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Abstract

We study two classes of problems where it
is known that boosting will overfit data. The
first case occurs when the training data is cor-
rupted by independent label noise, and the
second occurs when the regions significantly
overlap. We begin by observing that in the
proper framework, overlapping regions is a
special case of noisy data. Our main contri-
bution is the introduction of a new ensem-
ble learning strategy based on the careful ap-
plication of both bagging and boosting. We
demonstrate experimentally that the perfor-
mance of this algorithm is superior to boost-
ing when the training set is noisy, and impor-
tantly, nearly identical otherwise. We cor-
roborate this on some real data. Finally, by
comparing boosting with this new algorithm,
we provide evidence for a new explanation for
boosting’s still remarkable resistance to over-
fitting.

1. Introduction

While the overall success of AdaBoost (Freund and
Schapire 1996) in particular and boosting in general,
is indisputable, there is increasing evidence that boost-
ing algorithms are not quite as immune from overfit-
ting as indicated in early reports. Dietterich (2000)
and Opitz and Maclin (1999) among others report that
boosting is quite susceptible to data corrupted by the
introduction of independent label noise. Friedman et.
al.( 2000) provide another example of a data set for
which boosting overfits: concentric spheres with sig-
nificant overlap. In short, research to date point to
two classes of problems where boosting may overfit:
1) independent label noise 2) overlapping regions. To

be fair, classification in such situations is hardest to
accomplish.

1.1 A Model for Noisy Data

The simplest model for noisy data considers, as in
Dietterich (2000), the addition of independent label
noise. For example, assume that Y is a binary class la-
bel. Suppose there exists region B such that for every
feature vector X € B it follows that Y = 1, otherwise
Y = 0. Now suppose for every instance X the label
Y is reversed with independent probability p < 1/2.
More generally, let f(x) represent the complete density
for feature vector X. We model noise by letting p(z)
represent the probability that label Y equals 0 given
that X = z; that is we let p(z) = P(Y = 0|X = z).
Intuitively, this model generates data in a two step pro-
cedure: first we choose a feature vector X and then,
depending on the value of X, we choose the label YV
according to p(z).

Now consider a model for overlapping regions. As-
sume, for simplicity, that Y is binary and that there
are two regions. Let fo(x) be the density of feature
vector X with Y = 0. Similarly, let f;(z) be the den-
sity of feature vector X with Y = 1. If the data con-
tains a fraction w of points with label Y = 0 then the
distribution f(z) on the feature vectors is given by the
w mizture of fo(x) and fi(x):

f(@) = wfolz) + (1 - w)fi(2).

Intuitively, the observations are generated in reverse of
the two step procedure for noisy data. First, the class
label is chosen and then the feature vector is drawn
according to fo or fi. The regions are overlapping if
there exists features x that are possible under both f;
and fp. The mixture model can be transformed into



the noisy data model, with
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The converse is also true: any noisy model, given by
f(z) and p(z) can be transformed into a mixture of
two noiseless models by letting

fo(@) = p(a) f(z)/w
fi(z) = (1 =p(2)) f(2)/(1 - w)
w= [ f(z)p(z)dz.

Hence, any noisy model (f(z), p(z)) is equivalent to
the mixture of the two noiseless models (fo(z), fi(z),
w). So, the two classes of problems for which classi-
fication can be expected to be hardest and for which
boosting algorithms are least effective, are essentially
equivalent.

1.2 Preventing Overfitting in Noisy
Environments

One way to prevent boosting from overfitting in a noisy
environment begins with the belief that boosting fits
noise only in its later stages. Thus, a potential pre-
ventative measure would be a reduction in the num-
ber of iterations, or an adaptive scheme using cross-
validation. Another similar suggestion, would allow
for weighting functions (of the margin) that increase
more slowly than exponential, see for example, the al-
gorithm Gentle-Boost of Friedman et al.(2000).

A second approach is to ’smooth’ the boosted classi-
fier. In a noisy environment, this makes obvious sense.
What is not entirely clear is that smoothing can be ac-
complished without reversing the boosting process and
producing an underfit. More critically, since the noise
level is essentially a hidden variable, the smoothing
procedure cannot be so destructive as to render boost-
ing ineffective in zero noise environments.

