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Abstract.
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way. — Careful reading of White’s work shows that the deepest conse-
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nonlinearity and randomness of the regressors. This effect invalidates
the ancillarity argument that justifies conditioning on the regressors
when they are random: In the presence of nonlinearity, parameters do
depend on the regressor distribution, and nonlinearity conspires with
randomness of the regressors to generate a 1/ VN contribution to sam-
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2 A. BUJA ET AL.

1. INTRODUCTION

Halbert White’s basic sandwich estimator of standard error can be described
as follows: In a linear model given by a regressor matrix X yy(,41) and a response
vector Y, start with the familiar derivation of the covariance matrix of the
OLS coefficient estimate 3, but allow heteroskedasticity, V'[y]=D diagonal:

(1) V[BIX]=V[(XX)"'X'y] = (XX) (X'DX)(XX)"".

The right hand side has the characteristic “sandwich” form, (X'X)~! forming the
“bread” and X'DX the “meat”. Although this sandwich formula does not look
actionable for standard error estimation because the variances D;; = 01-2 are not
known, Halbert White showed that (1) can be estimated asymptotically correctly.
If one estimates a? by squared residuals r%, each r? is not a good estimate, but
the averaging implicit in the “meat” provides an asymptotically valid estimate:

(2) Vind 8] = (X'X) 7 (X'DX)(X'X) ™",
where D is diagonal with D;; = r?. Standard error estimates are obtained by

SEal B;] = VM[B];J/Q They are asymptotically valid even if the responses
are heteroskedastic, hence the term “Heteroskedasticity-Consistent Covariance
Matrix Estimator” in the title of one of White’s (1980b) famous articles.

Lesser known is the following deeper result in one of White’s (1980a, p. 162-3)
less widely read articles: the sandwich estimator of standard error is asymptoti-

cally correct even in the presence of nonlinearity:
(3) Ejy|X] # XpB forall 8.

The term “heteroskedasticity-consistent” is an unfortunate choice as it obscures
the fact that the same estimator of standard error is also “nonlinearity-consistent.”
Because of the relative obscurity of this important fact we will pay considerable
attention to its implications. In particular we show how nonlinearity “conspires”
with randomness of the regressors to make slopes dependent on the regressor dis-
tribution and to generate sampling variability all of their own even in the absence
of noise (see Figures 2 and 4).

Side remarks:

e The term “nonlinearity” is meant here in the sense of (3), that is, first
order misspecification of, or first order model deviation from, the linear
model, E[y|X]—X3 # 0. A different meaning of “nonlinearity”, not in-
tended here, occurs when the regressor matrix X contains multiple columns
that are functions (polynomials, B-splines, ...) of an independent variable.
We distinguish between “regressors” and “independent variables”: Multiple
regressors may be functions of the same independent variable.

e The sandwich estimator (2) is only the simplest version of its kind. Other
versions were examined, for example, by MacKinnon and White (1985) and
Long and Ervin (2000). Also, generalizations are pervasive in Generalized
Estimating Equations (GEE; Liang and Zeger 1986; Diggle et al. 2002) and
Generalized Method of Moments (GMM; Hansen 1982).

From the sandwich estimator (2), the “usual” estimator of linear models theory
is obtained by collapsing the sandwich form assuming homoskedasticity:

(4) Vil Bl = (X'X)"'6%, 6% =|lr|*/(N—p—1).
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a2 A
This yields finite-sample unbiased squared standard error estimators SEy, [ 3;] =
Viin[ B1;; if the model is first and second order correct: for some 8 and o2,

(5)  E[y|X]= X8 (linearity), V[y|X]= 0TIy (homoskedasticity).

Assuming also distributional correctness for the errors (normality), one obtains
finite-sample correct tests and confidence intervals.

The analogous tests and confidence intervals based on the sandwich estimator
have only an asymptotic justification, but their asymptotic validity holds under
much weaker assumptions. In fact, it may rely on no more than the assump-
tion that the rows (&, y;) of the data matrix (X,y) are i.i.d. samples from a
joint multivariate distribution that have moments to some order. Thus sandwich-
based theory provides asymptotically correct inference that is assumption-lean
or model-robust; linear models theory provides then finite-sample correct in-
ference that is assumption-laden or model-dependent. The question arises
what sandwich-based inference is about: When no model is assumed, what are
the parameters, and what is their meaning? A more radical question is: What
sense does inference make when the model is wrong (Freedman 2006)7

Answering these and related questions is the first goal of the present arti-
cle. The short answer is that parameters are interpreted as statistical functionals
B(P) defined on a large nonparametric class of joint distributions P = P(dZ, dy)
through best approximation of the actual distribution P within the model (Sec-
tion 3). The sandwich estimator produces then asymptotically correct standard
errors for the slope functionals 3;(P) (Section 5). The remaining question about
the meaning of slopes in the presence of nonlinearity will be answered with a
tentative proposal involving case-wise or pairwise slopes (Section 8).

A second goal of this article is to discuss the role of the regressors when they
are random. Assumption-lean asymptotic theory treats the regressors as random,
whereas assumption-laden theory tends to condition on them and hence treat
them as fixed. The justification for conditioning on regressors derives from the
ancillarity principle. It will be shown that in an assumption-lean theory the princi-
ple’s assumptions are violated: population parameters depend on the distribution
of the regressors (Section 4), and the randomness of the regressors “conspires”
with nonlinearity to generate a contribution to the standard errors (Section 5).

A third goal of this article is to connect the assumption-lean framework to the
“z-y bootstrap,” which resamples observations (&}, ;). In contrast, the “residual
bootstrap” resamples residuals r;. Theory exists to justify both types of boot-
strap under different assumptions (see, for example, Freedman 1981, Mammen
1993). The z-y bootstrap can be asymptotically justified in the assumption-lean
framework to produce standard error estimates that solve the same problem as
the sandwich estimator. Indeed, a close connection exists: the sandwich estimator
is the asymptotic limit of the M-of-N bootstrap when M — oco. Thus both may
be called assumption-lean or model-robust estimators (Section 6).

A fourth goal of this article is to practically (Section 2) and theoretically (Sec-
tion 9) compare the assumption-lean estimators with the linear models estimator.
We define a ratio of asymptotic variances — “RAV” for short — that describes
the discrepancies between the two standard errors in the asymptotic limit. If
there exists a discrepancy, RAV #1, it is assumption-lean estimators (sandwich
or x-y bootstrap) that are asymptotically correct, and the usual standard error
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4 A. BUJA ET AL.

is then indeed asymptotically incorrect. It will be shown that the RAV can range
from 0 to oo under certain scenarios, which gives insight into the nature of model
deviations that affect standard errors.

A fifth goal is to estimate the RAV for use as a test statistic. We derive
an asymptotic null distribution to test the presence of model violations that
invalidate the usual standard error of a specific coefficient. Although the result
can be called a “misspecification test,” it is more usefully viewed as a discrepancy
test for standard errors, separately for each coefficient (Section 10).

A final goal is to briefly discuss issues with the sandwich estimator: When the
model is correct, the sandwich estimator can be inefficient. We will additionally
point out that it is also very non-robust in the sense of sensitivity to outlying
observations. On this topic we will not have more to offer than suggestions.

A feature of the present article is that it makes strong use of regressor ad-
justment (Section 7) which permits the representation of a multiple regression
coeflicient as a simple regression coefficient on its adjusted regressor. This fact
allows the analysis to be undertaken for one regression coefficient at a time.

Throughout we use precise notation for clarity, yet this article is not very
technical. The majority of results is elementary, not new, and stated without
regularity conditions. The linear model is used to allow explicit calculations,
but most conclusions generalize in some form to many other models. The linear
model allows the clearest analysis of issues relating to regressor randomness and
the effects of nonlinearity and heteroskedasticity. The emphasis is on detailed and
concrete insights rather than novelty of technical results.

The article is written for readers who are not very familiar with the sandwich

estimator. Readers who are may skim the article for appearances of the non-
linearity n, which is the aspect of this work that is least known. Readers may
also prefer to selectively browse the tables and figures and then read associated
sections that seem most germane.
Note on Terminology. We use the following interchangeably: misspecification
= model deviation; assumption-laden=model-dependent =usual (standard error);
assumption-lean = model-robust (standard error); 1st order = conditional mean
(model specification); 2nd order = conditional variance (model specification).

2. DISCREPANCIES BETWEEN STANDARD ERRORS ILLUSTRATED

Table 1 shows regression results for a dataset consisting of a sample of 505
census tracts in Los Angeles that has been used to examine homelessness in
relation to covariates for demographics and building usage (Berk et al. 2008).
We do not intend a careful modeling exercise but show the raw results of linear
regression to illustrate the degree to which discrepancies can arise among three
types of standard errors: SEjy, from linear models theory, SEj.,, from the x-y
bootstrap (Npwet = 100,000) and SEg,;, from the sandwich estimator (according
to MacKinnon and White’s (1985) HC2 proposal). Ratios of standard errors that
are far from +1 are shown in bold font.

