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Abstract

The weighted UniFrac distance, a plug-in estimator of the Wasserstein distance of read

counts on a tree, has been widely used to measure the microbial community difference in

microbiome studies. Our investigation however shows that such a plug-in estimator, although

intuitive and commonly used in practice, suffers from potential bias. Motivated by this finding,

we study the problem of optimal estimation of the Wasserstein distance between two distribu-

tions on a tree from the sampled data in the high-dimensional setting. The minimax rate of

convergence is established. To overcome the bias problem, we introduce a new estimator,

referred to as the moment-screening estimator on a tree (MET), by using implicit best polyno-

mial approximation that incorporates the tree structure. The new estimator is computationally

efficient and is shown to be minimax rate-optimal. Numerical studies using both simulated and

real biological datasets demonstrate the practical merits of MET, including reduced biases and

statistically more significant differences in microbiome between the inactive Crohn’s disease

patients and the normal controls.
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1 Introduction

High throughput sequencing technologies allow a high resolution characterization of the collection

of all microbes in a sample, leading to a comprehensive understanding of microbial communities.

The composition of microbes in a given microbial community can be represented by discrete dis-

tributions P = {pv}v∈V , where V is a finite set of microbe taxa (or operational taxonomic units

(OTU) in some applications), and pv is the relative abundance of the vth bacterial taxon. Phylo-

genetic tree provides an effective way of summarizing how bacterial species or OTUs are related

through evolution based on the sequences of certain marker genes such as 16s rRNA gene. As an

example, Figure 1 shows the phylogenetic tree of the 3991 bacterial OTUs identified in a Crohn’s

disease study detailed in Section 7, where the leaf notes represent the OTUs, branch lengths re-

flect the evolutionary distances and the internal notes represent the common ancestry of the nodes

below.

Figure 1: Phylogenetic tree used in the 16S rRNA sequecning data of the Crohn’s disease study.
There are a total 3991 leaves (tips) and 3990 internal nodes.
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Measuring the distance between two communities is the first step towards understanding the

microbial similarity and differences across samples. Various symmetrical distances between two

distributions are used to quantify difference between the two communities, including the total

variation distance, Kullback-Leibler divergence and Hellinger distance. Here, a symmetrical dis-

tance means that it is invariant with respect to the permutation of the microbe species. However,

such symmetrical distances ignore the similarity among different microbe species as given by

their phylogenetic relationships. In order to account for such a similarity between the microbe

species, phylogenetic distances based on the empirical distributions of the read counts and the

underlying phylogentic tree have been proposed as a more powerful and precise way to quantify

difference between two microbial communities. In particular, as one of the most popular phylo-

genetic distances, the unweighted and weighted UniFrac distances are introduced by Lozupone

and Knight (2005) and Lozupone et al. (2007) and have been used in a wide range of microbiome

studies (see, e.g. Lozupone et al., 2007; Fierer et al., 2008; Charlson et al., 2010; Chang, Luan, and

Sun, 2011; Wong, Wu, and Gloor, 2016). As shown in Evans and Matsen (2012), the weighted

UniFrac distance can also be viewed as the plug-in estimator of the Wasserstein distance, also

known as Kantorovich-Rubinstein distance or earth mover’s distance (see, e.g. Monge, 1781; Kan-

torovitch, 1958; Villani, 2008), on a phylogenetic tree. Such a distance can be generalized to the

Lα Zolotarev-type distance.

To be more specific, we consider two microbiome communities represented by discrete dis-

tributions P = {pv}v∈V and Q = {qv}v∈V , where V is a finite microbe species (or operational

taxonomic units (OTU) in some applications) set. Let D(P,Q) denote the Wasserstein distance

between P and Q. In practice, P and Q are unknown and one only has access to the empirical

sequencing read distributions P̂ = {p̂v}v∈V and Q̂ = {q̂v}v∈V . In the present paper, we consider

optimal estimation of the distance between distributionsD(P,Q) when only the empirical distribu-

tions P̂ and Q̂ are available. Since the introduction of the UniFrac distance, the plug-in estimator

D(P̂ , Q̂) has been virtually the only estimator for D(P,Q) because of its simplicity and ease of

computation (see, e.g. Lozupone and Knight, 2005; Evans and Matsen, 2012). Despite the popu-
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larity of this classical plug-in estimator in various microbiome studies, it is still largely unknown

if there are more efficient estimators and to what extent such a distance D(P,Q) can be estimated

consistently. The main goal of this paper is to address these issues by answering the following two

questions: 1) what sample size of the data can guarantee reliable estimation of D(P,Q)? 2) what

is an optimal estimator for D(P,Q)?

To answer these questions, we first investigate the classical plug-in estimator. As the maximum

likelihood estimator (MLE), the empirical distribution P̂ has been shown to achieve the minimax

optimality for estimating the distribution P itself under various loss functions (see, e.g. Trybula,

1958; Olkin and Sobel, 1979; Daskalakis, Diakonikolas, and Servedio, 2012; Kamath et al., 2015).

Moreover, when the sample size goes to infinity and the number of microbiome species is fixed, the

asymptotic theory for the MLE guarantees that the classical plug-in estimator performs optimally

for estimating smooth functionals (see, e.g. Le Cam, 1986). However, our investigation shows

that for estimating the Wasserstein distance the plug-in estimator D(P̂ , Q̂) is sub-optimal due

to its large bias resulting from the non-smooth nature of the functional D(P,Q) and the high

dimensionality of the parameter space. Similar phenomena have been observed in recent papers

(see, e.g., Lepski, Nemirovski, and Spokoiny, 1999; Cai and Low, 2011; Valiant and Valiant, 2011,

2013; Jiao et al., 2015; Wu and Yang, 2016; Jiao, Han, and Weissman, 2018, among many others)

in other settings.

Cai and Low (2011) introduced the best polynomial approximation approach to estimation of

non-smooth functionals to reduce the bias. This approach proceeds by first constructing the best

polynomial approximation to the target functional and the unbiased estimator for the best polyno-

mial is then constructed as the final estimator of the original functional. This idea has since been

widely used to estimate symmetrical non-smooth functionals of distributions, such as the Shannon

entropy, Rényi entropy, support size, L1 distance, χ2 divergence, Kullback-Leibler divergence and

Hellinger divergence (See Acharya et al. (2014), Jiao et al. (2015), Wu and Yang (2016), Han, Jiao,

and Weissman (2016), Jiao, Han, and Weissman (2018), Bu et al. (2018) and references therein).

One main difficulty of the approximation method is that it requires the construction of approxi-
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mation specifically for each individual functional. To address this issue, two adaptive approaches

have been proposed: local moment matching (see, e.g. Han, Jiao, and Weissman, 2018) and pro-

file maximum likelihood (see, e.g. Acharya et al., 2017; Pavlichin, Jiao, and Weissman, 2017;

Acharya, 2018). Both methods are designed to first estimate the sorted version of the distribution

and then plugin the sorted distribution into arbitrary symmetrical functionals. Unfortunately, these

methods and analyses are not directly applicable to estimating the Wasserstein distance due to the

fact that D(P,Q) is an asymmetrical distance.

