZ-_1 Z,J,V;I Zijr and take a sum of 1 < j <p. It gives (A.30) immediately.
The proof is now complete. ]

A.6 Proof of Lemma [A.2]

Recall that {Zi, }1<i<n,1<r<n,; are independent random vectors. Write

K N;
LU =233 (m—p)'Z

k=1 ZESk r=1

The covariance matrix of Z;, is diag(£2;) — ;€. It follows that

Var(1,U;) = 42 Z Z (e — p)'[diag (%) — ] (e — 1)

k=1i€S), r=1
—4Zuk— [dlag(ZNQ) (ZNQQ)} g — ()
= 42 [k — [dlag(nka,U«k) - nkaEk} (o — 1)
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=4anNkHdiag(Mk)l/2(Mk— —4anNkHE (g — p H (A.41)
3

This proves the first claim. Furthermore, by (A.41]),

Var(1,U1) <4 ngoNy||diag () V(s — 1)]|* < 4> e Nl diag () || 0 — pil|*.
k

k
Note that |diag(ur)|| = [|pklloc- Therefore, if maxy ||ugllcc = o(1), the right hand side
above is o(1) - 43", ngNi||ux — 1||? = o(p?). This proves the second claim. O

A.7 Proof of Lemma [A.3

For each 1 < k < K, define a set of index triplets: My = {(i,r,s) : 1 € Sk,1 <r <s < N;}.

3
Let M = U M. Write for short 6; = (nka - ﬁ)QNNZ_p

p
with Wirs = Z Zij'rZz'js~

LUy =2 Y ———— Y] Wirs,
(3,r,8)EM

For Wi,s and Wy g, if i #4', or if i =i’ and {r, s}N{r’, s’} = (), then these two variables are
independent; if i = ¢/, r =1’ and s # &', then E[W;,sW,.s] = > .5 ElZijr Zijs Zijir Zijrsr | =
>t ElZijr Zijir| ‘E[Zijs] E[Z;j ] = 0. Therefore, {Wirs} (i r.s)em 1s a collection of mutually
uncorrelated variables. It follows that

0;
Var(l;,Ug) =4 Z mvar(wirs)-
(3,r,8)eEM

It remains to calculate the variance of each W;,.s. By direction calculations,

Var(Wiys) Z E(Z},25;,] + 2 Z E[Zijr Zijs Zier Zigs)
j<t

:Z z‘j 1— —l-QZ QZ]QM
J

j<e
=) Q5 -2) Q%+ (Z%‘)z
7 j j

= 191 = 2[1€%13 + [1ull*
(A.42)

Since max;; €2;; < 1, we have
1917 — ([l < Var(Wis) < [|€%].

Therefore,

Var U2 =4 Z Z Z N (]5 )Var(Wirs)

k=14i€S, 1<r<s<N; ~°
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K
=23 > OiVar(Wipy) = 2229 1% = [19413] = Ona — A,

k=14i€S} k=114i€Sy

and similarly Var(lgUg) < ©,92, which proves the first claim. To prove the second claim,
note that Var(1,Uz) = On2 + O(A,). By (A.9) and the assumption min N; > 2, we have

1
< 2
D I e E;N”Q i3

:?n:m o X a2I07) = of©nn)

1E€SK

which implies that Var(1,Us) = [1 4 0(1)]©p2, as desired.

A.8 Proof of Lemma [A.4

For each 1 < k < ¢ < K, define a set of index quadruples: Jy¢ = {(i,r,m,s) : i € S, j €
Sp, 1 <r < Niy1 <8 < Nppbo Let J = U o)1 <ker<i Jre- 1t is seen that

5 p
U= 3 Veme  where Vimo =Y ZiZngs
(i,r,m,s)€T /

For Vipms and Vi g, if {(4,7), (m, $)} N {(@, "), (m/,s")} = 0, then the two variables are
independent of each other. If (i,r) = (¢/,7') and (m,s) # (m/,s'), then E[VipmsVipmrs| =
> i ElZijr Zimjs Zijin Zo jrst) = 325 0 Bl Zije Zigry] - Bl Zimjs] ~E[Zm/j5/} = 0. Therefore, the
only correlated case is when (i,r,m,s) = (¢,7',m’,s'). This implies that {Virms}(irm,s)es
is a collection of mutually uncorrelated variables. Therefore,
Var(1,Us3) = ﬁ > Var(Viems).
(i,r,m,s)€T

Note that Var(Viyms) = E[(Zj ZijTijs)z] = Zj,j, E[Zijr ZmjsZijir Zmjts); also, the covari-
ance matrix of Z;, is diag(£2;) — ;€. It follows that

Var zrms ZE 1]7" m]s + Z E Zzngzj 7“] ' E[ijszmjls]

J#i’
:ZQZ-]- (1= Qij) i (1 = Q) + > iy iy U,
j 73’
= Qi — 2D 00+ > Qi Qi U (A.43)
3.3

Write for short §;, = =23, 02.02 + 2.5 282 Q. Combining the above gives

tj° *myj

N N m

Var(1,Us) = 2N2 Z Z Z Z Z(Z Qij Sy + 6"”)

k<t i€SE meS, r=1 s=1
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QZZZZNN iy s + — 2ZZZNN Sim. (A.44)

k#Li€Sy meS, J k#L i€ S meSy

It is easy to see that |dim| < 3°; ;v ;€5 Q. Also, by the definition of Xy in (A.2)),

1

we have Yi(j,7') = Y ic s, Nif2ij€j. Using these results, we immediately have

ng Ny,
BN ) BD SR TS S B Y 2 Vil 24 Qi Qny Qo
k#£l i€S, mES, k#Li€Sr meSy j,j'

S 22(2 381,60,) (30 M)
4.3 k#L €Sy meS,

=== ZznkaEk 3,3") - 1eNeZe(35,§')
J.g" kAL

npne NN,
=2)" %1;@,6 o ¥y)1, =: B, (A.45)
kit

as desired.

A.9 Proof of Lemma [A.5]

For 1 < k < K, define a set of index quadruples: Qi = {(i,7,m,s) : i € Sg,m € Sk,i <
m,1 <r < N;,1<s< Ny} Let Q=UE 09k Write rjy = (nklzvk — —5)2Ni Ny, for
i € S and m € Si. It is seen that

\/ Kq
]-;)U4 =2 ' Z \/% irms; where  Vipps Z Zzngmjs
(i,r,m,s)€Q

It is not hard to see that Vs and Ve are correlated only if (i,7,m, s) = (i',r/,m’, ).
It follows that

Var(1;U4) =4 Z ]\’;?Vn Var(%rms)-
(i,r,m,s)€Q

In the proof of Lemma we have studied Var(Vjyms). In particular, by (A.43), we have

Var(Virms) = Z Qiijj + 5im’ Wlth |51m| S Z QijQij’Qijmj’-
J J.3’
Thus

N; Npm

Var(1,Uy) _42 3 ZZ ““””’ -~ Var(Virms)

k=11€Sk,meSy i=1 r=1

<m

K

k=11i€SE,meSy i
<m
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K
=2 Z Z Z Kim$2ijQmj £ 2 Z Z Kim Z Qi Qi Q1

= 0,3+ FE,. (A.46)
which proves the lemma.
]
A.10 Proof of Lemma [A.6]
2
By assumption (3.1)), N?/(N; — 1) < N; and <nk1, _ L) = ——. First, observe that

Ny nN nﬁNk

Ko 112
@n2+®n4:22(nka _W) Z

ill?

7
N; —1
k

E B (- s

k=1i€Sr,meSL J
i#Em

= Z<nk1Nk)2Z Y Nl Nl =) |l (A.47)
k=1 A

J i,mESk

Recall the definitions of uj and p in —m. By direct calculations, we have

0 =233 (5 X M%) (15 3 Mot

j k#L
nka ng N
~2 33 e M
J k#L
nkngNkNg
_22 2N2 i 1
k#L

< 22(2 PV ) = 23 = 2 (A.48)
J

By Cauchy—Schwarz,

\7 2
ZE> (Z e )

e
(D) (54
= Z (Z nka ) <Z“kﬂ) - sz:ﬂij = zk: ]| (A.49)
Combining (A.47)), (A.48), and (A.49) yields

(D Mlikll?) < Onz + Ons + 00y < OO l1kll?)
k k

for absolute constants ¢, C' > 0. This completes the proof. O
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A.11 Proof of Lemma [A.T]
By , it holds that

1 1 1
= (A.50)
nE N nN (nka)2
and moreover, for all i € {1,2,...,n},
N} 2
——— =< N?. A.51

Recall the definitions of A,,, B,, and E,, in (A.8), , and (A.13)), respectively. Note
that these are the remainder terms in Lemmas [A 3] [A"4] and [A 5] respectively. Under the
null hypothesis (recall ©,,; = 0 under the null),

Var(T) = Op2 + Op3 + Ops + O(Ay, + By, + Ey). (A.52)

It holds that

fj(n ) 3 Nl (A.53)

k=1 1€Sk

Next, by linearity and the definition of ¥, ¥ in (A.2]), (A.3]), respectively,

nkngNkNg
By, <22 — 1/(S5 0 o)1,

/ G 1 G
< le(n]v gnkaEk> 9] (n]v ;ngNgzkg 1p
=21(S o)1, =2|%%

By Cauchy—Schwarz,

2
B, < ||} = Z (Z(”jjﬁj’“zko j ))

<Z<anNk ) (szjj )
<Z<anNk> <ZEkJJ > Zzzkj] ZHEkHF (A.54)

Next by the definition of ¥ in (A.2), we have Xj(j,5') = ﬁ >ies, Nifhu;Qijr. Tt
follows that

En <33 (o 3 N0 ) (o 3 Vi)
k 4.3 kicsy, k mesy,

=335k =D ISklF (A.55)
k

k5.3’

ng N
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Next, Lemma implies that

On2 + Onz + Opa = Y [l = K|, (A.56)
k

where we use that the null hypothesis holds. By assumption of the lemma, we have

N2
mx{ 54 Tics, e 13, S Il )
=o0(1)
KlulP

Combining this with (A.52)), (A.53)), (A.54), (A.55),and (A.56) completes the proof of the
first claim. The second claim follows plugging in pu; = p for all k € {1,2,..., K}.

ﬁn:

O]

A.12 Proof of Lemma [A.§]|
By assumption, N2 /(N; — 1) < N;, M2 /(M; — 1) < M;. By direct calculation,

mM 2 nN 2
n nd < — — — NszQsz = = = NiNp iU
On2 + Ong [(nN+mM)nN] Z%:] j j+[(nN—|—mM)mM] ;n: jtmj
1 _ _
— oy (0PI + n? ). (A57)
Next
4
O = Gl e 2 2 2N Nl
1€S1meSs j
4 o
Combining (A.57) and (A.58) yields
1 _ L _
@nZ + @nS + @n4 = m((mM)2HnH2 + 2??,N7’)’LM<9, 1’]> -+ 7’LN2”9H2)
mM niN 2

)

_ S R _
nN—I—mM77 nN +mM

which proves the first claim. The second follows by plugging in § = n = g under the
null. O

A.13 Proof of Lemma [A.9]
As in (A.52), we have under the null that
Var(T) = Op2 + Op3 + Opy + O(A,, + By, + Ey). (A.59)

For general K, observe that the proofs of the bounds

K

1 2
A <Y () 2 NIl
P UL i€Sk
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t
Mw

ISkl %
k=1

E,

Mw

Ik
k=1

derived in ({A.53)), (A.54]), and (A.55)), only use the assumption that N;, M; > 2 for all i.
Translating these bounds to the notation of the K = 2 case, we have

An <3NPl + Y0 ME|T?
7 7

Bn < |Z1]F + [IZ2llF
En < |[S1lfF + 22/l (A.60)

Furthermore, we know that ©, > c|/u||?> under the null by Lemma for an absolute
constant ¢ > 0. Combining this with (A.59) and (A.60) completes the proof. O

A.14 Proof of Lemma [A 10
Define

1 N; X2 NiXii(N; — Xi5)
—_9 ( ) ij  IViAgdvg ij
Vl Z Z Z nka nN |:NZ —1 (Nz — 1)2

IDIDIPPE

1<k;ﬁf<K 1€SE mESy j=1

Vs =2 Z Z Z(nka T)2Xinmj‘

k=14i€SE,meSy, j=1
i#m

Observe that Vi + V5 + V3 = V. Also define

All — Z Z Z 49 Q” Z]T (Aﬁl)

27"1]

A =23 ZZ [ D imNm Q] Zije (A.62)

i =1 j  meln\{i}

and observe that A1q + Ao = Aj.
First, we derive the decomposition of V. Recall that

Qij(1 = Qi)
N, :

X;
V=2 - Q= ZZW, Qij =Y2 -EYZ=Y? - (A.63)

N;

With these notations, X@'j = NZ(QZ] + Y;J) and NlYZ = NIQ@] + Qlj(l — Q”)
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Write

n n 2
0 X Xij(N; — Xi5)
Vi=2 E —Ayj, where A= —2 -2t T (A.64)
LNV YN Ni(Ni— 1)

Note that X;; = Ni(Qi; + Yij) and Y;2 = Qi + N; ' Qi;(1 — ). It follows that
2
Fj = NiQ; + 2N, Yij + NiQij + Qi (1 — Q).
In (A32), we have shown that Qi = (1—2) % + 1 X<, sue, Zijr Zijs. 1t follows that

2

1
N = N 2N (1= 200)Y i D ZigeZigs + Qu(1 = Q).
‘ Y 1<r#£s<N;
Additionally, by (A.33)),
Xij(Nij — Xij) 1
m = Q4 (1 — Q) + (1 —2Q4)Yi; — m Z ZijrZijs-

1<r#s<N;

Combining the above gives

1
Aij = N, 2Ny Y+ g > ZijeZis

1<r#s<N;
N.
- 1
= NZQZQJ + 291']' Z Zijr + = Z Zierijs- (A.65)
—1 Ni—1 1<r#s<N;

Recall the definition of G2 in (A.7), Ay in (A.19), and A;; in (A.61). We have
1
Z Z 2 Z Z
‘/1 =2 NQ + 2Qz] Zzgr + N — Zierijs]-

kji€S, J r=1 1<r7£s<N~
40,;8);;
SR ID I WITD o) DR o e
ki€eS, j k€S, J 1<r#s<N;
=Op2 + A1 + Ay (A.66)

Next, we have

Vot Va = imNiNm Z[YWJFQU YmJ+Qm])]

i£m
= @mNiNm Z j+2) mNiNm Z Qnj + D imNiNm ) QijQm;
i#m i#m i#m J
N; Nn,
= Z Z Z Qim Z ZZ]TZT)’L]S +2 Z Z Z Z aimNQOj} Zijr +Op3 + Oy
i#mr=1 s=1 v or=1 7  men]\{i}

= A3z + A1+ Op3 + Opy.
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Hence
Al + A3+ A3+ 02+ 0,3+ 0,4 =V,

which verifies . By inspection, we also see that EA, = 0 for b € {1,2,3}. That
Aq, Ay, A3 are mutually uncorrelated follows immediately from the linearity of expecta-
tion and the fact that the random variables {Z;;, }i.r U {Zijr Zmjs} (i,r)£(m,s) are mutually
uncorrelated.

