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Abstract

Making accurate inference for gene regulatory networks, including inferring about

pathway by pathway interactions, is an important and difficult task. Motivated by

such genomic applications, we consider multiple testing for conditional dependence

between subgroups of variables. Under a Gaussian graphical model framework, the

problem is translated into simultaneous testing for a collection of submatrices of a

high-dimensional precision matrix with each submatrix summarizing the dependence

structure between two subgroups of variables.

A novel multiple testing procedure is proposed and both theoretical and numeri-

cal properties of the procedure are investigated. Asymptotic null distribution of the

test statistic for an individual hypothesis is established and the proposed multiple

testing procedure is shown to asymptotically control the false discovery rate (FDR)
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and false discovery proportion (FDP) at the pre-specified level under regularity con-

ditions. Simulations show that the procedure works well in controlling the FDR and

has good power in detecting the true interactions. The procedure is applied to a

breast cancer gene expression study to identify between pathway interactions.

Keywords: Between pathway interactions, conditional dependence, covariance structure, false

discovery proportion, false discovery rate, Gaussian graphical model, multiple testing, precision

matrix, testing submatrices.

1 Introduction

Simultaneous inference for the interactions among a large number of variables is an important

problem in statistics with a wide range of applications. Many statistical methods have been

proposed to infer about pairwise interactions (Ritchie et al., 2001; Chatterjee et al., 2006;

Kooperberg and Ruczinski, 2005; Kooperberg and LeBlanc, 2008; Fan and Lv, 2008; Cai and

Zhang, 2014; Cai and Liu, 2015, e.g). Most of the existing methods focus on marginal assess-

ments of pairwise interactions without conditioning on the other variables. Such marginal

methods may result in false identification of interactions due to the discrepancy between

conditional and unconditional effects. When prior knowledge is available to group the vari-

ables of interest, it is often of interest to make simultaneous inference for the interactions

at the group level. For example, functionally related genes are often grouped into pathways

and inferring about between pathway interactions is important as they represent a majority

of the genetic interactions (Kelley and Ideker, 2005).

Motivated by applications in genomics, in this paper we propose methods to efficiently

identify between group interactions while accounting for the joint effects from all other vari-

ables of interest. Under a Gaussian graphical model framework, we translate the problem of

detecting between group interactions into the statistical problem of simultaneous testing of

a collection of submatrices of a high-dimensional precision matrix. We first discuss the mo-

tivating problem of detecting between pathway interactions before presenting the framework
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for large-scale multiple testing of submatrices of a high-dimensional precision matrix.

1.1 Detection of Between Pathway Interactions

It is well known that genes interact functionally in networks to orchestrate cellular processes.

Biological interactions of genes are often inferred based on co-expression networks since co-

expressed genes tend to be functionally related or controlled by the same transcriptional

regulatory elements (Weirauch, 2011). Throughout, we use the term gene-gene interaction

to refer to their biological interaction, quantified by conditional co-expression (given all other

genes), rather than statistical interaction unless specified otherwise. Accurately identifying

important gene-gene interactions is a difficult task due to the high dimensionality of the

feature space spanned by gene pairs. Particularly in genome-wide studies where the sample

sizes are typically small compared to the number of interactions of interest, gene level analyses

often produce results that are difficult to interpret or replicate.

One approach to improve the interpretability and reproducibility is to incorporate prior

biological knowledge such as gene structure or protein-protein interaction network informa-

tion to group functionally related genes into pathways and perform analysis at the pathway

level. Throughout, we use the term pathway to refer generically a gene group under study,

whether or not the group is indeed representing a metabolic or signaling pathway. A large

number of knowledge bases have become available to assemble biologically meaningful gene

groups (Xenarios et al., 2002; Rual et al., 2005; Matthews et al., 2009; Craven and Kum-

lien, 1999; Khatri et al., 2012). The knowledge bases provide prior information on biological

processes, components, or structures in which individual genes and proteins are involved in.

Analyzing high-throughput molecular measurements at the functional level is very appeal-

ing due to its potential in reducing the complexity of the problem and improving the power

(Subramanian et al., 2005; Glazko and Emmert-Streib, 2009).

Detecting pathway level interactions is also biologically relevant because in order to

produce appropriate physiological responses to both internal and external factors, pathways
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often need to function in a coordinated fashion due to the complex nature of biological

systems. In addition, there is accumulating evidence that complex traits are often influenced

by multiple groups of functional related genes through their dynamic interaction and co-

regulation (Jia et al., 2011). Therefore, the knowledge of pathway crosstalk network is

helpful for inferring the function of complex biological systems (Li et al., 2008). A wide

range of between pathway crosstalk have been identified as critical for understanding many

diseases including breast cancer, lung cancer, ovarian cancer, major depression disorder, and

Alzheimer (Osborne et al., 2005; Shou et al., 2004; Jia et al., 2011; Liu et al., 2010; Pan,

2012; Puri et al., 2008).

In addition to applications to the identification of between genetic pathway interactions,

the proposed procedures are also useful for other settings. Examples include interactions

between biological markers when markers are measured at different time points with multiple

measurements of each marker representing one group; and interactions between different

brain regions when functional MRI measurements are taken over the entire brain with groups

indexed by brain regions. We next describe our proposed framework for detecting between

pathway interactions based on testing for submatrices of a high-dimensional precision matrix.

1.2 Multiple Testing of Submatrices of A Precision Matrix

Under a Gaussian graphical model framework, we formulate the problem of identifying be-

tween group interactions that account for joint effects from all genes of interest as the statis-

tical problem of simultaneous testing of submatrices of a high-dimensional precision matrix.

Let {X1, · · · ,Xn} be a random sample consisting of n independent copies of a p dimensional

Gaussian random vector X ∼ Np(µ,Σ). The precision matrix, which is the inverse of Σ, is

denoted by Ω = (ωi,j). It is well-known that the precision matrix is closely connected to the

corresponding Gaussian graph G = (V,E), which represents the conditional independence

between components of X = (X1, . . . , Xp)
T. Here V is the vertex set consisting of the p com-

ponents X1, . . . , Xp and E is the edge set consisting of ordered pairs (i, j), where (i, j) ∈ E if
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there is an edge between Xi and Xj, indicating that Xi and Xj are conditionally dependent

given {Xk, k 6= i, j}. It is a well-known fact that the conditional independence between Xi

and Xj given all other variables is equivalent to ωi,j = 0. See, e.g., Lauritzen (1996).

Let J1, . . . ,JM ⊂ {1, . . . , p} be a collection of prespecified non-overlapping sets which

index group memberships (e.g. pathway membership), we wish to test simultaneously the

hypotheses of the conditional independence between any two gene groups given all remain-

ing genes in the collection with proper control of the false discovery rate (FDR) and false

discovery proportion (FDP) asymptotically. It follows from the above discussion that this

multiple testing problem can be equivalently formulated as testing the hypotheses on the

submatrices of the precision matrix Ω,

H0,m,h : ΩJm×Jh = 0 versus H1,m,h : ΩJm×Jh 6= 0, 1 ≤ m < h ≤M, (1)

while controlling the FDR and FDP asymptotically. Hereafter, all results related to the FDR

and FDP are studied in the asymptotic regime and we use FDR and FDP as simplifications

for the expressions of asymptotic FDR and asymptotic FDP.

Simultaneous testing of between group interactions with FDR control is technically chal-

lenging, both in constructing a suitable test statistic and establishing its null distribution for

testing the interactions between any two given groups and in developing a multiple testing

procedure that accounts for the multiplicity and dependency with FDR control. To the best

of our knowledge, there are no currently available methods with theoretical guarantees to

infer about interactions between pre-specified gene groups that adjust for effects from a large

number of other genes. Furthermore, no existing methods allow the testing for such group

level interactions while properly controlling a desired FDR. Liu (2013) proposed a multiple

testing procedure with the FDR control for the partial correlations under a Gaussian graph-

ical model. Xia et al. (2015) considered the problem of identifying gene-by-gene interactions

associated with a binary trait under a two-sample framework and proposed a procedure for

testing the differential network by simultaneously testing entry-wise hypotheses with FDR

control. These methods, which can identify the locations of individual gene-by-gene interac-
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tions, are however unable to detect the presence interactions between pairs of gene groups

while controlling the FDR at the group level.

In this paper, we propose a novel multiple testing procedure for between group interac-

tions that controls the FDR and FDP asymptotically at any pre-specified level 0 < α < 1.

The simultaneous testing procedure is developed in two steps. In the first step, we construct

a test statistic for testing the conditional independence of a given pair of variable groups

Jm and Jh, H0,m,h : ΩJm×Jh = 0, with m 6= h. The test statistic is based on the Frobenius

norm of a standardized submatrix estimate with unknown correlation structure. The esti-

mation of this dependency structure is technically challenging, because correlations among

the estimates of the entries of ΩJm×Jh not only depend on the entries within the subma-

trix, but also largely depend on the entries outside of it. To incorporate this dependency

structure, we estimate the eigenvalues of the correlation matrix of the entry estimates of a

given submatrix ΩJm×Jh through a Kronecker product by estimating the eigenvalues of two

partial correlation submatrices RJm×Jm and RJh×Jh of R = D−1/2ΩD−1/2, where D is the

diagonal matrix of Ω. It is shown that the test statistic has asymptotically the same limiting

null distribution as a mixture of χ2
1 with the estimated correlation structure.

In the second step, we construct a simultaneous testing procedure based on these test

statistics. A major difficulty here is that the correlation structures of the entry estimates vary

across different submatrices. Consequently the limiting null distributions of the test statistics

for different submatrices are different. We introduce a normal quantile transformation for

each test statistic, and the transformed test statistics are shown to have asymptotically the

same distribution as the absolute value of a standard normal random variable under the null.

Based on them, we develop a multiple testing procedure to account for the multiplicity in

testing a large number of hypotheses so that the overall FDR and FDP are controlled.

Both the theoretical and numerical properties of the proposed procedure are investi-

gated. The theoretical results show that, under regularity conditions, the proposed proce-

dure asymptotically controls both the overall FDR and FDP at the pre-specified level. As
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a comparison, it is discussed in Section 4.3 that a direct application of the well-known B-H

procedure (Benjamini and Hochberg, 1995) to the individual test statistics is not able to

control the FDP when the number of true alternatives is fixed. Simulation studies are car-

ried out to examine the numerical performance of the multiple testing procedure in various

settings. The results show that the procedure performs well numerically in terms of both

the size and power of the test. We also consider a simulation setting that is similar to the

breast cancer gene expression data analyzed in this paper by mimicking the true sizes of the

gene groups in the breast cancer study. The result shows that the FDR is well controlled

and this new group level based method significantly outperforms the alternative procedures.

