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PAUL R. ROSENBAUM

Abstract. This talk describes the theory of causal inference in randomized
experiments and nonrandomized observational studies, using two simple theo-
retical/actual examples for illustration. Key ideas: causal e¤ects, randomized
experiments, adjustments for observed covariates, sensitivity analysis for un-
observed covariates, reducing sensitivity to hidden bias using design strategies.

1. Seven Key Contributions to Causal Inference

1.0.1. Ronald A. Fisher (1935). The Design of Experiments. Edinburgh: Oliver
& Boyd. Although Fisher had discussed his randomized experiments since the
early 1920�s, his most famous discussion appears in Chapter 2 of this book, in
which Fisher�s exact test for a 2 � 2 table is derived from randomization alone in
the experiment of the �lady tasting tea.�

1.0.2. Jerzy Neyman (1923). On the application of probability theory to agri-
cultural experiments. Essay on principles. Section 9. (In Polish) Roczniki Nauk
Roiniczych, Tom X, pp1-51. Reprinted in English in Statistical Science, 1990, 5,
463-480, with discussion by T. Speed and D. Rubin. In this paper, Neyman writes
the e¤ects caused by treatments as comparisons of potential outcomes under alter-
native treatments.

1.0.3. Corn�eld, J., Haenszel, W., Hammond, E., Lilienfeld, A., Shimkin,
M., and Wynder, E. (1959). Smoking and lung cancer: Recent evidence and
a discussion of some questions. Journal of the National Cancer Institute 22 173-
203. This paper contains the �rst sensitivity analysis in an observational study,
replacing the qualitative statement that �association does not imply causation�by a
quantitative statement about the magnitude of hidden bias that would need to be
present to explain away the observed association between treatment and response.

1.0.4. Donald T. Campbell (1957). Factors relevant to the validity of exper-
iments in social settings. Psychological Bulletin, 54, 297-312. This is an early
paper in Campbell�s forty years of highly in�uential writings about observational
studies or quasi-experiments, as he called them. Campbell insisted that the legit-
imate concern that �association does not imply causation�must be given tangible
form in speci�c rival explanations or �threats to validity.� Once speci�ed, a rival
explanation led Campbell to study designs with added features to distinguish that
rival explanation from an e¤ect of the treatment.
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1.0.5. Austin Bradford Hill (1965). The environment and disease: Association
or causation? Proceedings of the Royal Society of Medicine, 58, 295-300. Along
with Richard Doll, Hill had been an author of some of the most in�uential observa-
tional studies providing evidence of the harmful e¤ects caused by cigarette smoking.
This particular paper proposed various considerations intended to aid judgement
about whether an observation association between treatment and outcome is causal.
The details of some of Hill�s suggestions remain controversial, but his general point
is not. We approach a study of treatment e¤ects with scienti�c knowledge that
certain patterns of e¤ects are plausible and others are not. That knowledge, com-
bined with expanded study of observed associations, provides evidence that aids in
distinguishing actual e¤ects from hidden biases.

1.0.6. William G. Cochran (1965). The planning of observational studies of hu-
man populations (with Discussion). Journal of the Royal Statistical Society, A,128,
134-155. This paper de�ned observational studies in parallel with randomized ex-
periments, systematically developing the tasks in research design, adjustments for
observed covariates, and addressing hidden bias from unmeasured covariates.

1.0.7. Donald B. Rubin (1974). Estimating causal e¤ects of treatments in ran-
domized and nonrandomized studies. Journal of Educational Psychology, 66, 688-
701. Although it had been fairly standard since the 1920�s to de�ne treatment
e¤ects in randomized experiments as comparisons of potential outcomes under alter-
native treatments, this important paper began applying the notation systematically
in observational studies. Arguably for the �rst time, the statement �association
does not imply causation�was written down formally, so that the observable associ-
ation was one population quantity, the e¤ect caused by the treatment was another,
and the two were equal in a randomized experiment but not in a nonrandomized
study. The paper provides formal insights into adjustments, when they might lead
to consistent estimates of treatment e¤ects, when they would fail.