It is this second suggestion that we pursue here. We
propose to combine the bagging procedure and the
boosting procedure in a careful way, whereby bagging
operates to smooth the already boosted classifier. We
shall show that this new approach, which we label the
BB(K, M, p) algorithm (if the parameters are left un-
specified we simply use the label BB), helps to fix any
resultant overfitting caused by applying boosting to a
noisy data set.

1.3 The BB Algorithm

Given a training set T of size N, (bagging) parameters
p > 0 and K, and (boosting) parameter M. For k =
1,.,K:

e Generate a replicate training set T}, of size T}, =
pN, by sub-sampling with replacement.

o Generate a boosted classifier, C}(z), based on T},
using M iterations of the base learner.

Output the aggregate classifier C*:

1

C*(2) = 2 Zh, Ci(o). 1)

In short, the BB-algorithm performs a bootstrap ag-
gregation on the boosted base learner. The parameter
selection is fundamental: K is the chosen number of
bootstrap replicates, M is the number of iterations of
the boosting algorithm. The sub-sample consists of
a fraction p of the training set. In our experiments,
we shall show that good choices of K, M and p are
15, 15 and 1/2 respectively. Since the total number
of iterations of the base-learner is K x M, it follows
the BB(15,15,1/2) algorithm is no more complex than
AdaBoost using 225 iterations. Notice that we do not
allow boosting to run for hundreds of iterations. This
is a fundamental feature of our algorithm and it arises
from the observation that boosting is a self-smoothing
algorithm. We shall show (in section 3) that running
boosting for many iterations, well past the point of
achieving zero training set error rate, allows the algo-
rithm to smooth itself. Since the smoothing in BB is
accomplished directly by bootstrapping (bagging) the
large number of iterations are not needed and can be
limited to about 15.

To understand how boosting overfits noisy data and
also to motivate our algorithm, we look at a two class
classification problem as an example. Suppose the
probability for any point in a two dimensional unit
square belonging to class 1 is 80%, and the probability
for it to belong to class 0 is 20%. For convenience, we
assume there are 800 points in the training set hav-
ing class label 1 and 200 points having class label 0.
Since boosting is actually a weighted aggregation of
multiple trees, we can then think of the result as a
partition of the unit square; in other words each point
in the training set claims its own territory by putting
its class label on it. We know the optimal classifica-
tion rule for this simple problem is to classify every
point to belong to class 1, so the Bayes classifier has
error rate 20%. However, due to boosting’s specially
designed strong ability to focus on hard points, the
200 points from class 0 also have their territory. If
we assume the total area of the region corresponding
to class 0 is p, then the generalization error rate is
p*x0.8+ (1 —p)*0.2> 0.2. The error rate for boosting
is higher than the optimal, because boosting overfits
the training set.



Recall that bagging improves classification by aggre-
gating decision trees trained on bootstrapped repli-
cates. Thus, if we apply bagging after boosting, the
noise contained in the training set will hopefully be
averaged out (i.e. smoothed) when different boosted
classifiers are combined into an ensemble. Actually, we
can do better by subsampling a proportion p from the
original training set. The trouble with subsampling is
that real problems are much more complicated than
this example. Most problems are mixtures of signal
and noise. Thus, it follows that bagging with sub-
samples provides stronger protection against noise. It
also follows that discarding much of the data may
cause the boosting step to lose its power to capture
the signal. An important problem is to discover the
optimal sub-sampling proportion of the training set in
order to balance the trade-off between bagging’s abil-
ity to smooth and boosting’s ability to detect signal.

Combining bagging and boosting is an obvious idea
and not entirely new. Webb (2000) combines bag-
ging and boosting into the algorithm multiple boost-
ing (MB). Although he shows that MB does result in
slightly improved classification error rates compared to
boosting, he makes no connection with noisy environ-
ments. In our work, we shall show that for noisy data
sets BB is a great improvement over boosting and com-
parable to boosting in noiseless environments (Webb
(2000) limited its analysis to datasets in the UCI repos-
itory which are mostly noiseless). While MB is similar
to BB in that they both combine bagging and boost-
ing without increasing total algorithmic complexity,
there are two major differences. First, BB uses sub-
sampling to create smaller replicate training sets. The
motivation for sub-sampling is that it makes a better
smoother. Our experiments support this conjecture.
Secondly, the MB algorithm uses wagging instead of
bagging which forces every training set instance to
be included in every replicate, albeit with randomly
chosen positive weight. The BB algorithm uses equal
weights and simple sampling with replacement. The
effect of this is significant since boosting increases the
weights of hard-to-classify points. Every point even-
tually contributes to each iteration which limits the
smoothing.