Finally, we apply the proposed procedure to assess the between pathway interactions in a

breast cancer gene expression study. Many of the identified interactions are consistent with

those reported in the literature.

1.3 Structure of the Paper

The rest of the paper is organized as follows. We give a detailed construction of the statistic

for testing a specific submatrix of a precision matrix in Section 2. The limiting null distribu-

tion of the test statistic and the theoretical properties of the testing procedure are obtained

in Section 3. A multiple testing procedure for simultaneously assessing a collection of sub-

matrices is proposed and its theoretical properties are established in Section 4. Simulation

results demonstrating the performance of the proposed methods in finite sample are given

in Section 5. In Section 6, we apply the new multiple testing procedure to a breast cancer

gene expression study to identify between pathway interactions. A discussion on possible

extensions is given in Section 7. All proofs are contained in the supplement Xia et al. (2016).

2 Testing A Given Submatrix

We consider in this section testing a given submatrix of the precision matrix Ω,

H0 : ΩI×J = 0 versus H1 : ΩI×J 6= 0, (2)
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under the framework of Section 1.2, where I and J index two non-overlapping gene groups.

A rejection of H0 means that at least one pair of variables from I and J are not condi-

tionally independent from each other given all other variables. As the group information is

considered as prior knowledge, performing analysis at the group level is more appealing than

the entrywise procedure as discussed in Section 1. We shall construct a test statistic for

H0, corresponding to no interactions between gene groups I and J conditional on all other

genes. Related works on testing for independence and conditional independence between

random vectors can be found in, e.g., Gieser and Randles (1997); Um and Randles (2001);

Beran et al. (2007); Su and White (2007, 2008); and Huang et al. (2010).

2.1 Notation and Definitions

Denote A⊗B the Kronecker product of matrix A and B. For a vector β = (β1, . . . , βp)
T ∈

Rp, define the `q norm by |β|q = (
∑p

i=1 |βi|q)1/q for 1 ≤ q ≤ ∞. For any vector µ with

dimension p × 1, let µ−i denote the (p − 1) × 1 vector by removing the ith entry from

µ. For a symmetric matrix A, let λmax(A) and λmin(A) denote the largest and smallest

eigenvalues of A. For any p× q matrix A, Ai,−j denotes the ith row of A with its jth entry

removed and A−i,j denotes the jth column of A with its ith entry removed. A−i,−j denotes

the (p− 1)× (q− 1) submatrix of A with its ith row and jth column removed. Ar×c denotes

the submatrix of A corresponding to the row vector r and column vector c. For a n×p data

matrix U = (U 1, . . . ,Un)T , denote an n × (p − 1) matrix U ·,−i = (U T

1,−i, . . . ,U
T

n,−i)
T. Let

Ū ·,−i = 1/n
∑n

k=1U k,−i with dimension 1 × (p− 1), U (i) = (U1,i, . . . , Un,i)
T with dimension

n × 1, Ū (i) = (Ūi, . . . , Ūi)
T with dimension n × 1, where Ūi = 1/n

∑n
k=1 Uk,i, and Ū (·,−i) =

(Ū
T

·,−i, . . . , Ū
T

·,−i)
T with dimension n × (p − 1). For a matrix Ω = (ωi,j)p×p, the matrix 1-

norm is defined by ‖Ω‖L1 = max1≤j≤p
∑p

i=1 |ωi,j| and the matrix elementwise infinity norm

is defined to be ‖Ω‖∞ = max1≤i,j≤p |ωi,j|. For a set H, denote |H| the cardinality of H. For

two sequences of real numbers {an} and {bn}, write an = O(bn) if there exists a constant

C such that |an| ≤ C|bn| holds for all n, write an = o(bn) if limn→∞ an/bn = 0, and write
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an � bn if limn→∞ an/bn = 1.

2.2 Testing Procedure

We shall first define a standardized estimate Wi,j for each individual entry of the precision

matrix, which is the one-sample version of the estimates proposed in Xia et al. (2015), then

propose a novel test statistic SI×J based on the sum of all possible W 2
i,j, for (i, j) ∈ I × J .

It is well known that in the Gaussian setting, the precision matrix can be described in

terms of the regression models, see, e.g., Section 2.5 in Anderson (2003). Specifically, we

may write

Xk,i = αi +Xk,−iβi + εk,i, 1 ≤ k ≤ n, (3)

where εk,i ∼ N(0, σi,i−Σi,−iΣ
−1
−i,−iΣ−i,i) is independent ofXk,−i, and αi = µi−Σi,−iΣ

−1
−i,−iµ−i.

The regression coefficient vector βi and the error terms εk,i satisfy

βi = −ω−1i,i Ω−i,i and ri,j ≡ Cov(εk,i, εk,j) = ωi,j/(ωi,iωj,j).

As in Xia et al. (2015), we first develop an estimator of ωi,j and then base the test on its

bias corrected standardization. We begin by constructing estimators of ri,j.

Let β̂i = (β̂1,i, · · · , β̂p−1,i)T be estimators of βi satisfying

max
1≤i≤p

|β̂i − βi|1 = oP{(log p)−1}, (4)

max
1≤i≤p

|β̂i − βi|2 = oP
{

(n log p)−1/4
}
. (5)

Such estimators can be obtained easily via the standard methods such as the Lasso and

Dantzig Selector, see, e.g., Xia et al. (2015) Section 2.3. Specifically, if we use the Lasso

estimator (see (18) in Section 5), then equations (4) and (5) can be satisfied under the

condition (C1) in Section 3 and the sparsity condition max1≤i≤p |βi|0 = o{n1/2/(log p)3/2}.

Define the fitted residuals by

ε̂k,i = Xk,i − X̄i − (Xk,−i − X̄−i)β̂i,
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where X̄i = 1
n

∑n
k=1Xk,i, X̄−i = 1

n

∑n
k=1Xk,−i. A natural estimator of ri,j is the sample

covariance between the residuals

r̃i,j =
1

n

n∑
k=1

ε̂k,iε̂k,j. (6)

However, when i 6= j, r̃i,j tends to be biased due to the correlation induced by the estimated

parameters. Xia et al. (2015) proposed a bias corrected estimator of ri,j as

r̂i,j = −(r̃i,j + r̃i,iβ̂i,j + r̃j,jβ̂j−1,i), for 1 ≤ i < j ≤ p.

For i = j, we let r̂i,i = r̃i,i, which is a nearly unbiased estimator of ri,i. For 1 ≤ i < j ≤ p,

a natural estimator of ωi,j can then be defined by

Ti,j = r̂i,j/(r̂i,i · r̂j,j).

Since {Ti,j, 1 ≤ i < j ≤ p} are heteroscedastic and can possibly have a wide range of

variability, we shall first standardize Ti,j. To estimate its variance, note that

θi,j ≡ Var(εk,iεk,j/(ri,irj,j))/n = (1 + ρ2i,j)/(nri,irj,j),

where ρ2i,j = β2
i,jri,i/rj,j. Then θi,j can be estimated by θ̂i,j = (1 + β̂2

i,j r̂i,i/r̂j,j)/(nr̂i,ir̂j,j).

Define the standardized statistics

Wi,j = Ti,j/(θ̂i,j)
1/2, for 1 ≤ i < j ≤ p. (7)

Finally, we propose the following test statistic for testing a given submatrix ΩI×J ,

SI×J =
∑

(i,j)∈I×J

W 2
i,j. (8)

We detail in Section 3 statistical properties of the proposed test statistic.

3 Theories on Testing A Given Submatrix

In this section, we investigate the theoretical properties including the limiting null distribu-

tion and the asymptotic power. We first show that the null distribution of SI×J converges

to the distribution of a mixture of χ2
1 variables as (n, p) → ∞ and then demonstrate that

the test based on SI×J is powerful under a large collection of alternatives.
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3.1 Asymptotic Null Distribution

Before studying the null distribution of SI×J , we first introduce the following condition on

the eigenvalues of Ω, which is a common assumption in the high-dimensional setting (Cai

et al., 2013; Xia et al., 2015; Liu, 2013).

(C1) Assume that log p = o(n1/5), and for some constant C0 > 0, C−10 ≤ λmin(Ω) ≤

λmax(Ω) ≤ C0. Suppose |Jm| does not depend on n and p for 1 ≤ m ≤M .

LetD be the diagonal of Ω and let (ηi,j) =: R = D−1/2ΩD−1/2. UnderH0, for (i1, j1), (i2, j2) ∈

I × J , the covariance between the standardized statistics Wi1,j1 and Wi2,j2 , as defined in

(7), is approximately equal to ηi1,i2ηj1,j2 , and thus can be estimated by T̃i1,i2T̃j1,j2 , where

T̃ := (T̃i,j)p×p with T̃i,j = r̂i,j/
√
r̂i,ir̂j,j. Thus, we shall estimate the covariance matrix of

{Wi,j, (i, j) ∈ I ×J } by the Kronecker product of T̃I×I and T̃J×J . Let Λ̂I = (λ̂I1 , . . . , λ̂
I
|I|)

T

and Λ̂J = {λ̂J1 , . . . , λ̂J|J |)T be the eigenvalues of T̃I×I and T̃J×J respectively. We then

estimate the eigenvalues of the covariance matrix of {Wi,j, (i, j) ∈ I × J } by Λ̂
I×J

=

(λ̂I×J1 , . . . , λ̂I×JK )T which is the vectorized Λ̂I ⊗ Λ̂J , where K = |I||J |. The following theo-

rem states the asymptotic null distributions for SI×J .

Theorem 1 Suppose that (C1), (4) and (5) hold. Then under H0 : ΩI×J = 0, for any

given t ∈ R, we have

P(SI×J ≤ t)

P(
∑K

l=1 λ̂
I×J
l Z2

l ≤ t)
→ 1, (9)

as (n, p)→∞, where (Z1, . . . , ZK) ∼ N(0, IK×K).