2. A Randomized Experiment

2.1. 2� 2 Table in a Randomized Experiment.

2.1.1. Potential Responses, Causal E¤ects. (Reference: Neyman (1923), Rubin
(1974) Example: B. Fisher, et al. 2002) n women, i = 1; : : : ; n. Each woman i
has two potential responses, (rTi; rCi), where:

rTi =

2664
1 if woman i would have cancer
recurrence with lumpectomy alone
0 if woman i would not have cancer
recurrence with lumpectomy alone

rCi =

2664
1 if woman i would have cancer
recurrence with lumpectomy+irradiation
0 if woman i would not have cancer
recurrence with lumpectomy+irradiation

but we see only one response or the other; never see the causal e¤ect, �i = rTi�rCi,
i = 1; : : : ; n.

2.1.2. Finite population. A �nite population of n = 1; 262 women. The (rTi; rCi)
are 2n �xed numbers describing the �nite population. Nothing is random.
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Table 1. Observable Table: Response by Treatment.

Recurrence
Ri = 1

No recurrence
Ri = 0

Total

No rads
Zi = 1

P
ZiRi

P
Zi (1�Ri) m

Rads
Zi = 0

P
(1� Zi) Ri

P
(1� Zi) (1�Ri) n-m

Table 2. Observable Table in Terms of Potential Reponses:
Equals Table 1.

Recurrence
Ri = 1

No recurrence
Ri = 0

Total

No rads
Zi = 1

P
Zi rTi

P
Zi (1� rTi) m

Rads
Zi = 0

P
(1� Zi) rCi

P
(1� Zi) (1� rCi) n-m

2.1.3. No e¤ect. Is it plausible that irradiation does nothing? Null hypothesis of
no e¤ect. H0 : �i = 0, i = 1; : : : ; n:

2.1.4. Measures of e¤ect. Estimate the average treatment e¤ect : 1
n

Pn
i=1 �i. How

many more women A had a recurrence of cancer because they did not receive
irradiation? (Attributable e¤ect)

2.1.5. Randomized Experiment. (Fisher 1935) Pick m of the n people at random
and give them treatment condition T . In the experiment, m = 634, n = 1; 262.
This means that each of the

�
n
m

�
=
�
1;262
634

�
treatment assignments has the same

probability,
�
1;262
634

��1
. The only probabilities that enter Fisher�s randomization

inference are created by randomization. Write Zi = 1 if i is assigned to T and
Zi = 0 if i is assigned to C; then Zi is a random variable. Also, m =

Pn
i=1 Zi.

2.1.6. Observed response. The observed response, Ri = Zi rTi + (1� Zi) rCi =
rCi+Zi �i, is a random variable because it depends on Zi. That is, Table 1 equals
Table 2.

2.1.7. Attributable e¤ect. How many more women A had a recurrence of cancer
because they did not receive irradiation? A =

P
Zi �i =

P
Zi (rTi � rCi). Not

observed. A random variable. Table 2 and Table 3 di¤er by the attributable
e¤ect, A.

2.1.8. Testing hypothesized e¤ects. Consider the hypothesis H0 : �i = �0i, i =
1; : : : ; n = 1262 with the �0i as possible speci�ed values of �i. If H0 were true,
then Ri�Zi �0i would equal rCi, and Table 4 would equal Table 3 and would have
the hypergeometric distribution. Basis for test. Table 1 and Table 4 di¤er by the
hypothesized value of the attributable e¤ect, A0 =

P
Zi �0i.

3. A Matched Observational Study

3.1. Notation.
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Table 3. Table of Responses That Would Have Been Observed
Had Treatment Been Withheld. Not observed.

Recurrence
rCi = 1

No recurrence
rCi = 0

No rads
Zi = 1

P
Zi rCi

P
Zi (1� rCi)

Rads
Zi = 0

P
(1� Zi) rCi

P
(1� Zi) (1� rCi)

Table 4. Observed Table Adjusted for Hypothesized Treatment
E¤ect. Would Equal Table 3 if the Hypothesis Were True.