Motivated by the best polynomial approximation method and moment matching method, we

introduce a new Moment-screening Estimator on a Tree, called MET hereafter, to estimate the

Wasserstein distance D(P,Q). MET first conducts moment matching by taking advantage of the

unique structure of the phylogenetic tree and then estimates the Wasserstein distance by an implicit

approximation method. In doing so, MET requires no specific construction for the best polynomial

approximation, but achieves the same bias reduction effect as the approximation method. We

establish the minimax rate of convergence for estimating D(P,Q) under the mean squared error as

s log(2d+2/s)

n log n
, (1)

where n is the sample size, s is the number of nodes of the phylogenetic tree and d is the height

of the phylogenetic tree. In this minimax rate (1), the term log(2d+2/s) is mainly determined by

the shape of underlying phylogenetic tree. When the tree is short enough (2d � s), the difficulty of

estimating Wasserstein distance does not rely on the height of phylogenetic tree d any more. The

minimax rate (1) increases along with d linearly if the tree is tall (2d � s). If we compare (1) with

results in Jiao, Han, and Weissman (2018), s log(2d+2/s) can be seen as effective alphabet size after

incorporating the phylogenetic tree structure. Moreover, D(P,Q) can be estimated consistently if

and only if

n &
s log(2d+2/s)

log s
.

We also show that MET is rate optimal, while the classical plug-in estimator such as the UniFrac

distance is sub-optimal.
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Furthermore, we consider estimation of the Lα Zolotarev-type generalization of the Wasser-

stein distance, denoted by Dα(P,Q). The Wasserstein distance is a special case with α = 1. Our

analysis shows that MET is still minimax optimal estimator for Dα(P,Q) when 0 < α < 2, while

the simple plug-in estimator can achieve the minimax optimal rate when α ≥ 2. We also show that

estimation of Dα(P,Q) becomes more difficult as α gets smaller.

The rest of the paper is organized as follows. We first introduce the setting and the Wasserstein

distance as well as its plug-in UniFrac distance estimator in Section 2. Section 3 presents MET

for estimating the Wasserstein distance D(P,Q). In Section 4, we investigate the theoretical prop-

erties of MET and compare it with the classical plug-in estimator theoretically. Section 5 studies

estimation of the Lα Zolotarev-type generalization of the Wasserstein distance and provides the

corresponding theoretical analysis. Section 6 discusses the algorithmic details of implementing

MET. We analyze both the simulated and real data sets in Section 7 to demonstrate the numer-

ical performance of MET. Proofs and auxiliary results are relegated to the online Supplemental

Materials.

2 Wasserstein Distance and the Plug-in UniFrac Distance

2.1 Wasserstein Distance and Poisson-Multinomial Model

Let T = (V,E) be the phylogenetic tree of microbe species, where V is the collection of microbe

species and their ancestors and E is the collection of edges/branches of the tree T . In particular,

we always assume that the tree T is rooted at ρ. Denote by Le the length of the branch e ∈ E.

For any pairs of nodes v1, v2 ∈ V , the unique path between them is denoted by [v1, v2] and the

corresponding distance between them is defined as

d(v1, v2) :=
∑

e∈[v1,v2]

Le.

The height/depth of the tree is thus defined as the maximum of distance between the root ρ and the

other nodes of tree

d(T ) = max
v∈V

d(ρ, v).
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We write the Wasserstein distance between the distributions P and Q on the tree T as

D(P,Q) = inf
{rv1,v2}v1,v2∈V ∈Σ(P,Q)

∑
v1,v2∈V

d(v1, v2)rv1,v2 .

where {rv1,v2}v1,v2∈V is the joint probability distribution on V × V and Σ(P,Q) is the collection

of the joint probability distributions of which the marginal distributions are P and Q, respectively.

If we define the descendants of a given branch e ∈ E as

τ(e) = {v ∈ V : e ∈ [ρ, v]},

then the above Wasserstein distance can be rewritten (see, e.g. Evans and Matsen, 2012) as

D(P,Q) =
∑
e∈E

Le |Pe −Qe| , (2)

where Pe and Qe are the total proportion of subtree below edge e

Pe =
∑
v∈τ(e)

pv and Qe =
∑
v∈τ(e)

qv.

Note that (2) is also the original form of the weighted UniFrac distance (see Lozupone and Knight,

2005; Lozupone et al., 2007).

In microbiome studies, the sequencing read data can be modeled by a Poisson-multinomial

model. More concretely, denote by X1, ..., XnX
and Y1, ..., YnY

the reads from the two samples.

We assume the total numbers of reads nX and nY are independent random variables drawn from

a Poisson distribution, i.e. nX , nY
i.i.d.∼ Pois(n). Conditioning on nX and nY , the reads are mod-

eled as a multinomial distribution: X1, ..., XnX
|nX

i.i.d.∼ Multi(1; {pv}v∈V ) and Y1, ..., YnY
|nY

i.i.d.∼

Multi(1; {qv}v∈V ). The empirical distribution thus can be written as

p̂v =

∑nX

i=1 I(Xi = v)

nX
and q̂v =

∑nY

i=1 I(Yi = v)

nY
.

Clearly, the Poisson-multinomial model suggests p̂vs and q̂vs are independent from each other and

np̂v ∼ Pois(npv) and nq̂v ∼ Pois(nqv).

6



We also use the following notation in this paper

P̂e =
∑
v∈τ(e)

p̂v and Q̂e =
∑
v∈τ(e)

q̂v.

2.2 The Classical Plug-in Estimator and the UniFrac Distance

The most natural estimator for D(P,Q) is perhaps the plug-in estimator:

D(P̂ , Q̂) :=
∑
e∈E

Le

∣∣∣P̂e − Q̂e

∣∣∣ .
This plug-in estimator, known as the UniFrac distance, has been widely used in many applications,

including community comparison (see, e.g. Lozupone and Knight, 2005; Lozupone et al., 2007;

Chang, Luan, and Sun, 2011; Evans and Matsen, 2012), clustering based on pairwise distance (see,

e.g. Lozupone et al., 2007) and two sample testing (see, e.g. Charlson et al., 2010; Wong, Wu, and

Gloor, 2016). Despite its popularity, the performance of the plug-in estimator is still unclear.

We now examine the theoretical performance of D(P̂ , Q̂). We use the mean squared error to

evaluate the accuracy of an estimator D̂,

E
(
D̂ −D(P,Q)

)2

.

The following proposition characterizes the performance of the plug-in estimator.

Proposition 1. Suppose T is a tree of height d. There exists some constant C such that

E
(
D(P̂ , Q̂)−D(P,Q)

)2

≤ CRplug−in(T ;P,Q)

where

Rplug−in(T, P,Q) =

(∑
e∈E

Pe ∧
√
Pe
n

)2

+

(∑
e∈E

Qe ∧
√
Qe

n

)2

+
d2

n
.

Furthermore, there exist two pairs of distributions (T, P1, Q1) and (T, P2, Q2) such that

inf
D̂

sup
(T,P1,Q1),(T,P2,Q2)

E
(
D̂ −D(P,Q)

)2

≥ c
d2

n
.

where c > 0 is some constant and the infimum takes over all possible estimators.

7



In Rplug−in(T, P,Q), the first two terms corresponding to the bias of the plug-in estimator and

the last term is the variance of the plug-in estimator. The lower bound suggests that the last term

in the upper bound cannot be improved in the minimax sense. This naturally brings about the

question of whether it is possible to reduce the bias in order to construct a more efficient estimator

for D(P,Q).

3 Moment-screening Estimator on a Tree

3.1 Behavior of the Bias Term in the Plug-in Estimator

We first investigate behavior of the bias of the plug-in estimator. The conditional expectation of

the plug-in estimator given nX and nY can be written explicitly as

E
(
D(P̂ , Q̂)

∣∣∣nX , nY ) =
∑
e∈E

Le

(
nX ,nY∑
k1,k2=0

f(k1, k2)P k1
e (1− Pe)nX−k1Qk2

e (1−Qe)
nY −k2

)
, (3)

where

f(k1, k2) =

(
nX
k1

)(
nY
k2

)
|k1 − k2|

n
.