O

A.15 Proof of Lemma [A.11]

Define
40;8; ;
2+

7

me[n]\{i}
and recall that Ay = ), Zre[Ni] Zj Virj Zijr- First we develop a bound on 7;.j. Suppose
that ¢ € S;. Then we have
%Tjsnz]vz‘l' Z 2NZ T Z Z n2N2
E2k meSy,m#i Rk K €[K]\{k} mES,y

< Mhi o M
~ nka niN

Next using properties of the covariance matrix of a multinomial vector, we have

Var(4;) = Z Var (V.. Ziy) = Z Vi CoV( Ziy ) Yir

i,r€[Ni] 1,r€[Ny]

1,r€[N;] i,re[Ng] J
< :uk] M]_ 2 B

Z nka nN) . Z QZ]

ZES)C,T'G[NZ'}

N Z (n/:];%;k)Z”kaﬂkj + Z %)2nkﬁkﬂkj

k,j k,j

Hqu < Hﬂk\lg
A.68

which proves the first claim. The last inequality follows because by Jensen’s inequality

(noting that the function z — 23 is convex for z > 0),

=3 (Z(”kN’“ mw) DBY (B, < 5 ol

J k

Next observe that

20;
Ay = ; g mwm (A.69)
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where recall Wy,s = > j ZijrZijs. Also recall that Wi, and Wi,y are uncorrelated unless

i =1 and {r,s} = {r,s'}. By (A.42),

402
Var A2 Z Z N2 Var(Wirs)

i r#s
402
<ZZW e
i r#s
NG 1
< )4 7 X Q0. 2
;zezs nka nN )(Ni_1)2 Ni(Ni_l)H L
<ZZ 4H Q| (A.70)
k ZESk
Also observe that
N,
NZ(1Q4]3 < N
> g SIS 3 (G G )

k jes, k i mesy
P A
— N,

This establishes the second claim.
Last we study As. Observe that

N; Npm
= g E g im Virms
i#Fmr=1s=1

where recall Vippms = > y ZijrZmjs- Recall that Vipp,s and Vi, are uncorrelated unless

(r,s) = (r', ') and {i,m} = {i’,m'} By (A.43),
Var(A3) $ Y ap, NilNyy, Z Qi Qi

itm
<SS = NQZ,N Q)+ > 4]\[4<z\m,,z\f Q)
% itmeSy kA€ i€ Sk, meS,
DI ”“’“” ; nﬁw (mi N e N
oy Hmﬂz W 5 bl )
k k
In the last line we use that |u||?> <23 | ,ukHQ as shown in (A.49)). This proves all required
claims. O

A.16 Proof of Proposition

Under the null hypothesis, we have ©,,; = 0. Thus, EV = ©,, under the null by Lemma
Under (3.1), we have Var(T') = [1 + 0(1)]©,,. Therefore,

EV = [1 + o(1)]Var(T), (A.72)
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so V' is asymptotically unbiased under the null. Furthermore, by Lemma we have
O, = K]ul% (A.73)

In Lemma we showed that

2
Var(As) Z Z Ni JJ;ZIJQ

k i€Sk

We conclude by Lemma that under the null

o) < = I 5 L o
ar Z 2N2 Z V, ( ' )

NN,
kkk

By Chebyshev’s inequality, (A.73)), , and assumption (A.22) of the theorem state-

ment, we have

V-EV| V-EV]_ o
Var(T) — K[p2

Thus by (A.72)),

V. (V-EV) EV
Var(T)  Var(T) +Var(T)

=op(1) 4+ [1 + o(1)],
as desired. O

A.17 Proof of Lemma [A.12]
By Lemmas [A-THA'H| we have

Var(T Z Var(1 > () Ona) = (A + Bo + En). (A.75)

Using that max; [|Q;lcc < 1 — co, we have [|Q;]|2 < (1 — ¢0)||€%]|?, which implies that
Ap < (1= c)On2. (A.76)

Again using max; [[iflc <1 —co, as well as 7, ;7 = 1, we have

B n2N2 Z Z Z ZNN i€ Qi Qo

k#L ’LGSk meSy 7,5’

DI DD ID AN

k#L i€S, meSy 3,5’
Y 2 NV
k#L i€S meS, j
< (1 —=co) - Ops. (A.T7)

(1—60

(1—60
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Similarly to control E,,, we again use max; ||;||cc <1 — ¢y and obtain

1 \2
E.=2Y Y 3 (nka nN) Ni N 07237 Qi i

k 1€Sk,meSk, 1<5,j'<p

1 \2
< (1—cp) 22 Z Z (nka nN) NiNp Qi85

k zeSk,mGSk, 1<5,5’<p

<l-w 2 Y Z(nka — )NNQQ

k zeSk,meSk, 1<5<p

< (1—co)- O, (A.78)
Combining (A.75)), (A.76), (A.77), and (A.78) finishes the proof.
O
A.18 Proof of Proposition
By Lemmas [A.6] and [A.12]
Var(T) 2 Onz + Ons + Ot 2> [lal|?. (A.79)
k
By Lemma
2 3

ng Ny

Using a similar argument based on Chebyshev’s inequality as in the proof of Proposition
and applying (A.79)) and (A.80)), we have

V-EV| _ [V-EV|

2 = op(1). (A.81)
Var(T) ™ 32 [lpl?
Next, by Lemma [A.10| and (A.79)),
EV = 0,2 + Op3 + Opq < Var(T). (A.82)
Combining (A.81]) and (A.82) finishes the proof. O

A.19 Proof of Proposition
From the proof of Lemma we have

V*=V) =0Op2+ A1l + Ao,

and the terms on the right-hand-side are mutually uncorrelated. From (A.68)), we have
1913
Var(An) 5 Z Tl
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Q 2
Var(Asz) < ZH H

Hence
EV* =0,
Q; 0,12
Var(V*) <Z” ”wz” ”. (A.83)

Since K = n and the null hypothesis holds, we have ©,; = ©,4 = 0. Moreover, by

, we have
On3 < [lull?> < Ong = nlul®.
It follows that
Var(T) = [1 + 0(1)]On2 =< nl|u|*. (A.84)
Thus by and Chebyshev’s inequality, we have
v VvV —EV* EV*

Var(@) ~ Var(@) | Varp) ~ W H1+el);

as desired.
O

A.20 Proof of Proposition
By Lemmas [A.6] and [A-12]

Var(T) 2 Opa + Onz 2 >[I, (A.85)
By (A.83),

1€2; H2 1913
RS A.
Var(V Z Vv ; N, (A.86)

Using a similar argument based on Chebyshev’s inequality as in the proof of Proposition
and applying (A.85) and (A.86]), we have

V¥ —EV*| _ |V* —EV|

Pe = op(1). (A.87)
Var(T) ~ 5 [P
Next, by Lemma [A.10| and (A.85]),
EV* = 0,2 < Var(T). (A.88)
Combining (A.81)) and (A.88]) finishes the proof. O]
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B Proofs of asymptotic normality results

The goal of this section is to prove Theorems and The argument relies on the
martingale central limit theorem and the lemmas stated below. As a preliminary, we
describe a martingale decomposition of 7" under the null.

Define

U = 1,(Us + Uy), and S = 1,U>.

By Lemma we have T'= U + S under the null hypothesis. It holds that

N; Ny
=S 0 33 (3 2 ). 1)
i<’ r=1 s=1 ki

where we define

n,Ng T nN
2

2( L L) if 1,7 € S, for some k
O4,i! =
~ nN

else.
Define a sequence of random variables
N;
Des= > 0t > ZijeZijs (B.2)
ie[e—1]  r=1 j

indexed by (¢,s) € {(i,7)} 1<i<n,1<r<nN,, Where these tuples are placed in lexicographical
order. Precisely, we define
(1, 81) < (£2,52)

if either
e /1 <ty or
e /1 =/{y and 51 < $9.
Observe that

Z Dy ="U.
l,s

Next define 7y to be the o-field generated by {Z;.}(;)<(,s)- Observe that
E[Dy s|F<e.s)] = 0,

and hence {Dy s} is a martingale difference sequence. Turning to S, we have

n

S=> 0> ZijeZijs. (B.3)
1

i= r<<s j

where we define

1 1 N;
=2k o)
nka niN Ni—l
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if i € Sy,. Define

s=00 > > ZijeZyjs. (B.4)

refs—1] J

Note that Ey; = 0. Order (¢,s) lexicographically as above, and recall that FZ,s) 1s the
o-field generated by {Zi.; }(; r)<(e,s)- Observe that

E[Ey | F<,s)] =0

and hence {Ey s} is a martingale difference sequence. We have

Zaé Z Zzﬁjrz@s Zzaé Z ZZKJTZEJS—‘S

(4,s) re[s—1] J (=1 s=1  re[s—1] J
Define
N M,
MZ,S = DZ,S + EZ,s: Mf,s = Vail;(ST) (B'5)

Thus we obtain the martingale decomposition:
T=U~+S5= Z[D&S + E&S] = ZM£75' (B.6)
()

The technical results below are crucial to the proof of Theorem given in Section [B.1]
Theorem [3.2] then follows easily from Theorem [3.1] and Theorem

Lemma B.1. Let .//\\/lJ&S be defined as in (B.5)). It holds that
E I: Z Var(./f\/lvg’s“/—"_<(g7s)):| =1.
(¢,s)

Lemma B.2. Suppose that min N; > 2 and max ||2;||cc < 1—cg. Under the null hypothesis,
it holds that

1
or (32 VD1l P00 & (3 Sl + Kl
(¢,s) k

Lemma B.3. Suppose that min N; > 2 and max ||€2;||cc < 1—co. Under the null hypothesis,
it holds that

1
> ED{ S () 2N2)Ilull2 (Zm)llullg,

(¢,) k k

Lemma B.4. Suppose that min N; > 2 and and max ||Q;||oc < 1 — cyo. Then we have

_ 3119 Ml
o S varBlFen) ) s 23 MRV S MBI m

(£,5) k i€Sk k i€Sk
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Lemma B.5. Suppose that min N; > 2 and and max ||Q;]|cc <1 —co. Then we have

NZ|1€4]? N33 13
DL IR = SDIIE -

(f S) k €Sk k i€Sk

Lemma B.6. Under either the null or alternative, it holds that

N2 Lo
20 Tann S 2l

k i€Sk
NP3 1 3
Do T < 0 3
k €Sy w i e
NI 4
Z Z TANG < Z||Nk||4
k €Sy Tk k

B.1 Proof of Theorem [3.1]

By the martingale central limit theorem (see e.g. Hall and Heyde [2014]), we have that
T/+/Var(T) = N(0,1) if the following conditions are satisfied:

Zvar(j\/lvﬂ,s‘f<(g,s)) E} 1 (B.8)
(£s)
S EMEA g, ol Fan] 20, forany e > 0. (B.9)
(69) "

It is known that , which is a Lindeberg-type condition, is implied by the Lyapunov-type

condition

S TEM;, =o(1). (B.10)
,s)
See e.g. |Jin et al.| [2018].
Since ((3.1)) holds,
Var(T) 2 © = O2 + O3 + O 2 K| 1||*. (B.11)

Recall that
MZ,S o DK,S + EZ,S

Mes = Var(T)  Var(7T)
Note that (B.8|) holds if
E[Var(./’\;l/&s‘f;(g’s))] — 1, and (B.12)
Var <Var(ﬂg,s‘]:<(gvs))> — 0. (B.13)

Recall that (B.12]) holds by Lemma
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Next note that
E(DysEy | F<es)) =0
by inspection of the expressions for D, s and Ey s in and . Therefore
Var(My,s| F ) = Var(Des| F2e,s)) + Var(Ep | F2,s))-

Hence by (B.11)); Lemmas , and and the assumption (3.4), under the null

hypothesis, we have

v 1
Var <Var(/\/le,s|f<(e,s))> < Var(T2 [Var <Var(De,s|]:<(e,s))> + Var (Var(E«‘f,s’]:<(e,s)))]
1 1
< - - 3+K 4 2:| _ 1.
~ K2|p|? {(Xk: nka)llullg [all4) sl o(1)

This proves (B.13]). Thus, (B.12|) and (B.13|) are established, which proves (B.8)).
Similarly, (B.10) (and thus (B.9)) holds by (B.11)); Lemmas (B.3), (B.5), and (B.6)), and

the assumption (3.4). Combining (B.8) and verifies the conditions of the martingale
central limit theorem, so we conclude that 7'/1/Var(T) = N(0,1). Since Var(T) = [1 +
0(1)]©,, by (3.4) and Lemma the proof is complete.

O
We record a useful proposition that records the weaker conditions under which 7'/+/Var(T')
is asymptotically normal.

Proposition B.1. Recall that oy, is defined as
Qr := max {i{: ||Nk:||3 Z HM’CHQ } /(Z HMkHZ)Q (B.14)
np N’ P
mn . If under the null hypothesis,
s { o a3 Z s } /( KHNHQ)Z o, e Mo B
' =t el iR ’ Kful* ™

then T'/+/Var(T) = N(0,1).

B.1.1 Proof of Theorem [3.2]

By our assumptions, Proposition holds and V/Var(T) — 1. Thus the variance estimate
V' is consistent under the null. Theorem follows immediately from Slutsky’s theorem
and Theorem [3.7] O

B.2 Proof of Lemma [B.1]
By Lemma S and U are uncorrelated, and it holds that

Var(T') = Var(S) + Var(U). (B.16)
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Next note that
E(Df,sEf,s’}—<(g75)) =0
by inspection of the expressions for D, and Ey s in and , Therefore
Var(Mys|F<,s)) = Var(Dys| F<,s)) + Var(Eps| F-.q))-

Observe that

E |: Z Var(Ef,s‘f<(€ s) :| Z EEZ s Z Oy Z Z E Z@JTZKJSZZJ r’ ZZJ s]

(¢4,9) (¢4,s) £,s) rr'e[s—1] 3

= Z o Z ZE ZeerEj’rZstZZj’s]

(K s) rels—1] 5,5

_Zaf > D> K ZZ@TZ@JS

= SE[Ng] r€[s—1] J
— Var(S). (B.17)

The last line is obtained noting that S as defined in (B.3) is a sum of uncorrelated terms
over (i,7,s).
Similarly, we have

|:ZV8I D@s’f-<(fs):| [ZEDés’f-<(fs) :| :ZE[DZS]

(4,s) (4,s)

—Z Z 7Jg\/'aur ZZZW"Z@S

(£,s) i€[l—1] r=1 j
N; Ny
= Z Z aiZVar( Z Z ZierEjs)
¢ ie[t—1] r=1 s=1
= Var(U). (B.18)
The lemma follows by combining (B.16])—(B.18). O
B.3 Proof of Lemma [B.2l
Let My, = niNj, and M = nN. Define
1 1
= zk: MySk = 5 ZEZ[:} NoQuj, Qi - (B.19)

Our main goal is to control the conditional variance process. Define

Qi (1 —Qy5) if j =’

(B.20)
—Q[ngj/ else.

