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Abstract

In this paper we study the discrete version of the 1-dimensional (continuous) Voronoi game
introduced by Ahn et al. [1]. The discrete Voronoi game in dimension 1, consists of two com-
peting players P1 and P2 and a set of N users placed on a line-segment. The players alternately
place one facility each on the line-segment for R-rounds, where the objective is to maximize their
own total payoffs. We prove bounds on the worst-case (over the arrangement of the N users)
payoffs of the two players, and show that they are often tight. We also compute the complexities
of the optimal payoff functions and discuss algorithms for finding the optimal strategies of the
players, in the 2-round game.

Keywords: Computational geometry, Competitive facility location, Game theory, Voronoi dia-
gram

1 Introduction

Competitive facility location is concerned with the favorable placement of facilities by competing
market players [13, 14]. It goes back to the 1929 seminal paper by Hotelling [16] which introduced
the competitive facility location problem when the users were placed uniformly on a line segment
(see also Eaton and Lipsey [12]). Facilities and users are generally modeled as points in a pre-
specified arena (generally a subset of R1/R2). The set of users (demands) is a subset of the arena,
which can be either discrete, consisting of finitely many points, or continuous, that is, a region
where every point is considered to be a user. We assume that the facilities are equally equipped
in all respects, and a user always avails the service from its nearest facility. Consequently, each
facility has its service zone, consisting of the set of users that are served by it, and the goal is to
find placement of facilities which maximize the cardinality or the area of its service zone, depending
on whether the demand region is discrete or continuous, respectively. For a recent survey on the
applications of competitive facility location in economics and operations research, refer to [11].

Ahn et al. [1] introduced a game-theoretic analogue of such problems for 1-dimensional arenas
(line-segment/circle) with continuous demands. The game consists of the 2 players P1 and P2
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alternately placing disjoint set of facilities in the arena. In this case, the payoff of player P1/P2 is
the area of the region that is closer to the facilities owned by P1/P2 than to the other player, and
the player which finally owns the larger area is the winner of the game. They showed that when the
players place one facility each for R-rounds, the second player always has a winning strategy that
guarantees a payoff of 1/2 + ε, with ε > 0. However, the first player can force ε to be arbitrarily
small.

In this paper, we study the analogous version of the game for discrete demand regions: Given
a positive integer R ≥ 1, the 1-dimensional R-round discrete Voronoi game consists of two players
P1 and P2 and a set U of N users on a line-segment L ⊂ R. The players alternately place one
facility each for R-rounds, with the objective to maximize their own total payoffs, where the payoff
of P1/P2 is the cardinality of the set of points in U which are closer to a facility owned by P1/P2
than to every facility owned by P2/P1. To define this more formally, we introduce some notation:
Given a set F ⊂ R of facilities, define for every f ∈ F ,

U(f,F) = {ua ∈ U : |ua − f | < |ua − h|, for all h ∈ F\{f}}, (1.1)

the set of users which are closest to f . Then, for any placement of facilities S1 by P1 and S2
by P2, the payoff of P2 is P2(S1, S2|U) = |⋃f∈S2

U(f, S1
⋃
S2)|. Similarly, the payoff of P1,

P1(S1, S2|U) = |U | − P2(S1, S2|U). Note that this definition implies that if an user is equidistant
from a facility in S1 and another facility in S2, then it contributes to the payoff of P1, that is, ties
are broken in favor of P1. We will assume that facilities are not allowed to overlap with themselves
or with the set of users at any stage of the game. Given a set of users U , denote by η2(R|U) the
maximum possible payoff P2 can attain against any adversarial strategy of P1, when the game is
played for R-rounds. The optimal payoff of P1 is defined similarly and will be denoted by η1(R|U).

Theorem 1.1. For any R ≥ 2, the following hold:

(a) For any placement U of N users in the segment L, η2(R|U) ≥ N
(√

8(R+1)−1
2R

)
− (R− 1).

(b) For any placement U of N users in the segment L, η1(R|U) ≥ b N
R+1c. Moreover, there is a

placement U0 of N users such that η1(R|U0) ≤ d N
R+1e+R.

The proof of the above theorem is given in Section 2. The lower bound on η1(R|U) follows by
a trivial pigeon-hole argument. However, quite surprisingly, it turns out there is an arrangement
of users for which this bound is attained (up to constant factors). In fact, the theorem gives the
exact asymptotics of the normalized worst-case payoff of P1, that is,

lim
N→∞

infU :|U |=N η1(R|U)

N
=

1

R+ 1
,

where the infimum is taken over all arrangement of N users on L. This shows how the arrangement
of users affect the payoff of P1, and is in sharp contrast with the continuous Voronoi game of Ahn
et al. [1], where P1 can always have a payoff which is arbitrarily close to 1/2.

Obtaining lower bounds on the payoff of P2 is more challenging. The bound in the theorem
above, shows that the normalized worst-case payoff of P2 is at least 1

2R(
√

8(R+ 1)−1) = Θ(1/
√
R).