Another discussion of the combination of boosting
and bagging can be found in the discussion paper by
Buhlmann and Yu (2000). They suggest the applica-
tion of bagging and boosting in the opposite direction
of our combination. The effect of this is that no matter
how efficient or smooth the weak learner is, boosting
eventually fits the noise. Consequently, any improve-
ment gained from bagging the weak learner is eventu-
ally eliminated in the boosting stage.

2. Empirical Results

We begin by providing empirical evidence to support
our main conjecture: that BB helps to reduce overfit-
ting in the presence of noise. Following the approach
of Friedman et. al (2000), we use synthetic data and
provide pictures to strengthen intuition and vividly
demonstrate our principle ideas. We will look at two
cases: 1) independent label noise and 2) overlapping
regions and mixture models.

2.1 Applying the BB Algorithm with
Independent Label Noise

We begin by specifying a model that is simple enough
to understand and to display, but complex enough to
constitute a sufficient challenge for our base classifier.
Specifically, we suppose that there are five dependent
feature variables, Xi,...,X5. We generate each fea-
ture i.i.d. from a uniform distribution on the unit in-
terval. Furthermore, we assume, for simplicity, that
the class label Y is binary and determined only by X3
and X, according to the following:

Y:{(])-a XISXQ

otherwise.

From the definition it is clear that the other three fea-
tures, X3, X4, X5 are magking variables from which Y
is independent. Furthermore, we assume that addi-
tion of noise which randomly and independently flips
the observed class label with some fixed probability
1 — p. Under this distortion we have that P(Y =
11X; >Xy)=1—pand P(Y =0|X; < Xp)=1-p.
The special case where p = 1 corresponds to noise-
less data. For reference, we label this set-up the unit
square model with a linear boundary and independent
label noise.

We generate a training set consisting of one thou-
sand pairs (Y, X) from the Unit Square model, with
X = (X4, X2, ..,X5). We set the noise parameter p to
be 0.8. Consequently, any classifier is faced with the
difficult task of learning the boundary X; = X» not
only in the presence of our masking features X3, X,
and X5, but also in the presence of noise, which pep-
pers the regions with dots of 1’s in fields of 0’s (and
vice versa). To test our classifier we provide a noise-
less test data set of 10000 points which provides a clean
distortion free backdrop to measure performance. We
first consider AdaBoost (225 iterations) using C4.5 as
its base classifier. To assess the performance of this
classifier, as well as others, we consider the projection
of the test sets errors into the unit square. We use
black dots to refer to misclassified points, i.e points
with ©1 > =z, that the classifier labels Y = 1. Sim-



ilarly, black dots in the region x; < x5 represent the
reverse mistake. In Figure 1, we display this so called
error projection graph for AdaBoost. Observe that
most of the errors are near the boundary, but there
are still sizeable concentrations of errors throughout
the region which correspond to overfitting. The over-
all error rate, equal to the area of the black dots on
the unit square, is 15.5%. For comparison, since the
test set is noiseless, the Bayes error rate is 0.
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Figure 1. error projection Graph for AdaBoost with p=0.8

To demonstrate BB’s performance, we bootstrap 15
subsamples of 333 (out of 1000) observations. We then
apply AdaBoost (15 iterations) to each of the 15 sub-
samples. The error projections for the subsamples are
displayed in 15 of the 16 panels in Figure 2 (all but the
right panel at the top). The resulting error rates range
from 15.8% to 20.09%. Finally, we create our aggre-
gate classifier by voting among the 15 bootstrapped
samples. The performance of the aggregate classifier
is displayed in Figure 2 in the extreme upper right.
Notice, that this panel has much more white than the
other 15 panels indicating that the probability of mis-
classification (6.79%) is much smaller. It is also ap-
parent from this panel that most of the error for the
BB classifier is near the boundary where 1 is close

to z2. We know that the black dots inside each class
region in each of the fifteen boosting panels are due to
boosting’s overfitting of the noise and their locations
are completely random, so when we combine all the
boosted subsamples the errors are averaged out. In
contrast, the black dots close to the boundary are due
to the inherent nature of the data and their locations
are consistent among the boosted subsamples. Conse-
quently, they will survive the final smoothing step in
the BB aggregation.

