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ABSTRACT. We develop new results about a sieve methodology for
the estimation of minimal state spaces and probability laws in the class
of stationary processes defined on finite categorical spaces. Using a
sieve approximation with variable length Markov chains of increasing
order, we show that an adapted version of the Context algorithm yields
asymptotically correct estimates for the minimal state space and for
the underlying probability distribution. As a side product, the method
of sieves yields a nice graphical tree representation for the potentially
infinite dimensional minimal state space of the data generating process,
which is very useful for exploration of the memory.
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1 Introduction

The assumption that a sequence of data is generated by a certain type of models helps
to better understand the features of the analyzed realizations and allows in particular
to predict possible developments of the underlying process. On the other hand, a fixed
model almost never corresponds to reality. The method of sieves, described in Grenander
(1981), combines the advantages of a model, but allows model-misspecification for any
finite sample size. In principle, it only requires that in the limit, as sample size tends to
infinity, some basic assumptions such as stationarity hold.

For the estimation of general stationary processes with values in a categorical space, we
propose the method of sieves with variable length Markov chains (VLMC’s) of increasing
order. These models are still Markovian of potentially high order, but with a sparse
memory, having some states lumped together. In favourable cases, e.g. when the process
has a memory which tends to certain directions, i.e. a sparse memory with a few but
typically long states, this yields a drastic reduction in the number of parameters to be
estimated, without restricting necessarily to short memories.

The advantage of the presented method in comparison to the use of full Markov chains
is higher efficiency for estimation. For a full Markov chain of order d taking values in a
finite categorical space X , the number of free parameters is |X |d (|X |−1) (|X | = cardinality
of X ), which is already very big for quite small values of d. Estimation is therefore very
poor in many practical applications with only moderate values of d. Since the dimension
of the models in the class of full Markov chains grows exponentially in the order d, their
structure is not so flexible as in the case of VLMC’s. In fact inequality (5) shows that
full Markov chains typically use an approximation of logarithmic order, whereas VLMC
approximation is often naturally linked to an increasing order d = dn, which is polynomial
in the sample size n, as specified in condition (i) of Assumption 2.

The sieve approximation with VLMC’s can be graphically represented by using the
so-called context trees, which are rooted trees growing downwards, whose branches rep-
resent the relevant history (memory) of the underlying process. Since we do not assume
finite memory for the processes to be estimated, the tree representation for the underlying
memory may be of infinite order, with some branches growing to infinity. Our approxima-
tion uses a sequence of VLMC’s of increasing finite order dn, whose tree representation is
a sequence of increasing trees (growing to the true tree as sample size tends to infinity),
which are truncated versions of the underlying true tree.

The probability distribution and the minimal state space of general stationary processes
taking values in a finite categorical space are thus approximated by those of VLMC’s of in-
creasing order dn, whose estimation is performed using an adapted version of the Context
algorithm, for which we refer to Rissanen (1983), Weinberger et al. (1995) and Bühlmann
& Wyner (1999). The main operations of the algorithm are local decisions between two
possible states, lumping them together whenever their corresponding transition probabil-
ities are similar.

If the minimal state space is finite (the underlying process is thus a VLMC), Wein-
berger et al. (1995) and Bühlmann & Wyner (1999) proved that the Context algorithm
consistently finds the right model.

The most important new result in our article is given for the estimate of the memory of
a process, whose order is infinite; in this case, the Context algorithm selects automatically

2



VLMC’s, whose orders grow to infinity for increasing sample size. This new development
guarantees broader perspectives: the adaptation of models to data is now possible without
necessarily assuming finite minimal state spaces. The operation of the Context algorithm
can be also interpreted as a very difficult model selection. Attacking this problem with
conventional criteria, such as AIC or BIC, is computationally infeasible. This indicates
the importance of the Context algorithm and hence the need to better understand its
properties.

As pointed out in remark 7, similar results can be shown to hold for more general
stationary processes defined on an increasing size categorical space.

Our results have potential impact to a variety of applications: to mention a few,
modeling of categorical time series, e.g. DNA sequences (Bühlmann & Wyner, 1999),
(Braun & Müller, 1998) or protein families (Bejerano & Yona, 2001), quantization of
nonlinear stationary real-valued time series (Bühlmann, 1999) and sieve-bootstrapping
stationary categorical time series (Bühlmann, 2002).

The paper is organized as follows: in Section 2 we define VLMC’s on finite categorical
spaces and give a tree representation of their minimal state space, which will be useful in
Section 3, when describing a version of the Context algorithm proposed by Bühlmann &
Wyner (1999). Theoretical results about consistent estimation of the minimal state space
and the probability distribution of general stationary processes on finite categorical state
spaces are given Section 4. The last section contains all the proofs.

2 Variable length Markov chains

2.1 Definition

Let X be a finite categorical space, |X | its cardinality, and {Xt : t ∈ Z} an X -valued
stationary irreducible Markov chain of finite order p. We denote by P the probability
distribution of {Xt : t ∈ Z} on XZ and use the notation

P (xb
a) = P

[
Xb

a = xb
a

]
,

P (xb|xb−1
a ) = P

[
Xb = xb|Xb−1

a = xb−1
a

]
, for xb

a ∈ X b−a+1 ,

where in general for a, b ∈ Z, a < b, xb
a denotes the sequence xb, xb−1, . . . , xa. Thus,

{Xt : t ∈ Z} is specified by

P (x1|x0
−p+1) , for x1 ∈ X and x0

−p+1 ∈ X p .

Without loss of generality we concentrate on the random variable X1, since by stationarity,
the transition probabilities are time-homogeneous. The random variable X1 might not
necessarily be influenced by its full history x0

−p+1. Therefore, it is important to distinguish
between relevant and irrelevant states in the past and then lump irrelevant states together
yielding a possibly parsimonious Markov chain. Formalizing this idea leads to the notion
of variable length Markov chain.

In information theory, this model is known as finite memory (or tree) source (Wein-
berger et al., 1995) and in the field of machine learning as probabilistic suffix automaton
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(Ron et al., 1996).

Consider now a process with infinite dependence, but which can be approximated uni-
formly by a Markov chain. By this we mean that the conditional probabilities P (x1|x0

−∞)
are continuous functions of x0

−∞ with respect to the product topology, or equivalently for
any ε > 0 there exists a p ∈ N such that∣∣P (x1|x0

−∞)− P (x1|x0
−pxxx · · · )

∣∣ < ε ,

for any x ∈ X , for all x1 ∈ X and for all x0
−∞ ∈ X∞.

Definition 1
Let X be a finite categorical space and {Xt : t ∈ Z} an X -valued stationary process with
continuous conditional probability distribution P .

(i) The projection function

c : X∞ −−−−→
∞⋃
i=0
X i ∪ XN (X 0 = ∅)

x0
−∞ 7−→ c(x0

−∞) = x0
−`+1 ,

where ` = `(x0
−∞) = min{p : P (x1|x0

−∞) = P (x1|x0
−p+1) ∀x1 ∈ X} is called the

context function of the process {Xt : t ∈ Z}.

(ii) The elements of the set {c(x0
−∞) : x0

−∞ ∈ X∞} are called contexts of the process
{Xt : t ∈ Z}.

The name context derives from the fact, that now the random variable X1 does no
more depend on the full history x0

−p+1, as in the case of a Markov chain of order p, but
only on some pieces of variable length `(·) from the infinite past x0

−∞.
From Definition 1 we see that the context length `(·) and the context function c(·) are

equivalent, because c(·) is a projection function and `(x0
−∞) =

∣∣c(x0
−∞)

∣∣, ∀x0
−∞ ∈ X∞.