Equation (3) suggests that the expectation of the plug-in estimator is essentially a polynomial of

{Pe}e∈E and {Qe}e∈E and the bias of the plug-in estimator mainly results from the polynomial

approximation error for absolute value function |x− y| near the diagonal line x = y. Actually, the

expectation of any estimator based on P̂ and Q̂ can always be expressed as a polynomial. Similar

phenomena are observed in functional estimation of single distribution (see, e.g. Paninski, 2003;

Jiao et al., 2015; Wu and Yang, 2016). It is clear from the above discussion that we can reduce the

bias by redesigning the coefficient of polynomial f(k1, k2) to better approximating the absolute

value function near diagonal line.

A prerequisite step for the bias reduction is to identify the pairs (Pe, Qe) that are near diagonal

line. We consider the following uncertain set covering the diagonal line

P =

{
(p, q) : |p− q| ≤ min

(√
1.1c1(p+ q) log n

n
, |p+ q|

)}
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for some constant c1 that will be specified later. To identify if (Pe, Qe) belongs to P , we adopt

sample splitting techniques on the Poisson distribution. To be specific, we draw an independent

uniform Bernoulli variable P(B = 0) = P(B = 1) = 0.5 for each Xi and each Yi, and then split

the samples according to the value of B. The split empirical distributions thus can be written

p̂v,j =

∑nX

i=1 I(Xi = v)I(BX
i = j)

nX
and q̂v,j =

∑nY

i=1 I(Yi = v)I(BY
i = j)

nY

for j = 0, 1. Here BX
i s and BY

i s are independent uniform Bernoulli random variables. Similarly,

we write P̂e,j =
∑

v∈τ(e) p̂v,j and Q̂e,j =
∑

v∈τ(e) q̂v,j for j = 0, 1. The construction suggests

that p̂v,0 and p̂v,1 are independent Poisson random variables with mean npv/2, and q̂v,0 and q̂v,1 are

independent Poisson random variables with mean nqv/2. Hereafter, we redefine n/2 as n. This

sample splitting strategy allows us to use (P̂e,0, Q̂e,0) to localize whether (Pe, Qe) belong to P and

estimate the functional by (P̂e,1, Q̂e,1). When (P̂e,0, Q̂e,0) /∈ P , it holds with high probability that

(Pe, Qe) satisfies either Qe < Pe or Pe < Qe only. This implies that |Pe − Qe| can be estimated

by |P̂e,1 − Q̂e,1| in an unbiased way and we could simply adopt the classical plug-in estimator. On

the other hand, if (P̂e,0, Q̂e,0) ∈ P , it is necessary to design an estimator to carefully reduce the

approximation bias. For brevity, we write hereafter

Er =
{
e ∈ E : (P̂e,0, Q̂e,0) ∈ P

}
and Ec =

{
e ∈ E : (P̂e,0, Q̂e,0) /∈ P

}
.

It is worth noting that the sample splitting technique is mainly used to simplify the analysis. It

is not necessary to split the samples in practice and we do not split the samples in the numerical

experiments in Section 7.

3.2 A Bias Reduction Strategy

A natural bias reduction strategy inspired by (3) is to construct an unbiased estimator of the best

polynomial approximation for the target function |x−y| or e ∈ Er. As mentioned earlier, the use of

the best polynomial approximation method was pioneered in Cai and Low (2011) for bias reduction

in estimation of non-smooth functionals. Its popularity is justified as it leads to the construction of

the rate-optimal estimators in different problems (see e.g., Cai and Low (2011), Jiao et al. (2015),
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Wu and Yang (2016) and Jiao, Han, and Weissman (2018) and references therein). To be more

specific, let FK
e (Pe, Qe) be some polynomial of degree at most K designed for (Pe, Qe) at edge

e ∈ Er

FK
e (Pe, Qe) =

K∑
k1,k2=0

fe(k1, k2)P k1
e Q

k2
e .

The choice of FK
e (Pe, Qe) is usually determined by (P̂e,0, Q̂e,0) to approximate target functional

locally (see, e.g. Jiao, Han, and Weissman, 2018). The corresponding unbiased estimator of

FK
e (Pe, Qe) can be written as

F̂K
e =

K∑
k1,k2=0

fe(k1, k2)Hk1(P̂e,1)Hk2(Q̂e,1),

where Hk(P̂e,1) is an unbiased estimator for P k
e , i.e. Hk(x) =

∏k−1
m=0

(
x− m

n

)
if k ≥ 1 and

Hk(x) = 1 when k = 0. Thus, the bias of estimator
∑

e∈Er
LeF̂

K
e is mainly the approximation

error of the carefully chosen polynomials∣∣∣∣∣E∑
e∈Er

Le

(
F̂K
e − |Pe −Qe|

)∣∣∣∣∣ ≤∑
e∈Er

Le sup
x,y

∣∣FK
e (x, y)− |x− y|

∣∣ .
The squared error of estimator

∑
e∈Er

LeF̂
K
e can thus be decomposed into bias (Bias A) and vari-

ance (Variance A) as illustrated in left half of Figure 2.∑
e∈Er

Le|Pe −Qe|

∑
e∈Er

LeF
K(Pe, Qe)

∑
e∈Er

LeF̂
K
e

Bias A

Variance A

∑
e∈Er

Le|P̃e − Q̃e|

∑
e∈Er

LeF
K(P̃e, Q̃e)

Bias B

“Variance B”

Figure 2: Bias and variance decomposition of polynomial approximation estimator and moment
screening estimator.
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However, one of the main difficulties of this strategy is that we need to construct the best

polynomial approximation explicitly for each edge and each target functional. For instance, the

best approximated polynomials for |x− y|α are different for different α > 0. To address this issue,

we appeal to the observation that the unbiased estimator F̂K
e can be further approximated by some

plug-in estimator. To illustrate the intuition, we consider a simple example that FK
e (Pe, Qe) are the

same across different e ∈ Er, i.e. there exists a polynomial FK(Pe, Qe) such that FK
e (Pe, Qe) =

FK(Pe, Qe). Suppose (P̃e, Q̃e) are chosen in a way such that∣∣∣∣∣∑
e∈Er

LeF
K(Pe, Qe)−

∑
e∈Er

LeF̂
K
e

∣∣∣∣∣ ≈
∣∣∣∣∣∑
e∈Er

LeF
K(P̃e, Q̃e)−

∑
e∈Er

LeF̂
K
e

∣∣∣∣∣ . (4)

In other words, variance A and “variance B” are almost equal in Figure 2. Since the approximation

error of chosen polynomial is under control uniformly, bias A and bias B in Figure 2 have the same

order. Combining bias and variance term implies∣∣∣∣∣∑
e∈Er

Le|Pe −Qe| −
∑
e∈Er

LeF̂
K
e

∣∣∣∣∣ ≈
∣∣∣∣∣∑
e∈Er

Le|P̃e − Q̃e| −
∑
e∈Er

LeF̂
K
e

∣∣∣∣∣ .
This suggests that the plug-in estimator

∑
e∈Er

Le|P̃e − Q̃e| is as efficient as polynomial approxi-

mation estimator
∑

e∈E LeF̂e,K , but has no need for explicit knowledge of the best approximated

polynomial.

To search for (P̃e, Q̃e) satisfying (4), it is sufficient to consider each monomial of FK(Pe, Qe).

More specifically, (P̃e, Q̃e) can be chosen in a way such that∣∣∣∣∣∑
e∈Er

Le

(
P̃ k1
e Q̃

k2
e −Hk1(P̂e,1)Hk2(Q̂e,1)

)∣∣∣∣∣ ≈
∣∣∣∣∣∑
e∈Er

Le

(
P k1
e Q

k2
e −Hk1(P̂e,1)Hk2(Q̂e,1)

)∣∣∣∣∣ (5)

for k1, k2 = 0, . . . , K. The way to choose (P̃e, Q̃e) in (5) is referred as moment screening hereafter.