The ratios SEs;q/SEpoot show that the sandwich and bootstrap estimators are
in good agreement. Not so for the linear models estimates: we have SEyo, SEgng >
SE};, for the regressors PercVacant, PercCommercial and PercIndustrial, and
SEyoot, SEcona < SEy;, for Intercept, MedianInc ($1000), PercResidential.
Only for PercMinority is SEy;, off by less than 10% from SEp.; and SE;,;. The
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/8 J SE lin SE boot SE sand L?SEEI)L(Z:: Sé%;zd g‘g;izi tl in tboot tsand
Intercept 0.760 22.767 16.505 16.209 0.726 0.712 0.981 0.033 0.046 0.047
MedianInc ($K) -0.183 0.187 0.114 0.108 0.610 0.576 0.944 -0.977 -1.601 -1.696
PercVacant 4.629 0.901 1.385 1.363 1.531 1.513 0.988 5.140 3.341 3.396
PercMinority 0.123 0.176 0.165 0.164 0.937 0.932 0.995 0.701 0.748 0.752
PercResidential | -0.050 0.171 0.112 0.111 0.653 0.646 0.988 -0.292 -0.446 -0.453
PercCommercial 0.737 0.273 0.390 0.397 1.438 1.454 1.011 2.700 1.892 1.857
PercIndustrial 0.905 0.321 0.577 0.592 1.801 1.843 1.023 2.818 1.570 1.529

TABLE 1

LA Homeless Data: Comparison of Standard Errors.

discrepancies affect outcomes of some of the t-tests: Under linear models theory
the regressors PercCommercial and PercIndustrial have commanding t-values
of 2.700 and 2.818, respectively, which are reduced to unconvincing values below
1.9 and 1.6, respectively, if the z-y bootstrap or the sandwich estimator are used.
On the other hand, for MedianInc ($K) the t-value —0.977 from linear models
theory becomes borderline significant with the bootstrap or sandwich estimator
if the plausible one-sided alternative with negative sign is used.

A similar exercise with fewer discrepancies but still similar conclusions is shown
in Appendix A for the Boston Housing data.

Conclusions: (1) SEp, and SEg,,, are in substantial agreement; (2) SEj;,
on the one hand and {SEpyt, SEgng} on the other hand can have substantial
discrepancies; (3) the discrepancies are specific to regressors.

3. THE POPULATION FRAMEWORK
3.1 Targets of Estimation

To make standard errors meaningful it is necessary to first define targets of es-
timation. As mentioned in the introduction, parameters of generative models are
reinterpreted as statistical functionals that are well-defined for a large nonpara-
metric class of data distributions. In an assumption-lean population framework
for linear regression with random regressors the ingredients are regressor ran-
dom variables X1, ..., X}, and a response random variable Y. For now the only
assumption is that they have a joint distribution,

P = P(dy,dzi,...,dzp),

whose second moments exist and whose regressors have a full rank covariance
matrix. We write

v /

X = (1,X1,....Xp).

for the column random vector consisting of the regressor variables, with a constant
1 prepended to accommodate an intercept. Values of the random vector X will
be denoted by lower case & = (1,1, ...,zp). We write the joint distribution of
(Y, X), the marginal distribution of X, and the conditional distribution of Y’
given X, respectively, as P = P(dy, d&), P(d&), and P(dy|&), or alternatively
as P = PY’ %» Pg, and PY| %- Nonsingularity of the p x p regressor covariance
matrix is equivalent to nonsingularity of the (p+1)x (p+1) matrix E[X X'].
Due to the prepended intercept coordinate 1, the regressor distribution Py is

degenerate in IRP™. In addition, there may arise nonlinear degeneracies if multiple
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6 A. BUJA ET AL.

regressors are functions of one underlying independent variable, as in polynomial
or B-spline regression, or if product interactions are included. These cases of
degeneracies are permitted as long as E [)_f X' | remains non-singular.

We write any function f(X7, ..., X}) of the regressors as f(X) as the prepended
constant 1 is irrelevant. The following functions of X are special:

—

e The best Ly(P) approximation to Y, p(X), is the conditional expecta-

—

tion of Y given X:
(6)  u(X) = argmin, g, EIY - f(X))?) = E[Y|X].

Also called the “response surface,” it is not assumed to be linear in X.

e The best population linear approximationtoY is l()_f y=0 X whose
coefficients 3 = B(P) are given by

(7) B(P):=argming.ppi1 E[(Y -8'X)?] = EXX'|'E[XY]

(8) — argmingepes El(u(X)—8/ X)) = EIX X' E[Xu(X)]
The right-most expressions in (7) and (8) follow from the normal equations:
(9) EXX'|8-E[XY] = E[XX'|8- E[Xu(X)] = 0.

We use the shorthand “population coefficients” for B(P) and “population ap-
proximation” for B(P)’ X, omitting “linear” and “OLS”. We will often write 3,
omitting the argument P, when it is clear that 3 = B(P). The population coef-
ficients 3 = B(P) form a vector statistical functional defined for a large class
of joint data distributions P = PY, %

Generalizations:

e An assumption-lean interpretation of the maximum likelihood (ML) method
is as follows: Given a regression model p(y | Z;0) define a statistical func-
tional by minimization,

(10) 0(P) = argming Ep[—log p(Y | X; 9)],
or by solving the associated moment conditions/estimating equations,
(11) Ep[8/06 logp(Y|X;0)] = 0.

Under mild regularity conditions we have 8(P) = 6 if the actual condi-
tional data distribution PY‘  has density p(y | &; 09). The point is, however,
that @(P) is defined for a large class of data distributions outside of the
model p(y | Z; @). The two-fold role of the model is 1) to provide a heuristic
for a loss function £(0;y,Z) = —logp(y | Z;0), and 2) to act as an approx-
imation to the actual conditional data distribution PY| % An early adopter
of this point of view is Kent (1982).

e Another generalization that overlaps with the previous is the method of
moments (MM) where a moment condition Ep[y)(Y, X;0)] =0 defines a
statistical functional @(P). This condition is no longer required to be the
stationarity condition of any optimization, in particular it is not necessarily
the score function of a likelihood. A seminal work that inaugurated asymp-
totic theory for very general moment conditions is by Huber (1967). For
OLS, ¥ (y, &; B) =&&' B—Fy, so the moment condition specializes to (9).
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Error:
ex = ylx —uXx)

= ux) —p'x
- Deviation from Linear: 3
olx = +€lx

B'x

X

Fic 1. Illustration of the decomposition (12).

e An extension to situations where the number of moment conditions (the
dimension of %) is larger than the dimension of 6 is provided by the Gener-
alized Method of Moments (GMM, Hansen 1982). It is intended for causal
inference based on numerous instrumental variables.

e A generalization of moment conditions to clustered data with intra-cluster
dependence is achieved by Generalized Estimating Equations (GEE, Liang
and Zeger 1986). This approach, however, is not cast in terms of statistical
functionals of joint (Y, X ) distributions; it is rather a “fixed- X" approach
that assumes well-specification of the mean function while allowing mis-
specification of variance and intra-cluster dependence.

3.2 The Canonical Noise-Nonlinearity Decomposition

We continue with the OLS case for the sake of simplicity, explicit formulas and
direct insights. The response Y has the following canonical decompositions:

Y = gX + (uX)-#X)+ (Y - uX)

(12) = #X + nX) + e

= X + 5

We call € the noise and n the nonlinearity, while for § there is no standard term,
but “population residual” may suffice; see Table 2. The following list contains
mutual relations between the regressors and the components of the canonical
decompositions, as well as some further definitions:
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8 A. BUJA ET AL.

n = uwX)-p'X = n(X), nonlinearity,

e = Y- M()_f), noise,

6 = Yf,B’X = n + ¢, population residual,
u()_f) = B'X+ n(X) response surface,

Y = 8X+nX)+e = X496 response.

TABLE 2
Random variables and their canonical decompositions.

e Medium-sense orthogonality of noise: The noise € satisfies ¢ | La(Pg):
(13) E[cf(X)] = 0 ¥f(X) € La(Pg),

which is equivalent to conditional centering, E[e|X] Z0. It is not inde-
pendent of X, which we would call “strong sense orthogonal” because of
the equivalence to La(e) L La(Pg).

o Weak-sense orthogonalities: 7, e, § L X’, that is,
(14) E[Xn] =0, E[Xe] =0 E[XJ] =o0.

The first, n L X , holds because by (8) 7 is the population residual of the
OLS linear regression of 1(X) on X; the second, € L X, follows from (13);
finally, § 1 X because 6 =n +e.

e Marginal centering, unconditional, is a special case of (14) due to the
inclusion of an intercept in X:

(15) E[n]=Ele] = E[§] =0.

e Conditional noise variance: The noise €, not assumed homoskedastic,
can have arbitrary conditional distributions P(de|X = &) for different &
except for conditional centering and existing conditional variances. Define:

(16) (X)) = V[e|X] = E[&2|X] ¢ .

e Conditional mean squared error: This is the conditional MSE for Y
w.r.t. the population linear approximation 3'X. Its definition and bias-
variance decomposition are:

(17) m*(X) = E[0*|X] = p*(X)+o*(X).
The decomposition follows from §=n+¢ and ¢ L 7(X) due to (13).

e Mean squared functionals:

n®2(P) = E[n%(X)], mean squared nonlinearity,
(18) 0%(P) := E[o*(X)]= E[¢%], mean noise variance,
m2(P) = E[m%(X)], mean or plain MSE.
All expectations, except for E[€?], are w.r.t. Py . From (17) follows

(19) m?*(P) =1°(P) + o*(P).
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o Well-specification can be expressed to first order as 7(X) Zoor n*(P) =

0 and to second order as o2(X) E const or o2(X) E o?(P). These do not
imply well-specification w.r.t. Gaussianity of the error distribution.

—

In what follows one must keep in mind that the nonlinearity n(X) is weakly
orthogonal to the regressors, that is, centered and uncorrelated with all X;.

3.3 Error Terms and Random Regressors: Uncorrelated versus Independent

The term “error” has been carefully avoided so far. The following brief digres-
sion relates the notion of “error term” to the present framework. If a response Y
is modeled as Y= f (X' ;0) + e, where X is random, one has to specify a stochas-
tic relation between X and e. If it is reasonable to assume that the errors are
unassociated with the regressors, three possibilities are:

o Weak-sense error terms: ¢ and X are orthogonal, Ele X] =0.
e Medium-sense error terms: e and Lo(X) are orthogonal.
e Strong-sense error terms: e and X are independent.