Definition 2
Let X be a finite categorical space and {Xt : t ∈ Z} an X -valued stationary process with
context function c(·). The smallest integer d, such that∣∣c(x0

−∞)
∣∣ = `(x0

−∞) ≤ d , ∀x0
−∞ ∈ X∞ ,

is called the order of the context function. If d <∞, {Xt : t ∈ Z} is a stationary variable
length Markov chain (VLMC) of order d.

A VLMC of order d can be embedded in a Markov chain of order d, however with a
memory of variable length `(·) ≤ d. The case `(·) ≡ 0 coincides with an independent,
stationary process. If c(x0

−∞) = x0
−d+1, ∀x0

−∞ ∈ X∞, then {Xt : t ∈ Z} is a full Markov
chain of order d.

Since there is a large variety of context functions of order d with different structures
(particularly of sparse type), VLMC’s of order d build a more flexible class of processes
than full Markov chains of order d, and they better face the curse of dimensionality.

Because of stationarity and irreducibility, the probability distribution P of a VLMC
is completely specified by the transitions probabilities P (x1|c(x0

−∞)) , x1
−∞ ∈ X∞, which

themselves are functions of the values of the context function c(·). The latter are thus the
minimal state space of a VLMC.
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2.2 Tree representation

For better insight into the structure of the context function of a VLMC defined on a finite
categorical space X , it is convenient to adopt a tree representation. This will also be useful
later, when fitting VLMC’s to general stationary processes.

The context function c(·) can be represented as a complete tree τ com, where every node
has |X | edges. We consider for our purposes directed rooted trees growing downwards,
whose root (the node on top) is connected to any other node by means of exactly one
branch (or path). The branches connecting the root with the final nodes represent the
values of the context function.

Definition 3
Let X be a finite categorical space and {Xt : t ∈ Z} an X -valued stationary variable
length Markov chain with context function c(·). The tree τ com with branches {w : w =
c(x0
−∞), x0

−∞ ∈ X∞} is called the (|X |-ary) complete context tree of the process {Xt : t ∈
Z}.

We allow for additional more parsimonious structure of the context tree. At most
|X | − 1 terminal nodes having the same ancestor will be lumped together to one new
terminal node if the conditional distributions are the same.

Definition 4
The potentially lumped tree, denoted by τ , is called the context tree.

Example 1. Let X = {0, 1, 2} and consider an X -valued VLMC of order d = 2 with context
function given by

c(x0
−∞) =



00, if x0
−1 = 00 , x−2

−∞ arbitrary
01, if x0

−1 = 01 , x−2
−∞ arbitrary

02, if x0
−1 = 02 , x−2

−∞ arbitrary
1, if x0 = 1 , x1

−∞ arbitrary
20, if x0

−1 = 20 , x−2
−∞ arbitrary

21, if x0
−1 = 21 , x−2

−∞ arbitrary
22, if x0

−1 = 22 , x−2
−∞ arbitrary

As additional structure we assume P (x1|21) = P (x1|22) 6= P (x1|20). We then lump the
terminal nodes 21 and 22 together to one new terminal node which is represented as an in-
ternal node. We thus have states or contexts which correspond to terminal nodes, drawn
in black, and we have states or contexts which correspond to internal nodes, drawn in
white.

(Figure 1 here)

The context tree consists of the states τ = {00, 01, 02, 1, 2, 20}, which are all nodes of
the context tree in Figure 1.

It will often be useful to distinguish between the whole context tree τ and its terminal
nodes τ t = {w : w ∈ τ and wu /∈ τ,∀u ∈ X}.
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Example 1 (continued). The set of terminal nodes is given by τ t = {00, 01, 02, 1, 20},
which consists of all the black leaves (terminal nodes) in Figure 1 only.

The minimal state space of a VLMC is thus given by the context tree τ . The associated
transition probabilities are then P (x|w) = P

[
X1 = x|c(X0

−∞)
]

, x ∈ X , w ∈ τ , with
c(X0

−∞) belonging to w ∈ τ .

Example 1 (continued). The following transition probabilities are in action:

P (x|w) =



π1(x), if x0
−1 = 00 , x−2

−∞ arbitrary
π2(x), if x0

−1 = 01 , x−2
−∞ arbitrary

π3(x), if x0
−1 = 02 , x−2

−∞ arbitrary
π4(x), if x0 = 1 , x1

−∞ arbitrary
π5(x), if x0

−1 = 20 , x−2
−∞ arbitrary

π6(x), if x0 = 2 , x−1 ∈ {1, 2} , x−2
−∞ arbitrary

where πi(·), i = 1, . . . , 6, are 3×1 probability vectors, whose components sum up to one.

Remark 1. It is worth pointing out that knowledge of a context tree τ implies knowledge
of the complete context tree τ com and thus of the context function c(·). Going vice versa,
c(·) implies τ com, but generally we cannot infer from this to τ .

3 The Context algorithm

Let X be a finite categorical space and {Xt : t ∈ Z} an X -valued general stationary process
with distribution function P , context function c(·) and context tree τ .

Consider only one realization which is a sequence x1, . . . , xn. Our purpose is to find
good estimates of both the underlying context function (and therefore of the context tree),
which can be of infinite order, and the probability distribution. A computationally feasible
method is given by an adapted version of the Context algorithm, introduced by Rissanen
(1983) and recently re-proposed by Bühlmann & Wyner (1999).

Let nw = n− |w|+ 1, where w ∈
⋃n

i=1X i and |w| is the number of elements of w. We
denote by Nxn1

(w) the number of occurrences of the substring w in the reverse data string
xn

1 . Hence,

Nxn1
(w) =

nw∑
t=1

1{xt+|w|−1
t =w} , w ∈

n⋃
i=1

X i .

Furthermore we define

P̂xn1
(w) =

Nxn1
(w)

n
, P̂xn1

(u|w) =
Nxn1

(uw)
Nxn−1

1
(w)

, u ∈ X , w ∈
n−1⋃
i=1

X i .

The estimator P̂xn1
(w) = Nxn1

(w)/n possesses asymptotically the same features as the
unbiased version P̂xn1

(w) = Nxn1
(w)/(n − |w|+ 1), since nw is of the same order as n. We

have opted for P̂xn1
(w) = Nxn1

(w)/n for simplicity in the definition of P̂xn1
(u|w).

The operation of the Context algorithm takes place in three steps. Starting from
a predetermined initial maximal context tree for the sequence x1, . . . , xn, we prune its
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branches until the remaining states are all relevant for the development of the underlying
process. The condition for pruning, stated in inequality (2), is based on the Kullback-
Leibler information D (·, ·), which is defined by

D (P,Q) = EP

[
log

(
P (X)
Q(X)

)]
=

∑
x∈Xm

P (x) log
(

P (x)
Q(x)

)
, (1)

where P and Q are m-dimensional (1 ≤ m ≤ ∞) probability measures defined on the same
categorical space Xm.

The Context algorithm

Step 1. Build the maximal context tree corresponding to the sequence x1, . . . , xn. This is
the maximal context tree τ(0), whose terminal nodes w satisfy Nxn1

(w) ≥ 2, i.e they have
been observed at least twice in the reverse data string xn

1 .

Step 2. Let wu = x0
−`+1, with u = x−`+1 and w = x0

−`+2, be a terminal node of τ(0).
Prune wu = x0

−`+1 to w = x0
−`+2, if

∆wu(xn
1 ) = D

(
P̂xn1

(·|wu), P̂xn1
(·|w)

)
Nxn1

(wu) < Kn , (2)

where
Kn ∼ C log(n) , C > 2 |X |+ 3. (3)

Repeat the pruning procedure for all terminal nodes wu of τ(0) and build in this way the
context tree τ(1). If ` = 1, the pruned version is the root node. If an internal node w ∈ τ(1)

is lacking in edges, then the context tree τ(1) is completed: to every non-complete internal
node w one additional state u is attached, such that wu represents the needed (possibly
lumped together) terminal nodes. The corresponding estimate P̂xn1

(·|wu) of the transition
probability is set equal to P̂xn1

(·|w).