Because of no need for explicit construction of best approximated polynomial, we adopt moment

screening strategy to improve the classical plug-in estimator.

3.3 Moment-screening Estimator on Tree (MET)

Although the above approximation strategy could help reduce the bias, the main difficulty of mo-

ment screening is that we need to estimate the deviation of the unbiased estimator on the right
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hand side of (5) in the presence of heteroskedastic variance and the complex dependence structure

among (P̂e,1, Q̂e,1). To address this challenge, we adopt the following proposition to decouple the

dependence structure among (P̂e,1, Q̂e,1).

Proposition 2. Suppose {xv}v∈V is a collection of non-negative number such that
∑

v∈V xv ≤ W .

Let Ẽ(w) be a subset of edges on tree T such that

Ẽ(w) =

e ∈ E : w/2 <
∑
v∈τ(e)

xv ≤ w

 .

Then, Ẽ(w) can be decomposed into a collection of disjoint paths

Ẽ(w) =
S⋃
l=1

[vLl , v
U
l ],

where vLl and vUl l = 1, . . . , S, are the nodes of the tree, and the number of disjoint paths S satisfies

S ≤ 2W/w. In addition, any two edges from different paths in the above decomposition do not

share any descendants.

This proposition suggests that if subset of E can be written in the form of Ẽ(w) for some

{xv}v∈V , then it can be decomposed into a collection of disjoint paths. A typical example of Ẽ(w)

is colored in red in Figure 3a, where Ẽ(w) is decomposed into two paths [vL1 , v
U
1 ] and [vL2 , v

U
2 ].

Because of this decomposition, the dependence structure of (P̂e,1, Q̂e,1) is clear on Ẽ(w). To be

specific, (P̂e,1, Q̂e,1) are highly dependent for any two edges on the same path, but (P̂e,1, Q̂e,1) are

independent for any two edges from different path since they do not share any descendants.

Motivated by Proposition 2, we decompose Er with respect to the value of P̂e,0 + Q̂e,0 =∑
v∈τ(e)(p̂v,0 + q̂v,0). We consider the following stratification of Er

Ej =

{
e ∈ Er :

1

2j
< P̂e,0 + Q̂e,0 ≤

1

2j−1

}
,

for j = 1, . . . , J := blog2 (n/c1 log n)c. By definition, Ej is a subset of {e ∈ E : 2−j <

P̂e,0 + Q̂e,0 ≤ 2−(j−1)}, which satisfies the condition of Proposition 2. Therefore, each Ej can be

decomposed into a collection of subsets of disjoint paths and has a clear dependence structure as
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vU1

vL1

vU2

vL2

(a) An example of Ẽ(w)

vU1

vL1

vU2

vL2

(b) An example of Ej

Figure 3: Examples of Ẽ(w) and Ej: the red edges in (a) shows an example of Ẽ(w) with respect
to P̂e,0 + Q̂e,0, which can be decomposed two paths [vL1 , v

U
1 ] and [vL2 , v

U
2 ]; solid red edges in (b)

shows an example of Ej , which is a subset of Ẽ(w) in (a); dashed red edges in (b) belong to Ec.

well. Figure 3b shows a typical example of Ej . Besides each Ej , j = 1, . . . , J , we also define

E0 =
{
e ∈ Er : P̂e,0 + Q̂e,0 ≤ 2−J

}
.

Since E0 does not satisfy the conditions of Proposition 2, the bounded difference property can be

used to estimate deviation in (5). We are now in a position to carry out moment screening in (5)

for each Ej .

We define the following set for E0

I0 =

{
{(xe, ye)}e∈E0 ∈ A

|E0|
0 :

∣∣∣∣∣∑
e∈E0

Le

(
xk1e y

k2
e − Ĥk1,k2

)∣∣∣∣∣ ≤ R0,k1,k2 , 0 ≤ k1, k2 ≤ K

}
,

where Ĥk1,k2 = Hk1(P̂e,1)Hk2(Q̂e,1), K = c2 log n for some constant c2 and deviation in the right

hand side of (5) is

R0,k1,k2 = C0,k1,k2d

√
n log2 n

(
log n

n

)k1+k2

.

Here, d is the height of tree T and C0,k1,k2 = 4dM2(76c1)k1+k2 , where M = maxe∈E Le. A0

is defined as small 2D region A0 = [0, 2c1 log n/n]2 so that each (xe, ye) is constrained in this

region. We choose {(P̃e, Q̃e)}e∈E0 arbitrarily from I0. When Pe + Qe is large than c1 log n/n,

|Pe − Qe| can be well approximated by a polynomial of Pe − Qe (see Jiao, Han, and Weissman,

2018). Following this observation, we shall conduct the moment screening for Pe − Qe directly

in order to simplify the moment screening procedure. In particular, {(P̃e − Q̃e)}e∈Ej
is chosen

13



directly from the following set

Ij =

{xe}e∈Ej
∈ A|Ej |

j :

∣∣∣∣∣∣
∑
e∈Ej

Le

(
xke −Gk(P̂e,1, Q̂e,1)

)∣∣∣∣∣∣ ≤ Rj,k, 0 ≤ k ≤ K

 ,

where Gk(P̂e,1, Q̂e,1) is unbiased estimator of (Pe −Qe)
k

Gk(P̂e,1, Q̂e,1) =
k∑
l=0

(
k

l

)
(−1)lHl(P̂e,1)Hk−l(Q̂e,1),

and the deviation can be represented as

Rj,k = Cj,kd
√
Sj log n

(
log n

2jn

)k/2
.

Here, Aj is defined as an interval [−
√

4c1 log n/2jn,
√

4c1 log n/2jn], Sj is the number of the

disjoint paths in Ej in Proposition 2 and Cj,k = 6dM2(48c1)k/2. By doing this, instead of (K+1)2

constraints, only K + 1 constraints are required to choose (P̃e, Q̃e). After moment screening, we

plugin (P̃e, Q̃e) into estimator D(P,Q) to obtain our new estimator

D̃MET =
J∑
j=0

∑
e∈Ej

Le|P̃e − Q̃e|+
∑
e∈Ec

Le|P̂e,1 − Q̂e,1|. (6)

In light of the fact that 0 ≤ D(P,Q) ≤ dM , our final estimator is defined as

D̂MET = min(D̃MET, dM).

We call this estimator the moment-screening estimator on tree (MET). The corresponding algo-

rithm is summarized in Algorithm 1.

We close this section by comparing MET with local moment matching (LMM) proposed by

Han, Jiao, and Weissman (2018). Although both methods adopt implicit approximation method

through comparing monomials after “localization” of (Pe, Qe), there are several key differences

between two methods. LMM is designed for estimating symmetric functionals of a single discrete

distribution adaptively, while MET aims to estimate a collection of asymmetrical distances between

a pair of discrete distributions on a tree. Because of different purposes, MET incorporates branch

length Le in moment screening (5) and adopts a new scheme of partition for edges of tree in order
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Algorithm 1 Moment-screening Estimator on Tree (MET)

Input: Empirical distribution {P̂e}e∈E , {Q̂e}e∈E and Tree T .
Output: Estimation of distance D(P,Q).

Split samples into {P̂e,0, Q̂e,0}e∈E and {P̂e,1, Q̂e,1}e∈E .
Use {P̂e,0, Q̂e,0}e∈E to group edges into Ej , 0 ≤ j ≤ J and Ec.
if I0 = ∅ then
{(P̃e, Q̃e)}e∈E0 = {(P̂e,1, Q̂e,1)}e∈E0

else
Choose {(P̃e, Q̃e)}e∈E0 from I0 arbitrarily.

end if
for j ∈ 1 : J do

if Ij = ∅ then
{(P̃e − Q̃e)}e∈Ej

= {(P̂e,1 − Q̂e,1)}e∈Ej

else
Choose {(P̃e − Q̃e)}e∈Ej

from Ij arbitrarily.
end if

end for
Evaluate D̂MET = min(

∑J
j=0

∑
e∈Ej

Le|P̃e − Q̃e|+
∑

e∈Ec
Le|P̂e,1 − Q̂e,1|, dM).

return D̂MET

to account for complex dependence structure among (P̂e, Q̂e) and 2 dimensional nature of the

problem.