Error terms in the weak sense permit e=§ =1+ ¢ by weak-sense orthogonality of
0 w.r.t. X (14), hence they may include heteroskedastic noise as well as nonlin-
earity, so that misspecification to first or second order is meaningless. A medium

sense error term allows heteroskedastic e=¢, but requires n £ 0, so that misspec-
ification to first order is meaningful but not to second order. Error terms in the
strong sense must be homoskedastic and nonlinearity-free, so that the notion of
misspecification to first and second order is meaningful.

White (1980b) navigates the distinction between weak- and strong-sense er-
ror terms as follows: In his Section 2 (p.818) he assumes weak-sense error terms
without noting that these allow inclusion not only of heteroskedasticities but
nonlinearities as well. In his Section 3 (p.824) in the context of a heteroskedasti-
city test, he notices that this is the same test he proposed in White (1980a) for
nonlinearity. His null hypothesis implies strong-sense error terms which preclude
both nonlinearity and heteroskedasticity.

The discussion in this subsection has been about the stochastic relation be-
tween random regressors and error terms in the population. It is unrelated to
the assumption of i.i.d. errors among observations in the linear model where the
regressors are fixed.

4. NON-ANCILLARITY OF THE REGRESSOR DISTRIBUTION
4.1 The Breakdown of the Ancillarity Argument

Conditioning on the regressors when they are random has historically been
justified with the ancillarity principle. The argument applies to any regression
model rendered in the following form:

p(y, % 0) = p(y|Z; 6) p(&),
referring to the model densities of PX’,Y’ P,
eter of interest is @ while the regressor density p(Z) acts as a “nonparametric nui-
sance parameter.” Ancillarity of p(Z) in relation to 6 is immediately recognized by
forming likelihood ratios p(y, &; 01)/p(y, &; 02) = p(y | &; 01)/p(y | Z; O2) which
are free of p(&). (For a fuller definition of ancillarity see Appendix B.) This logic

X and Py, respectively. The param-
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Y =p(X)
Y = u(X)

T~ Pavas

X X

Fi1G 2. Lllustration of the dependence of the population OLS solution on the marginal distribution
of the regressors: The left figure shows dependence in the presence of nonlinearity; the right figure
shows independence in the presence of linearity.

is valid if the conditional model p(y | Z; @) is correct. The following proposition
describes for linear models the ways in which ancillarity is broken if the model is
an approximation rather than a truth.

Proposition 4.1:

e Among distributions P that share the conditional expectation p(&), the
functional B(P) depends on the regressor distribution Pg if and only if

w(X) is nonlinear.

o Among distributions P that share the conditional variance o®(Z), the func-
tional o*(P) depends on the regressor distribution Pg if and only if o*(Z)
is non-constant (heteroskedastic).

(These are loose statements; see Appendix C.2 for more precision.) The first
part of the proposition is best explained with a graphical illustration: Figure 2
shows single regressor situations with a nonlinear and a linear mean function,
respectively, and the same two regressor distributions. The two population OLS
lines for the two regressor distributions differ in the nonlinear case and they
are identical in the linear case. (This observation appears first in White (1980a,
p. 155f); to see the correspondence, identify Y with his g(Z) + ¢.)

Ancillarity of regressors is sometimes informally explained as the regressor
distribution being independent of, or unaffected by, the parameters of interest.
This phrasing has things upside down: It is not the parameters that affect the
regressor distribution; it is the regressor distribution that affects the parameters.

4.2 Implications of the Dependence of Slopes on Regressor Distributions

A first practical implication, illustrated by Figure 2, is that two empirical
studies that use the same regressors, the same response variable, and the same
model, may yet estimate different parameter values, B(P1) # B(P2). What may
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P,(dx)

X

F1G 3. lllustration of the interplay between regressors’ high-density range and nonlinearity: Over
the small range of P1 the nonlinearity will be undetectable and immaterial for realistic sample
sizes, whereas over the extended range of Po the nonlinearity is more likely to be detectable and
relevant.

seem to be superficially contradictory inferences from the two studies may be
compatible if 1) the true response surface p(Z) is not linear and 2) the regressors’
high-density regions differ between studies. Differences in regressor distributions
can become increasingly complex for larger regressor dimensions or, worse, as
p — oo. Differences in estimated parameter values often become visible in meta-
analyses and may be interpreted as “parameter heterogeneity.” The source of
this heterogeneity may be differences in covariate distributions combined with
nonlinearities relative to the fitted model.

A second practical implication, illustrated by Figure 3, is that misspecification
is a function of the regressor range: Over a narrow range a model has a better
chance of appearing “well-specified” because approximations work better over
narrow ranges. In the figure the narrow range of the regressor distribution P (dZ)
is the reason why the linear approximation is excellent, hence the model very
nearly “well-specified,” whereas the wide range of P(dZ) is the reason for the
gross “misspecification” of the linear approximation. This is a general issue that
holds even in the most successful theories, those of physics, which at this point
in history have limited ranges of validity as well.

5. OBSERVATIONAL DATASETS, ESTIMATION, AND CLTS

We turn from populations to estimation from i.i.d. data. We sacrifice the gener-
ality that is common in econometrics and trade it for simplicity. (White (1980b),
for example, assumes observations to be “independent not (necessarily) identi-
cally distributed”, and Hansen (1982) assumes them stationary and ergodic.) The
goal is to describe how the sampling variability of estimates decomposes according
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12 A. BUJA ET AL.

B = (Bo, B, Bp)s parameter vector ((p+1)x1)
Y =V, Yn), response vector (Nx1)
X = (X145 Xn5) j’th regressor vector (N x1)

Xy

..... regressor matrix
X = [17X15-'-5XP} = ’ (NX(p+1))

..... with intercept

XN’
po= (g1, pun), i = u(X;) = ElY| X)), conditional means (N x1)
n = (m,..,0n), ni =n(Xi) = i — B Xi, nonlinearities (Nx1)
€ = (e1,...,en)’, € =Y — i, noise values (Nx1)
& = (01,...,0n), 8 =mi + €, population residuals (N x 1)
o =(o1,...,0on), oi = o(X;) = VY| Xi]'/?, conditional sdevs (Nx1)
B = (Bo,Br, Bp) =(XX)'X'Y, parameter estimates ((p+1)x1)
r = (r,.,rn) =Y - X8, sample residuals (Nx1)

TABLE 3
Random variable notation for i.i.d. observational data.

to its two sources, noise and nonlinearity, with emphasis on the latter.

5.1 Observational Datasets and Estimation

Assume data consisting of i.i.d. cases/observations (Y;, Xj1,..., Xjp) drawn
from a joint multivariate distribution P(dy,dx1,...,dz,) (i =1, 2, ..., N), and
stack them as in Table 3. The definitions of 7, € and § translate to N-vectors:

(20) n = p—-XB, e = Y—yp, §=Y-XB =n+e

It is important to distinguish between population and sample properties: The
vectors d, € and m are not orthogonal to the regressor columns X in the sample.
Writing (-, -) for the usual Euclidean inner product on IR™, we have in general

even though the associated random variables are orthogonal to X; in the popu-
lation: E[6X;]=0, E[eX,]=0, E[n(X)X,]=0, according to (14).
The OLS estimate of 3 is as usual

(21) B = argming |[Y -X38|* = (X'X)"'X'Y.

Because we are not conditioning on X, randomness of B stems from Y as well
as X. The sample residual vector r =Y — X [3', which arises from B, is distinct
from the population residual vector § = Y —X 3, which arises from 3 = B(P). If
we write P for the empirical distribution of the N observations, then 8 = ,6(13)
is the plug-in estimate.
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MODELS AS APPROXIMATIONS 13

X X

F1G 4. Noise-less Response: The filled and the open circles represent two “datasets” from the
same population. The x-values are random; the y-values are a deterministic function of x: y =
w(x) (shown in gray).

Left: The true response u(x) is nonlinear; the open and the filled circles have different OLS lines
(shown in black). Right: The true response p(x) is linear; the open and the filled circles have the
same OLS line (black on top of gray).

5.2 Decomposition of OLS Estimates According to Noise and Nonlinearity

In linear models theory, as in any fixed-X theory, the target of estimation is
E| B | X]. When X is treated as random, the target of estimation is the population
OLS solution 8 = B(P). Hence fixed-X theory misses out on a term E[3|X]—83
which will be seen to contribute in the order of 1/ VN to the unconditional
standard error of 3 in the presence of a nonlinearity, E[n?] > 0.

The random vector E[B | X] is naturally placed between B and 3:

(22) B-B = (B-EIBIX]) + (E[BIX]-B).

This decomposition corresponds to the canonical noise-nonlinearity decomposi-
tion d = e+ n:

Definition and Lemma: Define “Estimation Offsets” or “EOs” as follows:

Total EO = B-7 = (X'X)"1X'8,
(23) Noise EO = B-E[B|X] = (X'X) X,
Nonlinearity EO = E[B|X]-8 = (X'X)"'X'n.

The right hand equalities follow from the decompositions (20), e=Y—pu, n =
pn—XB, 6=Y— X3, and these facts:

B=(XX)'X'Y, E[BIX]=(XX)"'X'u, B=(XX)"X'(Xp).

The first defines 3, the second uses E[Y|X] = p, and the third is a tautology.
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14 A. BUJA ET AL.

Generalizations: The three EOs of the above Lemma can be defined for quite
arbitrary estimators 0 in regressor-response data, and this would be the start-
ing point of a more general comparative analysis of fixed-X versus random-X
regression. We work out the details for OLS estimators for their clean separation
of first and second order properties and the ensuing crispness of tracing the EO
6 — E[6|X] to noise and the EO E[0|X] — 6 to nonlinearity.