Remark 1 The difficulty of Theorem 1 comes from the fact that, though ΩI×J = 0 under

the null, the entries {εk,iεk,j, (i, j) ∈ I×J } can still be highly dependent with each other and

their correlations depend on the entries outside of submatrix ΩI×J . Thus, the distribution

of SI×J cannot be simply estimated by the chi-square distribution. Actually, if we use the

chi-square approximation in the following FDR control procedure in Section 4, the choice of
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threshold level of each statistic will be too conservative and as the result the FDR cannot

be controlled at the pre-specified level α, i.e., the FDR will be much larger than α.

It has been shown in the above theorem that SI×J has different asymptotic distribution

for different submatrix ΩI×J . Thus, we introduce the normal quantile transformation of

SI×J as follows

NI×J = Φ−1

{
1− P(

K∑
l=1

λ̂I×Jl Z2
l ≥ SI×J )/2

}
,

where Φ(t) = P(N(0, 1) ≤ t) is standard normal cumulative distribution function (cdf)

and SI×J is the observed value. Thus, we have P(|N(0, 1)| ≥ NI×J ) = P(
∑K

l=1 λ̂
I×J
l Z2

l ≥

SI×J ). Since asymptotically SI×J and
∑K

l=1 λ̂
I×J
l Z2

l have the same distribution as studied

in Theorem 1, thus NI×J asymptotically has the same distribution as the absolute value of

a standard normal random variable. We then define the test ΦI×Jα by

ΦI×Jα = I
{
NI×J ≥ Φ−1(1− α)

}
. (10)

The hypothesis H0 : ΩI×J = 0 is rejected whenever ΦI×Jα = 1.

Remark 2 The eigenvalues {λ̂I×Jl , l = 1, . . . , K} are calculated based on T̃I×I and T̃J×J as

described earlier. Given the values of {λ̂I×Jl , l = 1, . . . , K}, the distribution of the mixture

of χ2
1 variables

∑K
l=1 λ̂

I×J
l Z2

l can be approximated by a non-central chi-squared distribution

with the parameters determined by the first four cumulants of the quadratic form, see, e.g.,

Liu et al. (2009). We will use this approximation in our numerical studies.

3.2 Asymptotic Power

We now turn to analyze the power of the test ΦI×Jα given in (10). For a given pair of index

sets I and J , we shall first define the following class of precision matrices

WI×J (α, β) =
{

Ω :
∑

(i,j)∈I×J

ω2
i,j

θi,j
≥ (2 + δ)(Ψ2

1−α + Ψ2
1−β)

}
, (11)

for any δ > 0, where Ψ1−α is the 1− α quantile of
∑K

l=1 λ̂
I×J
l Z2

l as defined in Theorem 1.
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The next theorem shows that the test ΦI×Jα is able to asymptotically distinguish the null

parameter set in which ΩI×J = 0 from WI×J (α, β) for arbitrarily small constant δ > 0,

with β → 0.

Theorem 2 Suppose that (C1), (4) and (5) hold. Then we have, for any constant δ > 0,

inf
Ω∈WI×J (α,β)

P
(

ΦI×Jα = 1
)
≥ 1− β, as n, p→∞. (12)

Since θi,j is of order 1/n, Theorem 2 shows that the proposed test rejects the null hypothesis

H0 : ΩI×J = 0 with high probability for a large class of precision matrices satisfying the

condition that there exists one entry of the submatrix ΩI×J having a magnitude larger than

C/n1/2 for C = {2(2 + δ)C2
0(Ψ2

1−α + Ψ2
1−β)}1/2, where C0 is given in Condition (C1).

4 Multiple Testing of Submatrices with FDR Control

In practice, there are typically many pathways under investigation and it is often of significant

interest to identify which pairs of the pathways interact with each other. A natural approach

to investigate interactions among the M pathways, indexed by {Jm,m = 1, . . . ,M}, is to

carry out simultaneous testing of

H0,m,h : ΩJm×Jh = 0 versus H1,m,h : ΩJm×Jh 6= 0, for 1 ≤ m < h ≤M , (13)

where J1, . . . ,JM ⊂ {1, . . . , p} is a collection of pre-specified non-overlapping index sets.

In this section, we introduce a multiple testing procedure with FDR and FDP control for

testing a collection of M = M(M − 1)/2 hypotheses, and we shall assume that M is large.

Let Lm denote the cardinality of Jm assumed to be independent of n or p for 1 ≤ m ≤ M .

Let H = {(m,h) : 1 ≤ m < h ≤ M}, H0 = {(m,h) : ΩJm×Jh = 0, 1 ≤ m < h ≤ M}

be the set of true nulls and H1 = H \ H0 be the set of true alternatives. We shall assume

that |H1| is relatively small compared to |H|, and this assumption arises frequently in many

contemporary applications.
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4.1 Multiple Testing Procedure

Recall that the standardization of Ti,j is defined by Wi,j = Ti,j/(θ̂i,j)
1/2 as in (7), and the

test statistic SJm×Jh is defined based on Wi,j as in (8). It has been shown in Theorem 1 that

SJm×Jh has different asymptotic null distribution for different submatrix ΩJm×Jh . Thus, as

discussed in Section 3.1, the normal quantile transformation of SJm×Jh is defined by

NJm×Jh = Φ−1

{
1− P(

LmLh∑
l=1

λ̂Jm×Jhl Z2
l ≥ SJm×Jh)/2

}
,

and NJm×Jh approximately has the same distribution as the absolute value of a standard

normal random variable under the null H0,m,h. Let t be the threshold level such that H0,m,h

is rejected if NJm×Jh ≥ t. For any given t, denote the total number of false positives by

R0(t) =
∑

(m,h)∈H0

I{NJm×Jh ≥ t}, (14)

and the total number of rejections by

R(t) =
∑

(m,h)∈H

I{NJm×Jh ≥ t}. (15)

The false discovery proportion (FDP) and false discovery rate (FDR) are defined as

FDP(t) =
R0(t)

R(t) ∨ 1
and FDR(t) = E[FDP(t)].

An ideal choice of t is

t0 = inf

{
0 ≤ t ≤

√
2 logM :

R0(t)

R(t) ∨ 1
≤ α

}
,

which would reject as many true positives as possible while controlling the FDR at the pre-

specified level α. However, the total number of false positives, R0(t), is unknown as the set

H0 is unknown. We propose to estimate R0(t) by 2(1− Φ(t))|H0| and simply estimate |H0|

byM because the number of true alternatives is relatively small. This leads to the following

multiple testing procedure with FDR control.

1. Calculate test statistics NJm×Jh .
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2. For given 0 ≤ α ≤ 1, calculate

t̂ = inf

{
0 ≤ t ≤

√
2 logM− 2 log logM :

2M(1− Φ(t))

R(t) ∨ 1
≤ α

}
. (16)

If (16) does not exist, then set t̂ =
√

2 logM.

3. For (m,h) ∈ H, reject H0,m,h if NJm×Jh ≥ t̂.

4.2 Theoretical Properties

We now investigate the theoretical properties of the multiple testing procedure given above.

For any 1 ≤ m ≤M , define

Ξm(γ) =
{
h : 1 ≤ h ≤M,h 6= m,∃i ∈ Jm, j ∈ Jh s.t. |ωi,j| ≥ (logM)−2−γ

}
.

The following theorem shows that, under regularity conditions, the above multiple testing

procedure controls the FDR and FDP at the pre-specified level α asymptotically.

Theorem 3 Assume that M0 =: |H0| � M, and (4) and (5) hold. Suppose there exists

some γ > 0 such that max1≤m≤M |Ξm(γ)| = o(M τ ) for any τ > 0. Then under (C1) with

p ≤ cnr for some c > 0 and r > 0, we have

lim(n,M)→∞FDR(t̂) ≤ α,

and for any ε > 0,

lim
(n,M)→∞

P(FDP(t̂) ≤ α + ε) = 1.

Remark 3 The technical condition on |Ξm(γ)| is to ensure that most of the submatrices

are not highly correlated with each other. In the special case when max1≤m≤M |Ξm(γ)| = 0,

then all subgroups are weakly correlated with each other, i.e., |ωi,j| ≤ (logM)−2−γ for all

i ∈ Jm, j ∈ Jh with m 6= h. Under this setting, it is shown in the supplement Xia et al.

(2016) that the proposed multiple testing procedure performs asymptotically the same as

the case when all submatrices are independent with each other. We do not need this strong
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condition, and the weaker condition max1≤m≤M |Ξm(γ)| = o(M τ ) for any τ > 0 assumed in

the theorem allows the number of highly correlated submatrices growing with M .

When t̂ is not attained in the range [0,
√

2 logM− 2 log logM] as described in equation

(16), we shall threshold it at
√

2 logM. We state in the following corollary a condition to

ensure the existence of t̂ in the range, and as a result, the FDR and FDP will converge to

the pre-specified level α.

Corollary 1 Let

Sρ =
{

(m,h) ∈ H : ∃(i, j) ∈ Jm × Jh such that |ωi,j|/(θi,j)1/2 ≥ (logM)
1
2
+ρ
}
.

Suppose for some ρ > 0 and some δ > 0, |Sρ| ≥ ( 1√
πα

+ δ)
√

logM. Assume that M0 =:

|H0| � M, and (4) and (5) hold. Suppose there exists some γ > 0 such that max1≤m≤M |Ξm(γ)| =

o(M τ ) for any τ > 0. Then, under (C1) with p ≤ cnr for some c > 0 and r > 0, we have

lim
(n,M)→∞

FDR(t̂) = α, and FDP(t̂)/α→ 1

in probability, as (n,M)→∞.

Remark 4 The condition |Sρ| ≥ ( 1√
πα

+ δ)
√

logM in Corollary 1 is mild, since there are

M hypotheses in total and this condition only requires a few submatrices having one entry

with magnitude exceeding (logM)1/2+ρ/n1/2 for some constant ρ > 0.

4.3 Differences with the B-H Procedure

In this section we first discuss the difference between our method and the Benjamini-

Hochberg (B-H) procedure and then explain why in the multiple testing procedure it is

critical to restrict t on the range 0 ≤ t ≤
√

2 logM− 2 log logM in equation (16) and to

threshold NJm×Jh at
√

2 logM when t̂ is not attained in the range.

Once the test statistic NJm×Jh for a given submatrix is developed, a natural approach

to construct a procedure for simultaneously testing a collection of submatrices is to apply
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the well-known B-H procedure to the p-values pm,h = 2(1 − Φ(NJm×Jh)), 1 ≤ m < h ≤ M ,

computed from the transformed statistics NJm×Jh . Applying the B-H procedure to these p-

values is equivalent to rejecting the null hypotheses H0,m,h whenever NJm×Jh ≥ t̂BH , where

t̂BH = inf

{
t ≥ 0 :

2M(1− Φ(t))

R(t) ∨ 1
≤ α

}
. (17)

Note that, the difference between our procedure and the B-H procedure is on the ranges of

t in equations (16) and (17).