4 Theoretical Properties

We now turn to analyzing the theoretical properties of proposed estimator D̂MET, and compare it

with the classical plug-in estimator. We evaluate the performance of an estimator D̂ based on the

samples X and Y by the maximum mean squared error

R(D̂; Θ) := sup
(T,P,Q)∈Θ

E(D̂(X,Y )−D(P,Q))2,

where parameter set Θ is a collection of combinations of tree T and probability distributions P

and Q. The minimax risk in estimating D(P,Q) is defined as

R∗(Θ) = inf
D̂
R(D̂; Θ),
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where the infimum is taken with respect to all measurable estimators based on the samples X and

Y . In particular, we are interested in the following parameter set

Θ(s, d) :=

{
θ = (T, P,Q) : T ∈ T (s, d), P,Q ∈M|V |

}
,

whereMs is collection of all discrete distribution with alpha-beta size s and

T (s, d) =

{
T : 1 ≤ Le ≤M,∀e ∈ E; d(T ) ≤ d; |V | ≤ s

}
.

The choices of M ≥ 1 in above definition is arbitrarily, but need to be a fixed constant. For

simplicity of analysis, we shall focus on the case when T is a binary tree, i.e. each node has at

most two children, although all the analysis can also be applied to the more general cases. The

parameter space Θ(s, d) requires that the number of the nodes of the tree T is less than or equal to

s and the depth of the tree T is less than or equal to d. Clearly, an implicit constraint for d and s is

log2 s ≤ d ≤Ms due to the facts that the shortest tree T is a complete binary tree and highest tree

is a chain. For brevity, we also write R∗(D̂; Θ(s, d)) as R∗(D̂; s, d) and R∗(Θ(s, d)) as R∗(s, d).

The performance of MET on Θ(s, d) is characterized by the following theorem.

Theorem 1. Consider estimating D(P,Q) by D̂MET on Θ(s, d). Let K = c2 log n for some con-

stant c2 < c1 and c1 > 40. If n log n � s log(2d+2/s) and log n ≤ C1 log(s/d) for arbitrary

constant C1, then there exists a constant C such that

R(D̂MET; s, d) ≤ C
s log(2d+2/s)

n log n
,

when c2 is chosen small enough.

One main challenge in the proof of Theorem 1 is that (P̃e, Q̃e)s can be highly dependent.

To decouple the high dependence, Proposition 2 helps to segment the collections of nodes into

relatively independent ones by taking advantage of the tree structure. The analysis itself may

be of independent interest and can be applied to other problems on trees such as deriving the

asymptotic distribution for the test statistics of UniFrac distance. Theorem 1 assumes an upper

bound condition on sample size (log n ≤ C1 log(s/d)). The similar upper bound of sample size

also appears in previous papers (see, e.g. Jiao et al., 2015; Wu and Yang, 2016; Jiao, Han, and
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Weissman, 2018). Under this kind of condition, the bias of estimator dominates its variance so

the plugin estimator can be improved by bias reduction. Another implication of this condition is

log n � log(s/d) when log n ≤ C1 log(s/d), thus the result in Theorem 1 is still valid if we replace

log n by log(s/d).

The following lower bound shows that MET as shown in Theorem 1 is indeed rate-optimal.

Theorem 2. Consider estimating D(P,Q) on Θ(s, d). We have

inf
D̂
R(D̂; s, d) ≥ c

s log(2d+2/s)

n log n

for some constant c > 0. Moreover, if n log n� s log(2d+2/s), there is no consistent estimator for

D(P,Q).

Theorems 1 and 2 together show that the optimal rate of convergence under condition log n ≤

C1 log(s/d) is

R∗(s, d) � s log(2d+2/s)

n log n
.

Depending on d and s, there are two different regimes for the minimax optimal rate.

• For the short trees where s � 2d, the optimal rate for estimating D(P,Q) is s/n log n.

Recall that estimating the L1 distance has the same minimax optimal rate (see Jiao, Han, and

Weissman, 2018). Putting differently, estimating D(P,Q) is as difficult as estimating the L1

distance when the tree is short enough, i.e. almost like a complete binary tree.

• For the trees of tall heights, i.e. s � 2d, the optimal rate becomes sd/n log n. We can see

that the distance on taller tree is more difficult to estimate.

We now compare the performance of D̂MET and the classical plug-in estimator D(P̂ , Q̂). The

performance of the classical plug-in estimatorD(P̂ , Q̂) on Θ(s, d) is characterized in the following

theorem.
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Theorem 3. LetD(P̂ , Q̂) be the classical plug-in estimator forD(P,Q). When n� s log(2d+2/s),

D(P̂ , Q̂) is inconsistent. And when n� s log(2d+2/s), there exist constants c and C such that

c
s log(2d+2/s)

n
≤ R(D(P̂ , Q̂); s, d) ≤ C

s log(2d+2/s)

n
.

Comparison between Theorems 1 and 3 shows that the accuracy of MET is better than the

classical plug-in estimator when log n ≤ C1 log(s/d). In particular, the loss of D(P̂ , Q̂) is inflated

by log n times, although it is much simpler to implement plug-in estimator. If the tree is fixed, i.e.

s and d are determined, the minimax risk is of the order n−1, which is consistent with asymptotic

results in Sommerfeld and Munk (2018). We provide a more accurate characterization when s and

d increase along with n.

5 Estimation of the Lα Zolotarev-type Distance

Evans and Matsen (2012) generalize D(P,Q) into Lα Zolotarev-type distance(∑
e∈E

Le |Pe −Qe|α
)(1/α)∧1

where 0 < α <∞. To fix the idea, we focus on estimating its equivalent form

Dα(P,Q) =
∑
e∈E

Le |Pe −Qe|α . (7)

It is clear that, as a special case, D1(P,Q) is just the Wasserstein distance we discussed in the

previous sections. As pointed by Fukuyama et al. (2012), D2(P,Q) is the distance used in DP-

CoA (see, Pavoine, Dufour, and Chessel, 2004). To assess the performance of an estimator D̂ of

Dα(P,Q), we still adopt the mean squared error on Θ(s, d)

Rα(D̂; s, d) := sup
(T,P,Q)∈Θ(s,d)

E(D̂ −Dα(P,Q))2.

The corresponding minimax risk can then be defined as R∗α(s, d) := infD̂ Rα(D̂; s, d).

Through the discussion in Section 2, the main reason for the inflated bias in the classical plug-

in estimator for D(P,Q) is that the approximation error for |x − y| when (x, y) lies around the

diagonal line x = y. This naturally brings about the question of whether the classical plug-
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in estimator for Dα(P,Q) also suffers from the same bias problem. We show that this actually

depends on the choice of α, determining the smoothness of |x − y|α at x = y. More specifically,

we first show that, when α ≥ 2, the bias inflation is negligible so that the classical plug-in estimator

achieves the minimax optimal rate.

Theorem 4. Consider estimatingDα(P,Q) by the classical plug-in estimatorDα(P̂ , Q̂) on Θ(s, d).

If we assume α ≥ 2, then there exist constants C and c such that

Rα(Dα(P̂ , Q̂); s, d)) ≤ C
d2

n
and inf

D̂
Rα(D̂; s, d) ≥ c

d2

n
.