Step 3. Repeat Step 2 with τ(i) instead of τ(i−1) (i = 1, 2, . . . ) until no more pruning
is possible. Denote the final obtained context tree by τ̂n and the corresponding context
function by ĉn(·).

The underlying context function c(·) is estimated by ĉn(·), and the transition probability
P (x1|c(x0

−∞)) by P̂ĉn(x1|x0
−∞) := P̂xn1

(x1|ĉn(x0
−∞)).

Remark 2. The initial maximal context tree τ(0) in Step 1 is constructed on the basis of
at least two occurrences of every terminal node in the data sequence. This is reasonable
in practice, since it allows to start the pruning procedure with a large tree. Asymptotic
properties of the algorithm remain unchanged, when replacing the number two by any
other finite number. The order of testing the terminal nodes of the context tree τ(i) in
Step 2 is irrelevant.

Remark 3. The Context algorithm can be viewed as a multiple likelihood ratio test with
rejection region (Kn,∞) for the null hypothesis P (·|wu) = P (·|w).
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Remark 4. The cut-off value Kn ∼ C log(n), C > 2 |X | + 3 for the pruning decision in
Step 2 is specified by asymptotic considerations, as can be seen in the proof of Theorem
1). The condition on C is established by asymptotic considerations in Lemma 5, whereas
estimation of C is discussed in Bühlmann (2000). The cut-off value can be interpreted as
a stepwise (1− α)-quantile with α = αn −→ 0 (n→∞). The necessity for αn converging
to zero is explained in Rissanen (1989).

Remark 5. This adapted version of the Context algorithm makes no a-priori restriction on
the length of the memory of the process, such as `(·) = |c(·)| ≤ log(n)/ log(|X |) employed
in Weinberger et al. (1995), which can be a severe restriction in practical applications.
However we will see in the next section, that in order to prove consistency for the estimate
of the context function, we assume for |c(·)| the milder condition (i) of Assumption 2.

Remark 6. Ron et al. (1996) propose a learning algorithm (called Learn-PSA) for model
selection (estimation) in the class of probabilistic suffix automata. This algorithm con-
structs the model forwardly: starting from the root node, it adds nodes, if some proba-
bilistic conditions are satisfied. On the contrary, the Context algorithm works backwardly,
pruning an initial maximal context tree. This backward pruning is analogous to the one
in the tree-structured CART algorithm (Breiman et al., 1984). It usually perform better
than the more simple forward construction.

4 Consistency

We consider a discrete-time general stationary process {Xt : t ∈ Z} defined on a finite
categorical space X , with continuous conditional probability distribution P .

For this kind of processes the context function c(·) (or the context tree τ , respectively)
needs not to be of finite order. To prove consistency for the estimate of c(·) (given by the
Context algorithm), we approximate c(·) by a sequence of context functions corresponding
to VLMC’s of increasing finite order. This means that we approximate in a reasonable
sense general stationary processes by VLMC’s. Such approximations with increasing-
dimensional parametric models as sample size n grows, are also known as method of
sieves, as illustrated in Grenander (1981).

Definition 5
Let X be a finite categorical space and {Xt : t ∈ Z} an X -valued general stationary process
with context function c(·) and context tree τ . Let {dn : n ∈ N} be a sequence increasing
to infinity. The sequence {cn(·) : n ∈ N} of truncated context functions corresponding to
c(·) is defined by

cn(·) =


x0
−dn+1 , if

∣∣c(x0
−∞)

∣∣ ≥ dn

c(x0
−∞) , otherwise .

We assume here and in the sequel of Section 4, that an internal node v ∈ τ has been
completed to one node w ∈ τ representing all the lumped states. Hence, τ is a complete
tree where every (possibly lumped) state is a terminal node in τ .

Example 1 (continued). The completed context tree would look as in Figure 2.
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(Figure 2 here)

The white ellipse represents the completion of the context tree, with the terminal nodes
21 and 22 lumped together.

Definition 6
The sequence {τn : n ∈ N} of truncated context trees corresponding to τ is defined by

τn =
{

w ∈ τ : |w| ≤ dn

}
∪

{
w ∈ X dn : wu ∈ τ, u ∈

∞⋃
i=1
X i

}
.

Furthermore let ĉ tr
n (·) be the truncation of the estimated context function ĉn at level

dn, as described in Definition 5, and τ̂ tr
n be the truncation of the estimated context tree

τ̂n at level dn, as described in Definition 6.

Definition 7
Let {Xt : t ∈ Z} be a stationary process with probability distribution P . Let σb

a =
σ (Xa, . . . ,Xb) be the σ-algebra generated in the time interval [a, b]. The process {Xt : t ∈
Z} is α-mixing (or strong mixing), if

α(k) = sup
A∈σ0

−∞, B∈σ∞k

|P (A)P (B)− P (A ∩B)| −→ 0 (k →∞) .

We make the following assumptions:

Assumption 1. The process {Xt : t ∈ Z} is stationary and geometrically α-mixing with
α-mixing coefficients {α(k) : k ∈ N} satisfying α(k) ≤ Cανk, for some constants Cα > 0
and ν ∈ (0, 1).

Assumption 2. The sequence of truncated context functions {cn(·) : n ∈ N} is determined
by an increasing sequence {dn : n ∈ N}, such that

(i) For all n sufficiently large, dn ≤ nδ, for some δ ∈ (0, σ), where σ ∈ (0, 1) is specified
in condition (ii).

(ii) For some θ > 0, some σ ∈ (0, 1) and some γ ∈ (0, (1 − σ)/2), for all n sufficiently
large,

Γn = min
w∈τn

P (w) ≥ 1
nγ

,

and

Υn = min
wu∈τn,u∈X

‖P (·|wu) − P (·|w)‖1

satisfies

Υ2
n ≥

log(n)1+θ(
nΓ(1−σ)/2

n

)1−σ .
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(iii) For the minimal transition probabilities, for all n sufficiently large,

Pmin(n) = min
x∈X ,w∈τn

P (x|w) ≥ 1
n

.

The conditions in Assumption 2 are all probabilistic conditions about the sparseness
and the growth rate of the truncated context tree τn. They may be hard to check, but
have some intuitive meanings, which we now discuss.

Condition (i) is about the maximal growth rate for the approximating order of the
context tree. Consider a Markov chain of order dn. Then, |τn| = |X |dn . Because of the
first inequality in condition (ii), the cardinality of the context tree τn is bounded by

|τn| ≤
1
Γn
≤ nγ . (4)

Thus, in this case, condition (i) becomes

dn ≤
γ

log(|X |) log(n) . (5)

Hence, the choice of δ in the interval (0, σ) is without restrictions. With VLMC’s we
can also treat models with a memory growing only in certain directions (e.g. a sparse
memory represented by a context tree, which has only a few but typically long branches,
as described in Example 2 and Example 3, with a growth rate dn of polynomial order
δ ∈ (0, σ). This is a big advantage of VLMC’s in comparison with Markov chains.

The second inequality in condition (ii) is measuring relevance of terminal nodes in
comparison with their ancestors and ensures that they are not too close to each other.
Without this condition the Context algorithm could not distinguish between them.

As pointed out in Bühlmann & Wyner (1999), for general stationary processes with
finite memory (being therefore VLMC’s), it suffices to assume

min
x∈X ,w∈τ

P (x|w) > 0 . (6)

Condition (6) implies Assumptions 1 and 2 directly.

The power of the Context algorithm is shown in the next Theorem 1 and Theorem 2. The
first theorem states that for general stationary processes the Context algorithm produces
context trees, whose truncated versions consistently estimate the underlying truncated
context tree. The second theorem asserts that the transition probabilities, given finite
(possibly unbounded) contexts, are also consistently estimated. According to Theorem 1,
the Context algorithm selects asymptotically the correct finite dimensional model compo-
nents. This cannot be achieved by more traditional selection criterion such as AIC or BIC
due to the extremely large number of possible sub-models.