In the special case R = 2, this can be improved as follows:
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Corollary 1.2. For any placement U of N users in the segment L, η2(2|U) ≥ bN/2c. Moreover,
there is a placement U0 of N users such that η2(2|U0) ≤ dN/2e.

The above corollary shows that, irrespective of the arrangement of the users U on L, P2 can only
lose the 2-round game by at most a single user. This also implies that limN→∞

1
N infU :|U |=N η2(R|U) =

1
2 , that is, P2 can always asymptotically tie the game, irrespective of the placement of the users on
L. Note that in the 1-round game, P2 can trivially tie the game, with a payoff of at least dN/2e by
placing its facility immediately next to the facility of P1, either to the right or to the left, depending
on which side has more users in U . Whether P2 can always asymptotically tie the game, for any
R ≥ 3, remains open.

Remark 1.1. The above results show how the arrangement of the users can affect the payoff of
the players, for example, the normalized worst case pay-off of P1 can be as bad as 1

R+1 , and as

good as 1
2 (when the users are equi-distributed on L). This does not arise in the continuous game

of Ahn et al. [1], because the uniformity of the demands allows P1 to always get payoff arbitrarily
close to 1

2 . Therefore, for the discrete Voronoi game, this raises the following algorithmic question:
given a placement of the users, how efficiently can one find the optimal strategy of the players. In
general, this appears to be a difficult problem with algorithmic complexity increasing exponentially
with the number of rounds.

In the theorem below, we consider the 2-round game, and provide algorithms for computing the
optimal strategies of both the players.

Theorem 1.3. For the 2-round game the following holds:

(a) The optimal strategies of P2 and P1 in round 2 can be computed in O(N) and O(N2) times,
respectively.

(b) The optimal strategies of P2 and P1 in round 1 can be computed in O(N5) and O(N9) times,
respectively.

This theorem is proved in Section 3, which involves computing how the payoffs of the players
change, assuming each player plays optimally, that is, to maximize their own eventually payoffs, in
the subsequent rounds.

1.1 Related Work

Dehne et al. [10] studied a competitive facility location problem for continuous demand regions
in R2, where the problem is to find a new point q amidst a set of n existing points F such that
the Voronoi region of q is maximized. They showed that when the points in F are in convex
position, the area function has only a single local maximum inside the region where the set of
Voronoi neighbors do not change. For the same problem, Cheong et al. [8] gave a near-linear time
algorithm that determines the location of the new optimal point approximately, when the points in
F are in general position. In the discrete user case, the analogous problem is to place a set of new
facilities amidst a set of existing ones such that the number of users served by the new facilities is
maximized [6, 7].

Cheong et al. [9] studied the 1-round (continuous) Voronoi game in R2 for a square-shaped
demand region, which was later extended by Fekete and Meijer [15] to rectangular demand regions.
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Here, P1 followed by P2, places m facilities in the demand region, and the player with the larger
Voronoi area wins the game. Recently, variants of these games when the demand region is a graph
equipped with the shortest-path distance [2] has been studied.

Banik et al. [3] studied the one-round discrete Voronoi game in R, where, given a set U of
N users on a line, P1 chooses a set of m facilities, following which P2 chooses another disjoint
set of m facilities, and the objective of both the players is to maximize the number of users they
serve. The authors showed that if the sorted order of the points in U along the line is known,
then the optimal strategy of P2, given any placement of facilities by P1, can be computed in O(N)
time, and the optimal strategy of P1 can be computed in O(Nm−λm) time, where 0 < λm < 1,
is a constant depending only on m. In 2-dimensions, exact and approximation algorithms for the
discrete Voronoi game in some special cases, were recently obtained in [4] and [5], respectively.

2 Proofs

Throughout this section we will assume that the playing arena is the interval L = [A,B]. Moreover
for any two points a, b ∈ L, with a < b, we will denote by U [a, b] = |[a, b]∩U |, the number of users
in U in the interval [a, b]. The definition is naturally modified when one or both of the endpoints
of the interval are open.

2.1 Proof of Theorem 1.1

Throughout the paper, we will use the phrase ‘point b is placed immediately to the right/left of
another point a’ to mean that b = a ± ε, where ε > 0 is chosen to be arbitrarily small. In fact,
choosing any ε < 1

1000 min0≤j≤N |uj+1 − uj |, where u0 = A and uN = B, would suffice for our
purpose. We begin the following simple observation:

Observation 2.1. Given any placement F of M facilities in an interval L0 = [A0, B0] ⊆ L, there
exists s ∈ L0 such that at least 1

2M |U ∩ L0| users in U ∩ L0 are closer to s than to the M users in
F .