Ojji0 = BZyjy Zyjrr = {
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Observe that

Var(Dé s’f<(£ s) Z Z Z Uzlaz’ZZzhrZ@ls zggr’Z£]28|f< £,5s) ]
i3/ €l—1] rr' ji,j2

- Z ZZWUN’ i lJ2T'E[Zej182€j25]

i3/ ell—1] rr’ ji,J2

= > ouoie Y 8jyjueZijir Zirjpr

i’ ell—1] ror! Ji,J2
Define
Qi o = Z Nyoi0i1403, jye- (B.21)
>4

Thus

N; N/

Z VaI'(Dg7s|./_"_<(g s) Z Z Z Z 030044 Z Ojrjat Zigir it Jar!

(2,s) Ls ii'e[l—1] r=1r'=1 Ji.j2

N, N;
2
=YY 5 (X Nerhn ) Za
i r=1r'=1 j1,j2 > €>i
N; Ny

+ 2 Z Z Z Z ( Z NEUz‘KUz"é5j1j2€ > ZZJN“ZZ’M

i<’ r=17r'=1 ji1,j2 “€>7

= E g g § a22]1]2 ijir 2]27‘

i r=1r'=1 j1,j2
N; N/

+ZZZZ Za“hh 11T 1]27’

i<i’ r=11'=1 j1,j2
Define
Ciritrr = § 0411]1]2 ijir z]zr (B22)
Ji,J2

Then

N; Nl-/

Z Var(DZ,s|f-<(€,s)) - Z Z szr <2 Z Z Cim‘r’ +2 Z Z Z Ciri’r’)

(£,9) i re[N, i r<r'€[Ng] i<i/ r=17'=1
=V + VQ

With this decomposition, Lemma [B.2] follows directly from Lemmas [B.7] and [B.§| stated
below and proved in the next remainder of this subsection.

Lemma B.7. It holds that

Var(V) 5 (3 5 )l

k
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Lemma B.8. It holds that
Var(Va) < K||pll;

B.3.1 Statement and proof of Lemma

The proofs of Lemmas and heavily rely on the following intermediate result that
bounds the coefficients a;rj, 5, in all cases.

Lemma B.9. It holds that

7 M if i, € Sy, j1 = Jj2

1 1 p e s . .

< 4 Tk T 0 if i, € S, j1 # Jo
it jrja . . .
%M]l ZfZESkNZ/eSkQ?kl#k27,71:!]2

2 e . . .
T Poat Skajige + 37 S if i € Sy, 1" € Sky, k1 # ko, j1 # Jo

Proof. If j; = js and 4,7’ € S}, we have

K
|viitjy jy | = \ZNNzNMCSﬁjIA < Z Z Nyoigoirgdjy gy
>3/ k'=1 éeSk/
1 1
S M Z NSy, + Z NeSj, S M L e S g
ko Pk pcs, ee[n] k
If j1 # jo and 4,4" € Sk, we have
|vrjigal = 1D Neoieoidjijoel < Neloieoie|Quj,
>4’ Le[n]

< 1 1 1 1

~ ﬁk ' E Z NS, gy + M M Z NeSj, Qejy S M =7 Sk T szljz‘
(€S t€ln)

If i #£4', j1 = jo, and i € Sy,, i € Sk, where k; # ko, we have

g =Y Neoieoindj,jel < Z Niloieoire|Qjy
>

Z Z Negfjl Z NZQEﬂ Mjl
k“ LESk, fe[n

If ¢ # 4, j1 # j2, and i € Sk, ,7" € Sk, where ki # ko, we have

|iirjujol = 1> Neoieoinndsjoel S Neoigoiniuj,
>3 4

2/\

2
1 1
Z > NSy, Qe + AR Z NS5, Qs
7 M, €Sy, teln)

| /\

a=
2
1
Z kajijz T E]Uz
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B.3.2 Proof of Lemma B.7|
We have

Var(V7) ZEgW.

Next by symmetry,
ECrir = Qi jo Xiigsjs Blijyr Lijsr Zijar Lijar
J1,J2,93:J4
2
SO ki Qg+ D g iigaga Qg Qs
Ji J1#ja
2
+ ) g Qigags Qipy Qigs + > i iy Qi Qi
J1#73 J17#J2
) i Qg Qi Qi+ i o Qi ja S iga Qiga i
j17j37j4(di8t') j17j27j4(di5t')
7
+ > i ja Vit js iy Qg Vs Qija =2 ) Basir
J1,J2,J3,ja(dist.)

Thus

Var() £ (8.0 )

=:B,

We analyze Bi— By separately, bounding the a;y;, ;, coefficients using Lemma
For By,

Bl<zzamlj2 UlNZZ Z Z 'ujl $ij
7»7‘

k=1i€SL re[N;] j1

<ZZ k) Mkum@m)uuu% (B.23)

k
For Bs,
By S) 0D i iigygs iy Qi
4T j17£ja

S22 M e Eksm + %Zm@) i, Qi

k €Sy rE[N]]17é]4

1
N Z Z M a7 Ha Zk]1]4 + szlﬂ) - M2k,
k 3175]4
N Z Z Zk]l]él’ujl + Z Z 2kjija S jakg
317’5]4 317534
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o\ VERu Y V(SpoX)p S

Next,

1
Z Eijljzl'u’jl = Z W Z NiN'QUlgi ]1QZJ4QZ ja " Mgy

J1#ja jl#j‘l ks,
= Z Z NN Qi Qv gy - (ZQij4Qi’j4)
1,4/ €Sk Ja
X T
1,i' €Sk
SZ%zwb (B.24)
J1

and similarly

1
Z Ekj1j42j1j4ﬂj1 = M. M Z NiNi’QihQi’leijz;Qi’ﬂ My
i1 i P iesgieln]
Z M M Z N’LNZ’QUle’jllujl
1€Sk,i' €[n]

Zszwi
J1
Thus
1 3
= (;Mk)llullg- (B.25)
For Bs,
B3 S Z Z Qiigi 1 Qiigags g1 $ij
i J1773
Y Y Y s+ 95 i
k 1€S) TE[N]J#JB
!/
© Eku
S Z Z g s - MiXeg s S Z .
M M
k j1#is
We have by Cauchy-Schwarz,

1
€Sk

*ZN Z“J i)

’LESk

SMZN ZQU ZN

1€SE
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=D 1= ull3. (B.26)
J

Thus
1
B. < — 3 B.27
15 (5 3 (B.27)
For B4,
1 1 2
Big )y D ol Qi S22 D D (7 Shin + 37 50n) Y Qe
LT j17#j2 k 1€Sk re[N;] j1#72
1 5 1/(203) M .
S Z Z Ek‘hn ME]ijz) MY, S Z 7]\4’; + Z Wl/(z o 2)
k  j1#j2 k
1’(203)1 1
< —\“k /- 203
First
o 1 2
1/(2k3)1 = m Z Ni1Ni2Ni3 ( Z Qileiszigj)
ki1 i,iz€8), j
1
<om 2 NuNoNigo ) 90005 = i = |l
k i1,i2,i3€S), J J
and similarly,
o 1 2
1/(2 3)]_ = W Z NilNi2Ni3(ZQi1jQi2jQ’igj) < H[LH%
i1,12,i3€[n] J
Thus
Z \MHs (B.28)
k
For Bs,

Bs; <)) > Qiigy jr Qiigaga ijs Diga Qi
4T j1,j3,j4(dist.)

1
S Z Z Ni Z M 7 Mo EkJBM + 5 M ]3]4) Qijy Qg iy

k i€Sy J1,J3,J4

< Z Z Z 1#]1216%]49@]19”39@]4 Z Z Z 2/1312]5]]\2]2@1 Qi iy

k i€Sk J1,J3,J4 k 1€S5k J1,J3.J4
=: B51 + Bso.
We have
1
Bs1 = Z M3 Z Z 1 Nio 151 4151 Qi Qi i o Qi

k k i1,i2€Sy, §1,73,44
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= Z 5 D NuNu(Qp) - (2 0)°
7«177«2€Sk
Z Z N’ilN’iQ lel’l’Q;lQ’L?
k 11,i2€S5k
> M2 > N0, — S < Z—nuu%. (B.29)
In the last line we apply (B.26]). Similarly,
1
Bsy = Z M2 Z Z Niy 3 Qi jy S s Qi3 i ju i
k k i1 €Sk, i2€[n] J1,73,J4
1
SZW Z Niy Ni, ‘leﬂ'QIilQm
11€8g,i2€[n]
1
by <Dl (B.30)
11€Sk k
Thus
1
S (2 3 Il (B31)
k
For Bg,
1 1 1 1

DI DD INEDYD

k i€Sk re[N;] j17j2,j4(di5t )

Qi3,45,8

(mzkhjz+sz1j2)(mzkj1j4+ M 3114) 1J1%4ig2 " biga

Qs Qi O S N O O O
kjl]2 231 g2 bijy kj1j2 ~g1j2° “1j1® “iga S “iga
SIS +2) 3> > MM
k i€Sk re[N;] j1,52,ja k 1€Sk r€[Ni] J1.52:0a
Y2 Qi Qi
+ZZ Z Z 7172 171 1J2 1j4 _. Bﬁl+B62+BGB-
k 1€SE re[N;] ji,J2,J4
First,
k Z] o
ZENIPIP I S W T
kE i€Sk re[N;] j1,32,j4
where we applied (B.24]). Similarly,
1
Bea <Y —|lull2, and
62 Nzk:MkHNH& an
1
Bes S > el
> 3l
Thus
1
< (D0 ) i3 (B-32)

k
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For By, we have

1 1 1 1
Brs Z | (mzkﬁjz + 5 D) (mxkjsm + g i) Qi Qo Uiy Qi
J1:92,93,Ja(dist.)
Bk o Dhgsga iy ign Qi Qi
D3OI 77

k i€Sk re[N;] j1,J2,J3:J4

+2 Z Z Z Z iz 23334]\5}]:}\2211291339114

k i€Sy re[N;] j1,J2,53,Ja

DSTIPID ST O TSN 0 PN ¢ Y o
+ZZ Z Z J1J273J4° %1715 1J2° #193° 2174 —. B71—|—B72+B73.

M2
k i€Sk re[N;] J1,J2,53,J4
Note that
Shivjs = Z Nihij, Qup < 3 Z NiQ%j, = j,, and
ZESk 'LESk
Y = Z Nifij Qijp < — Z Nifdij, = pjy - (B.33)
Ze[n] ’LG[n]
Thus

By < Z Z Z Z Mjlzkj3j49i]<2?ij29ijgﬁij4

k i€Sk re[N;] j1,j2,53.J4

<20 > “E’“QQQ Zﬁuuug

k i€Sk J1,J3.J4

where we applied (B.29)). Similarly,

1
B S Z ﬁHMHg, and

Brs < Z ||M||3

Thus

Z HMHg- (B.34)

k

Combining the results for B1—B7 concludes the proof.

B.3.3 Proof of Lemma [B.§
We have

Var(Va) S4 Y ECm,
(i) ()
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where r € [N;] and r € [Ny] in the summation above.
By symmetry, if (i,7) # (¢/,77),

2 — ey
ECiri’r’ - Z Qjit 5y 5o Cgd! 354 Eszl'rszgr EZz ]Qr’Zz jar!

J1,72,J3,74
2
S @ Qipn Qg+ D iy Qi g Qg Ly g,
Ji J17Ja
2
) iy Qi Qi Qg gy Qirs + D iy Qi Ut
J#j3 J17#J2
+ D Qi @i Qi Qg Qg Qi+ D Qg Qi gy iy iy Qg
J1,J3,Ja(dist.) J1,J2,ja(dist.)
7
+ E : ity Cti 3 ja iy s Qi vy, = E :Ca,iﬂ“' (B.35)
J1,J2,J3,Ja(dist.) a
Thus
7 7
Var Vv2 g Ca,i,r g E azr
a:1 (Z,T‘)?é(i/ﬂ"/) a:l 7‘77‘l

=:C,

Next we analyze C1, ..., C7, bounding the ay;,;, coefficients using Lemma [B.9}
For Cl,

CrSY . D0 D NiNwads, ;, Qs Qs+ Y D > NiNwadj, ;, iy Qrjy

k i,i'eSky J1 k#k i€Sk €Sy 1
S Y NN 00+ Y Y Y00
k i4'€Sr 71 k#k" i€Sk,1’ ESk/ J1
<SS+ T 5 P < Kl 30
k#k" J1
For CQ,
C2 5 Z Z NiNi Z it 1y it a o Lign Qirjy Qi
k i,4'€Sy J17#ja
+ Z Z N;i N Z Qiit 51 gy Cid’ j154 QZhQZ JlQZ Ja
k#k! i€Sy, i €Sy jlséj4
1
S Z Z N; Ny Z M —jy - Ekz;m + 77 Vi Sj1ja) Qigy Qurgy Qi
k i,i’€Sk J17#ja
1 1 1
+ Z Z N; Ny Z artn (M Z Yajijs szm) iy Qirjy Qirj,
k#k' i€Sy,i' €Sy j1¢j4 ac{kk'}
1
S Z Z N; Ny Z /J’Jl + Mﬂjl) Qijy Qirj, Qv
k 1,i'€Sy ]17@4
1 2 1
+ Z Z N; Ny Z At (Mﬂjl + Mﬂjl) Qi Qi Qirjy
k#k' i€ Sy i’ €Sy J17#Ja
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M, My My,
S+ )+ > Dy ki S Kllull (B.37)

k jl k#kl jl

where we applied (B.33)).