This work is so far the only attempt to model a general stationary process with a
sequence of VLMC’s of increasing order.

Bühlmann & Wyner (1999), using the same Context algorithm, showed consistency
for the moving truths model, namely a sequence of VLMC’s with a memory allowed to
depend on the sample size. In their seminal work, Weinberger et al. (1995) obtained
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consistent estimates for fixed order VLMC’s, imposing in their version of the Context
algorithm a search between models with bounded context length, which can nevertheless
slowly grow with the sample size. Ron et al. (1996) by means of their learning algorithm
Learn-PSA, already discussed in Remark 6), and Willems et al. (1995) using their Con-
text Tree Weighting algorithm achieve convergence (in Kullback-Leibler distance) of the
estimated to the true underlying probability distribution for fixed finite order VLMC’s.
Their algorithms do not propose a model, but are very useful for prediction.

Theorem 1
Under the Assumptions 1 and 2,

P
[
τ̂ tr
n = τn

]
−→ 1 (n→∞) .

Theorem 2
Under the Assumptions 1 and 2,

(i) sup
x∈X ,w∈τn

∣∣∣P̂ĉ trn
(x|w)− P (x|w)

∣∣∣ = oP (1) ,

(ii) P̂ĉ trn
(xr

1)
P−→ P (xr

1) (n→∞) , ∀xr
1 ∈ X r , ∀ r ∈ N .

Assertion (ii) of Theorem 2 also holds for the non-truncated version of the estimate ĉn(·)
of the context function.

Example 2. We consider the threshold first order autoregressive process {Yt : t ∈ Z}
defined by Yt = φYt−11{Yt−1>0} + Zt, where |φ| < 1, 1{·} is the indicator function and
{Zt : t ∈ Z} is a sequence of independent and identically distributed random variables
(the innovation process), having a density with respect to the Lebesgue measure and
a finite first absolute moment. The stochastic process {Yt : t ∈ Z} is stationary and
geometrically α-mixing, as described in Example 3, Chapter 2.4 in Doukhan (1994).

We define the categorical process {Xt : t ∈ Z} on X = {0, 1} by Xt = 1{Yt>0}. This
is also stationary and geometrically α-mixing (with the same bound for the α-mixing
coefficients). The context function of {Xt : t ∈ Z} is given by

c(X0
−∞) = X0

−h ,

where h = h(X0
−∞) = min{k : X−k = 0 and X0

−k+1 = 1, . . . , 1}. Whenever a state
X−k = 0 occurs in the past X0

−∞, then X−k−1
−∞ becomes irrelevant for the future state X1.

This process has an infinitely long context function c(·), whose corresponding context tree
τ is represented in Figure 3, and is therefore not a VLMC.

(Figure 3 here)

For this Example 2 and in general, the verification of the conditions stated in Assumption
2 is very difficult.

Example 3. Let {Xt : t ≥ 0} be a stationary binary process with initial probability given
by P [X0 = 0] = P [X0 = 1] = 1/2, and where the times {Ti : i ≥ 1} between switches of

11



Xt from 1 to 0 or 0 to 1 are independent and identically distributed. {Xt : t ≥ 0} is thus
a stationary alternating renewal process. We assume

P [T = j] = c1ρ
j
1 + c2ρ

j
2 , 0 < ρ2 < ρ1 < 1 . (7)

and let µ = E [T ]. The same results hold if we add to (7) a remainder term of the order
o(ρ j

2 ). The context tree of the process {Xt : t ≥ 0} is represented in Figure 4. Whenever
in the history a state different from the preceding states occurs, then the later past does
not play any role for the future development of the process. We will prove in the Appendix
that this example satisfies our Assumptions 1 and 2.

(Figure 4 here)

Remark 7. The minimal state space and the probability distribution of general stationary
processes defined on increasing size categorical spaces Xn, n ∈ N, can be also consistently
estimated with the approximation by VLMC’s. The only further assumption is a slowly
enough growth for the cardinality of Xn, namely |Xn| = O(log(n)1+r), for some r > 0.
Such a result allows us to show consistency for real-valued stationary processes using the
quantization procedure explained in Bühlmann (1999), where also some practical applica-
tions are given, and Ferrari (2002).

5 Conclusions

We have presented new consistency results about estimation with variable length Markov
chains (VLMC’s) in the class of general stationary processes defined on finite categorical
spaces. We have proposed a sieve approximation with VLMC’s of increasing order, based
on the so-called context function, which is a function describing the memory of a process.
We have proved that with this methodology the Context algorithm yields estimates for
the minimal state space and for the underlying probability distribution, which are asymp-
totically correct, for very general stationary processes with possibly infinite memory.

This is the first work, where a general stationary process is modeled with VLMC’s of
increasing order. The underlying process is neither assumed to be of fixed order nor to
have a memory depending on the sample size.

For the exploration of the potentially infinitely long memory of a general stationary
process, we also obtain an interesting graphical tree representation for the underlying
minimal state space. By means of two illustrative examples we show the power of our
methodology. Also for processes defined on increasing size categorical spaces or with real
values, our method can be successfully applied. The presented sieve approximation finds
application in many fields, such as modeling or sieve-bootstrapping stationary categorical
time series or quantization of nonlinear stationary real-valued time series.
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Appendix

Proof of Theorem 1. We essentially follow the proof of Theorem 3.1 in Bühlmann & Wyner
(1999). We rewrite for our case Lemma 5.1 and Lemma 5.2, applying an exponential
inequality for α-mixing processes, and also Lemma 5.3.

Let x1, . . . , xn be realizations of {Xt : t ∈ Z}. The error event En = {τ̂ tr
n 6= τn} for

sample size n for the context tree τn can be decomposed into the disjoint union of the
under- and the overestimation events Un and On, where

Un =
{

there exists w ∈ τ̂ tr
n with wu ∈ τn and wu /∈ τ̂ tr

n , for some u ∈
∞⋃
i=1
X i

}
,

On =
{

there exists w ∈ τn with wu ∈ τ̂ tr
n and wu /∈ τn, for some u ∈

∞⋃
i=1
X i

}
.

Therefore, we can bound the error in the estimation of the underlying context tree by
separately treating the under- and the overestimation.

Lemma 1
Under the Assumptions 1 and 2 (without condition (iii)),

P [Un] = O
(
exp

(
−D log(n)1+θ

))
(8)

for some constant D > 0 and θ as in Assumption 2.

Proof. We define the sequence {ρn : n ∈ N} by ρn = nΓn/2 and the event Hn by

Hn = {Nxn1
(w) ≥ ρn for every w ∈ τn} .