Proof. Let F = {f1, f2, · · · , fM} such that f1 < f2 < · · · < fM . If either U [A0, f1] ≥ 1
2M |U ∩L0| or

U [fM , B0] ≥ 1
2M |U ∩L0|, then by placing s immediately to the left of f1 or right of fM , respectively,

the result follows.
Therefore, assume that U [A0, f1] <

1
2M |U ∩ L0| and U [fM , B0] <

1
2M |U ∩ L0|. Then, by the

pigeonhole principle, there exists 1 ≤ j ≤ M − 1 such that U [fj , fj+1] ≥ 1
M |U ∩ L0|. Therefore,

placing s immediately to the right of fj or left fj+1 it is possible for s to get to at least 1
2M |U ∩L0|

users in U ∩ L0.

Now, we propose a strategy for P2 which gives the required lower bound in Theorem 1.1. In
the first R−1 rounds, P2 places its facilities at s1, s2, . . . , sR−1, respectively, where s1, s2, . . . , sR−1
are chosen such that U [A, s1] = b N2Rc and U [sj , sj+1] = b N2Rc, for 1 ≤ j ≤ R − 2. Suppose,
after all the R rounds there are 1 ≤ b ≤ R facilities of P1 in the interval [A, sR−1] and R − b
in the interval [sR−1, B]. If b = R, then all points in the interval [sR−1, B] belong to P2, and
η2(R|U) ≥ N − b N2Rc(R − 1) ≥ R+1

2R N . Otherwise, 1 ≤ b ≤ R − 1 and by Observation 2.1 P2 can

chose sR ∈ [sR−1, B] such that P2 gets at least 1
2(R−b)U [sR−1, B] =

N−b N
2R
c(R−1)

2(R−b) users. Moreover,
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Figure 1: Proof of Theorem 1.1: Strategy of P2 in the R = 5 round game, when b = 2 (where b is
the number facilities of P1 to the left of s4).

since at least R − b− 1 of the intervals [A, s1], [s1, s2], . . . , [sR−2, sR−1] contains no point from P1,
the total payoff P2 is at least

η2(R|U) ≥ (R− b− 1)

⌊
N

2R

⌋
+
N − b N2Rc(R− 1)

2(R− b)

≥ (R− b− 1)

(
N

2R

)
+
N − N

2R(R− 1)

2(R− b) − (R− b− 1) (using x− 1 ≤ bxc ≤ x)

≥ N

2R

(
R− b+

2(R+ 1)

R− b

)
− N

2R
− (R− 1)

≥ N
(√

8(R+ 1)− 1

2R

)
− (R− 1),

where the last step uses the fact that the function f(x) := x+ 2(R+1)
x is minimized at x =

√
2(R+ 1).

This completes the proof of part (a).
Next, we prove part (b). The strategy for P1 which gives the required lower bound on the

payoff of P1 is as follows: In the R-rounds P1 places its facilities at f1, f2, . . . , fR, respectively, such
that U [A, f1] ≥ b N

R+1c, U [fR, B] ≥ b N
R+1c and U [fj , fj+1] ≥ b N

R+1c, for 1 ≤ j ≤ R − 1. By the
pigeonhole principle, for any placement of R facilities by P2, at least one of these R + 1 intervals
[A, f1], [f1, f2], . . . , [fR−1, fR], [fR, B] contains no points of P2, which implies η1(R|U) ≥ b N

R+1c.
To show this bound is attained, let U0 = {2, 4, . . . , 2N} ⊂ L0 := [1, 2N+1]. (Note that the points

can be scaled to lie in any pre-specified line segment L, if required.)

Observation 2.2. Let U0 be as above and 1 ≤ K,K ′ ≤ N . Suppose f ∈ (2K , 2K+1) and f ′ ∈
(2K+K′ , 2K+K′+1) be two facilities of P1 such that the interval (f, f ′) contains no other facilities
of P1 and P2. Then P2 can place a facility s immediately to the right of f and serve K ′ − 1 users
in U [f, f ′].

Proof. Note that 1
2(s + f ′) > 2K−1 + f ′

2 ≥ 2K−1 + 2K+K′−1 > 2K+K′−1. This implies, s serves
K ′ − 1 users in the interval (f, f ′).

This observation can be used to construct a strategy for P2. Depending on the placement f1 of
P1 in round 1, there are two cases:
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– U0[1, f1] ≤ d N
R+1e: Then in round 1 P2 places s1 immediately to the right of f1. More

generally, in the r-th round, where 1 ≤ r ≤ R, given the placement f1, f2, . . . , fr by P1,
P2 places sr immediately to the right of fr. Let f ′1 < f ′2 < . . . < f ′R be the sorted order
of the facilities in P1 after R rounds are completed. This decomposes the segment L0 into
R+1 intervals [f ′0, f

′
1], [f

′
1, f
′
2], [f

′
2, f
′
3], · · · , [f ′R−1, f ′R], [f ′R, f

′
R+1], where f ′0 = 1 and f ′R+1 = 2N .

Now, by Observation 2.2, for every 1 ≤ r ≤ R, s′r serves U0[f
′
r, f
′
r+1]− 1, which implies that

the payoff of P2 is at least

R∑
r=1

(U0[f
′
r, f
′
r+1]− 1) =

R∑
r=0

U0[f
′
r, f
′
r+1]− U0[f

′
0, f
′
1]−R ≥ N −

⌈
N

R+ 1

⌉
−R.