5.3 Random X and Nonlinearity as a Source of Sampling Variation

Linear models theory is about sampling variability due to noise represented by
the noise EO. Because of its assumption of well-specification it ignores the other
source of sampling variability, nonlinearity in the presence of random regressors
as represented by the nonlinearity EO. This latter source is best illustrated in
a noise-free situation: Consider a response that is a deterministic but nonlinear
function of the regressors, ¥ = ,u(X' ), so that € = 0 but n # 0. There exists
sampling variability in 3 due to the nonlinearity 5, 3—38 = (X'X)"'X'n, in
conjunction with the randomness of the regressors — the “conspiracy” in the title
of this article. (Noise-free nonlinear responses occur in practice when outputs from
expensive deterministic simulation experiments are modeled based on inputs.)

Figure 4 illustrates the situation with a single-regressor example by showing
the OLS lines fitted to two “datasets” consisting of N = 5 regressor values each.
The random differences between datasets cause the fitted line to exhibit sampling
variability under nonlinearity (left hand figure), which is absent under linearity
(right hand figure). Comparing this figure with the earlier Figure 2, we see that
the effects illustrated in both are the same, but Figure 2 shows it for different pop-
ulations while Figure 4 shows it for different datasets. Thus nonlinearity creates
complications on two levels: (1) in the definition of the population OLS parame-
ter, which becomes dependent on the regressor distribution, and (2) through the
creation of sampling variability in E[3 | X] which becomes a true random vector.
A more striking illustration in the form of an animation is available to users of
the R language by executing the following line of code:

source("http://stat.wharton.upenn.edu/ buja/src-conspiracy-animation2.R")

The problem with linear models theory in this situation is that it confuses
nonlinearity with noise. The consequences of this confusion for statistical infer-
ence will be examined in Section 9.4. They seep into the residual bootstrap which
assumes the residuals to originate from exchangeable noise. By comparison, the
sandwich estimator and the x-y bootstrap get statistical inference right even in
the noise-free nonlinear case, at least asymptotically. The justification derives
from central limit theorems which are described next.

5.4 Assumption-Lean Central Limit Theorems

The proofs of the following are standard; see Appendix C.3.
Proposition 5.4: The three EOs follow CLTs for fited p as N — oco:
VNB-8) B N (o,E[X'X/]—lE[m2(X')XX'] E[X'X”]‘1>
VN (B~ B[ BIX)) 2 N (0, BIXX'| ' E[*(X)X X' BIX X' )

VN (B[BIX] - 8) = N (0, BIXX'| " E[*(X)X X'

s
Pl
>S¢
7
N

imsart-sts ver. 2014/07/30 file: Buja_et_al_A_Conspiracy-revl.tex date: June 16, 2015



MODELS AS APPROXIMATIONS 15

Note that the contribution of the nonlinearity in combination with the ran-
domness of the regressors is of the same order 1/v/N as the contribution of
the noise. The CLTs are shown in terms of the decomposition (17), m2(X) =
o2(X) + n%(X), but by (16,17) m2(X) can be replaced by 62 and o2(X) by €2:

(24) E[m*(X)XX'] = E[§?XX], E[c*(X)XX'] = E[&XX].

Consider some special cases:

v) £

e First order well-specification: 7(X) = 0.

N2@3-g) 2 N (o, E[XX'E[*(X)X X E[XX’]—l)
The sandwich form is solely due to heteroskedasticity.
e First and second order well-specification: 7(X) L 0,02(X) £ o?(P).

N2@3-g) & N(o, 02E[XX"]*1).

This non-sandwich form is asymptotically valid without Gaussian errors.

. . o\ P
e Deterministic nonlinear response: ¢%(X) = 0.

NY2B-g) 2 N (o, BIXXTERA(X)X X B[X X

The sandwich form is due to the nonlinearity and the randomness of X.

Generalizations: The CLT for EI is a very special case of assumption-lean CLTs
for moment conditions that have been known at least since Huber (1967). As-
suming a generic vector moment condition Ep[tp(Y, X;0)] = 0 that defines a
statistical functional 8 = @(P) for (Y, X ) ~ P (Subsection 3.1), and estimating

6(P) from i.i.d. samples through plug-in, @ = 8(P ), there holds under technical
conditions the following CLT, where A(0) := 0 E[¢(Y, X;0)]:

(25) \/N(é— 9) 2, N(o, A0 WV (Y, X 0)] A(e>'—1).

This specializes to an assumption-lean CLT for ML estimation where ¥ (y, &;0) =
—0g log p(y|Z; @). The assumption-laden CLT is obtained by assuming that P is
given by a model density p(y|Z; 8) for some unknown 6, in which case V[ (Y, X; 0)]
= A(0), so that the asymptotic normal distribution becomes N (0, A(6)71).

It would be possible to produce separate CLTs for the EOs @ — E[ |X] and
E[0|X] — 0 for general MM estimators.

6. THE SANDWICH ESTIMATOR AND THE M-OF-N BOOTSTRAP

Empirically one observes that standard error estimates obtained from the z-y
bootstrap and from the sandwich estimator are generally close to each other. This
is intuitively unsurprising as they both estimate the same asymptotic variance,
that of the first CLT in Proposition 5.4. A closer connection between them will
be established below.
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16 A. BUJA ET AL.

6.1 The Plug-In Sandwich Estimator of Asymptotic Variance

According to Proposition 5.4 and (24) the asymptotic variance of the OLS
estimator B can be written as

(26) AV[3] = E[ XX 'E[*XX'| E[XX|".

The sandwich estimator is then the plug-in version of (26) where 62 is replaced
by residuals and population expectations E|...] by sample means E|...]:

-~

E[ XX =L (Xx'X), Er?XX')= +(X'D(r)* X),

where D(r)? is the diagonal matrix with squared residuals 72 = (V;— X;3)? in
the diagonal. With this notation the simplest and original form of the sandwich
estimator of asymptotic variance can be written as follows (White 1980a):

- AVppg = E[ XX 'E[R2XXE[XX']!
27
= N(X'X)'(X'D(r)?X)(X'X)"!

This estimator is asymptotically consistent. The sandwich standard error estimate
for the j’'th regression coefficient is obtained as

(28) SEeandl ) = w7z (AVana) ;i

For this simplest version (“HC” in MacKinnon and White (1985)) obvious modifi-
cations exist. For one thing, it does not account for the fact that residuals have on
average smaller variance than noise. An overall correction factor (N/(N—p—1))'/2
in (28) would seem to be sensible in analogy to the linear models estimator
(“HC1” ibid.). More detailed modifications have been proposed whereby individ-
ual residuals are corrected for their reduced conditional variance according to
V[ri| X] = 0?(1 — H;;) under homoskedasticity and ignoring nonlinearity (“HC2”
ibid.). Further modifications include a version based on the jackknife (“HC3”
ibid.) using leave-one-out residuals. An obvious alternative is estimating asymp-
totic variance with the z-y bootstrap, to which we now turn.

6.2 The M-of-N Bootstrap Estimator of Asymptotic Variance

To connect the sandwich estimator to the bootstrap we need the M-of-N boot-
strap whereby the resample size M is allowed to differ from the sample size N.
It is important not to confuse

e M-of-N resampling with replacement, and
o M-out-of-N subsampling without replacement.

In resampling the resample size M can be any M < oo, whereas for subsampling
it is necessary that the subsample size M satisfy M < N. The M-of-N bootstrap
for M < N “works” more often than the conventional N-of-N bootstrap; see
Bickel, Gotze and van Zwet (1997) who showed that the favorable properties of
M < N subsampling obtained by Politis and Romano (1994) carry over to the
M <N bootstrap. Because we are here concerned only with well behaved OLS
estimation, there is no reason to resort to M</V; instead, we consider bootstrap
resampling for the extreme case M > N, namely, the limit M — oo.
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The crucial observation is as follows: Because resampling is i.i.d. sampling from
some distribution, there holds a CLT as the resample size grows, M — oo. It is
immaterial that, in this case, the sampled distribution is the empirical distribution
Py of a given dataset {(Y;, Xi)}izl.._N, which is frozen of size N as M — oo.

Proposition 6.2: For any fized dataset of size N without exact collinearities,
there holds a CLT for the M-of-N bootstrap as M — oco. Denoting by 3* the OLS
estimate obtained from a bootstrap resample of size M, we have for M — oo:

(20) M2 (B -B) > N (0, BIXX| 7 B[(V-X'BPX X E[XX).

This is a straight application of the CLT of the previous section to the empirical
distribution of the data, where the middle part (the “meat”) of the asymptotic
formula is based on the empirical counterpart r? = (Yi—Xi'B)? of 62 = (Y-X'B)2.
A comparison of (27) and (29) results in the following:

Corollary 6.2: The sandwich estimator (27) is the asymptotic variance esti-
mated by the M-of-N bootstrap in the limit M— oo for a fized sample of size N .

The sandwich estimator has the advantage that it results in unique standard
error values whereas bootstrap standard errors have simulation error in practice.
On the other hand, the x-y bootstrap is more flexible because the bootstrap
distribution can be used to generate confidence intervals that are second order
correct (see, e.g., Efron and Tibshirani 1994; Hall 1992).

Further connections are mentioned by MacKinnon and White (1985): Some
forms of the sandwich estimator were independently derived by Efron (1982,
p. 18f) using the infinitesimal jackknife, and by Hinkley (1977) using a “weighted
jackknife.” See Weber (1986) for a concise comparison in the fixed-X linear mod-
els framework limited to the problem of heteroskedasticity. A richer context for
the relation between the jackknife and bootstrap is given by Wu (1986).

Generalizations: Sandwich estimators of standard error exist for a large class
of well-behaved MM parameter estimators. They are obtained by plug-in into the
asymptotic variance given by their CLTs (25):

AV = A VY, X 0N, where A= E[p(Y,X;0)].