We first emphasize here that the restriction on the range 0 ≤ t ≤
√

2 logM− 2 log logM

in our proposed procedure as defined in (16) is critical. When t ≥
√

2 logM− log logM,

2M(1−Φ(t))→ 0 is not even a consistent estimate of R0(t) because |R0(t)/{2M(1−Φ(t))}−

1| 6→ 0 in probability as (n,M)→∞. However, direct application of the B-H procedure to

the p-values amounts to using 2M(1− Φ(t)) as an estimate of R0(t) for all t ≥ 0, and as a

result it may not able to control the FDP with positive probability. For example, when the

number of true alternatives is fixed, it is shown in Proposition 2.1 in Liu and Shao (2014)

that the B-H procedure cannot control the FDP with positive probability. Thus, in order to

control FDP, it is crucial to restrict t on the range 0 ≤ t ≤
√

2 logM− 2 log logM.

When t is not attained in the range, it is also critical to threshold NJm×Jh at
√

2 logM

instead of
√

2 logM− 2 log logM. When t does not exist in the range, thresholding NJm×Jh

at
√

2 logM− 2 log logM will cause too many false rejections, and consequently the FDR

cannot be controlled asymptotically at level α. If the threshold level is increased to
√

2 logM,

the probability of false rejections can then be perfectly controlled asymptotically as shown

in equation (3) of the supplement Xia et al. (2016).

To summarize, in order to control FDR and FDP, it is crucial to restrict t on the range

0 ≤ t ≤
√

2 logM− 2 log logM in equation (16), and when it is not attained in the range,

to threshold NJm×Jh at
√

2 logM.
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5 Simulation Studies

We now turn to analyze the numerical performance of the proposed multiple testing pro-

cedure through simulation studies. We first investigate the size and power of the proposed

method by considering three matrix models with a random selection of the size of subma-

trices. We then mimic the sizes of the pathways of the breast cancer dataset analyzed in

Section 6 and study the numerical performance of the proposed multiple testing procedure

in a setting that is similar to the real data application. Our method, which tests for the

conditional dependence structure at a group level, is then compared with the entrywise test-

ing method and the B-H procedure. We also compare the new method with the Bonferroni

correction procedure and report the results in the supplement.

5.1 Simulation for Different Constructions of Submatrices

Our analysis is divided into two parts: the performance of the new test statistics for testing

a given submatrix and the performance of the proposed multiple testing procedure. We first

describe the construction of the submatrices. For a given precision matrix Ω, we randomly

divide the upper triangular matrix of Ω intoM submatrices, whereM = bp/sc(bp/sc−1)/2

and s = 2 and 4. Thus the length of the index sets can range from 1 to (p − bp/sc + 1).

This is equivalent to grouping the genes into bp/sc pathways and considering all possible

conditional dependence structure between different pathways of different sizes.

The data {X1, . . . ,Xn} are generated from multivariate normal distribution with zero-

mean and precision matrix Ω. Three choices of Ω are considered:

• Model 1: Ω∗(1) = (ω
∗(1)
i,j ) where ω

∗(1)
i,i = 1, ω

∗(1)
i,i+1 = ω

∗(1)
i+1,i = 0.5, ω

∗(1)
i,i+2 = ω

∗(1)
i+2,i = 0.5.

For each of the submatrices as we constructed above, if it contains one of those entries,

we make the first row of the submatrices equal to 0.5. Let ω
∗(1)
i,j = 0 otherwise.

Ω(1) = D1/2(Ω∗(1) + δI)/(1 + δ)D1/2 with δ = |λmin(Ω∗(1))|+ 0.05.

• Model 2: Ω∗(2) = (ω
∗(2)
i,j ) where ω

∗(2)
i,j = ω

∗(2)
j,i = 0.3 for i = 10(k − 1) + 1 and
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10(k − 1) + 2 ≤ j ≤ 10(k − 1) + 10, 1 ≤ k ≤ p/10. ω
∗(2)
i,j = 0 otherwise. For each

of the submatrices as we constructed above, if it contains less than three of those

entries, we make the submatrices equal to 0. Let the first row of the submatrices

which are closest to the diagonal equal to 0.3. Ω(2) = D1/2(Ω∗(2) + δI)/(1 + δ)D1/2

with δ = |λmin(Ω∗(2))|+ 0.05.

• Model 3: Ω∗(3) = (ω
(3)
i,j ). For each of the two submatrices closest to the diagonal,

as we constructed above, pick a random row and make the entries equal to 0.3. Let

ω
∗(3)
j,i = ω

∗(3)
i,j . Ω(3) = D1/2(Ω∗(3) + δI)/(1 + δ)D1/2 with δ = |λmin(Ω∗(3))|+ 0.05.

where D = (Di,j) is a diagonal matrix with Di,i = Unif(1, 3) for i = 1, . . . , p.

For each generated dataset, we use the Lasso to estimate the regression coefficients βi:

β̂i = D
− 1

2
i arg min

u

{ 1

2n

∣∣∣(X−i − X̄−i)D−1/2i u− (X(i) − X̄(i))
∣∣∣2
2

+ λn,i|u|1
}
, (18)

where Di = diag(Σ̂−i,−i), and λn,i = κ
√
σ̂i,i log p/n.

Performance for testing a given submatrix: We start by comparing our test based

on the test statistic SI×J with the entrywise testing of a given submatrix where the null

hypothesis H0 : ΩI×J = 0 is rejected whenever max(i,j)∈I×J |Wi,j| ≥ Φ−1(1− α/K). As our

target is the FDR control of the multiple comparisons, we focus on the power comparisons of

these two methods for a range of significance levels from 0 to α = 0.1/M. For illustration, we

compare the performance of these two tests by testing against a randomly selected nonzero

submatrix closest to the diagonal for Model 1 with s = 4. For each method, the sample

size is taken to be n = 200, while the dimension p varies over the values 100, 200, 500 and

1000. For simplicity of the comparison, the tuning parameters λn,i in (18) is selected to

be λn,i =
√
σ̂i,i log p/n for both methods. The power curves, illustrated in Figure 1, are

estimated from 100 replications. We can see from the figure that the power of the new group

method is much higher than the entrywise method, and the advantage becomes much clearer

when the dimension of Ω grows.
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Figure 1: Power comparisons of the group method (red, solid) and entrywise method (blue, dash)

for testing a given nonzero submatrix. 100 replications.

Comparison of the multiple testing procedures: We now compare the proposed group

level FDR control procedure (Group) with three other methods: entrywise multiple testing

method (Entrywise), B-H procedure (B-H) and Bonferroni correction procedure (Bonferroni).

For the new method, as described in Section 4, we select the tuning parameters λn,i

in (18) adaptively by the data with the principle of making
∑

(m,h)∈H0
I(NJm×Jh ≥ t) and

(2 − 2Φ(t))|H0| as close as possible. The algorithm is similar as Xia et al. (2015) and is

summarized as follows.

1. Let λn,i = b/20
√

Σ̂i,i log p/n for b = 1, · · · , 40. For each b, calculate β̂
(b)

i , i = 1, · · · , p.

Based on the estimation of regression coefficients, construct the corresponding stan-

dardized transformed statistics N
(b)
Jm×Jhfor each b.

2. Choose b̂ as the minimizer of
10∑
d=1

(∑
(m,h)∈H I(N

(b)
Jm×Jh ≥ Φ−1(1− d(1− Φ(

√
logM))/10))

d(1− Φ(
√

logM))/10 · 2M
− 1
)2
.

The tuning parameters λn,i are then chosen to be

λn,i = b̂/20

√
Σ̂i,i log p/n.

We examine the power of the new method based on the average powers for 100 replications,

1

100

100∑
r=1

∑
(m,h)∈H1

I{NJm×Jh,r ≥ t̂}
|H1|

, (19)
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where r denotes the r-th replication.

For the entrywise multiple testing method, we select the tuning parameters λn,i adaptively

using the principle as described in Section 5 in Xia et al. (2015). We applied the multiple

testing procedure as developed in Section 4 of Xia et al. (2015) by restricting t on the range

[0,
√

4 log p− 2 log log p] and threshold |Wi,j| at
√

4 log p if t̂ is not attained in the range. We

then examine the empirical FDR by

1

100

100∑
r=1

∑
(m,h)∈H0

I{max(i,j)∈Jm×Jh |Wi,j| ≥ t̂}∑
(m,h) I{max(i,j)∈Jm×Jh |Wi,j| ≥ t̂}

,

and the empirical power by

1

100

100∑
r=1

∑
(m,h)∈H1

I{max(i,j)∈Jm×Jh |Wi,j| ≥ t̂}
|H1|

.

We apply the Bonferroni correction procedure to the new test statistics and calculate

its power based on (19), with t̂ obtained by setting αB = α/M. The power of the B-H

procedure applied to max(i,j)∈I×J |Wi,j| are calculated by (19) with no restriction on the

range of t̂.

We apply all procedures to these three models with s = 2 and 4. For each method, the

sample size is taken to be n = 200, while the dimension p varies over the values 100, 200,

500 and 1000. The FDR level is set at α = 0.1 and α = 0.01 respectively, and the empirical

FDRs and powers, summarized in Tables 1 and 2, are estimated from 100 replications. The

standard errors of the estimated powers are much smaller than the powers themselves and

are thus not reported.

The average numbers of conditionally dependent (“true interaction”) and conditionally

independent (“no interaction”) pairs of subgroups with 100 replications are summarized in

Table 3. It can be seen that the number of “true interactions” is relatively small compared

to the total number of pairs of subgroups in all cases, as we assumed in Section 4.1.

The results in Table 1 show that the empirical FDRs of the new group level method

are well maintained under the target FDR level and are reasonably close to α for almost
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all settings. The standard errors of the FDP are small in most cases, especially when the

dimension grows. They are slightly larger in the cases when α = 0.01, mainly due to the fact

that the estimation error of the standard deviation of FDP is of the order 1/l1/2 with l = 100.

As a comparison, the empirical FDRs of the entrywise method have serious distortion in most

of the scenarios, especially when s = 4, in which case the empirical FDRs can be even larger

than 4α. The empirical FDRs of the B-H procedure are well under control in most cases.