Therefore, the payoff of P1 is at most d N
R+1e+R.

– U [1, f1] > d N
R+1e: In this case, in round 1 P2 places s1 such that U [1, s1] = d N

R+1e. Define
S0 := {2 ≤ j ≤ R : fj ∈ [1, s1]}, that is, the rounds in which P1 places its facilities to the left
of P1. Again there are two cases:

• |S0| 6= 0: Let j1 < j2 < . . . < j|S0| be the elements in S0 in increasing order. Then
starting round 2 the strategy of P2 is as follows: If j /∈ S0, then place sj immediately to
right of fj . On the other hand, for jb ∈ S0, place sjb immediate to right of f1, but left
sb−1, for 1 ≤ b ≤ |S0| (setting s0 := 2N ). Then by Observation 2.2, it follows that the
payoff of P1 is at most d N

R+1e+R− |S0| ≤ d N
R+1e+R (since, at best P1 can get all the

users in [1, s1] and one user each for the facilities in {fj : j /∈ S0}).
• |S0| = 0: Let 1 ≤ r ≤ R, and f1, s1, f2, s2, . . . , fr, sr be the placements of the players

P1 and P2 in the first r rounds (recall that s1 is chosen such that U [1, s1] = d N
R+1e).

Assume that f
(r)
1 < f

(r)
2 < . . . < f

(r)
r < f

(r)
r+1 := B be the sorted order of the points on

L. Now, suppose in the (r+ 1)-th round, P1 places at fr+1 such that fr+1 ∈ [f
(r)
j , f

(r)
j+1],

for some 1 ≤ j ≤ r. Again there are two cases:

– U [f
(r)
j , f

(r)
j+1] ≥ d N

R+1e: Then P2 places sr right next to fr.

– U [f
(r)
j , f

(r)
j+1] < d N

R+1e. Now, if r is the first time this happens then P2 places sr
immediately to the right of f1. For every subsequently round when this happens,
P2 places sr immediately to the right of fr.

To see that this strategy works, let f
(R)
1 < f

(R)
2 < . . . < f

(R)
R < f

(R)
R+1 := B be the sorted

order of the points after the R rounds. Note that
∑R

i=1 U [f
(R)
j , f

(R+1)
j ] ≤ N − d N

R+1e,
which implies that there exists at least one 1 ≤ j ≤ R such that

U [f
(R)
j , f

(R)
j ] <

⌈
N − d N

R+1e
R

⌉
≤
⌈

N

R+ 1

⌉
.

Therefore, the strategy of P2 described above implies that there exists some s
(R)
i immedi-

ately to right of f
(R)
i , for all i ∈ {1, 2, . . . , R}\{j0}, where j0 is such that U [f

(R)
j0

, f
(R)
j0

] <

d N
R+1e. This implies that the total payoff of P1 is at most d N

R+1e+R.
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2.2 Proof of Corollary 1.2

We begin by showing that there exists a strategy of P2 with payoff at least dN/2e. To begin with
note that for any placement f1 by P1 either U [A, f1] ≤ bN/2c or U [f1, B] ≤ bN/2c. Without loss
of generality, we assume that, U [A, f1] := K ≤ bN/2c. Then, in round 1 P2 places s1 ∈ L such
that U [f1, s1] = dN/2e (see Figure 2(a)). Now, consider the following 3 cases:

– f2 ∈ [A, f1): In this case, placing s2 immediately to the right of f1, gives P2 a payoff of N −K ≥
dN/2e (see Figure 2(a)).

– f2 ∈ (f1, s1): Then placing s2 immediately to the left of f1 gives P2 a payoff of bN/2c (see Figure
2(b)).

– f2 ∈ (s1, B]: In this case, again placing s2 immediately to the right of f1, gives P2 a payoff of
dN/2e (see Figure 2(c)).

f1 s1

K bN/2c −K
f2 s2

L

dN/2e

(a)

f1 s1

K bN/2c −K
f2s2

L

dN/2e

(b)

f1 s1

K bN/2c −K
f2s2

L

dN/2e

(c)

Figure 2: The different cases in the proof of Corollary 1.2.

The argument above shows that η2(2|U) ≥ bN/2c. To show that this is attained, let U0 be N
equally points in L, that is, U0 = {A + jB−AN+1 : 1 ≤ j ≤ N}. In the first round P1 places at f1,
such that U [A, f1] = bN/4c. Now, depending on the placement s1 of P1 in round 1, there are three
cases:

– s1 < f1: In round 2, P2 places at f2 ∈ (s1, B] such that U [f2, B] = bN/4c. Then, it is easy to see

that for any placement s2 of P2 in round 2, the payoff of P2 is at most bN/4c+ dN−2bN/4c2 e =
dN/2e.