Furthermore, there is no consistent estimator for Dα(P,Q) when n� d2.

The reason that the classical plug-in estimator attains the optimal rate when α ≥ 2 is that the

function |x− y|α is smooth in this case. Obviously, the smaller α is, the sharper |x− y|α at x = y

becomes. This leads to significant bias for the classical plug-in estimator when 0 < α < 2. One

might expect to only need to adopt the same approximation strategy in Section 2 to reduce bias

when (Pe, Qe)s are around diagonal line. It turns out that it is also necessary to reduce the bias of

|P̂e − Q̂e|α even when it lies outside of the adjacent region of the diagonal line.

To address this issue, we reduce the bias of |P̂e − Q̂e|αs in two steps. Specifically, the same

moment screening strategy is used to reduces the bias, when (P̂e,0, Q̂e,0) ∈ ∪Jj=0Ej . Since no

explicit polynomial construction is required by MET, we can simply plugin (P̃e, Q̃e) into |Pe−Qe|α

to achieve the bias reduction. On the other hand, another step based on the Taylor expansion is

adopted when (P̂e,0, Q̂e,0) ∈ Ec. In particular, the Taylor expansion suggests

E|P̂e,1 − Q̂e,1|α − |Pe −Qe|α ≈
α(α− 1)

2
|Pe −Qe|α−2Var(P̂e,1 − Q̂e,1).

Thus, we consider the following first order bias-corrected estimator for |Pe −Qe|α

Uα(P̂e,1, Q̂e,1) = |P̂e,1 − Q̂e,1|α +
α(1− α)

2n
In(P̂e,1, Q̂e,1)|P̂e,1 − Q̂e,1|α−2(P̂e,1 + Q̂e,1).

Here, In(Pe, Qe) = I
(|Pe−Qe|>

√
c1(Pe+Qe) logn/4n)

I(Pe+Qe>c1 logn/4n) is a truncation function de-

signed to make Uα(P̂e,1, Q̂e,1) a bounded function. This is inspired by interpolation function in

Jiao et al. (2015). Putting the two bias reduction steps together yields our MET estimator for
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Dα(P,Q)

D̂MET,α :=
J∑
j=0

∑
e∈Ej

Le|P̃e − Q̃e|α +
∑
e∈Ec

LeUα(P̂e,1, Q̂e,1). (8)

It is worth noting that D̂MET,1 coincides with the estimator in (6). When 0 < α < 1, the perfor-

mance of D̂MET,α can be characterized in the following theorem.

Theorem 5. Let D̂MET,α be the estimator defined in (8). Let K = c2 log n for some small enough

constant c2 and c1 > 40. For 0 < α < 1, there exist constants C > 0 and c > 0 such that

Rα(D̂MET,α; s, d) ≤ C
s2−α logα(2d+2/s)

(n log n)α
,

when n log n� s(2−α)/α log(2d+2/s) and

inf
D̂
Rα(D̂; s, d) ≥ c

s2−α logα(2d+2/s)

(n log n)α
.

Moreover, no consistent estimator for Dα(P,Q) exists when n log n� s(2−α)/α log(2d+2/s).

Theorem 5 shows that the minimax rate is dominated by bias and D̂MET,α is a minimax rate-

optimal estimator for Dα(P,Q) when 0 < α < 1. We now show that the bias and variance

dominate in different regimes when 1 < α < 2. In the following theorem, we write r(s, d, n) =

log n/ log(s/d) and T (α) = (2− α)/(α− 1).

Theorem 6. Consider estimatingDα(P,Q) when 1 < α < 2. Let D̂MET,α be the estimator defined

in (8) and D(P̂ , Q̂) be the plugin estimator. For the MET, we assume K = c2 log n for some small

enough constant c2 and c1 > 40. If r(s, d, n) ≤ C1 < T (α) and n log n � s(2−α)/α log(2d+2/s),

then there exist constants C > 0 such that

Rα(D̂MET,α; s, d) ≤ C
s2−α logα(2d+2/s)

(n log n)α
.

On the other hand, if r(s, d, n) ≥ T (α) and n� d2, then

Rα(Dα(P̂ , Q̂); s, d) ≤ C
d2

n
.
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Furthermore, there exists a small constant c such that

inf
D̂
Rα(D̂; s, d) ≥ c

(
s2−α logα(2d+2/s)

(n log n)α
+
d2

n

)
.

Moreover, no consistent estimator forDα(P,Q) exists when n log n� max(s(2−α)/α log(2d+2/s), d2).

This theorem suggests that a composite estimator shall be adopted to achieve the minimax

optimal rate of estimating Dα(P,Q) when 1 < α < 2. More specifically, a new composite

estimator of MET and plugin estimator can be defined as

D̂COM,α =


D̂MET,α r(s, d, n) < T (α)

Dα(P̂ , Q̂) r(s, d, n) ≥ T (α)

.

Theorem 6 shows that D̂COM,α is minimax rate-optimal either r(s, d, n) < T (α) or r(s, d, n) ≥

T (α). Theorems 4, 5 and 6 together characterize the minimax rate R∗α(s, d) for different value

of α. We summarize the minimax rate and optimal sample complexity in Table 1. The minimax

rates suggest that the estimation of Dα(P,Q) becomes more difficult as α decreases. Putting it

differently, given s, d and n, Dα(P,Q) is only estimable for some value of α.

Table 1: Summary of the minimax risk rate and optimal sample complexity.

0 < α < 1 1 < α < 2 α ≥ 2

Minimax Rate
s2−α logα(2d+2/s)

(n log n)α
s2−α logα(2d+2/s)

(n log n)α
+
d2

n

d2

n

Sample Complexity
s(2−α)/α log(2d+2/s)

log s
max

(
s(2−α)/α log(2d+2/s)

log s
, d2

)
d2

6 Implementation of MET

We now address several practical issues in implementation of MET in this section. As mentioned

earlier, the purpose of sample splitting is mainly for simplifying the theoretical analysis. We do

not split the samples in the numerical experiments. In other words, we replace the role of both

(P̂e,0, Q̂e,0) and (P̂e,1, Q̂e,1) by (P̂e, Q̂e). To implement MET, we need to assign appropriate values
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for two turning parameters: c1 and c2. The choices of c1 and c2 are crucial to tradeoff between bias

and variance, because c1 affects the size of uncertain set P and the deviation of moment screening

R0,k1,k2 andRj,k, and c2 determines the degree of moment screeningK. A combination of larger c1

and c2 implies applying bias reduction to more pairs of (Pe, Qe) and higher degree of approximated

polynomial in MET, thus leading to smaller approximation error along with increasing variance.

On the other hand, the variance is well controlled when both c1 and c2 are chosen to be small. The

choice of c1 = 1.8 and c2 = 1 is supported by our experience and will be used in all numerical

experiments in Section 7.

The core component of MET is the moment screening: choosing (P̃e, Q̃e) or (P̃e − Q̃e) from

Ij for j = 0, . . . , J . The main difficulty is to check the feasibility of each Ij as the constraints

of Ij are highly non-linear. To overcome this issue, we formulate the moment screening as a

linear programming. A similar formulation has been used in Han, Jiao, and Weissman (2018).

More specifically, for E0, the square [0, c1 log n/n]× [0, c1 log n/n] is divided into a collection of

small bins with the width w0: Hh1,h2 := [(h1 − 1)w0, h1w0) × [(h2 − 1)w0, h2w0), 1 ≤ h1, h2 ≤

dc1 log n/w0ne. The width of w0 can be chosen as 1/2n. We assign a weight Wh1,h2 for each

Hh1,h2 and write

W o
h1,h2

=
∑
e∈E0

LeI((P̂e, Q̂e) ∈ Hh1,h2).