In Figure 3, boosting is contrasted with BB for differ-
ent levels of noise. To create a level playing field, we
used the same total number of iterations for boosting
and the aggregate BB classifier. Specifically, the single
boosting algorithm is a combination of 225 base classi-
fiers. The aggregate BB classifier is also a combination
of 225 base classifiers, resulting from the combination
of the 15 subsamples of 15 bootstrap iterations.

Consider the bottom panels in Figure 3, correspond-
ing to the zero noise case (i.e. p = 1). Notice that
the performances of AdaBoost and BB are nearly the
same (error rates of 2.4% and 2.65% respectively). It
will turn out that aggregation does not decrease per-
formance even in a distortion free environment. In the
middle set of panels, the probability of distortion is
.1. In this context, BB has an error rate of 4.8% and
AdaBoost has an error rate of 6.7%. Finally, we con-
sider the top panels of Figure 3, where the noise level
is higher (p = .8). Here, the distortion probability
is .2. In this case, boosting is overwhelmingly out-
performed by BB. With noise, AdaBoost overfits and
consequently posts an error rate of 15.47% BB does
substantially better with an error of 6.79%. The over-
all pattern is very clear: the more noise in the training
set, the larger the improvement of BB over boosting.

So far we have only looked at a noisy dataset. In this
environment, bagging also outperforms boosting since
it does not overfit the noise. Furthermore, unlike BB
which averages out the noise at the final step, bagging
ignores the noise in each iteration. Consequently, it is
more effective at reducing noise than BB. On the other
hand, this advantage comes with a price: noise dis-
torts the real signal. While bagging ignores the noise,
it cannot capture the signal as well as boosting. Thus
there is apparently a simple trade-off: boosting does
better in noiseless environments, while bagging per-
forms better on noisy datasets. We shall soon see that
BB can adapt appropriately: it can still boost a weak
learner (such as c4.5) when applied to noiseless data,
and it can outperform bagging when applied to noisy
datasets.

To demonstrate this we compare the base classifier
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Figure 2. Step by step output of BB(15,15,1/3).
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graph in the upper right corner is the error projections of
BB(15,15,1/3). The other graphs are the error projections
for the 15 applications of Adaboost to the 15 sub-samples.
Each point in the pictures represent an error in the test.
The noise parameter p is 0.8.

C4.5, bagging, boosting and BB in a more elaborate
simulation study. We move away from the Unit Square
model, to a more complicated model whose regions are
defined by spheres. In our experiments, we allow p to
be 1/3, 1/2 or 1, but set K and M both equal to 15.
For simplicity, we let BB(p) equal BB(15,15, p).

As in the unit square model with a linear boundary,
we let the dependent feature variables, X,..., X5 be
i.i.d. uniform on the unit interval. The class label Y
is again binary. The more difficult spherical boundary
defines the region where Y = 1 as follows:

1,

y = { )

where B is the five dimensional sphere centered at

(3,.-»3) with radius r = 0.62. We again distort the

data with noise so that P(Y =0|X € B)=1—p and
PY=1X¢B)=1—p.

XeB
otherwise.

We generate a training set consisting of one thousand

The noise parameter is p. The total number of base classi-
fiers used in AdaBoost and BB are the same.

pairs (Y, X). We allow the noise parameter p to be in
the range .7 to 1. The training set is used to create the
various classifiers. In order to validate a classifier we
apply it to a test set also consisting of one thousand
pairs (Y, X), but with p = 1. The reason p = 1 is
used for validation is to ensure that the performance
reported is due purely to misclassification, and is not
confounded by noise.