However, its standard errors are much larger than the standard errors of the proposed method

in many cases, which coincides with the discussion in Section 4.3. The numerical results also

show that the Bonferroni correction procedure is much more conservative than the other two

methods, and the detailed analysis is summarized in the supplement Xia et al. (2016).

Table 2 shows that the empirical powers of our proposed method for all these models

are very high under various constructions of submatrices. In particular, it outperforms the

entrywise testing method and the B-H procedure. Especially when the dimension is high,

the powers of the new method are much higher than the other methods under all scenarios.

Furthermore, the power gain of the new group level testing procedure over the entrywise

testing method is significant when the dimension is high. Especially for model 3 when s = 4,

the empirical powers of the new procedure are more than twice the entrywise testing method.

This is because the advantage of the group level testing becomes more significant when the

signals spread across various submatrices as in Model 3. We can see from the table that the

empirical power of the new method gets smaller when the dimension p grows. This is because

of the fact that we keep the magnitude of ωi,j invariant for various range of dimensions.

5.2 Simulation by Mimicking the Sizes of Gene Groups

We now consider a simulation setting that is similar to the breast cancer data application

given in Section 6. The submatrices of the precision matrix Ω is constructed by mimicking

the sizes of the 249 gene groups used in the breast cancer application, with parameter values

p = 1624, n = 295 and M = 30876. The sizes of the gene groups range from 1 to 110, and
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p method α = 10% α = 1%

s 2 4 2 4

Models 1 2 3 1 2 3 1 2 3 1 2 3

100

Group 93.8 88.5 84.6 95.2 84.4 73.5 87.8 74.2 69.4 92.3 68.7 54.4

Entrywise 92.8 90.3 85.2 92.8 85.1 67.3 83.4 71.9 66.8 85.9 56.3 28.5

B-H 92.8 88.3 84.6 92.9 81.1 67.2 82.3 66.3 64.5 84.0 50.9 31.2

200

Group 90.4 83.3 72.5 92.6 77.9 58.8 82.6 66.8 56.1 87.9 62.7 42.6

Entrywise 87.6 84.8 71.7 87.3 76.0 45.5 93.6 60.8 47.6 73.6 40.8 15.0

B-H 87.6 81.4 70.9 86.9 71.3 43.3 72.2 54.6 46.7 71.1 33.8 14.1

500

Group 84.3 72.3 56.6 85.9 67.4 41.4 75.1 55.4 40.7 76.0 53.4 27.2

Entrywise 78.7 70.8 50.8 72.5 60.0 24.2 60.0 43.3 25.6 48.3 25.9 5.0

B-H 77.8 66.0 50.4 70.0 52.5 20.3 57.5 36.3 23.8 43.3 19.3 3.0

1000

Group 80.1 63.3 46.4 80.7 59.9 31.9 69.9 57.2 31.8 69.2 46.8 21.1

Entrywise 71.2 59.2 37.1 60.7 48.5 14.5 49.3 31.5 15.5 33.5 18.5 3.1

B-H 69.8 53.1 35.4 56.6 39.9 9.6 45.8 23.9 12.7 27.3 10.6 1.2

Table 2: Empirical powers (%) with n = 200, α = 0.1 and 0.01 respectively, 100 replications.

s 2 4 2 4

Models 1 2 3 1 2 3 1 2 3 1 2 3

p True interactions No interactions

100 72 54 96 29 28 46 1153 1171 1129 271 272 254

200 146 110 196 60 58 96 4803 4839 4754 1165 1167 1129

500 373 279 496 154 147 246 30752 30846 30629 7596 7603 7504

1000 748 560 996 311 297 496 124002 124190 123754 30814 30828 30629

Table 3: Average numbers of true interactions and no interactions based on 100 replications.
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the corresponding sizes of the off-diagonal submatrices range from 1×1 to 97×110. For the

diagonal submatrices Ω∗Jm×Jm := (ω∗m,i,j) with sizes Lm×Lm, m = 1, . . . , 249, which describe

the conditional dependency within the pathways, we let ω∗m,i,i = 1, ω∗m,i,i+1 = ω∗m,i+1,i = 0.8 if

Lm ≥ 2, ω∗m,i,i+2 = ω∗m,i+2,i = 0.6 if Lm ≥ 3, and ω∗m,j,i = ω∗m,i,j. For each of the non-diagonal

submatrices Ω∗Jm×Jm+1
and Ω∗Jm×Jm+2

, we randomly pick one row and let min{10, |Jm+1|}

and min{10, |Jm+2|} random entries of ω∗i,j in the rows equal to 0.5 respectively. We then

construct the precision matrix as Ω = D1/2(Ω∗+ δI)/(1+ δ)D1/2, with δ = λmin(Ω∗)+0.05.

The FDR level is set at α = 0.1 and α = 0.01 respectively.

By mimicking the gene group sizes, we apply the proposed method in Section 4.1, the

entrywise testing procedure, the B-H procedure and the Bonferroni correction procedure as

described in Section 5.1. The empirical FDR and power results are summarized in Table 4,

and the performance of the Bonferroni method is reported in the supplement. The empirical

FDR of the new method is equal to 0.062 when α = 0.1 and is equal to 0.006 when α = 0.01,

and thus both are close to the corresponding pre-specified level. Similarly as in Section 5.1,

the B-H procedure has larger standard errors than the new procedure, while the entrywise

multiple testing procedure has serious FDR distortion. For the empirical powers, it is shown

in Table 4 that, the new testing procedure is more powerful than all the other methods.

p method α = 10% α = 1%

FDR (SE) (in %) Power (in %) FDR (SE) (in %) Power (in %)

1624

Group 6.2 (1.4) 47.2 0.5 (0.3) 33.6

Entrywise 26.0 (2.7) 39.9 2.5 (1.5) 26.0

B-H 11.1 (2.0) 44.9 1.1 (1.0) 19.8

Table 4: Empirical FDRs (SEs) and powers (%) by mimicking the real data with α = 0.1 and

α = 0.01 respectively, based on 100 replications.
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6 Analysis of Breast Cancer Gene Expression Data

In this section, we apply the multiple testing procedure developed in Section 4 to identify

between pathway interactions based on a breast cancer gene expression study as described

in van’t Veer et al. (2002), to further illustrate the merit of the procedure.

This study consists of 295 subjects with primary breast carcinomas whose gene-expression

levels (in log scale) are measured at cancer diagnosis. For illustration, we consider M = 70

breast cancer related pathways, including several major signaling pathways, assembled based

on existing literature (Osborne et al., 2005; Pan, 2012, e.g.). These pathways consist of

p = 1624 unique genes, from the molecular signature database. Examples include the MAPK

signaling, WNT signaling, TGF-β signaling, calcium signaling, cell communication, p53

signaling and breast cancer estrogen signaling pathways. Note that many of the pathways

have overlapping genes while our method requires group indices to be non-overlapping since

two groups with shared genes are obviously dependent of each other. To remove the influence

of such trivial dependence, we further partitioned the 70 pathways into 249 non-overlapping

gene subgroups whose sizes range from 1 to 110 with an average of 6.5. The algorithm used

for such partitioning aims to identify the smallest number of non-overlapping subgroups that

can cover all the genes under consideration. The partitioning algorithm begins with creating

an M × p index matrix, I = [I1, ..., Ip]. For m = 1, ...,M and q = 1, ..., p, the (m, q)th

element of I is set to 1 if the qth gene belongs to the mth pathway, and 0 otherwise. Then

the subgroups are indexed by the unique values of {I1, ..., Ip}.

Applying our proposed methods with target false discovery rate of 0.01, we identified

494 between subgroup interactions out of the 30876 possible subgroup pairs. These between

subgroup interactions can be mapped to 311 unique between pathway interactions and 18

within pathway interactions. The top pathways with highest numbers of interactions with

other pathways include MAPK signaling, calcium signaling, gycan structures biosynthesis,

WNT signaling, cell communication, TGF-β signaling and breast cancer estrogen pathways.

The MAPK signaling pathway has interactions with 92 gene subgroups which corresponds
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to 31 pathways including TGF-β, MTOR, P53, WNT, and ERBB signaling pathways. The

WNT signaling pathway interacts with 25 other pathways including TGF-β, MTOR, MPAK

and breast cancer estrogen signaling. The TGF-β signaling pathway interacts with 21 other

pathways including MAPK, p53, WNT and calcium signaling.

Many of these interactions have been previously documented. For example, experimental

data suggest that inhibition of mTORC1 leads to MAPK pathway activation (Carracedo

et al., 2008). The interaction between TGF-β and WNT pathways has been known for

a long time and is probably the most extensively studied. At the organism level, TGF-

β interacts with many other pathways at every stage of life from birth to death. During

embryonic development, the complex but delicate interactions between the TGF-β, WNT,

MAPK, and other pathways are important for a range of processes including body patterning,

stem cell maintenance and cell fate determination (Guo and Wang, 2008). Kouzmenko et al.

(2004) showed the first direct evidence of interaction between WNT and estrogen signaling

pathways via functional interaction between β-catenin and ERα.

To examine whether these 70 breast cancer pathways are enriched with interactions, we

randomly selected 50 sets of 70 pathways of similar sizes as the breast cancer pathways

from the C2 pathway gene sets curated from various online databases (available from the

Broad Institute). For each of the 70 randomly selected pathways, we performed the same

analysis as the breast cancer pathways by first partitioning them into non-overlapping sub-

groups and then applied our method to identify significant between subgroup interactions.

To determine whether the 70 breast cancer pathways are enriched with between subgroup

interactions relative to these randomly selected pathways, we calculate the proportion of

between subgroup interactions deemed as significant at the FDR level of 0.01. Across the

50 randomly selected pathways, the average proportion of significant pairs was 0.011 with

standard deviation 0.002. The proportion of significant pairs we identified in the breast

cancer data is 0.016, which is 2.5 standard deviations higher than the mean of proportions

from those 50 random sets. The results suggest that the selected 70 pathways are indeed
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enriched with “interaction” pairs.

7 Discussions

We proposed in this paper a multiple testing procedure under the Gaussian graphical models

for detecting between group interactions. The proposed method can potentially be extended

in several directions. We discuss in this section two of these possible extensions.