Since Un = Un ∩ (Hn ∪Hc
n) ⊆ (Un ∩Hn) ∪Hc

n , it follows that

P [Un] ≤ P [Un ∩Hn] + P [Hc
n] . (9)

Now, we separately bound the two probabilities on the right side of inequality (9). The
event Un ∩Hn is the underestimation event for branches observed at least ρn times in the
reversed sequence Xn

1 . Thus,

P [Un ∩Hn] ≤
∑

wu∈τn,u∈X

nwu∑
k=ρn

nw∑
j=k

P
[
D

(
P̂xn1

(·|wu), P̂xn1
(·|w)

)
< C

log(n)
k

,

Nxn1
(wu) = k,Nxn1

(w) = j

]
. (10)

The Kullback-Leibler information between two probability distributions is lower bounded
by the half squared L1-distance (Cover & Thomas, 1991). This, with the statements in
Bühlmann & Wyner (1999), pp. 502-503, leads to the bound

P
[
D

(
P̂xn1

(·|wu), P̂xn1
(·|w)

)
< C

log(n)
k

,Nxn1
(wu) = k,Nxn1

(w) = j

]
≤ |X | sup

x∈X

(
P

[∣∣∣P̂xn1
(x|wu)− P (x|wu)

∣∣∣2 > an(k),Nxn1
(wu) = k

]

+ P
[∣∣∣P̂xn1

(x|w) − P (x|w)
∣∣∣2 > an(k),Nxn1

(w) = j

] )
, (11)
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with

an(k) =

(
Υn

2
−

√
C log n

k

)2

. (12)

For n sufficiently large, because of condition (ii) of Assumption 2, we have

min
k≥ρn

an(k) ≥ log(n)1+θ

ρ 1−σ
n

. (13)

This bound is not the same as those given in Bühlmann & Wyner (1999). The difference
is due to condition (ii) of Assumption 2, which in our case must be modified with an
exponent (1 − σ), σ ∈ (0, 1), in the denominator. This is the price we have to pay, when
estimating general stationary processes. The two summands in (11) are now handled in
the same manner denoting with v either wu or w. Let p = P (x|v) and p̂ = P̂xn1

(x|v). In
order to find an upper probabilistic bound for the event{

|p̂− p|2 > an(k),Nxn1
(v) = k

}
,

consider the extension of X1, . . . ,Xn to the infinite sequence {Xt : t ∈ N} and define Ii(v)
as the time of the ith occurrence of v in {Xt : t ∈ N}. Let Zi = XIi+1 be the symbol that
occurs after the ith occurrence of v. The stochastic process {Zi : i ∈ N} is stationary and
α-mixing with mixing coefficients bounded by the same bound as the α-mixing coefficients
of {Xt : t ∈ N}. Define Yi = 1{Zi=x} and observe, that

∣∣∣∣∣∣∣
Nxn

1
(v)∑

i=1

Yi

Nxn1
(v)
− p

∣∣∣∣∣∣∣
2

> an(k),Nxn1
(v) = k

 ⊆


∣∣∣∣∣
k∑

i=1

Yi

k
− p

∣∣∣∣∣
2

> an(k)

 ,

and consequently

P
[
|p̂− p|2 > an(k),Nxn1

(v) = k
]
≤ P

∣∣∣∣∣
k∑

i=1

Yi

k
− p

∣∣∣∣∣
2

> an(k)

 . (14)

Lemma 2
Let {Yi : i ∈ N} with E [Yi] = p be the above defined process and an(k) be as in (12).
Then under the Assumptions 1 and 2 (without condition (iii)), for k ≥ ρn and for all n
sufficiently large

sup
0<p<1

P

∣∣∣∣∣
k∑

i=1

Yi

k
− p

∣∣∣∣∣
2

> an(k)

 ≤ 4 exp
(
−B1 log(n)1+θ

)
+ 11
√

5Cαn5(1−σ)/4νn(1−γ)σ/2
,

for some constant B1 > 0, Cα as in Assumption 1 and σ, θ, γ as in Assumption 2.

Proof. The process {Xt : t ∈ Z} has α-mixing coefficients α(j) ≤ Cανj , ν ∈ (0, 1),
and the same bound applies also for the α-mixing coefficients of the process {Yi : i ∈ N}.
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Since (Yi− p)i∈N is a zero-mean real-valued process with |Yi − p| ≤ 1, for all i ∈ N, we get
from Theorem 1.3, Chapter 1.4 in Bosq (1996) for each integer q in 1, . . . , bk/2c

sup
0<p<1

P

∣∣∣∣∣
k∑

i=1

Yi

k
− p

∣∣∣∣∣
2

> an(k)

 = sup
0<p<1

P

[∣∣∣∣∣
k∑

i=1

(Yi − p)

∣∣∣∣∣ > k
√

an(k)

]

≤ 4 exp
(
−1

8
qan(k)

)
+ 22

√
1 + 4

1√
an(k)

· qα
(⌊

k

2q

⌋)
. (15)

From inequality (13), by setting q =
⌊
k1−σ/2

⌋
, we obtain for k ≥ ρn and for all n suffi-

ciently large

qan(k) ≥
⌊

ρ 1−σ
n

2

⌋
log(n)1+θ

ρ 1−σ
n

.

The sequence
⌊
ρ1−σ

n /2
⌋
/ρ1−σ

n tends increasingly to 1/2 (n → ∞), and thus there exists
a positive constant B1, such that for all n sufficiently large

⌊
ρ 1−σ

n /2
⌋
/ρ 1−σ

n ≥ B1. This
leads therefore to qan(k) ≥ B1 log(n)1+θ.

For the first term in the second summand of inequality (15), we have again by (13) and
by ρn = nΓn/2 ≤ n, that 1 + 4/an(k)1/2 ≤ 1 + 4ρ (1−σ)/2

n ≤ 5n(1−σ)/2. For the second
term, since q =

⌊
k1−σ/2

⌋
≤ k1−σ/2 ≤ n1−σ/2, and, by condition (ii) of Assumption 2,

ρn = nΓn/2 ≥ n1−γ/2, we get for k ≥ ρn and for all n sufficiently large

qα

(⌊
k

2q

⌋)
≤ 1

2
n1−σα (bρ σ

n c) ≤
1
2
n1−σα

(⌊(
1
2
n1−γ

)σ⌋)
≤ 1

2
n1−σα

(
n(1−γ)σ/2

)
≤ 1

2
n1−σCανn(1−γ)σ/2

.

The assertion of the lemma follows then immediately.

A direct application of Lemma 2 to the above inequality (11) proves, that for all n suffi-
ciently large

P [Un ∩Hn]

≤ 2 |X |
∑

wu∈τn,u∈X

nwu∑
k=ρn

nw∑
j=k

(
4 exp

(
−B1 log(n)1+θ

)
+ 11
√

5Cαn5(1−σ)/4νn(1−γ)σ/2
)

≤ 2 |X | |τn|n2
(
4 exp

(
−B1 log(n)1+θ

)
+ 11
√

5Cαn5(1−σ)/4νn(1−γ)σ/2
)

.

The cardinality of the context tree τn is bounded by nγ with γ ∈ (0, (1−σ)/2), as explained
in inequality (4). In consequence

P [Un ∩Hn] = O
(
exp

(
−D1 log(n)1+θ

))
,

for some constant D1 > 0 and θ as in Assumption 2.
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The next step is to find a bound for P [Hc
n]. This is the probability that all terminal nodes

have been observed less than ρn times in the reversed sequence Xn
1 . First of all note, that

for w ∈ τn holds

E
[
Nxn1

(w)
]

= E

[
nw∑
t=1

1{Xt+|w|−1
t =w}

]
=

nw∑
t=1

P (w) ≥ nwΓn . (16)

For all n sufficiently large we have then

P [Hc
n] ≤

∑
w∈τn

P
[
Nxn1

(w) < ρn

]
=

∑
w∈τn

P
[
Nxn1

(w)− E
[
Nxn1

(w)
]

< ρn − E
[
Nxn1

(w)
]]

=
∑
w∈τn

P
[
Nxn1

(w)− E
[
Nxn1

(w)
]

<
1
2
nΓn − nwΓn

]
≤

∑
w∈τn

P
[
Nxn1

(w)− E
[
Nxn1

(w)
]

< −1
3
nwΓn

]
≤

∑
w∈τn

P
[∣∣Nxn1

(w)− E
[
Nxn1

(w)
]∣∣ >

1
3
nwΓn

]
≤ |τn| sup

w∈τn
P

[∣∣Nxn1
(w) − E

[
Nxn1

(w)
]∣∣ >

1
3
nwΓn

]
. (17)

Lemma 3
Under the Assumptions 1 and 2 (without condition (iii)), for all n sufficiently large

sup
w∈τn

P
[∣∣Nxn1

(w) − E
[
Nxn1

(w)
]∣∣ >

1
3
nwΓn

]
≤ 4 exp

(
−B2n

1−σ−2γ
)

+ 11
√

13Cανn1−σ+γ/2νnσ/2 ,

for some constant B2 > 0, Cα as in Assumption 1 and δ, σ, γ as in Assumption 2.