Table 1 presents the percentage of errors on the test
sample. Since the whole experiment is replicated ten
times, the top entry in each cell is the average percent-
age error. The number below is the standard error of
the mean of the error rates across the 10 replications.
We summarize the main conclusions thus far:

e Each of the classifiers outperforms C4.5. This
is because the region that distinguishes one class
from another is spherical rather than rectangular.

e When p is close to 1 (i.e., little noise) AdaBoost
outperforms bagging. Conversely, when p is small
bagging does better.



Table 1. Error Rate

p=1 p=09 p=08 p=0.7 AVE

C4.5 18.7 23.8 27.5 30.6 25.1
0.6 0.6 1 0.7

Baag 11.7 13.9 17.1 21.4 16
0.4 0.4 0.5 0.6

ApAB 8.8 14.7 20.2 26.8 17.6
0.2 0.4 0.5 0.5

BB(1) 8.6 12.9 16.9 23.2 15.4
0.3 0.3 0.5 0.6

BB(1/2) | 7.9 12.1 17.2 21.7  14.7
0.2 0.4 0.4 0.9

BB(1/3) | 8.1 12 16.2 21 14.3
0.3 0.3 0.6 0.7

e BB is adaptive (with respect to the noise level);
AdaBoost and bagging are not. When p = 1/3,
BB uniformly outperforms both bagging and Ad-
aBoost.

e The last column is the average percentage error
over all values of p considered. This column shows
that BB is, on average, the best classifier.

2.2 BB Applied to Mixture Models

Any noisy model can be regarded as a mixture model,
so we expect to observe similar improvements of BB
over boosting. Again we use pictures to convey the
main idea.

The data we are going to use for the mixture model
is two dimensional two norm data with three mask-
ing variables. The two classes are drawn with equal
probability from a two dimensional Normal distribu-
tion with unit covariance matrix. Class 1 has mean
(0,0) and class 0 has mean (a,a). The parameter a
controls the extent of overlap between the two classes.
For any fixed a, the optimal separating surface is the
straight line 21 + 22 = a. In the following experi-
ment, we select a value for a by solving the equation
P(X;+ X5 > a) =1—p, where X;, X, arei.i.d. stan-
dard Normal random variables and p is the parameter
which controls the Bayes error rate. The three mask-
ing variable, (X3, X4, X35), for both classes, are gener-
ated i.i.d. from a Uniform distribution on the interval
[—4,a+4].

The training set consists of one thousand points gen-
erated according to the above description. To test the
classifiers, we generate the validation data set accord-
ing to the Bayes rule. Specifically, we generates five
X values with the same distribution as in the training
set, but we assign each point a class label according to

the following formula:

v — 1, z1+z2<a
0, otherwise.

Figures 4 and 5 follow the same pattern as in Fig-
ures 2 and 3. It is very clear that bagging smooths
out the overfitted noise effect in each of the fifteen
boosts. The only difference from the noisy model is
that as 1 — p increases the relative improvement of BB
decreases. The reason is that in the mixture model,
p(z) = P(Y = 1|X = z) is not a constant as in the
noisy model. Bagging’s smoothing ability depends on
p(zx), the closer p(x) is to 0.5, the weaker bagging be-
comes in term of its smoothing power. When 1 — p is
large (the two Normals are close to each other), there
are more points which are close to the optimal sepa-
rating line and those points are hard to be fixed by
bagging. The points that can be fixed by bagging are
those which are far away from the separating line, and
they have less weight when 1 — p is large.

37

AdaBoost 4
error rate=0.2435
AdaBoost 8
error rate=0.2559
AdaBoost 12
error rate=0.2268
BB(15,15,
error rate=

0.2363
0.2363

AdaBoost 3
AdaBoost 7
AdaBoost 11
error rate=0.252
AdaBoost 15
error rate=0.291

error rate:
error rate:

0.2771
0.2391
0.2651
0.2601

AdaBogsl 2
AdaBogsl 6
AdaBoo:sl 10
AdaBoo:sl 14

error .rate
error rate
err?:r Iatg
erro:r Tate

AdaBoost 1
error rate=0.2889
AdaBoost 5
error rate=0.2539
AdaBoost 9
error rate=0.2394
AdaBoost 13
error rate=0.3137

vz o z v
2 2 2 o

Figure 4. Step by step output of BB with twonorm data.
The upper right corner is the final BB classifier, the other
graphs are the 15 replications of Adaboost. Each point
in the picture represent an error in the test. The optimal
separating surface is the straight line z1 + 22 = a. The
overlap parameter p is 0.8.
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Figure 5. Comparison of AdaBoost vs. BB. The parameter
p controls the Bayes error which also reflect how far away
the two Normals are from each other. The total number of
base classifiers used in AdaBoost and BB is the same.