– s1 > f1 and U [f1, s1] ≤ dN/2e: As in the previous case, P2 places at f2 ∈ (s1, B] such that
U [f2, B] = bN/4c. Again, this guarantees that the payoff of P2 is at most dN/2e.

– U [f1, s1] > dN/2e: In round 2, P2 places at f2 ∈ (f1, s1) such that U [f2, B] = dN/4e. As before,
the payoff of P2 is at most dN/2e.

3 Optimal Strategies in the 2-Round Game

In this section, we show how the optimal payoffs of the players change (as their location varies over
the interval [A,B]) in the 2-round game, and use this to prove Theorem 1.3.

To this end, for any two facilities a, b ∈ L (belonging to P1 or P2), such that U [a, b] > 0, denote
by cov([a, b]) the maximum number of users a new facility can serve by placing a single point in the
interval (a, b). Note that if the sorted order of the points in U are given, then by scanning a segment
of length 1

2 |a− b| in the interval [a, b], we can compute cov([a, b]) easily in O(U [a, b]) = O(N) time
[3].
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3.1 Round 2

Given any placement f1 by P1 and s1 by P2 in round 1, the landscape of the payoff of P1 in round
2 is the function η : L = [A,B]→ R,

η(f2) := min
s2∈L
P1({f1, f2}, {s1, s2}), (3.1)

which is the optimal payoff when P1 places at f2 in round 2. Similarly, given a placement f1 by
P1 and s1 by P2 in round 1, and f2 by P1 in round 2, the landscape of the payoff of P2 in round 2
is the function θ : L = [A,B]→ R, where θ(s2) := P2({f1, f2}, {s1, s2}). It is easy to see that both
the landscape functions are piecewise constant over L, and the number of pieces will be referred
to as the complexity of the landscape function. Once we determine the complexity (that is, the
number of pieces and the location of the pieces) of the payoff functions, the optimal payoff of the
players in round 2 can be determined by computing the value of the function η(·) (or θ(·)) in every
piece.

Proposition 3.1. The optimal strategies of P2 and P1 in round 2 can be computed in O(N) and
O(N2) times, respectively.

Proof. It is easy to see that θ(·) is piecewise constant with O(1)-pieces, that is, landscape of P2 in
round 2 is of constant complexity. Since θ(s2) at any point s2 ∈ L can be computed in O(N) time,
this implies that the optimal payoff of P2 can be found in O(N) time.

Now, we discuss the strategy of P1 in round 2. Hereafter, we assume s1 > f1, with the other
case done similarly. Define D = {2ua − s1 : ua ∈ U} ∩ L, and set E = D ∪ U . Now, let f2 /∈ E be
optimal placement by P1 in round 2, and consider the following three cases:

f1
s1

f2
p

p+s1
2

f2+s1
2

L
A B

(a)

f1

s1
f2p

L
A B

(b)

f1

s1
f2 p

f2+s1
2

f2+p
2

L
A B

(c)

Figure 3: Optimal strategy of P1 in round 2: (a) f2 ∈ [f1, s1], (b) f2 ∈ [A, f1], and (c) f2 ∈ [s1, B].
The regions on L shown in grey have no point of E = D ∪ U in their interiors.

Case 1: f2 ∈ [f1, s1]. Let p ∈ E be the closest point in E to the right of f2. Observe that, given
the placements f1, s1, f2, if P2 plays optimally then the payoff of P1 is

min
x∈L
P1({f1, f2}, {s1, x})

= U [A, f2] + U

[
f2,

f2 + s1
2

]
−max

{
U [A, f1], cov(f1, f2), U

[
f2,

f2 + s1
2

]}
≥ U [A, p] + U

[
p,
p+ s1

2

]
−max

{
U [A, f1], cov(f1, p), U

(
p,
p+ s1

2

)}
,

since cov(f1, f2) < cov(f1, p) and [f2+s12 , p+s12 ) does not contain any user (by definition of the
set D).
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Case 2: f2 ∈ [A, f1]. Let p ∈ U be the closest user to the left of f2. Then

min
x∈L
P1({f1, f2}, {s1, x}) = U

[
A,

f1 + s1
2

]
−max

{
U [A, f2], cov(f2, f1), U

[
f1,

f1 + s1
2

]}
≥ U

[
A,

f1 + s1
2

]
−max

{
U [A, p), cov(p, f1), U

[
f1,

f1 + s1
2

]}
,

using U [A, p) = U [A, f2] and cov(f1, f2) ≤ cov(f1, p).

Case 3: f2 ∈ [s1, B]. In this case, let p ∈ U ∩ [s1, B] be the closest point in U to the right of f2.

Then using U [f2, B] = U(p,B] and U
(
f1+s1

2 , s1+f22

)
≤ U

(
f1+s1

2 , s1+p2

)
gives,

min
x∈L
P1({f1, f2}, {s1, x})

= N − U
(
f1 + s1

2
,
s1 + f2

2

)
−max

{
U [A, f1], U

[
f1,

f1 + s1
2

]
, U

[
s1 + f2

2
, f2

]
, U [f2, B]

}
.