Recurrence
Ri = 1

No recurrence
Ri = 0

No Rads
Zi = 1

P
Zi (Ri � Zi �0i)

P
Zi (1�Ri + Zi �0i)

Rads
Zi = 0

P
(1� Zi) Ri

P
(1� Zi) (1�Ri)

Table 5. Blood lead levels, in micrograms of lead per decaliter
of blood, of exposed children whose fathers worked in a battery
factory and age-matched control children from the neigborhood.
Exposed father�s lead exposure at work (high, medium, low) and
hygiene upon leaving the factory (poor, moderate, good) are also
given. Adapted for illustration from Tables 1, 2 and 3 of Morton,
et al. (1982).

s Exposure Hygiene
Exposed Child�s
Lead Level �g/dl

Control Child�s
Lead Level �g/dl

Dose
Score

1 high good 14 13 1.0
2 high moderate 41 18 1.5
3 high poor 43 11 2.0
...

...
...

...
...

...
33 low poor 10 13 1.0

3.1.1. Lead example. Example is: Morton, et al. (1982). S = 33 pairs, s =
1; : : : ; S = 33, with 2 subjects in each pair, i = 1; 2.

3.1.2. One treated, one control in each pair. Write Zsi = 1 if the ith subject in pair
s is treated, Zsi = 0 if control, so Zs1 + Zs2 = 1 for every s, or Zs2 = 1 � Zs1.
Z = (Z11; Z12; : : : ; ZS1; ZS2)

T
: There are 2S possible Z, and a paired randomized

experiment would pick one at random.

3.1.3. Potential responses, causal e¤ects, �nite population, as before. Each of the
2S subjects (s; i) has two potential responses, a response rTsi that would be seen
under treatment and a response rCsi that would be seen under control. (Neyman
1923, Rubin 1974). Treatment e¤ect is �si = rTsi � rCsi. Additive e¤ect, rTsi �
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rCsi = � or �si = � for all s; i. The (rTsi; rCsi) ; s = 1; : : : ; S, i = 1; 2, are again
�xed features of the �nite population of 2S subjects.

3.1.4. Observed responses, as before. Observed response is Rsi = rTsi if Zsi = 1 or
Rsi = rCsi if Zsi = 0, that is, Rsi = Zsi rTsi + (1� Zsi) rCsi = rCsi + Zsi �si. If
e¤ect is additive, Rsi = rCsi + Zsi � .

3.1.5. Treated-minus-control di¤erences. If rTsi�rCsi = � , then the treated-minus-
control di¤erence in observed responses in pair s isDs = (Zs1 � Zs2) (rCs1 � rCs2)+
� . In general, with �si = rTsi � rCsi, Ds = (Zs1 � Zs2) (rCs1 � rCs2) + Zs1 �s1 +
Zs2 �s2.

3.2. Inference in a Paired Randomized Experiment.

3.2.1. Wilcoxon�s signed rank statistic. W ranks the jDsj from 1 to S, and sums
the ranks of the positive Ds. Alternatively, W is the number of positive Walsh
averages, (Ds +Ds0) =2, with 1 � s � s0 � S.

3.2.2. Null distribution of W in a randomized experiment. If H0 : �si = 0 were true
for s = 1; : : : ; S, i = 1; 2 in a randomized experiment, thenDs = (Zs1 � Zs2) (rCs1 � rCs2)
where Zs1 � Zs2 is �1 where randomization ensures Pr (Zs1 � Zs2 = 1) = 1

2 , inde-
pendently in di¤erent pairs, and rCs1 � rCs2 is �xed in Fisher�s �nite population,
so jDsj = jrCs1 � rCs2j is �xed, as is its rank, so ranks independently add to W
with probability 1

2 , generating W�s distribution. Uses just fact of randomization
and null hypothesis, so forms the �reasoned basis for inference,�in Fisher�s phrase.