7.1 Extension to Gaussian Copula Graphical Models

In the present paper, the problem of identifying the conditional between group interactions is

translated to the problem of multiple testing of submatrices of a high-dimensional precision

matrix Ω under the Gaussian graphical model framework. The main reason for the success

of this approach is that the conditional independence between two non-overlapping groups

of variables is equivalent to the corresponding submatrix of Ω being 0. This approach can be

extended to more general settings of the semiparametric Gaussian copula graphical models

where the population distribution is non-Gaussian, see Liu et al. (2012) and Xue and Zou

(2012). The semiparametric Gaussian copula model assumes that the variables follow a joint

normal distribution after a set of unknown marginal monotonic transformations. It would

be interesting to develop a multiple testing procedure and investigate its properties under

the semiparametric Gaussian copula graphical models. Detailed analysis is involved and is

an interesting topic for future research.

7.2 The Two-Sample Case

We have focused on the one-sample case in this paper. It is also of interest to study the

two-sample case where the goal is to discover the changes in the conditional dependence

between pathway interactions under two different disease settings. In the one-sample case

studied in this paper, ΩJm×Jh = 0 under H0,m,h. Thus the null is simple but the technical

details of deriving the limiting distribution of a given submatrix is still very involved because
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the correlation structure of {Wi,j, (i, j) ∈ Jm × Jh} largely depends on the entries outside

of the submatrix of interest. In the two-sample case, we wish to test the hypotheses H0,m,h :

Ω
(1)
Jm×Jh = Ω

(2)
Jm×Jh . Under the null hypothesis H0,m,h, each submatrix is not necessary a zero

matrix. So the null is composite, consequently the dependence structures of the suitable test

statistics depend on the entries both inside and outside of the submatrices of direct interest.

The two-sample case is technically even more challenging and we leave it as future work.
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Supplement to “Multiple Testing of Submatrices of a
Precision Matrix with Applications to Identification of

Between Pathway Interactions”

Yin Xia1, Tianxi Cai2, and T. Tony Cai3

Abstract

In this supplement we collect a few technical lemmas, provide detailed proofs

of Theorems 1-3 and Corollary 1 and summarize the numerical comparisons with

Bonferroni correction procedure.

1 Lemmas

We begin by collecting some technical lemmas.

Lemma 1 (Zolotarev (1961)) Let Y be a nondegenerate Gaussian mean zero random

variable (r.v.) with covariance operator Σ. Let σ2 be the largest eigenvalue of Σ and d be

the dimension of the corresponding eigenspace. Let σ2
i , 1 ≤ i < d′, be the positive eigenvalues

of Σ arranged in a nonincreasing order and taking into account the multiplicities. Further,

if d′ <∞, put σ2
i = 0, i ≥ d′. Let H(Σ) :=

∏∞
i=d+1(1− σ2

i /σ
2)−1/2. Then for y > 0,

P{‖Y ‖ > y} ∼ 2Aσ2yd−2 exp(−y2/(2σ2)), as y →∞,

where A := (2σ2)−d/2Γ−1(d/2)H(Σ) with Γ(·) the gamma function.
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Lemma 2 (Berman (1962)) If X and Y have a bivariate normal distribution with expec-

tation zero, unit variance and correlation coefficient ρ, then

lim
c→∞

P
(
X > c, Y > c

)
[2π(1− ρ)1/2c2]−1 exp

(
− c2

1+ρ

)
(1 + ρ)1/2

= 1,

uniformly for all ρ such that |ρ| ≤ δ, for any δ, 0 < δ < 1.

Define Vi,j = 1
n

∑n
k=1(εk,iεk,j/(ri,irj,j)− Eεk,iεk,j/(ri,irj,j)).

Lemma 3 Suppose that (C1), (4) and (5) hold. Then we have

max
1≤i≤p

|r̂i,i − ri,i| = OP(
√

log p/n),

and

r̃i,j = R̃i,j − r̃i,i(β̂i,j − βi,j)− r̃j,j(β̂j−1,i − βj−1,i) + oP((n log p)−1/2),

for 1 ≤ i < j ≤ p, where R̃i,j is the empirical covariance between {εk,i, k = 1, . . . , n} and

{εk,j, k = 1, . . . , n}. Consequently, uniformly in 1 ≤ i < j ≤ p,

r̂i,j − (ωi,iσ̂i,i,ε + ωj,jσ̂j,j,ε − 1)ri,j = −Vi,j + oP((n log p)−1/2),

where (σ̂i,j,ε) = 1
n

∑n
k=1(εk − ε̄)(εk − ε̄)′, εk = (εk,1, . . . , εk,p) and ε̄ = 1

n

∑n
k=1 εk.

The complete proof of this Lemma can be found in Xia et al. (2015).

We rearrange the two dimensional indices {(i, j) : (i, j) ∈ I ×J } in any ordering and set

them as {(id, jd) : 1 ≤ d ≤ K}. Define Zk,d = −(εk,idεk,jd − Eεk,idεk,jd), for k = 1, . . . , n and

d = 1, . . . , K. Let Ẑk,d = −[Zk,dI{|Zk,d| ≤ 72 log(p + n)} − EZk,dI{|Zk,d| ≤ 72 log(p + n)}].

Define Z̃k,d =
Ẑk,d√

Var(Zk,d)
and W̃ k = (Z̃k,1, . . . , Z̃k,K). Then by Theorem 1 in Zäıtsev (1987),

we have the following lemma.

Lemma 4 For any t ∈ R,

P(
1

n
|

n∑
k=1

W̃ k|22 ≥ t) ≤ P(|NK |22 ≥ t− εn) + c1K
5/2 exp(− n1/2εn

c2K3 log(p+ n)
), (1)
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and

P(
1

n
|

n∑
k=1

W̃ k|22 ≥ t) ≥ P(|NK |22 ≥ t+ εn)− c1K5/2 exp(− n1/2εn
c2K3 log(p+ n)

), (2)

where c1 > 0 and c2 > 0 are absolute constants, and NK is a K dimensional normal vector

with ENK = 0 and Cov(NK) = Cov(W̃ 1). Furthermore, if log p = o(n1/5), by letting εn → 0

sufficiently slow, we have

c1K
5/2 exp(− n1/2εn

c2K3 log(p+ n)
) = O(p−C),

for arbitrarily large C > 0.

2 Proof of Theorem 1

We shall first show SI×J is close to the sum of squares of {εiεj, (i, j) ∈ I × J }, and then

we will apply the normal approximation to the truncated sum of squares sequence. We

then prove that the covariance matrices of the entry estimates can be well estimated by the

Kronecker product of T̃I×I and T̃J×J .

Because both |I| and |J | are fixed, by Lemma 3, we have uniformly for all submatrices

ΩI×J ,

max
(i,j)∈I×J

|Wi,j − Ui,j| = oP ((log p)−1/2),

where Wi,j =
Ti,j√
θ̂i,j

and Ui,j = −
∑n

k=1(εk,iεk,j/(ri,irj,j)−Eεk,iεk,j/(ri,irj,j))√
nVar(εk,iεk,j/(ri,irj,j))

, it suffices to show that

P(
∑

(i,j)∈I×J U
2
i,j ≤ t)

P(
∑K

l=1 λ̂lZ
2
l ≤ t)

→ 1.

Let Ud =
∑n

k=1 Zk,d√
nVar(Zk,d)

and Ûd =
∑n

k=1 Ẑk,d√
nVar(Zk,d)

, then we have

max
1≤d≤K

1√
n

n∑
k=1

E|Zk,d|I{|Zk,d| ≥ 72 log(p+ n)}

≤ C
√
n max

1≤k≤n
max
1≤d≤K

E|Zk,d|I{|Zk,d| ≥ 72 log(p+ n)}

≤ C
√
n(p+ n)−8 max

1≤k≤n
max
1≤d≤K

E|Zk,d| exp(Zk,d/4)

3



≤ C
√
n(p+ n)−8.

Thus we have

P( max
1≤d≤K

|Ûd − Ud| ≥ (log p)−1) ≤ P( max
1≤d≤K

max
1≤k≤n

|Zk,d| ≥ 72 log(p+ n)) ≤ o(p−2).

Thus it suffices to show that

P(
∑K

d=1 Û
2
d ≤ t)

P(
∑K

l=1 λ̂lZ
2
l ≤ t)

→ 1.

For (i, j), (i′, j′) ∈ I × J , we have

Cov
( εiεj/(ri,irj,j)√

Varεj/(ri,irj,j)
,

εi′εj′/(ri′,i′rj′,j′)√
Var(εi′εj′/(ri′,i′rj′,j′))

)
=

Cov(εiεi′)Cov(εjεj′)√
ri,irj,jri′,i′rj′,j′

=
ωi,i′√
ωi,iωi′,i′

ωj,j′√
ωj,jωj′,j′

.

Thus, define Ω∗ := (ω∗i,j), with ω∗i,j =
ωi,j√
ωi,iωj,j

, we have Cov(W 1) = Ω∗I×I ⊗ Ω∗J×J . Let

ΛI×J = (λI×J1 , . . . , λI×JK )T, ΛI = (λI1 , . . . , λ
I
|I|)

T and ΛJ = (λJ1 , . . . , λ
J
|J |)

T be the eigen-

values of Cov(W 1), Ω∗I×I and Ω∗J×J respectively. Then ΛI×J is the vectorized version

of ΛI ⊗ ΛJ . Because max1≤i<j≤p |T̃i,j − ω∗i,j| = op((n log p)−1/2), we have |Λ̂I − ΛI |∞ =

op((n log p)−1/2) and |Λ̂J −ΛJ |∞ = op((n log p)−1/2). Thus under condition (C1) we have

max
1≤l≤K

|λ̂I×Jl − λI×Jl | = op((n log p)−1/2).

Because 1
n
|
∑n

k=1 W̃ k|22 =
∑K

d=1 Û
2
d , by Lemma 4, we have

P(
∑K

d=1 Û
2
d ≤ t)

P(
∑K

l=1 λ̂lZ
2
l ≤ t)

→ 1.

Thus, Theorem 1 is proved.

3 Proof of Theorem 2

By Lemma 3, we have

max
(i,j)∈I×J

|Ti,j − (1 + o(1))ETi,j√
θ̂ij

− Ui,j| = oP((log p)−1/2).
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Note that ∑
(i,j)∈I×J

((1 + o(1))ETi,j)
2

θ̂i,j
≤ 2
(
SI×J +

∑
(i,j)∈I×J

(Ti,j − (1 + o(1))ETi,j)
2

θ̂ij

)
.