For Cj,
Cs 3 (Z Y NiNe+ Y, Y. NiNz") D iy it s iy Qg Lty i
k i4'€Sy k;ék’ i€Sk, i’eSk/ J1#33
<Z Z NiNy Z M a7 Mo M My - gy Qg Qi Qv
k 4,4 €Sy J17#743
1 1
+ Z Z NiNi Z At ppts iy Qigy irjy Qi
k#k' i€Sk, i’ €Sy J1#j3
M, My
2 kL
- Z Z Hj P gy gy + Z Z W“J’l“]’szkhﬁszk’jlﬁ
k j1#3ds k#k j1#£353

< ( Z /JL/E%%U’) + NIEOQN'
k
First, by Cauchy—Schwarz,

ku—f Z Ny () Q59
J
Z i’(ZQijQi’j) ZM?QiJQi’j
j J

1,1’ €Sk
Z NNy ZM] Qirj = > = Il (B.38)
1,1’ €Sk J
Similarly
W S g (B.39)
Hence
Cy < K|ulld. (B.40)
For 04,
ZE10 D) SRETED WD DR DRI
k 44'E€Sy k;ék’iesk i'€Sy J1#j2
1
S Z Z NiNi Z Ek]m M JIJ2) $ijy iy
k i,i’'€Sy J1#j2
1
+ Z Z N; Ny Z (M Z Yajijo + 3112) Qij, Qv
kK’ i€ S ,i' €Sy jl?éjQ ac{k, k/}
. Z Z NiNy Z M2 Zk]mz M2 ]1]2) Qle J2
k i4'€Sy N#j2
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+ Z Z N; Ny Z Z Eajlp A 2?132) Q45,Qyrj, =1 Cy1 + Ca2

k#k! €Sy, i' €S, J1752 ae{k k'}
First,
CugY Y NN Y oh kmﬂmﬁuﬁz > NN Y 3% s
k i3'€Sk J176J2 k i4'€Sk J1#52
02
N Z Z 2@1]2“]1“]2 +Z Z M2 J1]2'u31'u32 < Z,uz 'LL+Z 2qu

k  j1#j2 k  ji1#je

Similarly,

MkMk/ MkMk’
Cp2 S Z Z kmz“ﬂlﬂm + Z Z mﬂjlﬂya
k#K' j1#j2 k#K" j17#j2

M, M,y
<> ]Itpk (WSPp+ p'S%p)
kK

Combining the previous two displays and applying (B.38)) and ( -, we have

Ca S Kl|pll3- (B.41)
For 05,
Cs 5 <Z Z NiNir + Z Z NiNi/) Z Qi jy g1 Qi jig s QlﬁQlBQz ]1Qz Ja
k i, €Sy k#k' i€Sy,i' €Sy j1,73,ja(dist.)
1 1 1
IS Z Z NiNy Z ﬁﬂﬁ ) (ﬁzkﬁﬂ + M ]3]4) Qijy Qi Qirjy Qi
k i,i'eSy P k
1
+ Z Z NiNi’ Z M,U’j1 Z Ea]sh 3334) QlﬁQZ]SQZ JIQZ J4
k#k' €Sy i’ €Sy J1,J3,74 ae{k k'}
= Z Z Py Xikjsja Dokjugs Skjija T Z Z M MJ1Z]3J4Ek31J3ZkJ1J4
k j1.43.J4 k  J1,J3,J4
MkMk/ MkMk’
+2 Z Z — 5 M1 Dk ja Bk js 2k jja T Z Z 73 Mgy s ja Bk s 2k 1 ja
k#K' j1,33,]4 k#K' j1,73,]4

= C51 + Cs2 + 2C53 + Csy

For Cs1, we have

1
051:ZW Z NilNigNi3<MOQini2><Ql1ag ><91279 >

E i1,i0,i3€S),

k
- Z Z M o in Qi2> ) (Qi17szi2>

k i1,i2€S5g
1/2 1/2
Z ( Z MOQilaQi2>2) < Z Ql1vzk922> )
k i1,i2€S} k i1,i2€S
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1/2 1/2
= Z CBl/lk ' 051/%' (B.42)
k
We have by Cauchy—Schwarz that

0511.%—7 Z ZMJ (3W] 22]

Zl,ZQGSk
— > N ig(Z@anQizj)(ZQm’Qm) < lplld,
7417742€Sk J J

and similarly

1 2
Cs12k = 72 Z NilNi2( Z Qiljlzkhjzghh)
k i1,i2€SE

J1,J2
1 2
- M2 Z Niy Ni Z Qiljlzkﬁjzgizjé) ( 2 Qiyjy Qisz)
£ i g2 1o
1 o
= M2 Z i Z Q“lekjljz 22j2) = Zkz I (B.43)
R i J1.j2

Since by Cauchy—Schwarz,

1
k; n= Z ,ujl,ujg Z NiQij Qz]g) ~ M2 Z gy Hjo Z NiNir§ij, i, Qi ]192 J2

Ji Jz 7«€Sk k 4152 1,4’ €Sk,
M2 > (2 m%uu)” < 5p Y S0, < ul} (B.A4)
1,1’ €Sk i ’HESk J

we have in total Csiop < K||p|[f. Combining the result with the bound for Csy1y implies
that

Cs1 < K ||pll3-

Next we study Css using a similar argument.

Csy = Z Z M”lejsﬂzkhjszk‘hh

k 31733734
=2 > M“J1 Z Niy Qi s Qi) ( Z Niy Qi Qi) ( Z Nig Qg Qi)
k  Jj1,73,J4 Zle[n ’L2€Sk ’LgGSk

:Zﬁ Z Z N; N N MOQiQ,QiP,)(QZUQ ><QZ17Q >
k

J1,J2,j3 i1€[n]

12,i3E€ S}
_Z Z MOQi279i3><QBvZQ )
zz,lgé[sk]
2, 1/2
<Z< Z MOQZszs) > <W Z 913729 ))
k 12,13€[Sk] 12,i3€[Sk]
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1/2 ~1/2
ZCSQ/lk 52/2k (B.45)

Observe that Csa1x = Cs11x, and thus Cso1 < ||u|* by (B.43)). With a similar argument as
in (B.44)) we obtain Csaor < ||u||3. Hence we obtain

1/2 ~1/2
Cs2 < Zcm/m 52/2k < Kllpell3-
k
For Cs53, we have

MkMk,
053 Z Z “ar2 Ha Z:k’J3]421‘3]1]3216’]134

k#K j1,73,54
My,
<D D Gt Sk Dk S
k j17j37j4
- Z Z M Mjl Z N QIIJBQHM Z N 9123192233 Z N Q13]1913j4)
k- j1,33:54 kies, k ires, 136
_ZMQM Z Niy Niy Nig (110 Qi Qig ) (i, Qi ) iy, Qi)
k 11,i2E€S
i3€[n]
Z ﬁ Z NizNis </‘ o QiQ’ Qis><Qi23 2in3>' (B'46)
k i9E€Sk,i3€[n]

We then upper bound the last line using a similar strategy as in that we used for Cs; and
(59, respectively. We omit the details and state the final bound:

Css < K |\pll (B.47)

Finally for C54, summing over k, k' we obtain

1
Cs4 < Z Mgy Xjsa Xijrja 2ijrja = M3 Z Ny Nip N (10 Qi Qi3> (Qiy, Qig) (s, le>
J1,J3,74 1,i2,53€[n]

(B.48)

We then proceed as in (B.46]) to control the right-hand side. We omit the details and state
the final bound:

Csa < K|ulld. (B.49)
Combining the results for Cs1, ..., 54, we see that
5 S Kllpll®
Cs < Kllul*

For Cg, we have

Cg < <Z Z N;Ny + Z Z NiNi’> Z Qi 51 5o il 1 4a QZ]1Q’L ]QQz ja

k i3 €Sy k#k' €Sy i/ €Sy J1,J2,94
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1 1 1 1
S Z Z NiNy Z (mzk‘juﬁ + sz1j2> (mzkﬁﬂ + = M J1]4) Qijy Qi 3, vy

k i4'€Sy J1,J2,74

+ Z Ni N/ Z Eaﬂ]? 1172 Z ZaJlM J1J4) thQZ szz ja

kK ae{k k') ae{k k')
1E€Sk,i' €Sy
J1,J2,J4

=: Cg1 + Cpo.
For Cg1, we have

1
Co1 = Z Z Nir Z mzkhjzgkjlﬂﬂhﬂz 5284

k €Sy J1,J2,J4

1
+ 22 Z Nir Z MzkjljzEj1j4ﬂj1Qi’jQQz”j4

k €Sy j1,j2,j4

+ Z Z Ny 21132211j4#g19z 5285, =2 Ce11 + 2C612 + Cg13.
k €Sy 31712734

Relabeling indices, we see that

Co11 =) Y 1 ZkjujohjrjsZhinjs = Cs1

k  J1,92,J4

Hence, Cg11 < K ||p|[f. Next,

M,
CGI2 < g M § Nj12kj1j22j1j42kj2j4 S KH:UJ”47
k J1,42,J4

where we applied (B.46[). Similarly,

M2
Ce13 = Z Z Hja E]Uz 23134Ek32]4 < Z Mgy 2]1]2 E]1]42]2J4 ~ K”,u”4

k J1,92,J4 J1,32,j4

where in the final bound we apply (B.48]) and (B.49)). Combining the results above for
Ce11, Ce12, Ce13, we obtain

Cor < K lulls (B.50)
The argument for Cgo is very similar, so we omit proof and state the final bound. We have
Coz < K||plla-
Thus
Co < K ||ull3

For C;, we have

Cr 5 (Z Z NiNi + Z Z NiNi') Z aii/j1j2aii’j3]4ﬂljlQUsQl Jle Ja

k 1,i'€Sy k#k' i€Sk i'€Sy J1,J2,J3:94
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1 1 1 1
,S Z Z N; Ny Z (Ezk‘ju’g + szljé) (mszM + M 33J4>QU191J39Z ngl Ja

k i4'€Sy J1,J25J3:J4

+ Z Z NN Z Yajrje T 1132 Z Yajsje + JSJ4)QZJIQZJ3QZ 1o i

k#K" j1,J2.J3,J4 ae{kz K"} ae{k K’}
iGSk,iIGSk/
=:C7 + Crpo
Write
1
Cn = Z Z N;iNy Z Wzkﬁhzkhhgwlglﬁgl 5282ja
k i,i’€Sk J1.d2.d8.ds K
1
+22 Z NiNy Z M, Mzmzzkysmgmgmgl 5282 ja
k 1,4'€Sy ]1’]2:.737]4

+ Z Z NilNi Z M2 72 2iia s iy Qijs Qirgy Qirjy =2 Cran + 20112 + O

k i4'€Sk J1,32,33,J4
For C711, we have

071122 Z Zk:j1j2Ekj:aﬂEk]'1j321€j2j4

k  J1,J2,33,J4

1
:ZW Z NilNigNigNi4<Qi1>Qi3><Qi17Qi4><Ql2’Q ><Ql2’Q >

i1 12,13,i4 €Sk

M2 SN Ny N (92, 240,)° Z Z Ni (D2 QS Qi)

k' k igia ks 5,5’
< Z Z 2913] kj]’QMJ' < Zzujzkj]’:uﬂ S KHMH4 (B51)
k igia k3.4

In the last line we applied Cauchy—Schwarz and (B.44)). For C712, we have similarly

M,
Cria = E i E 21 jo Bkjaja Dk ja 2kjaja
k 71,925,334

—ZMQMk Z Nz’lNigNigNi <Q“7Q ><QZI7Q ><9227Q ><QZ27Q >

i1€[n]

12,13,i4 €Sk
M;. M;,
=y 0 > Ny N, Ski,)2 <) e > NuNiy > Q57
k 11€[n],i2€Sk k i1€[n],i2 €Sk Js3’
< Z ﬁ’; Zlﬁjzi;‘j'ﬂj/ < K|l (B.52)
k J:J’'
Next,
M;;
Crz = m Z Eju’z Zj3j4Ekﬁj:szlcjzﬂ
k J1,J2,J3:94
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:Z Z Ni1Ni2Ni3Ni4<Qi17Qi3><Qi17Qi4><QiQOi3><QiQOi4>v
k i1,42€[n]

13,54 €Sk

and applying a similar strategy as in (B.51)), (B.52) leads to the bound Cri3 < K||pl|3.
Thus

Cn S K||plls-

Next , by symmetry and summing over ¢ € Sy,7 € Sy, we have

My M.
Cra = Z M? Z [2Ekj1j22kj3j4 + 2255150 Xkjaga + Ak g Dgaga T D Xjada | Dk js 2k jaja
k#£k! J1,52,935J4
=: 20721 + 2C722 + 4C723 + Cro4

First,

Cra1 < Z Z Ekjrgo Bkjsja Skjigs Hzja = C112 S K||N||4

k J1,92,J3:J4

by (B52). Next,

M. My
Cro2 = Z 2 Z Bk 1o ks a kg1 s 2k g2

k#K J1,32,J3:74
- Z MQMkMk/ Z NilNizNisNi4<Qi1vQi3><Qi17Qi4><Qi279i3><Qi279i4>
11,12€Sk
13,14 €Sy
— Z MQM , Z QZ37 Ek;QM < Z M2M ) Z NigNi4 2913‘72]{7]]/97‘4]
k.k’ 13,54 €S) kK’ 13,54 €S 7.3"
M. M.
<D WS <l (B.53)
kK’

where we applied Cauchy-Schwarz in the penultimate line and (B.44]) in the last line.
For C7s3, we have

MkMk/ Mk
Cra3 = Z M2 Z Lkjr o 2jaja Skji s D jaja S Z Z Yikejr o Disga ki s D

el J1:32:33,J4 k J1:2,33,74
—ZMaM S N Nip Nig Niy (i, Qig) (Qurs Qi) Qi) (i, i)
11,i3ESE
i2,i4€[n]
1
=Y 5m X NaNa(Qy D) (i, )
k igesk,ue[n]
1 1
= izw Z NiSNi4(<Qi3aEin4> <913729 > )
k igesk,i4€[n]
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Using a similar technique as in (B.51)—(B.53) and applying (B.38)), (B.39)) we obtain
Craz S llplld-

Finally, for C794 we have

MkMk’
Crag = Z M2 Z 21 X ja Dby g 2k joja < Z 2512 243 ja 2 Mjaja

k#£K J1,J2,J3,74 71,325,734
1
- W Z NilNi2Ni3Ni4<Qi17Qi3><Qi17Qi4><Qi279i3><Qi2,Qi4>

11,i2,i3,i4€[n]

The details are very similar to (B.51)—(B.53]), so we omit them and simply state the final
bound:

Croa < |lplld

Combining the bounds for Cra1, Cro9, Crag, and Croy yields

4
C7 < K||plls-
Combining the bounds for C1—C7 proves the result.
O
B.4 Proof of Lemma [B.3|
We have
N;
4
50l =B|( 3 oD 3 Zin )|
i€[l—1] r=1 j
= D> 0w0n0iie Y, E[Zijir ZojisZisjars Zujas Zissrs Ztjas Ziniara Dtjas)
11,i2,i3,i4€[0—1] T1,72,73,74
J1,J2:53:44
= Z 0310026030074 Z E [Zi1j17“1 Zi2j27”2 Zi3j3r3 Zi4j4r4] E [ZZjlsZZj2sZ£jgsZ€j4s]
i1,02,i3,i4 €[(—1] T1,72,73,T4
31,J2:53:44
= Z E[Zgjlsthszfjsszfﬂs] Z Gi1€Ui2fo'i3€ai4fE[Zi1j1T1 Zi2j2T2 Zi3j37‘3 Zi4j47“4]
J1,J2,J3,J4 i1,i2,i3,i4€[0—1]
T1,72,73,T4
= Z B Zj1s Zjss Zujss Dtjas| A o .gsia (B.54)
J1,92,J3:J4
In the summations above, 7, ranges over [IV;,].
Observe that
( . . . . .
Q4 if j1 =jo=Js=1Ja
Qyj, €5, if j1 = Jjo = J3,Ja # J1
B[ Zejy s Zejys Zajss Zajasl) S § Qejy Qg if j1 = j2,J3 = ja, Jj1 # J3 (B.55)
Qo Qajs Qoj, if j1 = ja, 1,73, ja dist.
IR VTIR VIR if j1, j2, Js, ja dist.



Up to permutation of the indices ji, ..., j1, this accounts for all possible cases.

To proceed we also bound Aj, ;, j, j, by casework on the number of distinct j indices.
For brevity we define wy = (i, ;) and slightly abuse notation, letting Z,, ; = Z;, jr,. Further
let Zp = {w=(i,r) :i € [{],1 <r < N;}. Our goal is to control

Aj ja,danga = ) 0100200500540 Zoy 1 L jo Lo js L) (B.56)

w1,w2,w3,wi€Ly 1

To do this, we study (B.56)) in five cases that cover all possibilities (up to permutation of
the indices ji,...,j4).