Proof. For t ≤ nw and w ∈ τn we define Wt = 1{Xt+|w|−1
t =w} − P (w). The process

{Wt : t ∈ Z} has mean zero with |Wt| ≤ 1, for all t ∈ Z. We have

Nxn1
(w)− E

[
Nxn1

(w)
]

=
nw∑
t=1

Wt.

Note that for the α-mixing coefficients {αW (i) : i ∈ N} of {Wt : t ∈ Z} we obtain

αW (i) ≤


α(i− |w|+ 1) , if i ≥ |w|

1 , if i < |w|
(18)

where {α(i) : i ∈ N} are the α-mixing coefficients of {Xt : t ∈ Z}. From Theorem 1.3,
Chapter 1.4 in Bosq (1996) we get for each integer q in 1, . . . , bnw/2c, σ as in Assumption
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2 and w ∈ τn

P
[∣∣Nxn1

(w)− E
[
Nxn1

(w)
]∣∣ >

1
3
nwΓn

]
= P

[∣∣∣∣∣
nw∑
t=1

Wt

∣∣∣∣∣ >
1
3
nwΓn

]

≤ 4 exp
(
− 1

72
qΓ2

n

)
+ 22

√
1 + 12

1
Γn
· qαW

(⌊
nw

2q

⌋)
. (19)

By setting q =
⌊
n1−σ

w /2
⌋

and by condition (ii) of Assumption 2, we get for all n sufficiently
large

qΓ2
n ≥

⌊
n1−σ

w

⌋
n2γ

. (20)

The sequence
⌊
n1−σ

w /2
⌋
/n1−σ tends increasingly to 1/2 (n → ∞), and therefore there

exists a positive constant B2, such that for all n sufficiently large

qΓ2
n ≥ B2n

1−σ−2γ . (21)

Since by condition (ii) of Assumption 2, 1/Γn ≤ nγ , for all n sufficiently large

1 + 12
1
Γn
≤ 13

1
Γn
≤ 13nγ . (22)

For the other part of the second summand in inequality (19), because of q ≤ n1−σ
w /2 ≤

n1−σ/2 and (18), we have

qαW

(⌊
nw

2q

⌋)
≤ 1

2
n1−σαW (bnσ

wc) ≤
1
2
n1−σα(bnσ

wc − |w|+ 1)

≤ 1
2
Cανn1−σν(bnσwc−|w|) .

Now, for w ∈ τn we have |w| ≤ dn and by condition (i) of Assumption 2, for δ ∈ (0, σ),
dn ≤ nδ. Because δ < σ, for all n sufficiently large

bnσ
wc − |w| ≥ nσ/2 . (23)

From (23) follows

qαW

(
bnwc
2q

)
≤ 1

2
Cανn1−σνnσ/2 . (24)

Since the upper bounds of the inequalities (21), (22) and (24) do not depend on w, the
assertion of the lemma follows immediately.

From inequality (17) we obtain

P [Hc
n] ≤ nγ

(
4 exp

(
−B2n

1−σ−2γ
)

+ 11
√

13Cανn1−σ+γ/2νnσ/2
)

.

Therefore
P [Hc

n] = O
(
exp

(
−D2n

ξ
))

,

for some constants D2 > 0, 0 < ξ < min(1− σ − 2γ, σ/2) and σ, γ as in Assumption 2.
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This completes the proof of Lemma 1.

Our next step is to prove that the overestimation of the truncated context tree τn by
τ̂ tr
n is increasingly unlikely as the sample size n tends to infinity.

Lemma 4
Let swv be a string with s ∈ τn, w ∈

⋃∞
m=0 Xm, v ∈ X and swv /∈ τn. Let On(swv) =

{∆swv(xn
1 ) ≥ C log(n) ,Nxn1

(swv) ≥ 2}. Under the Assumption 1 and condition (iii) of
Assumption 2, for all n sufficiently large

P [On(swv)] ≤
P

[
sw ∈ τ(0)

]
Pmin(n)

n−C+2|X | ,

where τ(0) is the initial maximal context tree in Step 1 of the Context algorithm.

Proof. We focus our attention on an arbitrary node s ∈ τn. Suppose that u is any
string of letters denoted by su = swv with w ∈ ∪∞m=0Xm, v ∈ X and swv /∈ τn. That is
wv is the extension of the node s to su. The terminal letter of the string u is the letter v.
Overestimation of the context s would be the erroneous inclusion of su in τ̂ tr

n . Let l = |sw|
be the length of the string sw. We begin by letting the sequence xn

1 be a realization from
P . Now, for each string su and each xn

1 our goal is to define a probability law on sequences
yn

1 in X n. To that end, recalling Weinberger et al. (1995), first let

Rsw(yn
1 ) =

∑
i: yii−l+1 6=sw

log
(
P (yi+1|yi

1)
)

,

where log
(
P (y1|y0

1)
)

stands for log P (y1). Here, P (yi+1|yi
1) is the true conditional proba-

bility of observing the symbol yi+1 in the full context yi
1. As in Weinberger et al. (1995),

we can determine a probability law given by Qsu(yn
1 |xn

1 ) defined as follows:

log (Qsu(yn
1 |xn

1 )) = Rsw(yn
1 ) +

∑
x∈X

∑
b6=v

Nyn1
(xswb) log

(
P̂xn1

(x|sw)
)

+
∑
x∈X

Nyn1
(xsu) log

(
P̂xn1

(x|sw)
)

.

Thus Qsu(·|xn
1 ) is a collection of well defined probability measures on sequences of length

n indexed by contexts su and sequences xn
1 . An important observation is that for any

sequence yn
1 with Nyn1

(sw) = 0, i.e. sw does not occur in yn
1 , the Qsu probability of yn

1 is
the same as the P probability. Strictly speaking every sequence xn

1 and every su indexes
a probability measure Qsu(·|xn

1 ). It is easy to see from the definition that, if zn
1 is a

sequence in X n, then Qsu(·|zn
1 ) = Qsu(·|xn

1 ) provided that Nzn1
(xsw) = Nxn1

(xsw) and
Nzn1

(xswv) = Nxn1
(xswv). Thus we can establish equivalence classes of sequences whose

Qsu measures are identical. To this end, for each xn
1 define σxn1

to be the set of all sequences
yn

1 with Nyn1
(xsw) = Nxn1

(xsw) and Nyn1
(xswv) = Nxn1

(xswv) for all x ∈ X . This implies
that

P̂xn1
(x|sw) = P̂yn1

(x|sw) ,
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and also that
P̂xn1

(x|swv) = P̂yn1
(x|swv) ,

provided that yn
1 ∈ σxn1

. At this point we are in a position to consider an overestimation
event. Recalling inequality (2), this will occur for any sequence xn

1 such that ∆su(xn
1 ) ≥

Kn = C log(n). From the definition of ∆su(xn
1 ) we know that this means that

D
(
P̂xn1

(·|swv), P̂xn1
(·|sw)

)
Nxn1

(swv) ≥ C log(n) ,

and by explicitly writing the Kullback-Leibler distance specified in (1), we have

Nxn1
(swv)

∑
x∈X

P̂xn1
(x|swv) log

(
P̂xn1

(x|swv)

P̂xn1
(x|sw)

)
≥ C log(n) .

Collecting the terms, we obtain∑
x∈X

Nxn1
(xswv) log

(
P̂xn1

(x|swv)
)
≥ C log(n) +

∑
x∈X

Nxn1
(xswv) log

(
P̂xn1

(x|sw)
)

.