Also note that ETi,j = ωi,j(1 + o(1)) + o{(n log p)−1/2}. The result then follows the definition

of the classes of precision matrices (11) and Theorem 1.

4 Proof of Theorem 3

We start by showing that P(
∑

(m,h)∈H0
I(|NJm×Jh| ≥

√
2 logM) = 0)→ 1 as (n,M)→∞,

and then we focus on the event {t̂ in (16) exists}. We then show the FDP result by dividing

the null set into small subsets and controlling the variance of R0(t) for each subset, and the

FDR result will thus also be proved. Note that

P(
∑

(m,h)∈H0

I(|NJm×Jh| ≥
√

2 logM) ≥ 1) ≤M0 max
(m,h)∈H0

P(|NJm×Jh| ≥
√

2 logM).

We rearrange the two dimensional indices {(i, j) : (i, j) ∈ Jm × Jh} in any ordering and

set them as {(idm,h
, jdm,h

) : 1 ≤ dm,h ≤ qm,h} with qm,h = LmLh as in Theorem 1, then we

have P(max(m,h)∈H0 max1≤dm,h≤qm,h
|Widm,h

,jdm,h
− Ûdm,h

| = o((log p)−1/2)) = 1. Then on the

event {max(m,h)∈H0 max1≤dm,h≤qm,h
|Widm,h

,jdm,h
− Ûdm,h

| = o((log p)−1/2)}, by Lemma 4 and

the fact that G(t + o((logM)−1/2))/G(t) = 1 + o(1) uniformly in 0 ≤ t ≤
√

2 logM, where

G(t) = 2(1− Φ(t)), we have

P(
∑

(m,h)∈H0

I(|NJm×Jh| ≥
√

2 logM) ≥ 1) ≤M0G(
√

2 logM)(1 + o(1)) = o(1), (3)

which shows that if NJm×Jh are thresholded at level
√

2 logM, the probability of false

rejection is tending to 0 asymptotically. Thus we shall focus on the event {t̂ exists in the

range [0,
√

2 logM− 2 log logM]}.

Note that, by the definition of t̂, for any t < t̂, we have

2(1− Φ(t))M
max{

∑
(m,h)∈H I{|NJm×Jh| ≥ t, 1}

> α.

5



Because max{
∑

(m,h)∈H I{|NJm×Jh| ≥ t̂}, 1} ≤ max{
∑

(m,h)∈H I{|NJm×Jh| ≥ t}, 1}, we have

2(1− Φ(t))M
max{

∑
(m,h)∈H I{|NJm×Jh| ≥ t̂}, 1}

> α.

Thus, by letting t→ t̂,

2(1− Φ(t̂))M
max{

∑
(m,h)∈H I{|NJm×Jh| ≥ t̂}, 1}

≥ α.

On the other hand, based on the definition of t̂, there exists a sequence {tl} with tl ≥ t̂ and

tl → t̂, such that

2(1− Φ(tl))M
max{

∑
(m,h)∈H I{|NJm×Jh| ≥ tl}, 1}

≤ α.

Thus we have max{
∑

(m,h)∈H I{|NJm×Jh| ≥ tl}, 1} ≤ max{
∑

(m,h)∈H I{|NJm×Jh| ≥ t̂}, 1},

which implies

2(1− Φ(tl))M
max{

∑
(m,h)∈H I{|NJm×Jh| ≥ t̂}, 1}

≤ α.

Let tl → t̂, we have

2(1− Φ(t̂))M
max{

∑
(m,h)∈H I{|NJm×Jh| ≥ t̂}, 1}

≤ α.

Thus by focusing on the event {t̂ exists in the range [0,
√

2 logM− 2 log logM]}, we have

2(1− Φ(t̂))M
max{

∑
(m,h)∈H I{|NJm×Jh| ≥ t̂}, 1}

= α.

For 0 < θ < (1− τ)/(1 + τ), let

Λ(θ) =
{

1 ≤ m ≤M : ∃h 6= m, s.t.
|ωi,j|√
ωi,iωi,j

≥ θ for some i ∈ Jm, j ∈ Jh
}
.

a). If |Λ(θ)| ≥M/(logM)6, then we have

∑
(m,h)∈H

I{|NJm×Jh| ≥
√

2 logM− log logM} ≥M/{2(logM)6}.

Thus we have

M
max{

∑
(m,h)∈H I{|NJm×Jh| ≥

√
2 logM− log logM}, 1}

≤ CM(logM)6.

6



In this case, set tM =
√

2 logM + 14 log logM and θ1 = 1.

b). If |Λ(θ)| ≤ M/(logM)6, because we are considering the event {t̂ exists in the range},

set tM =
√

2 logM− 2 log logM and θ1 = θ.

Thus it suffices to show that

sup
0≤t≤tM

∣∣∣∑(m,h)∈H0
I{|NJm×Jh| ≥ t} −M0G(t)

MG(t)

∣∣∣→ 0

in probability, where G(t) = 2(1− Φ(t)).

Let 0 ≤ t0 < t1 < · · · < tb = tM such that tι − tι−1 = vM for 1 ≤ ι ≤ b − 1 and

tb − tb−1 ≤ vM, where vM = 1/
√

logM(log4M). Thus we have b ∼ tM/vM. For any t such

that tι−1 ≤ t ≤ tι, we have∑
(m,h)∈H0

I(|NJm×Jh | ≥ tι)

M0G(tι)

G(tι)

G(tι−1)
≤
∑

(m,h)∈H0
I(|NJm×Jh | ≥ t)

M0G(t)

≤
∑

(m,h)∈H0
I(|NJm×Jh | ≥ tι−1)

M0G(tι−1)

G(tι−1)

G(tι)
.

Thus it suffices to prove

max
0≤ι≤b

∣∣∣∑(m,h)∈H0
[I(|NJm×Jh| ≥ tι)−G(tι)]

M0G(tι)

∣∣∣→ 0

in probability. We rearrange the two dimensional indices {(i, j) : (i, j) ∈ Jm × Jh} in any

ordering and set them as {(im,h, jm,h) : 1 ≤ d ≤ qm,h} with qm,h = LmLh as in Theorem 1, and

define FJm×Jh =
∑

1≤d≤qm,h
Û2
d and VJm×Jh = Φ−1(1 − P(

∑LmLh

l=1 λ̂Jm×Jhl Z2
l ≥ FJm×Jh)/2).

By the proof of Theorem 1, we have max(m,h)∈H0 |SJm×Jh − FJm×Jh| = oP(1). By Lemma 1,

we have

P(

LmLh∑
l=1

λ̂Jm×Jhl Z2
l ≥ t+ o(1))/P(

LmLh∑
l=1

λ̂Jm×Jhl Z2
l ≥ t) = 1 + o(1),

for any 0 ≤ t ≤ c logM with any constant c > 0. Recall that NJm×Jh = Φ−1(1 −

P(
∑LmLh

l=1 λ̂Jm×Jhl Z2
l ≥ SJm×Jh)/2). Note that G(t + o((logM)−1/2))/G(t) = 1 + o(1) uni-

formly in 0 ≤ t ≤
√

2 logM. Thus it suffices to show that

max
0≤ι≤b

∣∣∣∑(m,h)∈H0
[I(|VJm×Jh| ≥ tι)−G(tι)]

M0G(tι)

∣∣∣→ 0

7



in probability. Note that

P
(

max
0≤ι≤b

∣∣∣∑(m,h)∈H0
[I(|VJm×Jh| ≥ tι)−G(tι)]

M0G(tι)

∣∣∣ ≥ ε
)

≤
b∑
ι=1

P
(∣∣∣∑(m,h)∈H0

[I(|VJm×Jh| ≥ tι)−G(tι)]

M0G(tι)

∣∣∣ ≥ ε
)

≤ 1

vM

∫ tM

0

P
(∣∣∣∑(m,h)∈H0

[I(|VJm×Jh| ≥ t)−G(t)]

M0G(t)

∣∣∣ ≥ ε
)
dt

+
b∑

ι=b−1

P
(∣∣∣∑(m,h)∈H0

[I(|VJm×Jh| ≥ tι)−G(tι)]

M0G(tι)

∣∣∣ ≥ ε
)
.

Thus, it suffices to prove the following lemma.

Lemma 5 ∫ tM

0

P
(∣∣∣∑(m,h)∈H0

[I(|VJm×Jh| ≥ t)−G(t)]

MG(t)

∣∣∣ ≥ ε
)
dt = o(vM) (4)

and

sup
0≤t≤tM

P
(∣∣∣∑(m,h)∈H0

[I(|VJm×Jh| ≥ t)−G(t)]

MG(t)

∣∣∣ ≥ ε
)

= o(1). (5)

Proof of Lemma 5: We will prove (4), and the proof of (5) is similar. Define

S1 =

 {(m,h) : m ∈ Λ(θ), or h ∈ Λ(θ)}, if |Λ(θ)| < M/(logM)6;

∅, otherwise,

H01 = H0 ∩ S1, H02 = H0 \ H01.

For (m,h), (m′, h′) ∈ H01, VJm×Jh and VJm′×Jh′ can be highly correlated with each other.

However, the cardinality of H01 is small compared toM. Thus the terms in H01 are negligi-

ble. By Lemma 4 with εn = n−1/4 and the fact that G(t+o(n−1/4))/G(t) = 1+o{(logM)−6}

uniformly in 0 ≤ t ≤
√

2 logM, we have P((|VJm×Jh| ≥ t)) = (1+o{(logM)−6})G(t). Thus,

we have

E
∣∣∣∑(m,h)∈H01

[I(|VJm×Jh| ≥ t)−G(t)]

MG(t)

∣∣∣ ≤ C
M/(logM)6G(t)

MG(t)
= O{(logM)−6},

uniformly for 0 ≤ t ≤ tM. On the other hand, the cardinality of H02 is of the same order as

M. Because P((|VJm×Jh| ≥ t)) = (1 + o{(logM)−6})G(t), we shall calculate the variance as

8



follows

E
∣∣∣∑(m,h)∈H02

[I(|VJm×Jh| ≥ t)− P(|VJm×Jh| ≥ t)]

MG(t)

∣∣∣2
=

∑
(m,h),(m′,h′)∈H02

{P(|VJm×Jh| ≥ t, |VJm′×Jh′ | ≥ t)− P(|VJm×Jh| ≥ t)P(|VJm′×Jh′ | ≥ t)}
M2G2(t)

.