It can again be shown that these sandwich estimators are the limits of the M-of-
N bootstrap when M — oo and N is fixed. Squared standard error estimates of
parameter estimates are found in the diagonal of AV/n.

7. ADJUSTED REGRESSORS

The following adjustment formulas are standard but will be stated explicitly
for their importance. They express the slopes of multiple regressions as slopes
of simple regressions using adjusted single regressors. Subsequently the formulas
will be used for the interpretation of regression slopes in the presence of nonlin-
earity (Section 8), the analysis of discrepancies between asymptotically proper
and improper standard errors (Section 9), and a test of discrepancy between the
two (Section 10).
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7.1 Adjustment in Populations

Define the population-adjusted regressor random variable Xj, to be the “resid-
ual” of the population regression of X, used as the response, on all other regres-
sors. Similarly, Y can be population-adjusted for all regressors other than X;. To

this end collect all other regressors in the random p-vector )_f_j =(1,X1,...., Xj1,
Xit1,..., Xp), and let

Xjo = X;-X /B ., where B, =E[X ;X /]'E[X ;X]].

The response Y can be adjusted similarly, and we may denote it by ¥;_; to indicate
that X; is not among the adjustors, which is implicit in the adjustment of X;.
The simple regression through the origin of Y or ¥,_; on Xj, yields the multiple
regression coefficient 3; = §;(P) of the population regression of ¥ on X:

. E[Y.;X.]  E[YX.]  E[uX)X,.]
(30) 5] - E[X} 2] - E[)(] 2] - E[AXJ 2] :

The rightmost representation holds because X;, is a function of X only which
permits conditioning Y on X in the numerator.

7.2 Adjustment in Samples

Define the sample-adjusted regressor column Xj; to be the residual vector of
the sample regression of X, used as the response vector, on all other regressors.
Similarly, Y can be sample-adjusted for all regressors other than X;. To this end
collect all regressor columns other than X; in a N xp random regressor matrix
X = [1, ceey Xjfl, Xj+1, ] and let

Xj; = Xj - Xj ,é_j; where B—j. = (X,j/X,j)_lX,j/Xj.
(Note the use of hat notation “¢” to distinguish it from population-based ad-
justment “.”.) The response vector Y can be sample-adjusted similarly, and we
may denote it by Y;_; to indicate that X is not among the adjustors. Finally,
the simple regression through the origin of Y or Y;_; on Xj, yields the coefficient
estimate Bj of the multiple regression of Y on X:

N <Yv;7j;XjG> <Y7Xj3>

(31) 3 = _ |
! 1 X1 1 X 1%

Generalizations: The adjustment formalism seems peculiar to OLS. It holds,
however, with caveats also for generalized linear models when interpreted as iter-
atively reweighted LS problems. In this case, weighted adjustment formulas hold
with the data-driven weights at convergence of the iteratively reweighted OLS
iterations. A similar comment holds for M-estimation in robust regression.

8. THE MEANING OF SLOPES IN THE PRESENCE OF NONLINEARITY

A first use of regressor adjustment is for proposing a meaning of linear slopes in
the presence of nonlinearity, and thereby responding to Freedman’s (2006, p. 302)
objection: “... it is quite another thing to ignore bias [nonlinearity]. It remains
unclear why applied workers should care about the variance of an estimator for
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the wrong parameter.” Against this view one may hold that the parameter is
not intrinsically wrong, rather, it is in need of a useful interpretation. Intuitively,
a linear fit gives a sense of the direction, up or down, of association between a
regressor and the response in the presence of other regressors. (One may agree
with Freedman if the sole goal is response prediction.)

The issue is that, in the presence of nonlinearities, slopes lose their common
interpretation: 3; is no longer the average difference in Y associated with a unit
difference in X; at fixed levels of all other Xj. The challenge is to provide an
alternative interpretation that is valid and intuitive even in the presence of non-
linearities. As mentioned, a plausible approach is to work with adjusted variables
so that it is sufficient to solve the problem for the case of simple regressions
through the origin. Regression slopes can then be interpreted as weighted aver-
ages of “case-wise” and “pairwise” slopes in a sense to be made precise. This
interpretation will hold even for regressors that are nonlinearly related to each
other, as in Xy = Xl2 and X3 = X7X5. The reason is that the clause “at fixed
levels of all other regressors” will no longer be used and reference will be made
instead to “(linearly) adjusted regressors,” which is a notion that is meaningful
even for nonlinearly associated regressors (“linearly” will be dropped in what
follows).

To lighten the notational burden, we drop subscripts from adjusted variables:

y— Y, z < Xj., B < B;j  for populations,
i (Yay)i, i+ (Xj)i, B« f; for samples.
By (30) and (31), the population slopes and their estimates are

Elyx| A _ D YiTi
E[z?] d = Sa?

8=

Facts:

e Population parameters 5 can be represented as weighted averages of ...

— case-wise slopes:
2
Y T
= FE|wb], b.==, W= ———,
b and w where are case-wise slopes and case-wise weights, respectively;

— pairwise slopes:
/ 72
y—y (x — ')
= FElwb b = , w o= =
b [wb] x —a E[(z —2)2]
where b and w are pairwise slopes and weights, respectively, and (z, y)
and (2/,y’) are two independent identically distributed copies of the
adjusted regressor-response distribution.

e Sample estimates B can be represented as weighted averages of ...

— case-wise slopes:
2
A Yi Z;
(32) B=Y wibi, b=, wii= oy,
- €Ty i :177;/
(2
where b; and w; are case-wise slopes and weights, respectively;
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X X

Fic 5. Case-wise and pairwise average weighted slopes illustrated: Both plots show the same
siz points (“cases”) as well as the OLS line fitted to them (fat gray). The left hand plot shows
the case-wise slopes from the mean point (open circle) to the siz cases, while the right hand
plot shows the pairwise slopes between all 15 pairs. The OLS slope is a weighted average of the
case-wise slopes according to (32), and of the pairwise slopes according to (33).

— pairwise slopes:

2
. _ r—
(33) B=>_ wikbi, bix:= S0k g = (i = o)
ik

T; — Tk Zi’k’ (ac,-/ — wk/)Q ’

where b;;, and w;, are pairwise slopes and weights, respectively.

See Figure 5 for an illustration for samples. The formulas support the intuition
that, even in the presence of nonlinearity, a linear fit can be used to infer the
overall direction of the association between the response and the regressors.

In the LA homeless data, we can interpret the slope for the regressor PercVacant,
say, in the following two ways:

(1) “Adjusted for all other regressors, the deviation in Homeless from its mean
in relation to the deviation of PercVacant from its mean is estimated to
be on average between 4 and 5 homeless per percent of vacant property.”

(2) “Adjusted for all other regressors, the difference in Homeless between two
census tracts in relation to their difference in PercVacant is estimated to
be on average between 4 and 5 homeless per percent of vacant property.”

Missing here is is a technical reference to the fact that the “average” is weighted.
All such formulations, if they aspire to be technically correct, end up being inel-
egant, but the same is the case with the assumption-laden formulation:

(*) “At constant levels of all other regressors, the average difference in Homeless
for a one percent difference in PercVacant is estimated to be between 4 and
5 homeless.”

This statement is strangely abstract because it refers to an unreal mental scenario
of pairs of census tracts that agree in all other regressors but differ in the focal
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regressor by one unit. Such scenarios are realistic in designed experiments where
regressors can be actively manipulated but unrealistic in observational data where
regressors are passively received. By comparison the statements (1) and (2) above
refer to actual deviations and differences as they are at least potentially observed.
Statements (1) and (2) are of course correct in the assumption-laden framework
as well. Either way, most end users of models will run with the shorthand “the
slope for PercVacant is between 4 and 5 homeless per percent.”

Note on literature: The above formulas were used and modified to produce
alternative slope estimates by Gelman and Park (2008), with the “Goal of Ex-
pressing Regressions as Comparisons that can be Understood by the General
Reader” (see their Sections 1.2 and 2.2). Earlier, Wu (1986) used generalizations
using general tuples rather than pairs of (#},;) rows for the analysis of jackknife
and bootstrap procedures (see his Section 3, Theorem 1). The formulas have a
history in which Stigler (2001) includes Edgeworth, while Berman (1988) traces
it back to a 1841 article by Jacobi written in Latin.

9. ASYMPTOTIC VARIANCES — PROPER AND IMPROPER

The following prepares the ground for an asymptotic comparison of assumption-
laden with assumption-lean standard errors. The comparisons will be for one
regressor at a time, drawing on the adjustment formalism.

9.1 Preliminaries: Adjustment for Estimation Offsets and Their CLTs

The vectorized formulas for estimation offsets (22) can be written componen-
twise using adjustment as follows:

R (Xjs,0)
Total EO : Bi—Bj = ——
7o 1 X532
. N ~ )(;,6
(34) Noise EO : ﬁj—E[ B]‘X] = <H)é||2>’
Je
R X .-
Nonlinearity EO : E[3|X]-8; = <||)é”’7‘72>
je

To see these identities directly, note the following, in addition to (31): E[BJ | X] =
(p, Xja) /| X55)1? and B; = (XB, Xja)/|| Xjal|?, the latter due to (Xj5, Xy) =
Sikll Xl Finally use § =Y - X8, n=p—XPB and e =Y —pu.

With (34), asymptotic normality of the coefficient-specific EOs can be sepa-
rately expressed using population adjustment:

Corollary 9.1:
NY2(3; — 85) — N(Q

E[mQ(X)Xj-2]> — N(O,M)
J

NY2(B; — B[ Bj|X)) N(o,E[UQ(XW> _ N<071;[[E;Xj2]22]>
)

NV2(E[3|X] - ;) N(o, W)

E[X;.%)?
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The equalities on the right side in the first and second case are based on (24).
The first one is needed for plug-in estimation. — Unlike the matrix forms of
Proposition 5.4, the univariate asymptotic variances of Corollary 9.1 lend them-
selves for analyzing individual coefficient estimates. The sandwich form for matri-
ces has been reduced to a ratio where the numerator corresponds to the “meat”
and the squared denominator to the “breads”.