3.2.3. Inference about additive e¤ects in randomized experiments. If H0 : �si =
�0 were true for s = 1; : : : ; S, i = 1; 2 in a randomized experiment, then Ds �
�0 = (Zs1 � Zs2) (rCs1 � rCs2), and W computed from Ds � �0 has the usual
null distribution of the signed rank statistic. This test is inverted for con�dence
intervals and Hodges-Lehmann point estimates. Again, the inference uses only the
fact of randomization and the null hypothesis being tested. Additive e¤ects may
be dropped; inference then concerns o¤sets attributable to treatment.

3.3. Simple Model for Observational Studies.

3.3.1. Unknown treatment assignment probabilities. An observational study is a
study of treatment e¤ects in which each person has an unknown probability of
treatment, typically di¤erent probabilities for di¤erent people.

3.3.2. Simple model. In some �nite population of people, j = 1; : : : ; J , person j
has probability �j = Pr (Zj = 1) of exposure to treatment, independently, where
�j is not known. Probabilities are always conditional on things we regard as �xed,
usually measured and unmeasured covariates, potential outcomes, (rTj ; rCj), etc.

3.3.3. Covariates. The people, j = 1; : : : ; J , in the �nite population have observed
covariates xj and unobserved covariate uj . In the example, xj describes child�s
age and neighborhood.

3.3.4. Exact matching for observed covariates. Select S pairs, i = 1; 2, one treated,
one control, from the J people in the population. Match exactly for x, so that xs1 =
xs2 for each s, s = 1; : : : ; S. In this simplest case, the matching algorithm is permit-
ted to use only x and 1 = Zs1+Zs2. Within matched pairs, the relevant treatment
assignment probabilities are conditional probabilities Pr (Zs1 = 1 jZs1 + Zs2 = 1).
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3.4. Adjustments for Observed Covariates: When Do They Work?

3.4.1. Free of hidden bias. Treatment assignment is free of hidden bias if �j is a
(typically unknown) function of xj � two people with the same xj have the same
�j .

3.4.2. Matching works if free of hidden bias. If free of hidden bias and we match
exactly for x, so xs1 = xs2, then

(3.1) Pr (Zs1 = 1 j Zs1 + Zs2)

=
�s1 (1� �s2)

�s1 (1� �s2) + �s2 (1� �s1)
=
1

2

because �s1 = �s2. A little more work shows that we get the randomization
distribution by conditioning. Identi�es the key assumption, but of course, doesn�t
make it true. In contrast, in an experiment, randomization makes the assumption
true.

3.4.3. Divides methods. Methods of adjustment for x should work when study is
free of hidden bias. Need other methods to address concerns about whether the
study is free of hidden bias.

3.5. Propensity Scores.

3.5.1. Many covariates. If x is of high dimension, it�s hard to match. With just
20 binary covariates, there are 220 or about a million covariate patterns.

3.5.2. Propensity scores. If the study is free of hidden bias, then two people with
the same xj have the same �j , so �j is a function of xj , say �j = e (xj), which
is then called the propensity score. If the study is free of hidden bias, then don�t
need to match on high dimension x, just need to match on the scalar e (x): if
e (xs1) = e (xs2) then �s1 = �s2, and (3.1) is true even if xs1 6= xs2.

3.5.3. Whether or not the study is free of hidden bias, matching on propensity
scores e = e (x) tends to balance the observed covariates x used in the score.
De�ne e = e (x) = Pr (Z = 1 jx), so the study is free of hidden bias if �j = e (xj)
for all j, but e (x) is de�ned even if �j depends on things besides x. Then

Pr (x jZ = 1; e) = Pr (x jZ = 0; e) or x j j Z j e (x) ;

see Rosenbaum and Rubin (1983).