3. Self~-Smoothing: Why boosting
resists overfitting

In this section we explore the idea that boosting acts as
its own smoother. Our evidence is entirely empirical,
but compelling.

We will try to frame our comparison directly to the
BB(15,15,1/3) algorithm, which constructs 15 boot-
strapped replicates each consisting of a sub-sample of
size N/3. Each of the 15 replicates is then boosted
for 15 iterations, for a total of 225 iterations of the
base learner. We will consider running Boosting for
an identical number of iterations.

In Figure 2 we saw that the main reason that BB
improves generalization error is that aggregation of
the bootstrap replicates averages out the overfitting in
each stage. This is possible since each replicate forms a
boosted classifier that overfits in different places. The
aggregation of these boosted classifiers smooths out
the overfitting. Now in boosting alone, we do not have
bootstrap replicates exactly. However, in discrete Ad-

aboost (which is the version of boosting we employ
throughout), each iteration is a weighted replicate. It
is our conjecture that when the data are noisy the
weights move around sufficiently to create replicates
that are diverse enough to produce smoothing when
averaged together to form the ensemble. If this is in-
deed the case, classifiers constructed by partitioning
the iterations in AdaBoost should produce error pro-
jection graphs that look like Figure 2. To see this, we
partition the 225 iterations of AdaBoost into 15 sub-
ensembles. Specifically, let F(X) be the aggregation
of all 225 iterations of AdaBoost. That is

225 15 225
F(X) =Y aihi(X) =Y a;ihi(X)+...+ > a:hi(X).
i=1 i=1 i=211

Now define f;, fori = 1,...,15, to be the it summand

in the above. We manufacture 15 individual decisions
by letting

. 1, ffi(X)>0
gi(X) = { 0, otherwise.

Now we are in a position to directly observe how boost-
ing acts as a self-smoother. In Figure 6, we plot the
performance of g; for i = 1 to 15 for the unit square
model with a linear boundary and with the addition of
independent label noise with p = .8. We see that each
classifier g; produces noisy estimates (notice the simi-
larity with Fig. 2). The classifier produces extremely
noisy boundaries and clouds of errors that blanket the
domain. Nevertheless, the variation among the graphs
allows the weighted ensemble average F'(X) (upper
right corner of Fig. 6) to have a smaller test set error
rate. Importantly, this is not due to the weights. To
see this, we report the performance of the unweighted
ensemble average G(X) which classifies according to
the simple majority of the g;. The test set error rate
for G(X) is 11.7% compared to 11.5% for Adaboost,
when p = .8. The implication is that overfitting is
prevented not by the weights, but by the resampling
procedure.

Furthermore, we duplicated this experiment for p =1
(not pictured). In this example, the error rates for
gi range from 3.3% to 3.8%. These errors typically
occur at points around the boundary, y = z, as each
g; produces its own jagged estimate of the boundary.
In contrast, the ensemble error rates are 2.37% and
2.45% for G(X) and F(z) respectively. This occurs
because the ensemble average smooths these jagged
boundaries to produce an aggregate classifier which
better captures the true boundary.
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Figure 6. error projection graphs for AdaBoost when
chopped into 15 pieces represented by gl(X) to gl5(X).
The graph in the upper right corner is the error projection
graph for F(X)- i.e. AdaBoost using 225 iterations. The
noise level is p = .8

4. Application to Real Data

We considered eight data sets from the UC Irvine
repository (see Table 2).The percentage of errors on
the test set, averaged for 10 runs, for various classifiers
including the proposed bag-boosting are presented in
Table 3. For ease of comparison, the error rate ratio
for each approach with respect to AdaBoost is given
in the second line for each data set. In some data
sets, such as hypothyroid, the gain for BB is modest.
In other data sets, such as segmentation (see Brod-
ley and Friedl(1999) for an extensive analysis of these
data), the gain is impressively about 30%.
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