Now it follows for xn
1 with ∆su(xn

1 ) ≥ C log(n) and for yn
1 ∈ σxn1

that

log (Qsu(yn
1 |xn

1 )) ≥ Rsw(yn
1 ) +

∑
x∈X

∑
b6=v

Nyn1
(xswb) log

(
P̂yn1

(x|sw)
)

+ C log(n) +
∑
x∈X

Nyn1
(xsu) log

(
P̂yn1

(x|sw)
)

= Rsw(yn
1 ) +

∑
x∈X

Nyn1
(xsw) log

(
P̂yn1

(x|sw)
)

+ C log(n) .

Continuing, we add and subtract the difference between Rsw(yn
1 ) and log (P (yn

1 )). Thus,

log (Qsu(yn
1 |xn

1 )) ≥ Rsw(yn
1 ) +

∑
i: yii−l+1=sw

log
(
P (yi+1|yi

1)
)

−
∑

i: yii−l+1=sw

log
(
P (yi+1|yi

1)
)

+
∑
x∈X

Nyn1
(xsw) log

(
P̂yn1

(x|sw)
)

+ C log(n)

= log (P (yn
1 )) +

∑
i: yii−l+1=sw

log

(
P̂yn1

(yi+1|sw)
P (yi+1|yi

1)

)
+ C log(n) .

Since P̂yn1
(yi+1|sw) is the maximum likelihood conditional distribution given sw and yn

1 ,
it follows that P̂yn1

(yi+1|sw) ≥ P (yi+1|sw). Thus we have that

log (Qsu(yn
1 |xn

1 )) ≥ log (P (yn
1 )) +

∑
i: yii−l+1=sw

log
(

P (yi+1|sw)
P (yi+1|yi

1)

)
+ C log(n) .
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For every s ∈ τn, we have P (yi+1|sw) = P (yi+1|yi
1), for every i, such that yi

i−l+1 = sw.
Applying this fact we obtain the inequality

log (Qsu(yn
1 |xn

1 )) ≥ log (P (yn
1 )) + C log(n) .

By exponentiating both sides we have this upper bound for P (yn
1 ):

P (yn
1 ) ≤ Qsu(yn

1 |xn
1 )n−C .

Since this inequality holds for every yn
1 ∈ σxn1

, for every xn
1 with ∆su(xn

1 ) ≥ C log(n), we
have that

P (σxn1
) ≤ Qsu(σxn1

|xn
1 )n−C .

Now observe that for any su, the event that ∆su(xn
1 ) > C log(n) is contained in the event

that string su occurs at least twice in xn
1 . Thus

Qsu (∆su(xn
1 ) ≥ C log(n)) ≤ Qsu(yn

1 : Nsu(yn
1 ) > 1|xn

1 ) .

Applying this above we have

P (σxn1
) ≤ Qsu (yn

1 : Nsu(yn
1 ) > 1|xn

1 ) n−C . (25)

In order to complete the proof we require a uniform bound on Qsu(yn
1 : Nsu(yn

1 ) > 1|xn
1 )

(uniformity is with respect to all choices of su and all choices of xn
1 ). To find a bound, we

construct a new probability distribution Q′ on the set of sequences of length n. Our goal
for Q′ is that it should place almost the same probability on the events {yn

1 : Nsu(yn
1 ) > 1}

that P places on these events. To that end, for every sequence yn
1 , suppose that sw first

occurs at index i and let x0 be the symbol that occurs after this first occurrence. Let b0

be the symbol immediately preceding the first occurrence of sw. Thus x0 occurs in the
(extended) context swb0. If b0 6= v, we define

log
(
Q′su(yn

1 |xn
1 )

)
= log (Qsu(yn

1 |xn
1 )) + log

(
P (x0|yi

1)
)
− log

(
P̂xn1

(x0|sw)
)

,

whereas if b0 = v, we define

log
(
Q′su(yn

1 |xn
1 )

)
= log (Qsu(yn

1 |xn
1 )) + log

(
P (x0|yi

1)
)
− log

(
P̂xn1

(x0|swv)
)

.

The upshot of this construction is to adjust Qsu so that it remains identical to P on the
longest prefix of yn

1 that contains only 1 occurrence of sw. That is, for all sequences
yn

1 such that Nsw(yn
1 ) < 2 it follows that P (yn

1 ) = Q′su(yn
1 |xn

1 ). It also follows from the
definition of Q′ that

Qsu(yn
1 |xn

1 ) ≤ Q′su(yn
1 |xn

1 )
1

Pmin(n)
.

From here we can deduce our uniform upper bound, namely that

Qsu(yn
1 : Nsu(yn

1 ) > 1|xn
1 ) ≤ Q′su(yn

1 : Nsu(yn
1 ) > 1|xn

1 )
1

Pmin(n)
.

Substituting this bound into (25) we have, for all xn
1 with ∆su(xn

1 ) ≥ C log(n), that

P (σxn1
) ≤ n−CQ′(yn

1 : Nsu(yn
1 ) > 1|xn

1 )
1

Pmin(n)
.
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Using the fact that for all xn
1 and all su we know that Q′su and P each attach the same

probability to the set of sequences that contain at least two occurrences of su we have

P (σxn1
) ≤ n−CP (xn

1 : Nsu(xn
1 ) > 1)

1
Pmin(n)

.

Now observe that since the equivalence classes are defined by numbers of counts, then
there can be at most n2|X | distinct classes σxn1

. Thus we have that

P [On(su)] ≤ n2|X |n−CP (xn
1 : Nsu(xn

1 ) > 1)
1

Pmin(n)
.

Since τ(0) is defined to be the set of strings that have appeared at least twice in xn
1 , it

follows that
P [On(su)] ≤ n−C+2|X |P

[
su ∈ τ(0)

] 1
Pmin(n)

.

This completes the proof of the lemma.

Lemma 5
Under the Assumptions 1 and 2, for all n sufficiently large

P [On] ≤ |X |n−λ , (26)

for some constant λ > 0.

Proof. Applying Lemma 4, using also condition (iii) of Assumption 2, we obtain the
inequality

P [On] ≤
∑
swv

P [On(swv)] ≤ n−C+2|X |+1
∑
swv

P
[
sw ∈ τ(0)

]
.

Now denote by L the number of subsequences occurring at least twice in the reversed
sequence Xn

1 . It holds E [L] ≤ n2, and thus we have that

∑
swv

P
[
sw ∈ τ(0)

]
≤ |X |E

[∑
sw

1{sw occurs at least twice in Xn
1 }

]
≤ |X |E [L] ≤ |X |n2 .

Since from inequality (3), C > 2 |X |+ 3, the assertion of the lemma follows.

By Lemma 1 and Lemma 5, we complete the proof of Theorem 1.

Proof of Theorem 2. (i) We essentially follow the same strategy adopted to bound the
underestimation event in Theorem 1. Let {ρn = nΓn/2 : n ∈ N} and Hn = {Nxn1

(w) ≥
ρn for every w ∈ τn}. Partitioning Gn with Hn leads to P [Gn] ≤ P [Gn ∩Hn] + P [Hc

n].
Now observe that

P [Gn ∩Hn] ≤
n∑

k=ρn

P
[∣∣∣P̂ĉ trn

(x|w) − P (x|w)
∣∣∣ > ε,Nxn1

(w) = k
]

.
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For all n sufficiently large, we have ε >
√

an(k), with an(k) as in (12), and thus

P [Gn ∩Hn] ≤
n∑

k=ρn

P
[∣∣∣P̂ĉ trn

(x|w) − P (x|w)
∣∣∣ >

√
an(k),Nxn1

(w) = k
]

.