9.2 Proper Asymptotic Variances in Terms of Adjusted Regressors

The CLTs of Corollary 9.1 contain three asymptotic variances of the same
form, the arguments being, respectively, the conditional MSE, the conditional
variance, and the squared nonlinearity. This suggests using generic notation:

Definition 9.2: El 2(X X2
(P = BLE
Je

Lemma 9.2: The proper asymptotic variance of Bj 18

2X) + AV (X)),

ean

(X)) = AVl

lean[

AV

lean[

9.3 Improper Asymptotic Variances in Terms of Adjusted Regressors

Next we write down an asymptotic form for the standard error estimate from
linear models theory in the assumption-lean framework. This asymptotic form
will generally be improper in the assumption-lean framework. It derives from an
estimate 62 of the noise variance, usually 62 = ||Y — X 3||?/(N—p—1), which has
the following limit for fixed p:

~2 P 2/ _ 2/ 2/
6° — E[m*(X)] = E[c*(X)]+ E[n*(X)], N — oc.
Squared standard error estimates for coefficients are, in matrix form and adjust-
ment form, as follows:

oA . _ PO TN R
Their scaled limits under lean assumptions are as follows:
> P E[m*(X)]

NVial 3] 55 Elm*(X)] BIXX), N SB[ 5 =g

These limits are the “emproper asymptotic variances’ of linear models theory.
Again we use a generic definition and an associated decomposition:

Definition 9.3:
AV (X)) =

lin

Lemma 9.3: The improper asymptotic variance of Bj in linear models theory is
AV mA X)) = AX)] + A,

lin lin lin

imsart-sts ver. 2014/07/30 file: Buja_et_al_A_Conspiracy-revl.tex date: June 16, 2015



MODELS AS APPROXIMATIONS 23

9.4 RAV: Comparison of Proper and Improper Asymptotic Variances

To examine the discrepancies between proper and improper asymptotic vari-
ances we form their ratios separately for each of the versions corresponding to
m?(X), 0?(X) and n?(X), hence we use again a generic form of the ratio:

Definition 9.4: Ratio of Asymptotic Variances, Proper/Improper.

RV (%) = WenlPX) __BIPE)X
! o oaX) EBRX)EX

Lemma 9.4: RAV Decomposition.

RAVj[m*(X)] = w, RAVj[o*(X)] + wy RAV;[n*(X)),

where  w, ::M, wy ::M(X_,)]7 We + wy = 1.
E[m?(X)] E[m?(X)]

Implications of this decomposition will be discussed below. The three RAV;
terms can be interpreted as inner products between the three random variables

—

mQ(XJ aQ(X_? n%(
Em*(X)]  E[0*(X)] 2

—

) and X"
E[n*(X)] E[X;.7]

?

These are not correlations, and they are not upper bounded by +1; their natural
bounds are rather 0 and oo, both of which can generally be approached to any
degree as will be shown in Subsection 9.7.

9.5 The Meaning of RAV

The ratio RAV;[m?(X)] shows by what multiple the proper asymptotic vari-
ance deviates from the improper one:

e If RAV; [m2(X)] = 1, then SEj;, [8;] is asymptotically correct;
o if RAV; [m2(X)] > 1, then SEj;, [8;] is asymptotically too small/optimistic;
o if RAV; [m2(X)] < 1, then SEj;, 8] is asymptotically too large/pessimistic.
If, for example, RAV; [mQ(X' )] = 4, then for large samples the proper standard
error of 3; is about twice as large as the usual standard error.
If, however, RAV;[m? (X)]=1, it does not follow that the model is well-specified
because heteroskedasticity and nonlinearity can conspire to make RAV; [mQ()_f )=
1 even though neither 62 (X)) =const nor 7(X)=0. Well-specification to first and

second order, 17()2' )=0 and 02()_f ) =08 constant, is a sufficient but not necessary
condition for asymptotic validity of the usual standard error.

9.6 Simplification of the RAV through Adjustment

The RAV; is not really a function of all of X but of Xj, only. Conditioning on
Xj. reduces RAV; to a functional of univariate functions:
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Lemma 9.6: Define fJQ(X].) = E[f2(X)| X..%]. We have:

E[f}(Xj.) X;.%]

E[f}(X;.] E[X;.”]

RAV)[f*(X)] =

For interpretability we think of fj2 as a function of Xj, rather than Xj.Q, but
it should be kept in mind that the actual dependence is on X;,2. In general we
can write RAV;(fQ(X')) = R4VJ(f]2(X].)), so the analysis of RAVj can be done
in terms of single adjusted regressors Xj,. This lends itself to simple case studies
and graphical illustrations. — Finally we note:

m3(X.) = 1} (X5) + 03 (XG)-

9.7 The Range of RAV

We show that for many distributions of Xj, the values of RAV; vary between 0
and co. The proposition below states sufficient conditions on the distribution of
Xj, under which these bounds are sharp. Even though the proposition holds true
for 02(X) and n%(X) as well, we state it for m2(X) which ultimately determines
the asymptotic match or mismatch of sandwich and usual standard errors. To ex-
amine how widely RAV; can vary, we consider suprema and infima over scenarios

m2(X), or rather mjz(XJ.) by Section 9.6.

Proposition 9.7:
(a) If Xj, has unbounded support, P-maz X;,? = oo, then

(b) If X;. has bounded support, P-maz X;,? = ¢* < oo, then

2

sup RAV;(m?) = ——.
EE N
(c) If the mean of Xj, (=0) is in the closure of the support of the distribution of
X;. but has zero probability, that is, P-min X;,*> =0 but P[X;,>=0] =0, then

inf RAV;[m*(X)] = 0.

According to part (a), the usual standard error can be too small to any de-
gree when the adjusted regressor is unbounded. According to part (b), the usual
standard error can be too small by no more than a factor ¢?/E[X;,?] if the the
adjusted regressor takes on values in the bounded interval [—¢, +c] only. Part (c)
says that the the usual standard error can be too large to any degree when the
adjusted regressor takes on values near its mean.

What shapes of m?(X].) approximate these extremes? An intuitive answer can
be guessed from Figure 6 for normally distributed Xj, to illustrate (a) and (c) of
the proposition: If nonlinearities and/or heteroskedasticities blow up ...

e in the tails of the Xj, distribution, then RAV} takes on large values;
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FIG 6. A family of functions fZ(x) that can be interpreted as heteroskedasticities U?(Xj.), squared
nonlinearities 12 (Xj.), or conditional MSEs m3(X;.): The family interpolates RAV from 0 to
oo for & = Xjo ~ N(0,1). The three solid black curves show fZ(z) that result in RAV=0.05, 1,
and 10. (See Appendiz C.5 for details.)

RAV = oo is approached as f7(x) bends ever more strongly in the tails of the x-distribution.
RAV = 0 is approached by an ever stronger spike in the center of the x-distribution.

e in the center of the Xj, distribution, then RAV; takes on small values.

The proof (in Appendix C.4) bears this out. We are most concerned with the case
where the standard errors of linear models theory are too optimistic, that is, most
egregiously case (a) of the proposition. Case (b) shows that Xj,-distributions with
bounded support enjoy a degree of protection from the worst case:

e For example, if Xj, ~ U[—1,+1] is uniformly distributed, we have E[X;,?] =
1/3, hence the upper bound on the RAV} is 3. It follows that, asymptotically,
the usual standard error will never be too short by more than a factor
V3~ 1.732.

e However, when E[X; 2] is very small compared to the range of Xj., that is,
when Xj, is highly concentrated around its mean, then this approximates
case (a) of the proposition and the worst-case RAV; can be very large.

e If, on the other hand, E[XJ-.Q] is very close to P-max Xj.Q, it implies that
Xj. approximates a balanced two-point distribution with probabilities 0.5
at =1 (Xj, must be centered). In this limiting case, the sandwich and usual
standard errors necessarily agree in the asymptotic limit.

The result for the last case, a two-point balanced distribution, is intuitive because
here it is impossible to detect nonlinearity. On the other hand, heteroskedasticity
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RAV ~ 2 RAV.~0.08 RAV ~ 1

Fi1G 7. The effect of heteroskedasticity on the sampling variability of slope estimates: The ques-
tion is how the misinterpretation of the heteroskedasticities as homoskedastic affects statistical
inference.

Left: High noise variance in the tails of the regressor distribution elevates the true sampling
variability of the slope estimate above the usual standard error (RAV [0%(X)] > 1).

Center: High noise variance near the center of the regressor distribution lowers the true sampling
variability of the slope estimate below the usual standard error (RAV [0?(X)] < 1).

Right: The noise variance oscillates in such a way that the usual standard error is coincidentally
correct (RAV [0*(X)] =1).

is still possible (different noise variances at +1), but this does not matter because
the dependence of RAV; is on Xj.Q, not Xj,, and Xj.2 has a one-point distribution
at +1. RAV; can only respond to heteroskedasticities that vary in X, W2

This discussion throws light on the technical condition in part (c¢): For nonlin-
earities and heteroskedasticities in the center of the Xj, distribution to matter,
it is necessary that there is probability mass near that center.