Case 1: j1 = jo = j3 = js. Define j = j;. It holds that

Oi100i200i500i 40 Zsy j 2y j Loy j Zoa ]

4 ot Q. : R
:{ MEZ 1J~ MQZU if wi =w9 =w3=uwy
2 2 2 o2 o2 O Qs . _ _
zlz023eEZw1]EZoJ3] S 0700708218 if w1 = wo, w3 = Wy, w1 # ws

(B.57)

Up to permutation of the indices wi, ..., ws, this accounts for all cases such that (B.57) is
nonvanishing. To be precise, by symmetry, it also holds that for all permutations 7 : [4] —
[4] that if Wr(1) = Wr(2), Wr(3) = Wn(4)> 75 Wr(3); then

2 2
0i150i250i350i4ZE[Zw1jZMQjZW3jZW4j] S in(l)zaiﬂ(3)€Qiﬂ(l)] Z7r(3)j'

In all other cases besides those considered above, we have
0100300500y (B[ Doy j Zuryj Loy j Zsaj] = 0

by independence.
Therefore,

A S 30 0w+ Y oo Qi Qs (B.58)

w€Zy 1 w1Fw3€Ly 1
In the remaining Cases 2—6, we follow the same strategy of writing out bounds for
UilfgigégigéauéE[Zwlh Lo Loy s Zw4j4]

that cover all nonzero cases, up to permutation of the indices wy, ..., ws.

Case 2: j1 = ja = j3,j1 # ja. It holds that

0300500055000 21 1 Loy jy Loy jy Zioyja)

4 : _ _ _
_ {JiléE[Zwl_]l Zw1]4] 7,15 QZl]l 911]4 if W1 = W2 = W3 = w4
2 e : _ _
Uileaz’ngZwlleZwmZwsM < ilﬁaige Qi1 i1 Qg gy Qi if w = wsy,ws = wyg, w1 # w3
(B.59)
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Up to permutation of the indices wy, ..., wy, this accounts for all cases such that (B.59) is
nonvanishing. Thus

4 2 2
Aji i S Z VIR Z 03100550 i i Qizy Qs (B.60)

w€Ty 1 w1F#w3€Ly_
Case 3: j1 = jo,J3 = ja,j1 # j3- 1t holds that

O'ilfaiglo'i3€0'i4ZE[ZW1j1 Zw2j1 Zw3j3 Zw4]'3]
2 2 4 L. L. : _ _ _
zleZth ZUJ1_]3 SJ O-ilg QllJIQH]S if W] = W2 = W3 = W4

w1j1 w373 N

2 o2 g2 : _ _
— 115023€E EZ 051000 Q151 Qi if w = wy,ws = wyg,wy # w3

o2 o2 000, ; — _
112013€EZw1J1ZMJSEszJlZwB ~ z‘lﬁaigéglljlQlUst]lleJs If wi = w3, wy = wg, w1 # wa.

(B.61)

Up to permutation of the indices wy,...,ws, this accounts for all cases such that (B.61)) is
nonvanishing. Thus by symmetry,

4 2 2
Ajvivings S D OheQiniyQiis > 0700 Uiy i (B.62)

w€ZLy 1 w1Fw3€Ly_1

2 2
=+ E Ji1£Ui3ZQi1]1 Qan Qzah stjg

w1Fw3€Ly
Case 4: j1 = jo and j1, j3, ja distinct. We have

Uiléaigéo'igﬁo'idE[ijl ijl Zw3j3 Zw4j4]

ok e T o T ; _ _ _
zleZw1g1Zw1J3Zw1J4 SO VRN RN if wi =wos =w3 =uwy
— o2 o2 e N o ; _ _
- UiléaigﬁEZwlleZwsm Zugja S 010950 Qi1 Qg s Qig g if w1 = wa, w3 = Wy, w1 # w3

o2 o2 N o TN o N o I ; _ _
ZQZEZwljl ZwuaEsz]l Zw2]4 S 03100550 Q2131911%9%2]1Q”Lzm if wi = w3, w2 = Wy, w1 # wy

(B.63)

Up to permutation of the indices wy,...,ws, this accounts for all cases such that (B.63)) is
nonvanishing. Thus

4 2 2
Ajijrsga S Z 0 i Sy iy + Z 0310050 Qi1 gz iy (B.64)

w€Zy 1 w1Fw3€Ly_1
E 2 2 e TP o P o TP
03100450 th 91133 Qzan 91334-
w1F#w3€Ty_1

Case 5: j1,72,J3,j4 distinct. For this final case, it holds that

Uz‘lﬁaz‘gégigﬁauﬁ]E[ijl Zw2j2 ZWSjS ZW4J'4]

zleZwljl L jo L js Zw1]4 ~ zlg Qzljlﬂluz 921]391134 fw =wy =w3=uwy

O-ilfo-ig,f]EZWl]l ZwszZwsJ?, Zw334 ~ ileo-i;ge QZ'1]'1 Qiljz Qigjg Q1'3]'4 if w1 = wo,w3 = wy, w1 # w3
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The above accounts for all nonzero cases, up to permutation of wy,ws,ws,ws. Hence

4 2 2
Aj1712,j3,j4 5 E 0.0 thl Qi1j2QiljSQ’i1j4 + E 03100450 Qiljl QileQingQi3j4-
w€Ty 1 w1F#w3€Ty_1

(B.65)

Finally we control the fourth moment using the casework above. By (B.54) and sym-
metry,

ED} s S BlZujsZujs Zejs ZeslAigigg + D BlZujisZajus Zajrs Zeas) A i i
J J17]a
+ Z Bl Zej1sZ0j1s Zajss Zejss| Ajr i s.gs + Z B[ Z4j1sZ0j15 Ztj3s Zejas) Aj i s g
1773 J1,J3,J4 dist.
+ Z ElZej,s Zjas Zejss Ztjas) Aji ag.ds
J1,J2,33,J4 dist.
=: Flys + Fous + F3ps + Fags + Fs (B66)

By (B55), (B.53), (B.60) ,(B-62), (B.64), and (B.65),
Fus < zmj( TS QQ)

J w€lp1 w1Fw3€Ly

4 2 2
Foys 5 E QZj19€j4( E Uz‘ZQilleilj4 + Z ;510050 Qi1j19i3j1Qi3j4)
J17#ja w€Ty_1 w1F#w3€Ly_

4 2 2
F5 S E erﬁtfjs( E 050 iy Qigjs + E 05100150 i iy Sig s
J1773 w€Ly_y w1Fw3€ELy_q

2 2
+ § Ui14013£Qi1j1 Qi1j3 Qi3j1 Qi3j3>

w1Fw3ELy_1

4 2 2
Fus S ) QéjIQZjSQm( > ok Qun Qs Qi+ D ThiTe Qg iy Qi

J1,J3,ja dist. w€ZLy_1 w1Fw3€Ly 1

2 2
+ E 0310050 Qi1j1 QZ'1j3 Qi3j1 Qi3j4')

w1Fw3ELp_

4
FE)ZS § Z ijl ijz ngSng4 < E 00 Qi1j1 Qi1j2 Qi1j3 Qi1j4
J1,42,33,Ja dist. WET_1

2 2
+ Z 03100550 Qiljl Qi1j2 Qisjs Qi3j4> .

w1F#w3€Ly_1

Define

Pass= Y oY Qi
j

wELy_1

4
oy = Z O Z Q€j1Q€j4Qi1j192'1j4
w€Ty_y J1#Ja
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4
F31£s = Z 0.0 Z Qéj19€j39i1j19i1j3
weZy J1#353
4
Fyes = Z 0.0 Z QéjlQ£j39€j49i1j1911j3(2i1j4

w€Ty 1 J1,J3,J4 dist.

F5105 = E 0.0 g ijl Q@g Qéjg Q£J4 le Qzuz 921]3911]4
wELyp_q J1,J2,J3,Ja dist.

and

_ 2 2 0. .O. .
Fiops = E 03100430 E QZJQWQW
J

w1Fw3€Ly_1
_ 2 2 e T o T
Foges = Z G109 30 Z Qejy Q0 iy 1 Qi y Qs
w1Fw3€Ly_1 J1#ja
_ 2 2 0. . . O 0. -0 .0, .
F3o05s = Z 03100450 Z [Qéjlﬁfj:sQll]lQZSJs + Qf]lﬂfJ:sQllﬂQlljsglsjlglsm]
w1Fw3€ELy_1 J#43
_ 2 2
Fyzes = Z 0414030 Z [Qfﬁ Q05 Q0 i 1 Qi 5 iz a

w1Fw3€Ly—1 J1,J3,j4 dist.
+ ijl ijs Q£j4 Qi1j1 Qi1j3 Qi3j1 Qi3j4]
_ 2 2 . . . O . 0. . 0. . 0. .
Fso05 = E : 0109530 § : Qe ey Qs gy Qi 1 iy o i s Qi g

w1F#w3€ly_ J1,J2,73,Ja dist.

Note that Zizl Fip0s = Fys for all ¢ € [5]. Using the fact that Zj Q;; = 1, we have

Y Fuis SFus= Y, oy Q= Y ol ). (B.67)
t J

w€eLy_1 weLyp_1

To control ), Fyas , observe that, since €;; <1 for all 4, j,

Zﬂeﬂilj = (g, Qi; 0 Q)

J

D Qi g, iy Qs Vi < (i, Quy 0 Qi) - (U, Q)
J17Ja

Z [ijl ijsgiljl Qi:sjs + Q£j1 ijsgilh Qilj:sQis]i lejs] < 2<va Qi1> : <Q€7 de>
J17#73
> [ Q5 Qg iy iy Qi + Qs i Qs iy s iy isa] < 20, iy ) (R, i)
J1,J3,Ja dist.
Z Q051 Qo Qs oy Qi1 iy p Qg i iy < (Q, Qi1>2<Qf7 ng>2

J1,52,33,Ja dist.
These bounds are relatively sharp, and it is clear that the first and third lines dominate.
Furthermore as. Hence,

Zthes S Floes + Faaes S Z 070050 [ (Q, Qiy 0 Qi) + (Qu, Qi) - (Q, Qi)
¢

w1Fw3€Ly_q

(B.68)
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Observe that if £ € Si, then

ngeﬁw = Z 4N4NQU + Z Z

1€ESE k= 1Z€Sk/
1 1
N3 3N Phej + 33t
and
Z%zﬂw <2 o N Z Z
zGSk k'= 1z€Sk/
< + 1
= ni Ny Hkj nNM]
Next,

Y Fas > Y ol

(0s) t (6,5) wETy_1

1
<ZZQ€J 3N3/‘k3+mﬂj)
(4,s) 7

1 1
SDI) DTS D) DT E e A
ik TRUR Jj ok L kT Vk

where we applied that [|u||* < Y [lukl|? (see (A.49)). Furthermore,

(B.69)

(B.70)

(B.71)

) Fau < Z D ONE Y oreon e [(Q0 Dy 0 Qi) + (Qu, Q) - (Q, Q)]

(L,s) t k=1/£€S) w1,ws

MNP Evukjww)ﬁ(mj-(
k (€S, k n ]

S5 5 N T (g o’
k (€S,

In the last line we apply Cauchy—Schwarz. Continuing, we have

zszszzNezw o+ i)

k (eSy
<ZZNZZ ) +ZZNZZW
k (eSy k (eSy

Hukllg Hqu 3
< il < il
~ zk: g N Z Z npNi’
where we applied m Combining m and , we have
lell? g~ N3
ZEDES”gZZZFtZSSZ 2N2 Zk:nkaa

(0,s) =1 t=1

as desired.

71

)]

(B.72)



B.5 Proof of Lemma [B.4

Var [ > Var(Eg,s|f<(,g,s))] =0 (B.73)
)

Next we study (B.73). We have

Val‘(Eg7S|]:_<(gvs)) = E[Elg,s|]:<(é,s)] = Ul% Z ZE[ZEerstZEj’r’ZZj’s
r,r’ €[s—1] j.j’

Z ZZeerewa[Zészzg‘/s]

T7T/€ [S—l] j7j/

Z Z Ojj0Zejr Lo (B.74)

rr!€[s—1] 4,5’

(0s)]

where we let

Qu(1- Q) ifj=]
5jj/£ = ]EZZjSZKj’s = J J (B75)
—ngﬂgj/ else.
Define
Pererr = Y 85510 Z0je Dajyr (B.76)
j7j/
By (B.74)) we have
n Ny
> Var(BeslFaes) =YY D 0F urer
(£,s) =1 s=1rr/e[s—1]
n Ny
= Z Z [ Z 0'% Lerer +2 Z O-l? QOEMT’]
(=1 s=1 re[s—1] r<r/€[s—1]
n Ny s
=22, D dewnt2), D> > dleww
£=1 r=1 s€[Ny]:s>r =1 r<r'e[Ny] s€[Ng]:s>r'
= ZZ Ne—r)og SOMTJrZZ > (Ne—1)07 eurir
=1 r=1 (=1 r<r'e[N,]

=51+ 9.

Observe that S and Sy are uncorrelated. In addition, the terms in the summation defining
S1 are uncorrelated; the same holds for Sy also.
First we study So. Next,

2 f— . . . . . .
Eogre = Z 5]1]2 £6J3J4,f BEZj v Zojort Zojsr Lojar
J1,J2,33534
> 0520a00555stB 20 r Zajsr B 0 Ztjar- (B.77)

J1,J2,93:J4
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First we study V5. By casework,
1017200348 Z0j10 Zejsr B Z gy Zojur|
2 2 4
¥ ZEZegrEler' Qéj
2
5J1J1€5J1J45‘E é]lrEijlr'Z£j4T’| ~ QZ]1Q€34
5]1]1€6J3J3€EZ€J1TZZJ3TEZ€J1T’Zf]:ar ~ erlgegg
_ ) s
o 5]1]2€EZ€J1TEZ€JQT ~ Qﬁjlg@z
2
8711100714t BZej1 1 ZjorBZ gy v Zujur S 5,
531]255J1]45EZ€317~EZZJ2T’Z€J47” N Q£319£329Zj4

2 2 2
05152053 5al B L1 Zejsr B Zyjor Zijunt S 9@19@2 erg

Q€j4

Q£J4

Up to permutation of the indices ji,...
forms above. By (B.78)) and Cauchy—Schwarz, we have

(B.78)
ifj1 ==/
if j1 = jo = J3,J1 # Ja
it j1 = Jjo,J3 = Ja, J1 # J3
if j1 = js, jo = ja, J1 # Jo

lf]l :j27j1>j3aj4 dist.
lfjl :j37j17j27j4 dist.
ifj17j2aj3aj4 dist.

,J4, all nonzero terms of (B.77)) take one of the

Erer S 11903+ 1190312017 + 2019015 + 2031921 + 192]1° < 11€2l13- (B.79)
Recalling that {@ee }o <re[N,] are mutually uncorrelated, it follows that
Var(S2) < Z Z (Ny — )2 03B 4
{ r<r’e Nd
YD (Ne—=r) ol
£ r<r’'€[Ny]
1
SO ONS WHQZHi (B.80)
k €Sy Tk
Next we study S1. We have
2
BQfror = Y 051int0sjust B Z0jir Ztjor Ztjsr Ztjar-
J1,J2,J8,J4
We have the following bounds by casework.
‘5j1j215j3j4fEij1Tij2Tij3TZﬁj4r| (B.81)
( . .
82 B2, S QF; ifj1=-=0
5]1]165]1]4£|EZ£‘717‘Z£]47’| QKJIQZM if jl = j2 = j37j1 ?é j4
5]1]15(5]3]35]}32(]17“2@37“ ~ QZJ19EJ3 if jl = j27j3 = j47j1 7é j3
- 5 1J2ZEZZ2J17' Zj27' ~ 96‘719‘6‘72 lf ]1 = ]3’]2 = ]47]1 # ]3
5]”13(5]3%4|EZ£]1TZ[J3TZ5J4T| N 923196]39634 if j1 = jg,jl,jg,j4 dz’st.