Thus, I0 can be approximated by

Ĩ0 =

{
{Wh1,h2} :

∣∣∣∣∣∑
h1,h2

Wh1,h2(h1w0)k1(h2w0)k2 −
∑
e∈E0

LeHk1(P̂e)Hk2(Q̂e)

∣∣∣∣∣ ≤ R0,k1,k2 , 0 ≤ k1, k2 ≤ K

}
,

and the feasibility of Ĩ0 can then be checked by linear programming. To make the choice of Wh1,h2

more stable, we consider the following optimization problem

min
Wh1,h2

∑
h1,h2

|Wh1,h2 −W o
h1,h2
|

s.t.

∣∣∣∣∣∑
h1,h2

Wh1,h2(h1w0)k1(h2w0)k2 −
∑
e∈E0

LeHk1(P̂e)Hk2(Q̂e)

∣∣∣∣∣ ≤ R0,k1,k2

for all 0 ≤ k1, k2 ≤ K.
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Algorithm 2 Algorithm for Implementing the Moment-screening Estimator on Tree (MET)

Input: Empirical distributions {P̂e}e∈E , {Q̂e}e∈E and Tree T .
Output: Estimate of the distance D(P,Q).

Use {P̂e, Q̂e}e∈E to group edges into Ej , 0 ≤ j ≤ J and Ec.
Solve

min
Wh1,h2

∑
h1,h2

|Wh1,h2 −W o
h1,h2
|

s.t.

∣∣∣∣∣∑
h1,h2

Wh1,h2(h1w0)k1(h2w0)k2 −
∑
e∈E0

LeHk1(P̂e)Hk2(Q̂e)

∣∣∣∣∣ ≤ R0,k1,k2

for all 0 ≤ k1, k2 ≤ K

if above problem is infeasible then
Wh1,h2 = W o

h1,h2
.

end if
D0 =

∑
h1,h2

Wh1,h2 |(h2 − h1)w0|α.
for j ∈ 1 : J do

Solve

min
Wh

∑
h

|Wh −W o
h |

s.t.

∣∣∣∣∣∣
∑
h

Wh(hwj)
k −

∑
e∈Ej

LeGk(P̂e, Q̂e)

∣∣∣∣∣∣ ≤ Rj,k, for all 0 ≤ k ≤ K.

if above problem is infeasible then
Wh = W o

h .
end if
Dj =

∑
hWh |hwj|α.

end for
Evaluate D̂MET,α =

∑J
j=0Dj +

∑
e∈Ec

LeUα(P̂e, Q̂e).
return D̂MET,α

Because of the L1 minimization, the sparse structure of W o
h1,h2

is kept by the above optimization

form. This optimization problem is equivalent to a linear programming that can be solved effi-

ciently. We use the optimization software MOSEK (https://www.mosek.com/) to solve the

corresponding linear program. After calculating Wh1,h2 ,
∑

e∈E0
Le|P̃e − Q̃e|α thus can be approx-
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imated by ∑
h1,h2

Wh1,h2 |(h2 − h1)w0|α .

We use the same strategy to find a solution for
∑

e∈Ej
Le|P̃e−Q̃e|α. Specifically, we divided the

interval [−
√

4c1 log n/2jn,
√

4c1 log n/2jn] as a collection of small bins Hh := [(h− 1)wj, hwj)

with the width wj = 1/
√

2jn. For each Hh, we define the weights Wh and W o
h =

∑
e∈Ej

LeI(P̂e−

Q̂e ∈ Hh). The optimization problem is then

min
Wh

∑
h

|Wh −W o
h |

s.t.

∣∣∣∣∣∣
∑
h

Wh(hwj)
k −

∑
e∈Ej

LeGk(P̂e, Q̂e)

∣∣∣∣∣∣ ≤ Rj,k, for all 0 ≤ k ≤ K.

Thus,
∑

e∈Ej
Le|P̃e − Q̃e|α can be approximated by

∑
hWh |hwj|α. After incorporating this opti-

mization formulation, the algorithmic version of MET is summarized in Algorithm 2.

7 Numerical Studies

In this section, we study the numerical performance of the proposed MET. We carry out simulation

studies in Section 7.1 and real data analysis in 7.2 to investigate the numerical properties of MET

in various settings.

7.1 Simulation Studies

We first demonstrate the merit of MET through simulation studies. In particular, the tree T we

use here is phylogenetic tree of bacteria within the class Gammaproteobacteria, which is extracted

from Greengenes 16S rRNA database version 13.8 clustered at 85% similarity (see, DeSantis et al.,

2006, http://greengenes.secondgenome.com) by the package metagenomeFeatures.

There is a total of 247 leaves (tips), which are denoted by VL, and 246 internal nodes, which are

denoted by VI , on tree T and the length of edges/branches ranges from 0.00015 to 0.23597. The

structure of the phylogenetic tree is shown in Figure 4.
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We consider three distributions on T in the next two sets of simulation experiments. Specif-

ically, the first distribution is a uniform distribution on all nodes, i.e. pv = 1/493, ∀v ∈ V , and

is denoted by P (1). The second distribution P (2) we consider here is a uniform distribution on all

leaves, i.e. pv = 1/247 if v ∈ VL and pv = 0 if v ∈ VI . To define the third distribution P (3),

we rank the leaves according to its labeled number (which is shown in Figure 4) in increasing

order and write them as v(1), . . . , v(247). Then, we let pv(i) ∝ i such that
∑

v∈VL pv = 0.75 and

pv = 0.25/246 if v ∈ VI .

The first set of simulation experiments is to assess the performance of MET when two target

distributions are equal, i.e. Dα(P,Q) = 0. To this end, we simulate reads data of both sam-

ples from the same multinomial distribution. In particular, the true distributions of P and Q are

P (1), P (2) and P (3), respectively. To investigate the effect of the sample size n and α, we chose

n = 2000, 4000, 6000, 8000 and 10000, and α = 1, 1.5 and 2 in the simulation experiments. The

experiment is repeated 100 times for each combination of the sample size n and different distri-

butions. For comparison purpose, both MET and the plug-in estimator are calculated for each

simulation run. The average squared error (D̂−Dα(P,Q))2 with error bar at 10% and 90% quan-

tile are summarized in Figure 5. These results clearly demonstrate the improved accuracy of the

proposed estimator MET. The observed effect of n and α is consistent with the theoretical results

given in the previous sections: the Wasserstein distance can be estimated more accurately when n

and α are larger.

Next, we compare the performance of MET with that of the plug-in estimator on the simulated

data when Dα(P,Q) 6= 0. We consider distance estimation between three pair of distributions:

P (1) v.s. P (2), P (1) v.s. P (3) and P (2) v.s. P (3). As in the previous simulation experiments, we

still vary n and α. Instead of squared error, we use the ratio of absolute error to the true distance

|D̂ − Dα(P,Q)|/Dα(P,Q) to assess the estimation accuracy. The simulation results in Figure 6

are based on 100 runs for each combination of the sample size n and the distribution pairs. These

results again demonstrate the advantage of the proposed method MET over the simple plug-in

estimator.
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The last set of simulation experiments aims to further compare MET and the plug-in esti-

mator on estimation of different distances. More specifically, we consider a mixture of uniform

distributions on VL and VI , i.e. pv = 0.75/247 if v ∈ VL and pv = 0.25/246 if v ∈ VI , de-

noted by P (4) hereafter. We focus on estimation of these two distances D(P (2), P (2)) = 0 and

D(P (2), P (4)) = 0.026 when the sample size n = 3000. The histograms of the estimated distances

by both methods are reported in Figure 7, which are based on 200 runs for each distance. The

naive plug-in estimator resulted in a larger bias than MET. It is clear from Figure 7 that MET is

able to better distinguish these two distances from each other than the plug-in estimator due to the

bias reduction strategy in MET. This also suggests that the new estimator might be used as a more

powerful test statistic to detect the difference between the two communities.