9.8 lllustration of Factors that Drive RAV;

So far we discussed and illustrated the properties of RAV; in terms of extreme
scenarios for m? (Xj.), which could also be interpreted as scenarios for 0]2- (Xj.) and
77J2(X].) Next we illustrate in terms of potential data situations: Figure 7 shows
three heteroskedasticity scenarios and Figure 8 three nonlinearity scenarios. These
examples train our intuitions about the types of heteroskedasticities and nonlin-
earities that drive the overall RAV; [mQ(X' )]. Based on the RAV; decomposition
Lemma 9.4 according to which RAV; [m2(X)] is a mixture of RAV;[o? (X)] and

RAV; [72(X)], we can state the following:

e Heteroskedasticities with large O'JZ (Xj.) in the tail of Xj,? produce an upward
contribution to RAV; [m2(X)]; heteroskedasticities with large GJZ(XJ- ) near
X;,2 = 0 imply a downward contribution to RAV}[m?(X)).

e Nonlinearities with large average values 77]2(XJ ) in the tail of X;,2 imply

an upward contribution to RAV;[m?(X)]; nonlinearities with large n?(X].)

concentrated near Xj,? = 0 imply a downward contribution to RAV; [m2(X)].

These facts also suggest that in practice, large values RAV; > 1 should occur
more often than small values RAV; < 1 because large conditional variances as
well as nonlinearities are often more pronounced in the extremes of regressor dis-
tributions. This seems particularly natural for nonlinearities which in the simplest
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RAV ~ 3.5 RAV ~0.17 RAV ~ 1

Fic 8. The effect of nonlinearities on the sampling variability of slope estimates: The three plots
show three different noise-free nonlinearities; each plot shows for one nonlinearity 20 overplotted
datasets of size N = 10 and their fitted lines through the origin. The question is how the misin-
terpretation of the nonlinearities as homoskedastic random errors affects statistical inference.
Left: Strong nonlinearity in the tails of the regressor distribution elevates the true sampling vari-
ability of the slope estimate above the usual standard error (RAV [n*(X)] > 1).

Center: Strong nonlinearity near the center of the regressor distribution lowers the true sampling
variability of the slope estimate below the usual standard error (RAV [n*(X)] < 1).

Right: An oscillating nonlinearity mimics homoskedastic random error to make the usual stan-
dard error coincidentally correct (RAV [n*(X)] = 1).

cases will be convex or concave. In addition it follows from the RAV decomposi-
tion Lemma 9.4 that for fixed relative contributions w, > 0 and w, > 0 either of
RAV j[0*(X)] or RAV ;[*(X)] is able to single-handedly pull RAV [m2(X)] to
+00, whereas both have to be close to zero to pull RAV ; [m2(X)] toward zero.
These considerations are of course mere heuristics for the observation that in
practice ,S?Elm is more often too small than too large compared to SE -

10. SANDWICH ESTIMATORS IN ADJUSTED FORM AND A RAV TEST

The goal is to write the RAV in adjustment form and estimate it with plug-in
for use as a test statistic to decide whether the usual standard error is adequate.
In adjustment form we obtain one test per regressor variable.

Two issues will be faced: The asymptotic approximation of the null distribu-
tion does not work in practice, and the test is more sensitive to non-normality
than to nonlinearity and heteroskedasticity. Both issues will be addressed by a
permutation-based approach to the null distribution. Even though the asymp-
totic null distribution is not practical, it will nevertheless give insight into the
detectability of misspecifications that matter for standard error discrepancies.

The proposed test is related to the class of “misspecification tests” for which
there exists a literature starting with Hausman (1978) and continuing with White
(1980a,b; 1981; 1982) and others. These tests are largely global rather than
coeflicient-specific, which ours is. The test proposed here has similarities to White’s
(1982, Section 4) “information matrix test” which compares two types of infor-
mation matrices globally, while we compare two types of standard errors one
coefficient at a time. Another, parameter-specific misspecification test of White
(1982, Section 5) compares two types of coefficient estimates rather than standard
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error estimates, which hence is not a test of standard error discrepancies.

As explained earlier, the types of nonlinearities and heteroskedasticities that
result in discrepancies between SEj, and SE,,, are very specific ones, while
other types are benign. Furthermore, different coefficients in the same model are
differently affected by the same nonlinearity and heteroskedasticity because their
effect on the standard errors is channeled through the adjusted regressors. The
problem of standard error discrepancies is therefore not solved by general-purpose
misspecification tests and model diagnostics.

10.1 Sandwich Estimators in Adjustment Form and the RAV; Statistic
To begin with, the adjustment versions of the asymptotic variances in the CLTs
of Corollary 9.1 can be used to rewrite the sandwich estimator by replacing ex-
pectations E[...| with means FEJ...], the population parameter 8 with its estimate
B, and population adjustment Xj;, with sample adjustment Xj;:
E[(Y — X'B)2X;;2 Y — XA3)2, X;;2
B[X;:7? X

The squaring of N-vectors is meant to be coordinate-wise. Formula (36) is not a
new estimator of asymptotic variance; rather, it is an algebraically equivalent re-

expression of the diagonal elements of AV, in (27) above: A‘één)d (fﬁ{;and) i
The sandwich standard error estimate (28) can therefore be written as follows:

(Y - Xﬁ) 522

(37) SEwnd(Bj) =

The usual standard error estimate is (35):

s ly-xp|
XG0 (N=—p-1)12 ]| X5

(38) SElm (ﬁj)

In order to translate RAV;[m? (X )] into a practically useful diagnostic, an obvious
first attempt would be forming the ratio SAEM(B’]) / SAElm(Bj), squared. However,
SAElm(ﬁAj) has been corrected for fitted degrees of freedom, whereas SAEM(BJ) has
not. For greater comparability one would either correct the sandwich estimator
with a factor (N/(N—p—1))*/? (MacKinnon and White 1985) or else “uncorrect”
SElm(ﬁj) by replacing N—p-1 with N in the variance estimate 62. Either way one
obtains the natural plug-in estimate of RAV;:

(Y — XPB)%, X% E[(Y - X'B)*X;:?]

(39) RAV; .= N i = — e
1Y — XB|I? | X5:]2 E[(Y - X'B8)?] B[ Xj:°]

This diagnostic quantity can be used as a test statistic, as will be shown next. The
functional form of RAV;(m? (X)) and its estimate RAV; illuminates a remark by
White (1982) on his “Information Matrix Test for Misspecification” for general
ML estimation: “In the linear regression framework, the test is sensitive to forms
of heteroskedasticity or model misspecification which result in correlations be-
tween the squared regression errors and the second order cross-products of the
regressors” (ibid., p.12). We know now what function of the regressors actually
matters for judging the effects of misspecification on inference for a particular
regression coefficient: it is the squared adjusted regressor and its association with
the squared population residuals as estimated by residuals.
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10.2 A RAV Test for the Discrepancy Between Proper and Improper SEs

There exist several ways to generate inference based on the RAVJ, two of which
we discuss in this section, but only one of which can be recommended in practice.
We start with an asymptotic result that would be expected to yield approximately
valid retention intervals under a null hypothesis of well-specification.

Proposition 10.2: If the population residuals §; are independent of X’z (not
assuming normality of 6;) we have:

A D B[] E[X.']
(40) N1/2 (RAV; _1) — N(()? E[52}2 E[X},Q]Q o 1)>

If one assumes §; ~ N(0,02), then the asymptotic variance simplifies using

E[§Y/E[§?)? =3.

As always we ignore technical assumptions. A proof outline is in Appendix C.6.
According to (40) it is the kurtoses (= the standardized fourth moments - 3) of

population residuals d and of the adjusted regressor Xj, that drive the asymptotic

variance of Rlej under the null hypothesis. We note the following facts:

1. The larger the kurtosis of § or Xj,, the less likely it is that first and second
order model misspecification can be detected because the larger the asymp-
totic standard errors will be. It is an important fact that elevated kurtosis
of ¢ and X}, obscures nonlinearity and heteroskedasticity. Yet, if such mis-
specification can be detected in spite of elevated kurtoses, it is news worth
knowing.

2. Because standardized fourth moments are always > 1 by Jensen’s inequal-
ity, the asymptotic variance is > 0, as it should be. The minimal standard-
ized fourth moment of +1 is attained by a two-point distribution symmetric
about 0. Thus a zero asymptotic variance of RAV] is achieved when both
the population residuals ¢; and the adjusted regressor X ;, have symmetric
two-point distributions.

3. A test of the stronger hypothesis that includes normality of § is obtained by
setting E[§%]/E[0%]? = 3 rather than estimating it. However, the resulting
test turns into a non-normality test much of the time. As non-normality can
be diagnosed separately with normality tests or normal quantile plots of the
residuals, we recommend keeping normality out of the null hypothesis and
test independence of 4 and Xj, alone.

The asymptotic result of the proposition provides insights, but it is in our
experience not suitable for practical application. The standard procedure would
be to estimate the asymptotic null variance of RAV}, rescale to sample size N, and
use it to form a retention interval around the null value RAV; = 1. The problem
is that the null distribution of RAV} in finite datasets can be non-normal in ways
that are not easily overcome by obvious tools such as logarithmic transformations.

Not all is lost, however, because non-asymptotic simulation-based approaches
to inference exist for the type of null hypothesis in question. Because the null
hypothesis is independence between the population residuals § and the adjusted
regressor Xj,, a permutation test offers itself. To this end it is necessary that
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B;i  SEu, SEuna  RAV, 25% Perm. 97.5% Perm.
(Intercept) 0.760 22.767 16.209 0.495% 0.567 3.228
MedianInc (1000) | -0.183 0.187 0.108 0.318% 0.440 5.205
PercVacant 4.629 0.901 1.363 2.071 0.476 3.852
PercMinority 0.123 0.176 0.164 0.860 0.647 2.349
PercResidential -0.050 0.171 0.111 0.406% 0.568 3.069
PercCommercial 0.737 0.273 0.397 2.046 0.578 2.924
PercIndustrial 0.905 0.321 0.592 3.289% 0.528 3.252

TABLE 4

LA Homeless data: Permutation Inference for RAV] (10,000 permutations).