3 02 02
6]1]255]1J4£|E Z]erZJ2TZ£]4| Qﬂjlﬂ@gﬁﬂﬂ
o

J1325513J4€|EZKJNZ@2TZKJSTZ€J4T| ~ Q€]1 ngg erg Qm

if jl :j3aj17j27j4 dist.
if J1,72,73, Ja dist.

Up to symmetry, this accounts for all possible (nonzero) cases. Hence by Cauchy—Schwarz,

E¢frer S 119213 + Q21319212 + 1921 + 1192113 + 19201° + 121319201 + 12l1® < 12115

73
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Recalling that {(pgrgr}g’re[ N, 1s an uncorrelated collection of random variables, we have

Var($1) 3 D (Ne = r)20iEet,,

0 T‘E[Ng]

S D WNe—r)ofllull}

l TE[N[]

SN ONE WHWH%-

k €Sk

Combining (B.83) and (B.80) proves the result.

B.6 Proof of Lemma [B.5l

We have
4 _ . , . . A . ) A
]EEZ,S = Z Z EZojir1 Zj1sZjors Zejos Lejsrs Lijss Ltjars Ltjas
r1,r2,r3,r4€[s—1] J1,J2,J3:74
4
=0y Z [E[Zéjlszejgszejgszms] : Z

J1,J2,33,34 7‘177'277'377'46[8_1}

(B.83)

]E[Zejl""l ijm"z Z€j37“3 ZZj4T4]

=:Bu,s141 .9.43.44

We have by exhaustive casework that

|E[ij17‘1 ij2T2Z€j3r3212j4r4]|
EZZ]”,l ~ 9@1

EZgijEZgjlrs S 97,

E[Z3;, 1, Zejar ]| S Qujr Qi
|E[Zejlr1EZéj1mZej4r3] 07, jy
EZ2. 7

Z]ng‘ ~

S

Lj1m1 Q45,055

|E[Zej1r1 Z€j3r3” ~ Qfmgfjs

E[Zejiri Zejsri BZej, 0 Zijars ]| S 9@19@3

[B[Z2;, 1, Ztisr Zar )| S Qujy Qs Qi

E[ KjlrlEZZj3r3Z€j4T3” S Q05,53 Qe

B[ Ztjs 1 Ztjsm B Ztjs s Ztjars )| S Q5 Qujs e

’E[Z@ln Zjor Lijyr Z€J4r1]| ~ Q€J19€J2Q€JSQ@4
[

L |E Zf]m memEZKJam Z€J4r3]| ~ thgfmgﬂaaﬂﬁu

74

if J1=J2=J3=J4;
T1=T2=T3=T4

i 1 =i2=is=as
T1=T2,r3=T4,r17£73

if J1=J2=J3,j17]4;
T1I=T2=T3=T1

i 1=d2=0s.01 7745
T1=T2,T3="4,r17T3

if J1=J2,J3=J4,J1773;
T1=T2=T3=T4
£ J1=02:J3=]4,017]3;
r1=r2,r3=r4,r1#rs
f]l =352,J3=J4,J17J3;
T1=T73,r2="r4,r17#r2
if J1=J2,J1,J3,j4 dist;
T1=T2=T3=T4
if J1=72,71,73,54 dist.;
T1=72,r3= T4,T1;«ér3
if J1=2:01,08,54 dist.;
r1=r3,r2= 7"4,7'1757"2
if J1,J2733,J4 dist;
=Tro=T3=T4
if  Jud2.ds.a dist;
T1=T2,T3=T4,r17T3

(B.84)

(B.85)



Up to permutation of the indices ji, jo, j3, j4 and r1, 19,73, 74, this accounts for all possible
cases such that (B.85|) is nonzero. Therefore,

sQuj, + 5*°Q7; ifj1=J2o=Js=Ja
s, gy + 5 QZﬂQgﬂ if j1 =J2 =Js, 1 # Jja
Bisijy josgasgs S 4§ 55, Qejs + 52, Quj if j1 = Jo, J3 = Ja, n # Js
505, Qjs sy + 570, sy ey if j1 = Jj2,J1, 3, ja dist.
5905, D0, Qs Vejy + 575, Q5 Qe Qo if j1, j2, 3, ja dist.

Up to permutation of ji, j2, j3, j4, this accounts for all possible cases. Returning to (B.84]),
we have by applying (B.55)) and the previous display that

EE;, S0} < D Qu(sQus + Q7 + Y Qg Qg (5Q05, Qg + 5, )

J 1774
) Qs Qe (5905, Qs + 5"y Qo)
N1#73

D Q5,00 (500, sy iy + 5° Qg Qjy U,

J1,J3,ja(dist.)
2
+ g Qi1 Qjy s Qg (805, Qg Qi Ly + 57 Qg 25, Q2 m))
J1,32,J3,Ja dist.
2 2 4 3
1|12 + s207]|l3-

< so¢

In the third line we group the coefficients of s and s? and use the fact that [|Qq||* < [|Q0]|3
by Cauchy—Schwarz. Therefore

D EE; S ) sopllull® + ) s o1l

(£,s) (£,5) fs)
=>.> > +3 00> Sl

k LSk s€[Ny] k LSk s€[Ny]
1
SZZNZQ 4N4||Q€||2+ZZN€ 4N4||Q€||ga
k (eSy k (€S, "Nk
as desired. O

B.7 Proof of Lemma [B.6l
We have

N; Q;
S R < i X Nl
k €Sy kszSk
_ 2
_zk:n%N]?‘MkH ,

which establishes the first claim.

75



Similarly,

N3[9 1
> JJN4”3_Zn4N4 ST NiNaNaw Y Q4 Qs

k €Sy ko Rk i mom/es), j

1 3
< E =

which proves the second claim.
The third claim follows similarly and we omit the proof.

C Proofs of other main lemmas and theorems

C.1 Proof of Lemma 2.1]

We start from computing E[(fu; — fi;)?]. Write X;; = N;(Q4;+Y;;). It follows by elementary
calculation that

o 11
g =iy = g =+ (= ) SNYy = Y 721\71@
ket Yk €S}, 1<0<K £k tics,

For different k, the variables ), s, IViYij are independent of each other. It follows that

El(ag — 1)) = (s — i)+ (-~ ) [(ZNYU)] g#j B[ Ny) ]

n N,
ki¥k 1€Sy

:(:uk:j_,“j)2+ ZNQU (1—9Q4) + Z ZNQU (1 —Q5)
<nkN’“ nN) €S, Gtk i€S,
1 n N
2 k{VE
= (:ukj - :uj) + nQNQ (1 nN ) ; NQZ] - QZ])
1€SK
1
+n2N2{( )ZNQU —0)+ 3 Y Ny - ”)]
1€S) L:l#£k €Sy
1 n N
2 kiVk
:(Nkj_/‘j) +n2]\72< )ZNQZJ - ZJ)
k="K 1€Sk
1 [Z NNy,
—_ NiQui (1 — Q) — —— ZNQ” - ”)}
- nNngNy, €Sk nN 14€8,
ons

(C.1)

Since X;; follows a binomial distribution, it is easy to see that E[X;;] = N;€;; and E[X%] =
(E[Xi;])* + Var(X;;) = NiZng + N;€Q;;(1 — Q;5). Combining them gives

E[XZ](NZ — X”)] = NZ(Nl — 1)Qij(1 — Q”) (CZ)
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Define

s 1 e N, Xij(N; — X
Cj = (i — 1) = (1 - ) > M~ Xy)

niN? nN = N; -1 ’
It follows from (C.1))-(C.2) that
ElGis] = (i — 17)? = —— iy (C.3)
kj Hkj — g nNnka kj- .

We are ready to compute E[T]. By definition, " = ) ?:1 > le nkafkj and p? = ; i (Hki—
p;)?. Consequently,
K 1 1 K
_ )2 = 52 )
= g nka[ Kk :u]) nNng Ny 5k]:| =p nN § E Okj - (C.4)

j=1k=1 j=1 k=1

We use the definition of dz; in (C.1). It is seen that for each 1 < j < p,

K K K niN
SUTED 9D SACHIBESIN ) S0 D 35 SRTHCRE B RCE
k=1

k=11ieSk k=1 (=145,
Combining (C.4)-(C.5) gives E[T] = p?. This proves the claim. O

C.2 Proof of Theorem [3.3

First we show that

Var(T) < ©, (C.6)
Recall
K p B
On1 = 42 anNk(,Ukj — 15) bk,
k=1 j=1
K P 2 N3
S S [ S
2=2) ) ) N, nN/) N,—1
k=1i€Sy j=1

9 p
Onz = N2 N2 Z Z Z ZNiNinijj

1<k#4<K i€S, meS; j=1

n4—2z 3 Z(nka — )NN i Q.

k=11€S,meSy, j=1
i#m

and that Zizl Ona = O,,.
By Lemma we immediately have

Var(lngl) S @nl. (C?)
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For Us, it is shown in the Proof of Lemma that

Vartyr) =133 Y =y I + o1

k=14€Sy 1<r<s<N; = °
Thus

Var(1,Us) 422 > N(]\f )||Q|\2

k= leSk 1<r<s<N; "

22 D017 = O, (C.8)

k=11i€Sk

Next we study Us. Using that Q,,;» <1 and ||Q;||; = 1, we have
Z nkneNkNe

— 1(Sk 0 o)1, < Z Z Z ZNN Qi Qi Qi Qe

k#L k#L i€S, meSy 3,5’

LY X Y NN, Vfhs 2

k#Li€S, meS, j

= nQNQZZ Z ZNN il

k#Li€S, meS, j

Therefore by Lemma [A.4]

p
Var(].;Ug) 5 n2§v2 Z Z Z ZNleQUQm] = @ng. (09)

1<k#0<K i€S, meS, j=1

Similarly for Uy, we have by the Proof of Lemma that

K
Var(U) =430 30 i (30 Q24 + Gim)

k=11€S;,meSy J
<m
K
S Z Z Kim Z Qi = Opg. (C.10)
k=1 iESk,mesk 7
<<m
Above we use that |§;,| < Zj :Qm; and recall that kg, = (—nklm — ﬁ)gNiNm.

Observe that by Lemma

nl—4zznka i = 1) g S x|k oo - p* = max |[uplloc - BT (C11)
k=1 j=1

Since (3.1]) holds, Lemma applies and

Ony + Ong + Opa < D [lx*. (C.12)
k

Combining (C.6|), (C.11)), and (C.12)) proves the theorem. O
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C.3 Proof of Theorem [3.4]
To prove Theorem we must prove the following claims:

(a) Under the alternative hypothesis, 1 — oo in probability.

(b) For any fixed a € (0,1), the level-a DELVE test has an asymptotic level of « and an
asymptotic power of 1.

(c) If we choose a = av, such that o, = 0 and 1—®(SNR,,) = o(e,), where ® is the CDF
of N(0,1), then the sum of type I and type II errors of the DELVE test converges to
0.

We show the first claim, that ¢y — oo, under the alternative hypothesis and the condi-
tions of Theorem In particular, recall we assume that

P nN||af*?
K K
VI a2 /S 2

Our first goal is to show that

— 00. (C.13)

T/+/Var(T) 2 oo (C.14)
under the alternative. By Chebyshev’s inequality, it suffices to show that
ET > /Var(T). (C.15)
By Theorem (3.3
Var(T) 37 Iyl + gl BT = S il + gl 7 (C10)
By (C.13)),
K
ET = p* > ; Ikl = max |lge/loo-
Therefore,
JJimax Nl - p < p* = ET. (C.17)
Moreover, by ,
S lunll? < ot = (BT (C.18)
k

Combining (C-16), (C-17), and (C-18) implies (C-14).

Next we show that V' > 0 with high probability (i.e., with probability tending to 1 as
nN — 00). Recall that by Lemmas [A.6] |A.10, and [A.11]

EV = Op3 + Opz + Ons 2 Y ul* > 0, and (C.19)
k
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Var(V) S5 el > liaxl3 (C.20)
~ - niN,f - n, N,

Using this, the Markov inequality, and (3.4]), we have

4Var (V')

P(V < E[V]/2) <P(]V —E[V]| > E[V]/2) < EV)2

= o(1), (C.21)

which implies that V' > 0 with high probability.
To finish the proof of the first claim, note that the assumptions of Proposition are
satisfied and we have V/Var(T') = Op(1). By this, (C.14)), and (C.21), we have

_ Tlyso _ Var(T) . T 1 S T s
VV VV \/ Var(T) VRO \/ Var(T)

(8

in probability.

The second claim follows directly from the first claim and Theorem [3.2}

To prove the third claim, by Chebyshev’s inequality and 7'/\/Var(T) — oo, it follows
that T > (1/2)ET = (1/2)p? with high probability as nN — co. By a similar Chebyshev
argument as above, it also holds that V' < (3/2)EV with high probability as nN — occ.
Recall that EV = Op2+ O3+ 6054 < 3 ||| by Lemmas and Thus, with high
probability as nIN — oo, we have
nN|plPwn

Vi lul?

Choosing «,, as specified yield the third claim. The proof is complete since all three claims

¥ =Tly=o/VV 2 p*/VEV 2 SNR,,.

are established.
O

C.4 Proof of Theorem [3.5]

Without loss of generality, we assume p is even and write m = p/2. Let u € R™ be
a nonnegative vector with ||u|y = 1/2 . Let g = (¢/,p/) € RP. We consider the null

hypothesis:
We pair it with a random alternative hypothesis. Let b1,b2,...,b, be a collection of
i.i.d. Rademacher variables. Let z1,29,..., 2K denote an independent collection of i.i.d.

Rademacher random variables conditioned on the event | >, 2| < 100V K. For a properly
small sequence w, > 0 of positive numbers, let

o, - . — {,u,j(l —&—wn(nka)_l(% ZkEK ’I’Lka)Zka), if 1 S] < m,i c Sk;
: LY ~ N o . . .
,uj(l — wn(nka)_l (% ZkeK nka)zkbj_m), iftm+4+1<j<2m,i €S
(C.23)
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In this section we slightly abuse notation, using w,, to refer to the (deterministic) sequence
above and reserving w(f2) for the random quantity

1
nV |ulf?

K
w(Q) = S Wik — il (C.24)
k=1

As long as ~ ~
mink nka mink nka
wn < =

then €;; > 0 for all ¢ € [n],j € [p]. Furthermore, for each 1 < i < n, we have ||Q;||; =
2||pelli = 1. We suppose there exists a constant ¢ € (0, 1) such that

cK'nN <npN, < ¢ 'K 'nN  for all k € [K] (C.25)
With (C.25) in hand, we may assume without loss of generality that
wp, < ¢/2 (C.26)

This assumption implies that (C.23)) is well-defined and moreover ;; =< p;.
Next we characterize the random quantity w(£2) in terms of wy,.