3.6. Addressing Bias from Unobserved Covariates: Sensitivity Analysis.

3.6.1. Common objection. Critic says: �Adjusting for xj is not su¢ cient, because
there is an unobserved uj , and adjustments for (xj ; uj) were needed.�

3.6.2. Question answered by a sensitivity analysis. If the critic�s objection were
true, if the association between treatment Zj and response Rj were due to hidden
bias from uj , then what would uj have to be like? What is the critic�s counter
claim is actually claiming? The answer varies markedly: studies vary markedly in
how sensitive they are to hidden bias. First sensitivity analysis by Corn�eld, et al.
(1959) concerned smoking and lung cancer.
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3.6.3. Sensitivity Model. Before matching, two subjects, j and k, with the same
observed covariates, xj = xk, may di¤er in terms of uj and uk so that their odds
of exposure to treatment di¤er by a factor of � � 1,

(3.2)
1

�
� �j (1� �k)
�k (1� �j)

� �.

Free of hidden bias if � = 1. If � > 1, the unknown �j cannot be eliminated,
as before, by matching on xj , so the randomization distribution is no longer justi-
�ed. If � = 1:001, the �j are unknown, but almost the same, but if � = 5, �j are
unknown and could be very di¤erent. Plan: For each � � 1, �nd upper and lower
bounds on inference quantities, like P-values (or endpoints of con�dence intervals),
for �j�s satisfying (3.2). Report these for several �. When do conclusions begin to
change? Replaces qualitative �association does not imply causation,�by a quan-
titative statement based on observed data, �to explain away observed associations
as noncausal, hidden biases would have to be of such and such a magnitude.�
As before, match on observed covariates x, to form S pairs, s = 1; : : : ; S, i = 1; 2,

with xs1 = xs2, one treated, one control, Zs1 + Zs2 = 1. Then (3.2) implies:

1

1 + �
� Pr (Zs1 = 1 j Zs1 + Zs2) �

�

1 + �

which places sharp upper and lower bounds on the distribution of W and resulting
inferences. Whole argument applies much more generally.

3.7. Addressing Bias from Unobserved Covariates: Pattern Speci�city.

3.7.1. Fisher�s View. Cochran (1965, §5) �About 20 years ago, when asked in a
meeting what can be done in observational studies to clarify the step from associ-
ation to causation, Sir Ronald Fisher replied: �Make your theories elaborate.�The
reply puzzled me at �rst, since by Occam�s razor, the advice usually given is to
make theories as simple as is consistent with known data. What Sir Ronald meant,
as subsequent discussion showed, was that when constructing a causal hypothesis
one should envisage as many di¤erent consequences of its truth as possible, and
plan observational studies to discover whether each of these consequences is found
to hold. . . . this multi-phasic attack is one of the most potent weapons in obser-
vational studies.�

3.7.2. Pattern Matching and Sensitivity to Hidden Bias. Can determine whether
pattern speci�city reduces sensitivity to hidden bias, and if so, by how much. Can
appraise strategies for the design of observational studies in terms of the degree to
which they reduce sensitivity to hidden bias.

4. Summary

4.0.3. Causal e¤ects. Comparison of potential outcomes under competing treat-
ments � not jointly observable (Neyman 1923, Rubin 1974). .

4.0.4. Randomized experiments. Permit inference about the e¤ects caused by
treatments (Fisher 1935).

4.0.5. Observational studies: Adjustments. Without randomization, adjustments
are required. Straightforward for observed covariates, but there might be important
covariates that you did not observe. (Cochran 1965)
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4.0.6. Observational studies: Sensitivity analysis. What would unobserved covari-
ates have to be like to alter conclusions? (Corn�eld, et al.)

4.0.7. Observational studies: Pattern matching, elaborate theories. Reducing sen-
sitivity to hidden bias. (Campbell 1988, Hill 1965, Cochran 1965)

5. Bibliography

Much of the material in this talk is discussed in my book, Rosenbaum, P. R.
(2002) Observational Studies, 2nd edition, NY: Springer Verlag.

Key: AE = attributable effects; CE = causal effects; EG = exam-
ple used in talk; OS = observational studies; PM = pattern matching;
PS = propensity score; RE = randomized experiments; RI = random-
ization inference; SA = sensitivity analysis.
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