If

U

[
s1 + f2

2
, f2

]
6= arg max

{
U [A, f1], U

[
f1,

f1 + s1
2

]
, U

[
s1 + f2

2
, f2

]
, U [f2, B]

}
,

then U
( s1+p

2 , p
)
≤ U( s1+f22 , f2), and moving f2 to p does not change minx∈L P1({f1, f2}, {s1, x}).

Otherwise, the maximum above is attained at U
[
s1+f2

2 , f2

]
, in which case

min
x∈L
P1({f1, f2}, {s1, x}) = N − U

(
f1 + s1

2
, f2

]
= N − U

(
f1 + s1

2
, p

)
,

that is, the payoff is again unchanged, when f2 moves to p.

The cases above show that for computing the optimal strategy of P1 in round 2, one has to
compute η(f2) at O(N) points. As it takes O(N) time to compute η(f2) at single point, the optimal
optimal strategy of P1 in round 2 can be computed in O(N2) time.

3.2 Round 1

The payoff landscapes become increasingly complicated as the number of rounds increases. Here,
we compute the landscape of the payoffs in round 1 of the 2-round game: Given a placement f1 by
P1 in round 1, the landscape of the payoff of P2 in round 1 is the function ψ : L→ R:

ψ(s1) := min
f2∈L

max
s2∈L
P2({f1, f2}, {s1, s2}), (3.2)

which is the payoff of P2 when it places the first facility at s1, and both P1 and P2 place their
respective facilities optimally in the second round. Similarly, the landscape of the payoff of P1 in
round 1 is

ϕ(f1) := min
s1∈L

max
f2∈L

min
s2∈L
P1({f1, f2}, {s1, s2}). (3.3)

As in round 2, the functions ψ(·) and ϕ(·) are piecewise linear, and once we determine the
location of the pieces, the optimal payoffs of the players in round 1 can be determined by computing
the values of the functions in every piece.
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Proposition 3.2. The optimal strategies of P2 and P1 in round 1 can be computed in O(N5) and
O(N9) times, respectively.

The proposition is above proved below. This, combined with Proposition 3.2 above, completes
the proof of Theorem 1.3.

Proof of Proposition 3.2: We begin the optimal strategy of P2 in round 1. Given the placement
of f1 by P1, P2 can place its first facility either in [A, f1) or (f1, B). Here, we analyze the case
where P2 places its first facility in the interval (f1, B). The other case can be done similarly. After
P2 places at s1 in round 1, in round 2 P1 can place its facility in either one of the three intervals
[A, f1], [f1, s1] or [s1, B]. Therefore, the minimum in (3.2) can be written as:

ψ(s1) := min {ψ1(s1), ψ2(s1), ψ3(s1)} ,

where ψ1(s1) := minf2∈[A,f1] maxs2∈L P2({f1, f2}, {s1, s2}), ψ2(s1) := minf2∈[f1,s1] maxs2∈L P2({f1, f2},
{s1, s2}), and ψ3(s1) := minf2∈[s1,B] maxs2∈L P2({f1, f2}, {s1, s2}).

Lemma 3.1. The functions ψ1, ψ2, ψ3 : [f1, B] → Z+ ∪ {0} are piecewise constant, with O(N),
O(N3), and O(N2) pieces, respectively.

Proof. We begin with ψ1. In this case (referring to Figure 3(b)),

ψ1(s1) = U [s1, B] + U

(
f1 + s1

2
, s1

]
+ min
f2∈[A,f1]

max

{
U [A, f2], cov([f2, f1]), U

[
f1,

f1 + s1
2

)}
.

Therefore, the set of points where ψ1(·) changes its values is A1 ∪B1, where A1 = {2ua − f1 : ua ∈
ua ∈ [f1, B) ∩ U} ∩ L and B1 = [f1, B) ∩ U. To see this note that if s1 ∈ A1, then f1+s1

2 ∈ U ,

and therefore U [f1,
f1+s1

2 ] and, hence ψ1(s1), changes in the neighborhood of this point. Similarly,
U [s1, B], and, hence ψ1(s1), changes, in the neighborhood of s1 ∈ B1. As, |A1 ∪ B1| = O(N), the
function ψ1 can have at most O(N) pieces.

Next, we look at ψ2. In this case (referring to Figure 3(a)),

ψ2(s1) = min
f2∈[f1,s1]

{
U

(
f2 + s1

2
, B

]
+ max

{
U [A, f1], cov(f1, f2), U

[
f2,

f2 + s1
2

)}}
.