Lemma C.1. Let w?(Q) be as in (C.24). When Q follows Model (C.23)), there exists a
constant c1 € (0,1) such that ciw? < w?(Q) < ¢ w2 with probability 1.

The proof of Lemma is given in Section By Lemma under the model
(C.23)) it holds with probability 1 that

V|| *w?(2)

K
V 2= l?

Above we use that £;; < p; , since we assume ((C.26)
We also require Proposition below, whose proof is given in Section [C.4.2]

= K~V2nN||p|w?. (C.27)

Proposition C.1. Suppose that (C.25) and (C.26]) hold. Consider the pair of hypotheses
in (C.22)-(C.23) and let Py, and Py be the respective probability measures. If

nN | ] 2?()
Sy ekl

then the chi-square distance between Py and Py converges to 0.

= K~'2nN|p|w? — 0,

Now we prove Theorem Let 6,, denote an arbitrary sequence tending to 0. Without
loss of generality, we may assume that d,, < ¢* for a small absolute constant ¢* € (0,1).
Note that K~1/2nN > 1 since K < n. Thus for appropriate choice of sequences of = [n

and w, < ¢/2 in models (C.22)), (C.23]) and applying (C.27)), we obtain
V]| w?(2)

K
2 = [l

26, > > 6. (C.28)
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Recall the definitions of O, and QF, in (3.8)). Let II denote the distribution on { =
N;, Qi 6)F € QF  induced by (C.23]). Let & denote the parameter associated to the
in

simple null hypothesis in (C.22)) associated to our choice of y and w, satisfying (C.28]). We
have by standard manipulations,

R(Q5,, Qi) := inf sup (W =1)+ sup Pe(V =0)
0 1 veq{0, 1}{569()”(60’6” £€QY, (6nic0.en) }

Sup [Pe(U =1) +Pe(V =0)]

= inf
Ve{0,1} LeeQr (cosen),E'€Q3, (6nico,en)

{
> inf { sup ngn [Pg(‘l’ =1)+ P (¥ = 0)} }
{

\I/E{O,l} 'EEQOn Co,en

> inf
ve{0,1}

— inf {IP’O(\II = 1)+ Py(T = 0)}.

Ben |Peo(¥ = 1) + Fe(¥ =0)] }

ve{0,1}

In the last line we recall the definition of Py and Py in (C.22) and (C.23]), noting that for
all events F,

P (E) = Eeron Per(E).

Next, by the Neyman-Pearson lemma and the standard inequality TV(P, Q) < v/x?(P, Q)
(see e.g. Chapter 2 of [Tsybakov| [2008]),

R(Qon» Qin) > Wé?él}{Po(W =1)+P(T = 0)}

=1- TV(Po,Pl) Z 1-— XQ(P(],Pl).

By Proposition as 8, — 0 we have x%(Po,P;) — 0 and thus R(Q},,, Q%,) — 1, as
desired.
O

C.4.1 Proof of Proposition

Next, we perform a change of parameters that preserves the signal strength and chi-squared
distance. The testing problem and has parameters €2;;, IV;, Ny, ng,n, and K.
Let Py and IP; denote the distributions corresponding to the null and alternative hypotheses,
respectively. For each k € [K], we combine all documents in sample &k to obtain new null
and alternative distributions I@’o and Ip’l with parameters Qij, Ni, Ni, n;,n, and K such that

K=K=n

N; = n;iN; for i € [K]

N; = N for i € [K]

iy =1 for i € [K] . (C.29)
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For notational ease, we define N:=N = % ZkE[K} niNj. Furthermore, we have Q; = I

for all i € [A] under the null €; = y; for all i € [] under the alternative. Explicitly, in the
reparameterized model, we have the null hypothesis

H[) : Qz = ﬂ, 1 < 1 <n. (C.30)
and alternative hypothesis
(14w N71N2‘b' if1<j<m,
H: Q= (1 + wn o i) =J= (C.31)
,uj(l —wnN Nzlb] m) ifm+1<j5<2m.
for all i € [K] = [K] = [2]. Observe that the likelihood ratio is preserved: dPO = ;lgo and

also w() = w(€2). For simplicity we work with this reparameterized model in thls proof.
If z1,..., 25 are independent Rademacher random variables then with probability at
least 1/2 it holds that

1>zl < 100v7 (C.32)

by Hoeffding’s inequality. Recall that our random model is defined in where (i)
21, ..., zp are independent Rademacher random variables conditioned on the event | ), ;| <
100v/7, and (i) by, ..., by, are independent Rademacher random variables.

Now we study w?(Q). For each 1 < j < m, we have ﬁij = 11j(1 +w, N, Nz;b;). Define
nj = (fLN)_l Z?:l Nlﬁlj = ,uj(l —I—wnfbj) for 1 < j <m and n; = (’FLN)_l Z?:l Nzﬁz] =
fij(1 — wpzbj) for m < j < 2m. We have

ZZN ij = 1) —QZZN i — 2)°b}

=1 j=1 i=1 j=1

TL
= 22 N2l SN (= - 2)
=1

By (C32), |2| < 100v/A. Thus |z — 2| < 1. Write N, = (2~ 131", N;™1). Tt follows that

nop
ST NS - 0)? =< 2N AN

i=1 j=1

Note that N > N,. Additionally, by assumption (C.25), N; < N < ¢ IN,. It follows that
n p s _
> Ni(Quj —ny)® = AN |ulPw;. (C.33)

Moreover, [|n||? = f 1 1 2(1 4+ wyzb;)2. By our conditioning on the event in (C.32)),

|wn2bj| < wan V2,
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Since w, < 1 and }; b; = 0, we have

Il = llxll* + 2“2 22" = [P+ O] = Il (C.34)
J=1
Hence
~ ~ ﬁf b NZ ﬁl —n;)?
Wwi(Q) = W?(Q) =< w2, where recall w(Q2) = izt ij1~ (2 i) . (C.35)
nN|n]|
This finishes the proof. O

C.4.2 Proof of Proposition

In this proof, we continue to employ the reparametrization in (C.29). As discussed there,
this reparametrization preserves the likelihood ratio and thus the chi-square distance.
By definition, x%(Po,P;) = f(%ﬁdl?o — 1. It suffices to show that

/(Zﬁ;) dPy = 1+ o(1). (C.36)

From the density of of multinomial distribution, dPo = [T, ; [L;{ij , and dPy = By ([, ; Q).

ij
It follows that _
dPl Qz A\ Xij
— =E,, <7J) .
dP, b, [H H = }

Let b0 = (bgo), .. ,552))’ and 20 = (z&o), e zg )) be independent copies of b and z.

We construct (25?) similarly as in (C.31)). It is seen that

/(Zﬁ;) dPy = ExE, _ 40, .0 [ﬁH< 0,0 ) ]

i=1j5=1
n QZQ
ZEb,z7b<o>,z(o>{HEX [H : H
i=1 j=1
norda Q”Q
ZEb,z,bw),z(m{H(ZMa 72 ]}
i=1 Vj=1
n p
= Elexp(M)], with M := ZNlog(Z 7100 ) (C.37)
=1 7=1

Here, the third line follows from the moment generating function of a multinomial distri-
bution. We plug in the expression of €;; in (C.23)). By direct calculations,

p
Zﬂ 10,00 Zug 1+ w N Nziby) (14 waN; N 2080)
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)

+Zug 1= Ny N 235) (1 — wo N N 050)

_2HMH1+2ZMJ 2N 2N22’1 (O)b b()
7j=1

_1+22,u]w N N2z ()b b()
7=1

We plug it into M and notice that log(1 + ¢) < t is always true. It follows that

M<ZN QZ,uJ - ZZ bb()—QNw (Zn: )(Z,u]b b0)> =M™
i=1

(C.38)
We combine ((C.38) with (C.37)). It is seen that to show (C.36)), it suffices to show that
Elexp(M™)] =1+ o(1). (C.39)

We now show ((C.39). Write M; = Z?ZI(NZAN)Z,-ZZ-(O) and My = Z] 1 14ibj b( ),
Recall that we condition on the event (C.32)). By Hoeffding’s 1nequahty, Bayes’s rule,

and ((C.32),
P(|Mi| > t) (yzz > ¢ ' |Zzi| <100V, | Y A7) < 100\/%>

_ (| pD¥ *Zz ’ 2 t)
P15, 5| < 100v7) B(| 5, 27| < 100v7)
t2
<4. 2eXP<—8 Z?:l(Ni_lN)Q)

t2
=38 (—T>
exXp 37

for all ¢ > 0. In the last line, we have used the assumption of N; =< N. By Hoeftding’s
inequality again, we also have

12 t2
PUML] > 1) < 2exp(— b ) = 2exp(— <)
83 w3 8] [1

for all t > 0. Write s2 = vaNw?2||u|. It follows that

P(M* > t) = P(2Nw2 M M > t) = P(Mi M > t - Vil |57 ?)
<P(M; > Vt-Vis;') +P(Ma > Vi ||ulls3?)

t t
<son(- ) + 2o )
n 53

n

< dexp(—ert/s2), (C.40)

for some constant ¢; > 0. Here, in the last line, we have used the assumption of N; =< N.
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Let f(z) and F(x) be the density and distribution function of M*. Write F(z) =1 —
F(z). Using integration by part, we have Elexp(M*)] = [J° exp(x) f(z)dx = — exp(ax) F(2)|F+
Jo~ exp(z)F(z)de = 1+ [;° exp(z)F(x)dz, provided that the integral exists. As a result,
when s; = o(1),

Efexp(M*)] — 1 = /0 " explt) - P(M* > 1)
< 4/000 exp(—[c1s5? — 1]t)dt
<Aersyt — 1)t =dsp/(c1 — 7).

It implies E[exp(M™*)] = 14-0(1), which is exactly (C.39)). This completes the proof. because

nN|plw? _ nN||plw]

VE T Sker Il

si = VaNwy|lul =

C.5 Proof of Theorem [3.6

First we show that

T/+/Var(T) = N(0,1), and (C.A41)
V/Var(T) — 1. (C.42)

If (C.41) and (C.42) hold, then by mimicking the proof of Theorem we see that ¢ is
asymptotically normal and the level-a DELVE test has asymptotic level a. We omit the

details as they are quite similar.
Recall the martingale decomposition of T described in Section |B] Observe that, under
our assumptions, Lemmas [B.IHB.6| are valid. Moreover, by Lemmas [A.8 and [A.12]

2

nN . (C.43)

mM N
n]\7—i—rn]\2f77 nN +mM

Var(T) Z 6n2 + @n3 + @n4 Z ‘

Combining ((C.43) with Lemmas B.6|and mimicking the argument in Section [B.1|implies
that T/v/V = N(0,1). Thus (C.41) is established.

Moreover, ((C.42)) is a direct consequence of our assumptions and Proposition The
claims of Theorem regarding the null hypothesis follow.
To prove the claims about the alternative hypothesis, it suffices to show

T/+/Var(T) — oo, (C.44)
V > 0 with high probability, and (C.45)
V = Op(Var(T)). (C.46)
Once these claims are established, we prove that ) = T1y+¢/vV — oo under the alterna-

tive by mimicking the last step of the proof of Theorem in Section We omit the
details as they are very similar.
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Note that (C.46) follows directly from our assumptions and Proposition
As in the proof of Theorem in Section to establish ((C.44)), it suffices to prove
that

ET = p? > Var(T). (C.47)

Our main assumption under the alternative when K = 2 is

ln — 0|
(C.48)
(v + r) max{llnll, o1}
As shown in Section we have that
4
Var(T) S On = Op1 + Y Oy (C.49)
t=2
Applying (C.17) to the first term and Lemma to the remaining terms, we have
nN 2
Vi S 05 [[0]loo = =
or(T) S w101} 24 |0t
< max{|Inll, 1011} - p? + max{||n|1?, 16]*} (C.50)
Next, note that
p* = nN|n =l + mM|6 - pu|®
_ n mM 2
= N — — — — —
" H” 5 ey ey e vid)
_ nN mM 2
M6 — — - — — 0
m H s ey vy e vid)
- mM nN
=nN- - (—— 9] M (——— 9]
a0 (Y o g mar () )
nNmM 1 1 _
_ 92 = (— + —— — 02 C.51
— =01 = (i + )l -l (©51)
By (C.48), (C.50), and (C.51)), we have
(ET)* p
Var(T) ~ max{|lnl[, 0]} - p* + max{[[n||>, [|6]*}
S I — 0] (= Hn 0| )2
~ G ) max{[nll, 101} Gig + o) max{[Inll, 1611}

which proves (C.47)) and thus (C.44]).
To prove ((C.45)), we mimick the Markov argument in (C.21]) and use that under our

assumptions, Var(V)/(EV)? = o(1) . We omit the details as they are similar. Since we

have established ((C.44)), (C.45)), and (C.46|), the proof is complete. O
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C.6 Proof of Theorem [3.7

Note that 7'/y/Var(T) = N(0,1) by our assumptions and Proposition In particular,
using that n — oo and the monotonicity of the £, norms we have

Kllpl* — nllpl* —n (ul* n

4 4 4
1722 e 17 o S /7

Moreover, V*/Var(T) — 1 in probability by Proposition It follows by Slutsky’s theo-
rem that ¢* = T//v/V* = N(0,1) and that the level-oe DELVE test has an asymptotic level
a.

To conclude the proof, it suffices to show that 1* — oo under the alternative. As in the
proof of Theorem this follows immediately if we can show

T/+/Var(T) — oo, (C.52)
V* > 0 with high probability, and (C.53)
V* = Op(Var(T)). (C.54)

Note that follows from , and is the content of Proposition Since
our assumptions imply that EV* > /Var(V*), follows by a Markov argument as in
(1C.21])).

O

C.7 Proof of Theorem [3.8

We apply Theorem to get the asymptotic null distribution. Since N; = N and p =
p~11,, it is easy to see that Condition is satisfied under our assumption of p = o(N?n).
Therefore, by Theorem * — N(0,1) under Hy.

We now show the asymptotic alternative distribution. By direct calculations and using
> iz 0ij = 0 and 3°F_, 6;5 = 0, we have

nNs; nNs; n(1+ 67)
1,5 i, %

We apply Lemmas and plug in the above expressions. Let S = 1,Us. It follows
that

_ % <mﬁn 1> W _ o.—1
» P ” + ) here Var(S)=2p 'n[l+o0(1)]. (C.55)

First, we plug in 82 = ay/2p/(N+/n). It gives p~'nNB2 = \/2n/p. Second, p~'v/nN B, <
(np)~Y/4\/n/p = o(x/n/p). Tt follows that

T =a\/2n/p+ S+ op(\/n/p), where Var(S) = (2n/p)[1 + o(1)]. (C.56)

Recall the martingale decomposition S = Z(e 5) Ey s where Ey is defined in (B.4).