7.2 A Real Data Example

We apply MET to a 16S rRNA microbiome dataset of 16 patients with inactive Crohn’s disease and

18 normal controls in order to test the intestinal microbiome difference between these two groups

of individual samples. These data were collected as part of a larger microbiome study of Crohn

diseases conducted at the University of Pennsylvania. For each sample, the raw sequence reads data

were placed into a reference phylogenic tree from Greengenes 16S rRNA database version 13.8

with a 99% similarity by using SEPP (see Mirarab, Nguyen, and Warnow, 2012; Janssen et al.,

2018). All the processing steps were performed using QIIME 2 (see, https://qiime2.org).

After the phylogenic placement of the reads, the reference phylogenic tree is trimmed by keeping

all nodes related to the operational taxonomic units (OTUs) observed in the samples. The final

phylogenetic tree is shown in Figure 1. On this phylogenetic tree, there are a total of 3991 leaves

(tips) and 3990 internal nodes. Before applying MET, the OTU table is normalized by rarefaction

so that all the samples have the same number of reads (see Weiss et al., 2017).

The newly proposed MET is applied to calculate the microbiome distance for every pair of

the 34 samples. As a comparison, we also applied the plugin estimator to calculate the UniFrac

distance between samples. To compare these two methods, Figure 8 shows the difference between
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the estimated distances by these two methods, D̂MET−D(P̂ , Q̂), versus the estimated distance by

MET, D̂MET. As shown in Figure 8, D̂MET tends to be smaller than the plug-in estimator D(P̂ , Q̂)

and tends to be shrunk towards 0. This is mainly due to the bias reduction technique in MET. This

was observed in the third simulation experiment as well. Furthermore, the difference between the

two methods tends to increase as the estimated distance decreases. This is reasonable as more

pairs of (Pe, Qe) get closer and thus result in more bias inflation of the plug-in estimator when the

distance becomes smaller.

To further compare these two distance estimation methods, we conduct graph-based two sam-

ple testing by using the estimated distance matrix. Graph-based two-sample testing method is

introduced by Friedman and Rafsky (1979) and further developed by Schilling (1986); Callahan

et al. (2016); Chen and Friedman (2017). We first build a graph using the distance thresholding

and then use the number of edges between samples from different groups as the test statistic. The

graphs obtained by thresholding at 0.3 are presented in Figure 9. The statistical significance is

evaluated by permuting the sample labels randomly 1000 times. The p-values calculated from the

distance matrix estimated by MET and the plug-in estimator are 0.0099 and 0.0249, respectively,

indicating more significant difference in overall microbiome compositions between the inactive

Crohn’s disease patients and the controls. If we choose the critical value at 0.01, p-value calcu-

lated from MET indicates an overall difference in gut microbiome composition between the two

groups.

8 Concluding Remarks

In this paper, we considered the problem of optimal estimation of the distance between two micro-

bial communities based on the sequencing reads that are mapped to a phylogenetic tree, including

the Wasserstein distance and its Lα Zolotarev-type generalization. Although the classical plug-in

estimator implemented as the UniFrac distance has been widely used in the microbiome applica-

tions, our results show that it can be sub-optimal and the accuracy can be improved by a bias re-

duction technique. In particular, we proposed a novel and adaptive distance estimation procedure,
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MET, by adopting a polynomial approximation approach on trees. Due to the incorporation of the

moment screening method, MET does not require any explicit construction of the best polynomial

approximation, thus allowing estimation of Dα(P,Q) for multiple α simultaneously. Through this

implicit approximation strategy, MET is able to reduce the bias in distance estimation effectively

and hence results in minimax rate optimal estimator.

Although the main focus of this paper is estimation of the Wasserstein distance and its Lα

Zolotarev-type generalization, the techniques are readily applicable to more generalized cases. For

instance, the results for the L1 distance estimation in Jiao, Han, and Weissman (2018) can be

generalized to estimating the Lα distance and leads to the following optimal rate of convergence,

inf
D̂

sup
P,Q∈Ms

E(D̂ − ‖P −Q‖αα)2 � s2−α

(n log n)α
+

1

n
,

whereMs is the collection of the discrete distributions with alpha-beta size s. It is also interesting

to compare estimation of Dα(P,Q) and ‖P − Q‖αα. The optimal rates becomes the same when

s � 2d. In other words, when the tree is very short (almost the same with complete binary tree),

the behaviors of estimation of the two distances are very similar. Another potential generalization

of our result is the estimation of Wasserstein distance on a tree when the tree has at most λ > 2

children. The MET itself is still rate optimal but log(2d+2/s) needs to be replaced by log(λd+2/s)

in the optimal rate.

We focused on estimation of the Wasserstein distance between two distributions on a tree in this

paper, but the Wasserstein distance between distributions on other spaces, such as Rd space, has

been also used in many applications, including computer vision (see, e.g. Ni et al., 2009; Solomon

et al., 2015) and machine learning(see, e.g. Arjovsky, Chintala, and Bottou, 2017; Gulrajani et al.,

2017). The results in this paper are difficult to be generalized directly in this case as the general

Wasserstein distance cannot be written in an explicit way like (2). The empirical Wasserstein

distance (plug-in estimator) on finite spaces has been studied when the finite space is fixed and

sample size goes to infinity (see, e.g. Do Ba et al., 2011; Weed and Bach, 2017; Sommerfeld

and Munk, 2018; Tameling, Sommerfeld, and Munk, 2017; Klatt, Tameling, and Munk, 2018;
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Singh and Póczos, 2018). However, our paper provides a high-dimension results to the problem of

distance estimation, allowing that all d, s and n can go to infinity.

Although our discussion is mainly in the context of microbial community comparisons, it is

worth noting that the Wasserstein distance may also be used in other applications. For instance,

one may be interested in comparing the protein expression levels measured by the flow/mass cy-

tometry across different cell populations (see, e.g. Orlova et al., 2016; Chen et al., 2018) when the

differentiation tree of the cells is available. In practice, the differentiation tree structure across the

cells can be built by several techniques such as minimum spanning tree construction or hierarchical

clustering (see, e.g. Anchang et al., 2016; Mao et al., 2017; Liu et al., 2018). In these situations,

the Wasserstein distance on a tree reflects the difference between the cell populations in a more

accurate fashion as the similarity between the cells along the differentiation tree is taken into ac-

count. Therefore, the methodology and theory developed in this paper can then be employed in

these applications as well.
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Figure 4: Phylogenetic tree of bacteria within the class Gamma proteobacteria used in simulation
studies. There is a total of 247 leaves(tips) and 246 internal nodes. The leave number labels the
bacterial species.
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Figure 5: Comparison of the quadratic estimation losses between MET and the plug-in estimator
when Dα(P,Q) = 0 for three different read count distributions, P1, P2 and P3.
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Figure 6: Comparison of the ratio of absolute error to the true distance between MET and the
plug-in estimator when Dα(P,Q) 6= 0 for three different P and Q distributions.
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Figure 7: Histograms of the estimated distances by the plug-in estimator and MET when the true
distance is 0.00 or 0.026.

Figure 8: Comparison of the estimated distances of the Crohn’s disease data sets. The difference
between estimated distances by two methods, D̂MET −D(P̂ , Q̂), versus the estimated distance by
MET, D̂MET, are ploted for each pair of the samples.
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(a) MET (b) Plugin

Figure 9: Estimated sample connectivity graphs by thresholding the distance matrix estimated by
MET and the plug-in estimator for the inactive Crohn’s disease samples and the control samples.
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