We now define An =
{
w ∈ τn : ĉ tr

n (w) = cn(w)
}
. It follows

P
[∣∣∣P̂ĉ trn

(x|w) − P (x|w)
∣∣∣ >

√
an(k),Nxn1

(w) = k
]
≤ P [Ac

n] +

P
[∣∣∣P̂ĉ trn

(x|w) − P (x|w)
∣∣∣ >

√
an(k),Nxn1

(w) = k, ĉ tr
n (w) = cn(w)

]
.

Because of Lemma 1 and Lemma 5,

P [Ac
n] = O

(
n−λ

)
,

for some constant λ > 0. Using (14) and Lemma 2 we obtain

P
[∣∣∣P̂ĉ trn

(x|w)− P (x|w)
∣∣∣ >

√
an(k),Nxn1

(w) = k, ĉ tr
n (w) = cn(w)

]
≤ sup

0<p<1
P

[∣∣∣∣∣
k∑

i=1

Yi

k
− p

∣∣∣∣∣ >
√

an(k)

]
= O

(
exp

(
−D4 log(n)1+θ

))
,

for some constant D4 > 0 and θ as in Assumption 2. The assertion of the theorem is now
immediate.
(ii) Follows from part (i).

Check of Assumptions 1 and 2 for Example 3. In order to verify the Assumption 1, we
use the following inequality, for which we refer to Proposition 1, Chapter 1.1 in Doukhan
(1994),

α(k) ≤ E
[

sup
B∈σ∞k

∣∣P (B|σ0
−∞)− P (B)

∣∣] .

We can estimate the difference on the right with a coupling argument: we construct two
processes {Xt : t ≥ 0} and {X ′t : t ≥ 0} on the same probability space such that Xt = X ′t
for all t greater or equal than some random time τ < ∞. The first process {Xt : t ≥ 0}
is our stationary alternating renewal process, and the second process {X ′t : t ≥ 0} has
the distribution P (·|σ0

−∞). This means that {X ′t : t ≥ 0} is also an alternating renewal
process, but the value X ′0 is fixed and the time until the first renewal after zero has a
different distribution, depending on σ0

−∞. Then we have for any B ∈ σ∞k∣∣P (B)− P (B|σ0
−∞)

∣∣ =
∣∣P [{Xt : t ≥ k} ∈ B]− P

[
{X ′t : t ≥ k} ∈ B

]∣∣ ≤ P [τ > k] ,

compare (2.3) and (2.4), Chapter VI in Asmussen (1987). Hence it is sufficient to show
that such a coupling exists with E [exp(ετ)] < ∞ for some ε > 0. This can be achieved
with the same arguments as in Theorem 2.3 and Lemma 2.5, Chapter VI in Asmussen
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(1987). Since we are in discrete time, some simplifications occur. It is sufficient to assume
that the distribution of T is non-lattice and has exponential tails.

In order to deal with the alternating processes, we first construct the time points of
switches from zero to one (which form an ordinary renewal process). In a second step, we
finally determine the other switches.

To show that the conditions stated in Assumption 2 hold, we first prove a lemma.

Lemma 6
For the process {Xt : t ≥ 0} described in Example 3, for k ≥ 1,

P [Xt = Xt−1 = . . . = Xt−k = 1] = P [Xt = Xt−1 = . . . = Xt−k = 0]

=
1
2µ

(
c1

(1− ρ1)2
ρ k+1

1 +
c2

(1− ρ2)2
ρ k+1

2

)
.

Proof. Using the Renewal Theorem, stated in Theorem 4.3 in Asmussen (1987), we
obtain

P [Xt = Xt−1 = . . . = Xt−k = 1] =
1
2
P [Excess > k]

=
1
2µ

∞∑
j=k

P [T > j] =
1
2µ

∞∑
j=k+1

P [T ≥ j] .

By means of the summation formula for geometric series we have

P [T ≥ k] =
∞∑

j=k

P [T = j] =
c1

1− ρ1
ρ k

1 +
c2

1− ρ2
ρ k

2 .

Using the same formula once again, the lemma follows.

For what follows we also need to calculate

P [Xt = Xt−1 = . . . = Xt−k+1 = 1,Xt−k = 0]
= P [Xt = Xt−1 = . . . = Xt−k+1 = 0,Xt−k = 1] .

But this can be written as

P [Xt = Xt−1 = . . . = Xt−k+1 = 1,Xt−k = 0]
= P [Xt = . . . = Xt−k+1 = 1]− P [Xt = . . . = Xt−k = 1] ,

and therefore from Lemma 6 we have

P [Xt = Xt−1 = . . . = Xt−k+1 = 1,Xt−k = 0] =
1
2µ

(
c1

1− ρ1
ρ k

1 +
c2

1− ρ2
ρ k

2

)
. (27)

Now, for the first inequality in condition (ii) of Assumption 2, from Lemma 6 and (27) it
follows immediately, that for a constant CΓ > 0,

Γn ≥ CΓ ρ dn
1 , (28)
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because
τn = {1 · · · 1︸ ︷︷ ︸

dn

, 0 · · · 0︸ ︷︷ ︸
dn

, 1 · · · 10︸ ︷︷ ︸
k

, 0 · · · 01︸ ︷︷ ︸
k

} ,

with 2 ≤ k ≤ dn. Consequently, the sequence {dn : n ∈ N} has to be of logarithmic order.
For the second inequality in condition (ii) of Assumption 2, for a constant CΥ > 0,

holds

Υn ≥ CΥ

(
ρ2

ρ1

)dn

. (29)

To prove this, first note that for wu ∈ τn and u ∈ {0, 1} holds ‖P (·|wu) − P (·|w)‖1 =
2 |P (1|wu) − P (1|w)|. For simplicity we concentrate on wu = 1 · · · 1 (of length dn), but
the same arguments also apply for the other states in τn. In the following calculation, by
wu (resp. w) we mean the sequence 1 · · · 1 of length dn (resp. dn − 1). We have

|P (1|wu) − P (1|w)|
= |P [Xt = 1|Xt−1 = . . . = Xt−dn = 1]− P [Xt = 1|Xt−1 = . . . = Xt−dn+1 = 1] |

=
∣∣∣∣ P [Xt = . . . = Xt−dn = 1]
P [Xt = . . . = Xt−dn+1 = 1]

− P [Xt = . . . = Xt−dn+1 = 1]
P [Xt = . . . = Xt−dn+1 = 2]

∣∣∣∣
Using Lemma 6, we obtain

|P (1|wu) − P (1|w)| = ρ1

(
1 + c3q

dn+1

1 + c3qdn
− 1 + c3q

dn

1 + c3qdn−1

)
,

where q = ρ2/ρ1 and c3 = (c2(1− ρ1)2)/(c1(1− ρ2)2). This can now be rewritten as

|P (1|wu) − P (1|w)|
= ρ1

(
(1 + c3q

dn+1)(1 − c3q
dn)− (1 + c3q

dn)(1− c3q
dn−1) +O

(
q2dn

) )
= ρ1c3(1− q)2qdn−1 + o

(
qdn

)
and thus finally

|P (1|wu) − P (1|w)| = c3

(
1
ρ2

)
(ρ1 − ρ2)2

(
ρ2

ρ1

)dn

+ o
(
qdn

)
.

From inequalities (28) and (29) follows

Υ2
nΓ(1−σ)2/2

n ≥ C2
ΥC

(1−σ)2/2
Γ

(
ρ

(1−σ)2/2
1

(
ρ2

ρ1

)2
)dn

. (30)

The term on the right side of inequality (30) has to be greater than log (n)1+θ/n1−σ. With

dn = C log (n) , for a positive constant C small enough ,

this condition, and also condition (ii) of Assumption 2 are satisfied.
Because Pmin(n) is greater than a positive constant, the condition (iii) of Assumption

2 is obvious.
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Figure 1: Context tree for Example 1.
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Figure 2: Complete context tree for Example 1.
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Figure 3: Context tree for Example 2.
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Figure 4: Context tree for Example 3.
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