Let f̂2 ∈ [f1, s1] be a point which attains the minimum above. Then as s1 varies over L, ψ2(s1)

changes when f̂2+s1
2 ∈ U . We now argue that it suffices to assume (a) f̂2 ∈ U , or (b) f̂2 =

f1 + 2|ua − ub|, for some ua, ub ∈ U . Then there are two cases:

– Let f ′2 < f̂2 be such that cov(f1, f
′
2) = U [ua, ub] and f ′2 = f1 + 2|ua − ub|, where ua, ub ∈ U is

such that cov(f1, f̂2) = U [ua, ub]. (Given x, y ∈ L, there exists ua, ub ∈ U ∩ [x, y] such that
cov(x, y) = U [ua, ub], because any interval I ⊂ [x, y] which attains cov(x, y) = |U ∩ I| can be
shrunk to an interval [ua, ub] such that cov(x, y) = U [ua, ub].) If U [f ′2, f̂2] is empty, then the
value of ψ2(s1) remain unchanged, when f̂2 is replaced by f ′2, that is, (b) holds.

– Otherwise, move f̂2 to the closest user u′ to the left of f̂2 in [f ′2, f̂2]. Then cov(f1, f̂2) =
cov(f1, u

′), and, therefore, ψ2(s1) remain unchanged, that is, (a) holds in this case.
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Therefore, the set of points where ψ2(·) changes is contained in A2∪B2, where A2 :=
⋃
u∈U{2u−f :

such that f = f1 + 2|ua − ub| for some ua, ub ∈ U} and B2 =
⋃
u∈U{2u − f : f ∈ U}. The result

about ψ2(·) follows by noting that |A2 ∪ B2| = O(N3), as required.
Finally, we consider ψ3(s1). Again, referring to Figure 3(c), it follows that

ψ3(s1)

= min
f2∈[s1,B]

{
U

(
f1 + s1

2
,
s1 + f2

2

)
+ max

{
U [A, f1], U

[
f1,

f1 + s1
2

)
, U

(
s1 + f2

2
, f2

)
, U(f2, B]

}}
.

This can change, for points in the neighborhood of s1 such that either (a) s1+f1
2 ∈ U or (b) f2+s1

2 ∈
U . The set of points where (a) happens is A3 := {2u− f1 : u ∈ [f1, B) ∩U}. For (b) note that the
optimal placement of f2 can be obtained by checking in the neighborhood of users in [s1, B] (recall
the third case in the proof of Proposition 3.1). Therefore, the set of points where s1 can be placed
such that if f2 ∈ [s1, B]∩U , then f2+s1

2 ∈ U , is contained in B3 := {2ua−ub : ua, ub ∈ [f1, B)∩U}.
This implies that the function ψ3(s1) can have at most O(N2) pieces, as |A3 ∪ B3| = O(N2).

Note that computing the optimal payoff of P2 at a point in round 1 requires O(N2) time
(Proposition 3.1). Then by the above lemma the optimal strategy of P2 in round 1 can be computed
in O(N5) time.

Now, we consider the strategy of P1 in round. Recall the definition of the landscape of the
payoff of P1 in round 1 from (3.3). Then

ϕ(f1) = min
s1∈L

max
f2∈L

min
s2∈L
P1({f1, f2}, {s1, s2}) = min{ϕ1(f1), ϕ2(f1)},

where ϕ1(f1) := mins1∈[A,f1] maxf2∈L mins2∈L P1({f1, f2}, {s1, s2}), that is, P2 is restricted to place
in the interval [A, f1] in round 1, and, ϕ2(f1) := mins1∈[f1,B] maxf2∈L mins2∈L P1({f1, f2}, {s1, s2}),
where P2 is restricted to place in the interval [f1, B] in round 1. Both ϕ1(f1) and ϕ2(f1) are
piecewise constant functions as f1 varies in L. In the following, we will describe the complexity of
the graph of ϕ2(f1), and can be ϕ1(f1) done similarly.

Observation 3.1. Let f1, s1 be placement of facilities by P1 and P2 in round 1, such that U [f1, s1] >
0. Now, if the optimal placement of P1 in round 2 is at f2 ∈ (A, f1), then it is possible to move s1
immediately to the right of an user in U , without decreasing the payoff of P2.

Proof. Let u′1 < u′2 < . . . < u′N be the sorted order of the users in U , such that s1 ∈ (u′j , u
′
j+1). If

we move s1 immediately to the right of u′j (which we denote by s′1), then U [s1, B] = U [s′1, B], but

the point f1+s1
2 moves left to

f1+s′1
2 , which may lead to f2 to move to a point f ′2 in (f1, s

′
1). Then

the payoff of P2 in round 2, when f2 moves to f ′2 (after s1 moves to s′1) is

U

(
f ′2 + s′1

2
, B

]
+ max

{
U [A, f1], cov(f1, f

′
2), U

[
f ′2,

f ′2 + s′1
2

]}
≥ U

(
f ′2 + s1

2
, B

]
+ max

{
U [A, f1], cov(f1, f

′
2), U

[
f ′2,

f ′2 + s1
2

]}
≥ U

(
f1 + s1

2
, B

]
+ max

{
U [A, f2], cov(f1, f2), U

[
f1,

f1 + s1
2

]}
,

11



where the last inequality uses the assumption that f2 is the optimal placement of P1 in round 2
(hence the payoff of P2 when P1 places at f ′2 instead of at f2 will be larger.) This shows that the
optimal location of P1 in round 2 remains unchanged when s1 moves to s′1, completing the proof
of the lemma.

f1
s1

f2 L

A B

(a)

f2f1

s1

L

A B

(b)

f2
s1

f1 L

A B

(c)

Figure 4: Optimal strategy of P1 in round 1: (a) Case 1, (b) Case 2, (c) Case 3.