In order to estimate the correlations of VJm×Jh and VJm′×Jh′ , we shall first split the set H02

into three subsets. Similarly as defined in Cai et al. (2013), let Gabcd = (Vabcd, Eabcd) be a

graph, where Vabcd = {a, b, c, d} is the set of vertices and Eabcd is the set of edges. There is

an edge between i 6= j ∈ {a, b, c, d} if and only if |ωi,j| ≥ (logM)−2−γ. We say Gabcd is a

three vertices graph (3-G) if the number of different vertices in Vabcd is 3. Similarly, Gabcd

is a four vertices graph if the number of different vertices in Vabcd is 4. A vertex in Gabcd is

said to be isolated if there is no edge connected to it. Note that for any (i, j) ∈ Jm×Jh and

(i′, j′) ∈ Jm′ ×Jh′ , (m,h) 6= (m′, h′), Giji′j′ is 3-G or 4-G. We say a graph G = Giji′j′ satisfy

(?) if

(?) : If G is 4-G, then there is at least one isolated vertex in G;

otherwise G is 3-G and Eiji′j′ = ∅.

Thus, for any Giji′j′ satisfying (?), we have, uniformly for i, j, i′, j′,

|E(εiεjεi′εj′)| = O{(logM)−2−γ}.

Based on the definition of (?), we shall further divide H02 into three subsets

H021 = {(m,h), (m′, h′) ∈ H02, (m,h) = (m′, h′)},

H022 = {(m,h), (m′, h′) ∈ H02, (m,h) 6= (m′, h′),∀(i, j) ∈ Jm × Jh, (i′, j′) ∈ Jm′ × Jh′ ,

Giji′j′ satisfies (?)},

H023 = {(m,h), (m′, h′) ∈ H02, (m,h) 6= (m′, h′),∃(i, j) ∈ Jm × Jh, (i′, j′) ∈ Jm′ × Jh′ ,

Giji′j′ does not satisfy (?)}.

9



For subset H021, the cardinality is small, and we have∑
(m,h),(m′,h′)∈H021

{P(|VJm×Jh| ≥ t, |VJm′×Jh′ | ≥ t)− P(|VJm×Jh| ≥ t)P(|VJm′×Jh′ | ≥ t)}
M2G2(t)

≤ C

MG(t)
. (6)

Recall that

Ξm(γ) =
{
h : 1 ≤ h ≤M,h 6= m,∃i ∈ Jm, j ∈ Jh s.t. |ωi,j| ≥ (logM)−2−γ

}
,

and max1≤m≤M |Ξm(γ)| = O(M τ ) for any τ > 0. Thus for subset H023, the cardinality is

O(M1+τ ), and uniformly for (m,h), (m′, h′) ∈ H023, we have

Corr(VJm×Jh , VJm′×Jh′ ) ≤ θ2 +O{(logM)−2−γ},

for some θ2 satisfying θ2 = 1 if θ1 = 1 and 0 < θ2 < 1 if θ1 6= 1. Thus, similarly as Lemma

4, by applying Theorem 1 in Zäıtsev (1987) for P(|VJm×Jh | ≥ t, |VJm′×Jh′ | ≥ t), we have∑
(m,h),(m′,h′)∈H023

{P(|VJm×Jh| ≥ t, |VJm′×Jh′ | ≥ t)− P(|VJm×Jh| ≥ t)P(|VJm′×Jh′ | ≥ t)}
M2G2(t)

≤ C
M1+τ t−2 exp(−t2/(1 + θ2))

M2G(t)
≤ C

M1−τ (G(t))2θ2/(1+θ2)
. (7)

It remains to consider subset H022, in which VJm×Jh and VJm′×Jh′ are weakly correlated with

each other. Because the dimension of the submatrices are fixed, it is easy to show that

max
(m,h),(m′,h′)∈H022

P(|VJm×Jh| ≥ t, |VJm′×Jh′ | ≥ t) = (1 +O{(logM)−1−γ})G2(t).

Thus, we have∑
(m,h),(m′,h′)∈H022

{P(|VJm×Jh| ≥ t, |VJm′×Jh′ | ≥ t)− P(|VJm×Jh| ≥ t)P(|VJm′×Jh′ | ≥ t)}
M2G2(t)

= O{(logM)−1−γ}. (8)

Combining (6), (7) and (8), we have∫ tM

0

( C

MG(t)
+

C

M1−τ (G(t))2θ2/(1+θ2)
+ C(logM)−1−γ

)
dt = o(vM).

Thus (4) is proved.
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5 Proof of Corollary 1

Under the conditions of Corollary 1, by Lemma 1, we have

∑
(m,h)∈H

I{|NJm×Jh| ≥
√

2 logM} ≥ (
1√
πα

+ δ)
√

logM,

with probability tending to 1. Hence with probability going to one, we have

M∑
(m,h)∈H I{|NJm×Jh| ≥

√
2 logM}

≤M(
1√
πα

+ δ)−1(logM)−1/2.

Let tM =
√

2 logM− 2 log logM. Because 1−Φ(tM) ∼ 1√
2πtM

exp(−t2M/2), we have P(1 ≤

t̂ ≤ tM) → 1 according to the definition of t̂ in the FDR control algorithm in Section

4. Namely, we have P(t̂ exists in [0, tM]) → 1. Corollary 1 then follows from the proof of

Theorem 3.

6 Numerical Comparisons with Bonferroni Correction

We summarize in this section the numerical results of Bonferroni correction procedure from

Sections 5.1 and 5.2. For completeness of the comparison, we also repeat the results of

other methods from Tables 1, 2 and 4. We can see from Table 5 that the Bonferroni cor-

rection procedure is much more conservative than the other two methods. Especially when

the dimension is high, the empirical FDR of the Bonferroni procedure becomes extremely

conservative and it is nearly 0 in all the settings. This is due to the fact that this procedure

controls the family-wise error rate, while the other methods controls the FDR. Table 6 shows

that the empirical powers of our proposed method for all these models are very high under

various constructions of submatrices and outperforms the Bonferroni correction procedure

in almost all settings. For Model 3, the performance of the Bonferroni correction procedure

is closer to the new method due to the fact that the magnitudes for different submatrices

are exactly the same. Similarly, we observe from Table 7 that the Bonferroni correction

procedure is extremely conservative and is much less powerful than the new method.
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p method α = 10% α = 1%

s 2 4 2 4

Models 1 2 3 1 2 3 1 2 3 1 2 3

100

Group 93.8 88.5 84.6 95.2 84.4 73.5 87.8 74.2 69.4 92.3 68.7 54.4

Entrywise 92.8 90.3 85.2 92.8 85.1 67.3 83.4 71.9 66.8 85.9 56.3 28.5

B-H 92.8 88.3 84.6 92.9 81.1 67.2 82.3 66.3 64.5 84.0 50.9 31.2

Bonferroni 82.1 65.0 57.5 87.0 60.6 43.4 83.0 64.5 55.9 87.5 60.7 42.3

200

Group 90.4 83.3 72.5 92.6 77.9 58.8 82.6 66.8 56.1 87.9 62.7 42.6

Entrywise 87.6 84.8 71.7 87.3 76.0 45.5 93.6 60.8 47.6 73.6 40.8 15.0

B-H 87.6 81.4 70.9 86.9 71.3 43.3 72.2 54.6 46.7 71.1 33.8 14.1

Bonferroni 59.6 36.8 28.7 79.6 55.1 34.9 59.0 38.0 29.6 81.7 56.3 35.0

500

Group 84.3 72.3 56.6 85.9 67.4 41.4 75.1 55.4 40.7 76.0 53.4 27.2

Entrywise 78.7 70.8 50.8 72.5 60.0 24.2 60.0 43.3 25.6 48.3 25.9 5.0

B-H 77.8 66.0 50.4 70.0 52.5 20.3 57.5 36.3 23.8 43.3 19.3 3.0

Bonferroni 53.6 33.7 22.1 52.1 33.8 14.3 53.6 33.7 22.1 52.1 33.8 14.3

1000

Group 80.1 63.3 46.4 80.7 59.9 31.9 69.9 57.2 31.8 69.2 46.8 21.1

Entrywise 71.2 59.2 37.1 60.7 48.5 14.5 49.3 31.5 15.5 33.5 18.5 3.1

B-H 69.8 53.1 35.4 56.6 39.9 9.6 45.8 23.9 12.7 27.3 10.6 1.2

Bonferroni 50.7 31.0 18.7 47.1 31.2 12.1 50.7 31.0 18.7 47.1 31.2 12.1

Table 6: Empirical powers (%) with n = 200, α = 0.1 and 0.01 respectively, 100 replications.

p method α = 10% α = 1%

FDR (SE) (in %) Power (in %) FDR (SE) (in %) Power (in %)

1624

Group 6.2 (1.4) 47.2 0.5 (0.3) 33.6

Entrywise 26.0 (2.7) 39.9 2.5 (1.5) 26.0

B-H 11.1 (2.0) 44.9 1.1 (1.0) 19.8

Bonferroni 0.0 (0.0) 16.8 0.0 (0.0) 14.6

Table 7: Empirical FDRs (SEs) and powers (%) by mimicking the real data with α = 0.1 and

α = 0.01 respectively, based on 100 replications.
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Zäıtsev, A. Y. (1987). On the Gaussian approximation of convolutions under multidimen-

sional analogues of S.N. Bernstein’s inequality conditions. Probab. Theory Rel., 74(4):535–

566.

Zolotarev, V. M. (1961). Concerning a certain probability problem. Theory Probab. Appl.,

6(2):201–204.

14


	Introduction
	Detection of Between Pathway Interactions
	Multiple Testing of Submatrices of A Precision Matrix
	Structure of the Paper

	Testing A Given Submatrix
	Notation and Definitions
	Testing Procedure

	Theories on Testing A Given Submatrix
	Asymptotic Null Distribution
	Asymptotic Power

	Multiple Testing of Submatrices with FDR Control
	Multiple Testing Procedure
	Theoretical Properties
	Differences with the B-H Procedure

	Simulation Studies
	Simulation for Different Constructions of Submatrices
	Simulation by Mimicking the Sizes of Gene Groups

	Analysis of Breast Cancer Gene Expression Data
	Discussions
	Extension to Gaussian Copula Graphical Models
	The Two-Sample Case

	Lemmas
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Corollary 1
	Numerical Comparisons with Bonferroni Correction