Observe that Lemmas and hold (even under the alternative). Define E;; =
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E;s/+/Var(S). Using Var(S) = nY, [|€%]|* and these lemmas, it is straightforward to
verify that the following conditions hold:

ZV&I‘(E@}(S‘I;(&S)) E} 1 (057)
(£s)

STEEL, o (C.58)
(69)

As in Section the martingale CLT applies and we have

S/+/Var(S) = N(0,1).
By [C:55,
T/+/Var(S) — N(a,1). (C.59)
By Lemma and ,

Var(S) = [1 + 0(1)]On2 = [1 + o(1)]Var(T')
By Proposition we have that V*/Var(T) — 1 in probability. As a result,

V*/Var(S) — 1, in probability. (C.60)

We combine ((C.59) and (C.60) to conclude that » = T/VV* — N(a,1).

D Proofs of the corollaries for text analysis

D.1 Proof of Corollary

Note that Corollary follows immediately from the slightly more general result stated
below.

Corollary D.1. Consider Model and suppose that Q = pl! under the null hypothesis
and that Q) satisfies under the alternative hypothesis. Define € € R" by & = N™'N;
and let Q = Q[diag(€)]Y2. Let Ai,..., Ay > 0 and Xy, ..., A > 0 denote the singular
values of Q) and ﬁ, respectively, arranged in decreasing order. We further assume that under

the alternative hypothesis,
_ Mo~
WEDIIEPY:

Vb A

For any fized o € (0,1), the level-ae DELVE test has an asymptotic level o and an asymptotic
power 1. Moreover if N; < N for all i, we may replace Zﬁ/lzz /\z with Zi\/lzz /\z in the

numerator of (D.1)).

— 00. (D.1)
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Proof of Corollary[D.1 This is a special case of our testing problem with K = n. Moreover,
p = n~1Q¢ matches with the definition of y in (I.2]). Therefore, we can apply Theorem
directly. It remains to verify that the condition

NS (D.2)
VIR A
is sufficient to lead to the condition
|| *wn (D.3)
> 119412

If we show this then Theorem applies directly. We first calculate w?. Recall & = N;/N
for 1 <i <n. Write

Q = Qldiag($)]"?, €= [diag(§)]"*1n.
For K = n, by (3.13), wg = owie 2iet Nill 2 — plf*. 1t follows that

w? = H Q — pl)[diag(¢ 1/2H Q —ME’H? (D.4)

il
" ”HM”2 " onlul?

Recall that 5\:, . )\ M are the singular values of Q. We apply a well-known result in linear
algebra [Horn and Johnson, 1985, namely Weyl’s inequality: For any rank-1 matrix A,
1€ — A% > Dokt )\2 In (D.4), ), u€ is a rank-1 matrix. It follows that

6> YR 05)
k=2

Hence
N7 N, M 5 \T M 5
nNlplPed o NSl X NSl X
T2 Q M ’
VoIR = el N>y

which implies (D.3)) by our assumption. The first claim is proved.
Next we prove the second claim. Observe that if N; < N , then by Weyl’s inequality:

1
2 2
W= o SN 2 1% — il
n Tl 2 Nl Tl |2Z :

1 112 1 2
TGS T g ZAk
] lul? 2

Thus
G Y M G M
”NHMHQWEL > N'Zk:2 )‘i _ N'Zkzz )‘i‘

4112 Q N M
VEAP =9l SRy

We see that the assumption

N-M N2
N2, (D.6)
M )\2
\V 2ak=1"%
implies (D.3]). The second claim is established and the proof is complete. O
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D.2 Proof of Corollary

Recall the construction of a simple null and simple (random) alternative model from Section
specialized below to the case of K =n and N; = N:

(14 ibi), f1<j5<
H, - QZ] _ [NL]( WnZj ]) 1 >J > m (D8)
uj(l — wnzibj_m), iftm4+1<75<2m
where b1, ..., b, are i.i.d. Rademacher random variables and z1, ..., z, are i.i.d Rademacher

random variables conditioned to satisfy | >, z;| < 100y/n. Define
b=(b1,...,bpm,b1,... bp).

To derive the lower bound of Corollary we assume without loss of generality that wy, is
a sufficiently small absolute constant.

We claim that H; prescribes a topic model with M = 2 topics. To see this, under the
alternative,

; (D.9)

0 — ,u,o(lp-f—wng) if 2z, =1
po (1, —wpb) if z; = —1.

Moreover, we showed in Section that €;; > 0 for all 4, j and that ||€2;;]|; = 1. From
, we see that Q = AW where A € RP*2 and W € R?>*" are defined as follows:

Aq=po(lp+wyb), As=po (1p_wnl~))
1,0) ifz =1
W — (1,0)" if z
(0,1) if z; = —1.
Moreover, under the null hypothesis, 2 clearly prescribes a topic model with K = 1.

Therefore Q follows the topic model (@.1]). Moreover, since N; = N, we have Q[diag(¢)]'/? =
Q.

By Proposition specialized to our setting, we know that the x? distance between
the null and alternative goes to zero if

VN plwn = 0.
Thus to prove Corollary [4.2] it suffices to show that
M
ND pso Y _ N)

NSy

Accordingly we study the second largest singular value of . First we have some pre-
liminary calculations. Let U = {i : z; = 1}, and let V = {i : z; = —1}. Define

> VN i (D.10)

u=po(l,+wyb), and

91



v=po(l,—wyb).
Observe that
(w,v) = |ull? = wpllpo b1 = [|ul*(1 = wp).
Also, since wy, is a sufficiently small absolute constant,

lull> = llpel® + 2wn s, 10 B) + il o bl = (L + wi) ll? + 200 Y~ 41305 2 |lpl|?, and
i

oll* = [l1l1® = 2wn{, o b) + willpwo b = (1 + wp)llull® = 2wn Y 415 b5 2 llull. (D.11)
j

Again, since we assume that w, is a sufficiently small absolute constant,

o (w? a1 — w2)? R 1 e
Jull?lvf2 (1 +w2)?[[pll* = dwd(p, pob)? = (1 +wd)?(|pll* — 4w |[pll*
4 2\2 2\2
1-— 1-—
SN 7O O D12)
Hﬂ“ (1+2wn_3wn) 1+2wn _3wn
Note that

law + bol|* = a®[[ull* + 2ab(u, v) + b*[[v]|* > a®[|ul]* + b*|[v]|* — 2abd]|ul][lv]
> (1= 8)(a®[[ull® + 6°[|vl*) + llaw — bol|* > (1 = 8)(a®[|ull* + b*[[v]]?).

By (D.12), we have for w,, sufficiently small that

L s>1_ 1—w? :\/1+2w%—3w%—1+wz
- V14 2w2 — 3w V14 2w2 — 3wt
w?L > 2

> 2 wh.
V14 2w?2 — 3w

Thus
law +bv]|? > wi (@®[ul|® + 2 [|0]?) Z willpl*(a® + b%) (D.13)
Recall that if M is a rank k matrix, then

Ae(M) = sup Myl = sup 1Myl (D.14)
yillyll=1, yeKer(M) * yillyll=1,yelm (M)

We have

Q0 = Zuu’ + Zvv’ = |Uluu' + |V]vo'.
icU ieV

Let y € R™ satisfy [|y]| = 1 and y = 'z for some 2. We have

Qy = Q0 z = |U|(u, z)u + |V|{v, x)v.
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By the previous equation and (D.13)),

2

19y]1? = |QQz|* = ‘ U {u, 2)u + Vv, 2)v|| 2 wpllul* (U (u, 2)* + Vv, 2)%).

By our conditioning on z, we have min(|U|,|V|) 2 n. Moreover
1= Iyl = 12all? = [U](u, )2 + [V](v,2)2.
Applying these facts and , we obtain
A 2 1l = 1190 2 whllul*n(|Ulu, 2)? + [VI{v, 2)%) = wyllul*n.

Next,

M
DN =RAE =Dl + D ol = UL ull® + [V] - [loll* = |l (D.15)
k=1 icU icV

We conclude that

NZ%Q )‘% _ N)3 > N - wpllpl*n _ 2
\/Zk:l Ak \/Zk:l Ak
which establishes (D.10]). The proof is complete. O

D.3 Proof of Corollary 4.3

This is a special case of our testing problem with K = 2, we can apply Theorem [3.6]directly.
It remains to verify that the condition

B2 (sl + 18s]11)
(7% + ) max{|[n]l, [0]1}

is sufficient to yield the condition (3.11)) in Theorem This is done by calculating ||n—6]|?
directly. By our sparse model (4.4), for j € S, [\/nj — /0| > By It follows that for j € S,

Inj = 031" = (Vi + V/03)* (V5 = V)" 2 BVl + /03)° = Br(nj + 05).

It follows that

— 00 (D.16)

ln = 01> > 82> (n; + 05) = Ba(llnslh + [10s]1)- (D.17)

jES
We plug it into (3.11]) and see immediately that (D.16)) implies this condition. The claim
follows directly from Theorem O
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E A modification of DELVE for finite p

Below we write out the variance of the terms of the raw DELVE statistic under the null,
using the proofs of Lemmas

1 N?
Var(1,U2) —222 >« nka nN)ZW[HQ il = 201%l13 + [19]"] (B.1)
k= 1zesk 1<r<s<N;

Var(1/ 2N2 Y3 S NN, (Z Q4 Qnj — 2 Z QFO0%,; + D Qe )

k#L i€S meSy 4.3’

var(1;U4)=22 3 (n:Nk nN)NN (ZQMQmj—2ZQZQ]QiL]+ZQHQ Qi )
J

k=14€S),meSy J
i#Em
In this section we develop an unbiased estimator for each term above, which leads to an
unbiased estimator of Var(7T') by taking their sum. We require some preliminary results
proved later in this section. Recall that Lemma was established in the proof of Lemma
AT

Lemma E.1. If j # j', an unbiased estimator of QS is

S X X
QO = el
YEHTNG(N; - 1)

Lemma E.2. An unbiased estimator of Q?j 18

2 3
_ X2 — Xy

ng = NN 1) (E.2)

Lemma E.3. If j # j', an unbiased estimator for 92 92 4 18

(X3 — Xij) (X7 — Xij)

Ni(N; — 1)(N; — 2)(N; — 3)

202 _
Q7 =
Lemma E.4. An unbiased estimator of Q?j 18

;= N;(N; — 1)(N; — 2)°

Lemma E.5. An unbiased estimator of ij 18

Xglj - 3X§j - ij + 3X;
Ni(N; = 1)(N; = 2)(N; = 3)

.
0l = (E.4)

Define

o2 -— N 02
196112 := Y Q3
J
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TLEB =S~ 08
=320

)] := Zﬂ Yy aza, (E.5)
J#5’

Using Lemmas and (E.5), we define an unbiased estimator for each term of (E.I).
Let Qij = XU/NZ and define

1 N2
W) =23 Y Y (A e N e o el e
k= 17,6.5‘;c 1<r<s<N; nka nN (N N 1)

Var(1,03) = n2N2 Y3 S NN (Z Qi — 2 293]93@ + Z Vi3 Qi g o )

k#L i€S, meS, Jig’

Va@4)=2z y (nklNk ) NilNy, (ZQUQW—2ZQZ2]Q;]+ZQUQ Qi )

k=14i€SL,meESy

Define
V = Var(1)Us) + Var(1,Us) + Var(1,U3). (B.7)

We define ezact DELVE as ¢ = T/ vz, Combining our results above, we obtain the
following.

Proposition E.1. Consider the statistic 1% defined in (E.7). Under the null hypothesis, 1%
is an unbiased estimator for Var(T).

With this result in hand, it is possible to derive consistency of V as an estimator of
Var(7T') under certain regularity conditions. We omit the details.
E.1 Proof of Lemma [E.]]

Recall that Bjj, is the Bernoulli random variable B;j. = Z;;. + €;; and satisfies X5, =
Zyjy:il Bij,. Observe that

Xinij’ = Z BijrBij s Z BzgrBz] r+ Z Ble‘BZ] s = =0+ Z Bl]T‘BZ] s
7,8 r#s r#s

Thus
EXinij’ = .ZVZ(]VZ — 1)QijQij’a

and we obtain
o X X
Qi = —2
I NG (N — 1)

is an unbiased estimator for 2;;€2;;/, as desired. O
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E.2 Proof of Lemma [E.3

Note that
X%XZQJ/ = Z Bijr + Z Bz]ers Z Bijor + Z Bij TBU §
rs r#s
_ Z Bz]er .+ Z BUTBZ] s+ Z Bwrles Z sz ro T Z Bz] rle] s Z Bz]rz
T1#£T T1#£8 r17s
Z BijrBijs Z Bz‘j’rBij’s
r#s r#s
- Z Bijr Bijrs + Z Bijr, Bijs ZBZJ ry T Z Bijir, Bij's Z Bir,
r1#£T r1#£s TS
Z BijrBijs Z Bz‘j’rBij’s
r#£s r#s

Since B;j,B;j = 0, note that

(XZZJ—X )(X2 Z Z Bz]rlejslBle2B’U 52

T1#£81 T2F#52

= § : BZJrlBljslBZJ TZBZJ s2°

r1,81,r2,82 dist.
Thus

E(X] - Xi) (X5 — Xig) = Y. E[Bijr Bijs, Bijry Bijrs,)

71,81,r2,82 dist.
= Ni(Ni — 1)(N; — 2)(N; — 3) - Q3,07
It follows that
(X3 — Xi) (X7 — Xijr)
Ni(N; — 1)(N; — 2)(N; — 3)

ZZ
02,07, =

is an unbiased estimator for Q?J ij

E.3 Proof of Lemma [E.4

Recall that B;j, is the Bernoulli random variable B;;. = Z;; + {};; and satisfies X;;, =
27{\/;1 Bij.. Observe that

Z szr +3 Z Bz]rl Bz]rg Z Bijm BijT2BijT3‘
r1#r2 T1FTaFT3

Thus

EX7: = Ny + 3N;(N; — 1)Q3; + No(N; — 1)(N; — 2)€23;.

96



Unbiased estimators for €2;; and Q?j are
N;
X5 Xii(Ni = Xij) 1

= X2 _ X..
N?  NA(N;—1) Ni(Ni—l)( 5~ Xu);

(2

respectively. Hence

X} = Xij = 3(X7 — Xi5) = X35 — 3X )+ 2X;

is an unbiased estimator for N;(N; — 1)(1V; )QE’J, as desired.
O
E.4 Proof of Lemma [E.5
Observe that
ZB’L]T +4 Z BzgrlBljrz +6 Z Bzym iJT2
r17#r r17#£r
+3 Y B BinBirs+ Y BijriBijry Bijrs Bijrs
T1£T2F£TS T1AT2ETI AT
= Z B’L]r + 10 Z Bz]rl Bz]rg +3 Z Bz]rl Bz]rng]rg
r17#r2 r1#r2F£T3
+ Z Bijr BijroBijrs Bijry-
r1F#T2FET3FErs
Thus
EX}; = NiQij + 10N;(N; — )Q? + 3N;(N; — 1)(N; — 2)Q;
NN — 1)(N; — 2)(N; — 3)92
Plugging in unbiased estimators for the first three terms, we have
X — Xij = 10(X7, — Xij) = 3(XJ; — 3X7 + 2X5) = Xjj; — 3X5; — X[ + 3Xy;
is an unbiased estimator for N;(N; — 1)(V; — 2)(IV; — 3), as desired. O
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