Now, we compute the complexity of ϕ2(·). Recall, we are assuming s1 ∈ (f1, B], and depending
on the location of f2 there are 3 cases:

Case 1: f2 < f1 < s1. In this case, the payoff of P1 is

N − U
[
f1 + s1

2
, B

]
−max

{
U [A, f2), cov([f2, f1]), U

[
f1 + s1

2
, B

]}
.

In this case, as f1 moves along L, the payoff above changes when either cov([f2, f1]) changes,
or f1+s1

2 or f2 passes through an user. Note that, in this case, we can essentially assume s1 ∈ U
(by Observation 3.1 it suffices to check immediately to left or right of users). Therefore, the set
of points f1 for which U [f1,

f1+s1
2 ] changes can be expressed as A1 = {2ua − ub : ua, ub ∈ U}.

Next, we try to find the set of f1 for which cov([f2, f1]) changes. Note that for each possible
value of cov([f2, f1]), there is an interval [ua, ub], where ua, ub ∈ U , such that cov([f2, f1]) =
U [ua, ub]. Moreover, it suffices to assume that in round 2, P1 places f2 ∈ U (recall the second
case in the proof of Proposition 3.1). Therefore, considering each possible of placement of f2
on an user and all pair of users in U , the set of points f1 for which cov([f2, f1]) changes is
contained in B1 = {ua ± 2|ub − uc| : ua, ub, uc ∈ U}. As |A1 ∪ B1| = O(N3), the proof of this
case is complete.

Case 2: f1 < s1 < f2. In this case, the payoff of P1 is

N − U
(
f1 + s1

2
,
s1 + f2

2

)
−max

{
U [A, f1], U

[
f1,

f1 + s1
2

)
, U

(
s1 + f2

2
, f2

)
, U(f2, B]

}
.

To begin with, note that it suffices to assume that f2 ∈ U (by the third case in the proof
of Proposition 3.1). Now, observe that for each possible value of U(f1+s12 , s1+f22 ) there exists

ua, ub ∈ U such that U(f1+s12 , s1+f22 ) = U [ua, ub]. Therefore, given a placement f2 ∈ U , we

can move s1 either to an user or to a point such that f1+s1
2 ∈ U keeping the payoff of P1

unchanged, and given the location of s1 we can move f1 either to an user or to a point such
that s1+f2

2 ∈ U (again keeping the payoff of P1 unchanged). This means the set of possible
values of s1 is contained in B2 := {2ua − ub : ua, ub ∈ U} (since f2 ∈ U), and the set of
possible values of f1 is contained in A2 := {2uc − u′ : where uc ∈ U and u′ ∈ B2}, which
satisfies |A2| = O(N3). (Note that both the sets A2 and B2 contain the user set U .)
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Case 3: f1 < f2 < s1. In this case, the payoff of P1 is

N − U
[
f2 + s1

2
, B

]
−max

{
U [A, f1], cov([f2, f1]), U

[
f2,

f2 + s1
2

]}
.

As before, for each possible value of cov([f2, f1]), there is an interval [ua, ub], where ua, ub ∈ U ,
such that cov([f2, f1]) = U [ua, ub]. As f1 moves along L, the payoff above will change if one
the following 3 cases happen:

• f1 coincides with an user: In this case, the set of possible choices of f1 is just U .

• f2 coincides with an user: In this case, the set of possible choices of f1 is contained in
A31 := {uc − 2|ua − ub|, for ua, ub, uc ∈ U}, using f2 − f1 = 2|ua − ub| and f2 ∈ U .

• f2+s1
2 coincides with a user: In this case, we can move s1 to the closest user to its

left and f2 to its right so the midpoint f2+s1
2 remain unchanged (otherwise, one of the

previous two cases happen), without changing the payoff of P1. As s1 and f2+s1
2 now

both coincide with users, this gives B′3 = {2uc − ud : uc, ud ∈ U} choices for f2, and
A32 = {f − 2|ua − ub| : f ∈ B′3 and ua, ub ∈ U} choices for f1.

Therefore, the set of possible choices of f1 is contained in U∪A31∪A32, with |U∪A31∪A32| =
O(N4), completing the proof. 2

The cases above show that it is enough to compute ϕ(f1) in O(N4) points, which implies the
optimal strategy of P1 in round 1 can be found in O(N9) time (since the optimal strategy of P2 in
round 1 can be computed in O(N5) time). This completes the proof of Proposition 3.2 2

Acknowledgement: The authors thank an anonymous referee for providing many careful comments,
which greatly improved the presentation of the paper.
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