N > p, and the test will not be exact. The reason is that one needs to esti-
mate the population residuals §; with sample residuals r; and the population
adjusted regressor values X; j, with sample adjusted regressor values X; j;. This
test is for the weak hypothesis that does not include normality of é; and there-
fore permits general (centered) noise distributions. A retention interval should
be formed directly from the «/2 and 1—«/2 quantiles of the permutation distri-
bution. Quantile-based intervals can be asymmetric according to skewness and
other idiosyncrasies of the permutation distribution. Computations inside the
permutation simulation are cheap: Once standardized squared vectors 72/||r||?
and Xj;/[| Xj:]|? are formed, a draw from the conditional null distribution of
RAVJ is obtained by randomly permuting one of the vectors and forming the
inner product with the other vector. Finally, the approximate permutation dis-
tributions can be readily used to diagnose the non-normality of the conditional
null using normal quantile plots (see Appendix D for examples).

Table 4 shows the results for the LA Homeless data. Values of RAV; that
fall outside the middle 95% range of their permutation null distributions are
marked with asterisks. Surprisingly, the values of approximately 2 for the RAV}
of PercVacant and PercCommercial are not statistically significant.

11. ISSUES WITH ASSUMPTION-LEAN STANDARD ERRORS

Model-robustness is a highly desirable property of the sandwich estimator, but
as always there is no free lunch:

e As Kauermann and Carroll (2001) have shown, the sandwich estimator may
be inefficient when the assumed model is correct. Using plug-in in asymp-
totic variances can lead to standard errors that are too small/optimistic be-
cause the variability from plug-in is not accounted for. Sandwich estimators
should therefore be accurate only when the sample size is sufficiently large.
This fact suggests that use of the model-dependent standard error should be
kept in mind if there is evidence in its favor, for example, through the tests
of Section 10.2 and through model diagnostics. (Kauermann and Carroll’s
analysis is for fixed regressors and treats heteroskedasticity only, but its
message is valid because it speaks to performance under well-specification.)

e Another cost associated with the sandwich estimator is non-robustness in
the sense of robust statistics (Huber and Ronchetti 2009, Hampel et al.
1986), meaning strong sensitivity to outlying observations: The statistic

.S?Eszm,d[ﬁj] (37) is a ratio of fourth order quantities of the data, whereas

~ 2
SE;;,[3;] (38) is “only” a ratio of second order quantities. Note we are
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here concerned not with non-robustness of parameter estimates but their
standard error estimates. The situation may be no better for the x-y boot-
strap standard error because the problem is inherent in the form of the
assumption-lean asymptotic variance (Section 9.2) estimated by both sand-
wich and bootstrap.

According to the second point, two types of robustness are in conflict with each
other: Non-robustness to outlying observations arises in standard errors that are
sought to be robust to model deviations such as nonlinearities and heteroskedas-
ticities. This is a large issue which we can only raise but not solve in this space.
Here are a few observations and suggestions for future research:

e If model-robust standard errors are not classically robust, the converse holds
true also: the standard errors of classical robust regression are not model-
robust either. In the LA Homeless data for example, for the most important
variable PercVacant, we observed a ratio of 3.28 comparing the standard
error from the z-y bootstrap with the standard error reported by the soft-
ware (using the function rlm in the R Language (2008)).

e Yet classical robust regression may confer partial robustness to the sandwich
standard error because it limits the size of residuals by capping them with
a bounded @ function. This addresses robustness to outlyingness in the
vertical or y direction.

e Robustness to outlyingness in the horizontal or & direction could be achieved
by using bounded-influence regression (see, e.g., Krasker and Welsch 1982,
and references therein) which automatically downweights observations in
high-leverage positions, or by using some other downweighting scheme to
control the effects of high-leverage points.

e Robustness to horizontal outlyingness could also be addressed by transform-
ing the regressor variables to bounded ranges. Taking a cue from Proposi-
tion 9.7, one might search for transformations that obviate the need for an
assumption-lean standard error in the first place.

As an illustration of the last point, we transformed the regressors of the LA Home-
less data with their empirical cdfs to achieve approximately uniform marginal
distributions up to discreteness. The transformed data are no longer i.i.d., but
the point is to show the potential effect of transforming the regressors to a finite
range and well spread out in it. The results are shown in Table 5: The discrep-
ancies between sandwich and usual standard errors have all but disappeared,
and there is no reason to use the former. The same drastic effect is not seen in
the Boston Housing data (Appendix A, Table 7), although the discrepancies are
greatly reduced here, too. (A technical point is that bounded ranges are really
needed for the adjusted regressors, but transformation of the raw regressors is
likely to achieve this goal unless the collinearities are extreme.)

12. SUMMARY AND OUTLOOK

Sandwich estimators of standard error are known to be “heteroskedasticity-
consistent,” meaning that asymptotically they get standard errors right even if
there are second order variance deviations from the model. We pointed out that
sandwich estimators are also “nonlinearity-consistent”, meaning that asymptoti-
cally they get standard errors right even if there are first order mean deviations
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Bi  SEun  SEpot SEsand Z%l‘:z’ S;%;’f iﬁz‘zzj tiin thoot tsand
(Intercept) 2.932 0.381 0.395 0.395 1.037 1.036 0.999 7.697 T7.422 T.427
MedianInc ($K) -1.128 0.269 0.280 0.278 1.041 1.033 0.992 -4.195 -4.030 -4.061
PercVacant 1.264 0.207 0.203 0.202 0.982 0.978 0.996 6.111 6.221 6.247
PercMinority -0.467 0.230 0.246 0.246 1.070 1.069 0.999 -2.028 -1.896 -1.897
PercResidential | -0.314 0.220 0.228 0.230 1.040 1.049 1.008 -1.432 -1.377 -1.366
PercCommercial 0.201 0.212 0.220 0.220 1.040 1.042 1.002 0.949 0.913 0.911
PercIndustrial 0.180 0.238 0.244 0.244 1.022 1.024 1.002 0.754 0.737 0.736

TABLE 5

LA Homeless Data: Comparison of Standard Errors; regressors are transformed with cdfs.

from the model. We analyzed in the simplest case of OLS the joint effect of non-
linearity and heteroskedasticity on sandwich as well as usual standard errors.
This effect is mediated by the conditional mean squared error that combines first
and second order model deviations. We showed that the usual standard error can
fail by arbitrary magnitudes either way, and we described the model departures
resulting in such failure: The usual standard error of a slope estimate is

e too small when nonlinearities and/or heteroskedasticities are strong in the
tail of the adjusted regressor;

e too large when nonlinearities and/or heteroskedasticities are strong in the
center of the adjusted regressor.

Because nonlinearity is a more severe type of model deviation than heteroske-
dasticity, we reviewed some fundamentals: When models are approximate, then
(1) parameters need to be reinterpreted as statistical functionals on largely ar-
bitrary joint z-y distributions, and (2) the ancillarity principle no longer applies
to the regressor distribution. Conclusion (1) requires a reinterpretation of linear
slopes in the presence of nonlinearity, and conclusion (2) forces us to treat the
regressors as random rather than fixed and to allow that different regressor distri-
butions may result in different slopes. Inference should then rely on assumption-
lean /model-robust approaches such as sandwich estimators or the z-y bootstrap,
which we showed to be related.

Since White’s seminal work, research into misspecification has progressed far
and in many forms by addressing specific classes of model deviation: dependen-
cies, heteroskedasticities and nonlinearities. A direct generalization of White’s
sandwich estimator to time series dependence in regression data is the “hetero-
skedasticity and auto-correlation consistent” (HAC) estimator of standard error
by Newey and West (1987). Structured second order model deviations such as
over /underdispersion have been addressed with quasi-likelihood. More generally
intra-cluster dependencies in clustered (e.g., longitudinal) data have been ad-
dressed with generalized estimating equations (GEE) where the sandwich esti-
mator is in common use, as it is in the generalized method of moments (GMM)
literature. Finally, nonlinearities have been modeled with specific function classes
or estimated nonparametrically with, for example, additive models, spline and
kernel methods, and tree-based fitting.

In spite of these advances it should be kept in mind that in finite data not
all possibilities of misspecification can be approached simultaneously, and that
therefore a need may arise for assumption-lean inference. It should also be kept
in mind that even when complex modeling is possible, simple questions may call
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for simple models that do not do full justice to the complexity of the data, in
which case again it may be wise to look for assumption-lean inference.

There exist, finally, areas of statistics research that appear to be to a large
extent assumption-laden:

e Bayes inference, when it relies on uninformative priors, is asymptotically
equivalent to assumption-laden frequentist inference. It should not be un-
reasonable to ask how far inferences from Bayesian models are exposed to
adverse effects of model deviation. Complex Bayesian models, however, of-
ten use large numbers of fitted parameters and control overfitting by shrink-
age, hence asymptotic comparisons may be inadequate and might have to
be replaced by finite-sample comparisons in simulations. Interesting devel-
opments are taking place, however: Szpiro, Rice and Lumley (2010) derive
a sandwich estimator from Bayesian assumptions, and a lively discussion
of misspecification from a Bayesian perspective involved Walker (2013), De
Blasi (2013), Hoff and Wakefield (2013) and O’Hagan (2013), where further
references can be found.

e High-dimensional inference is the subject of a large literature that appears
to rely heavily on the assumptions of linearity, homoskedasticity as well as
normality of error distributions. It may be uncertain whether procedures
proposed in this area are robust to model deviation. Recently, however,
attention to misspecification started to be paid by Biithlmann and van de
Geer (2015). An interesting development is also the incorporation of ideas
from robust statistics by, for example, El Karoui et al. (2013), Donoho and
Montanari (2014), and Loh (2015).

Thus there remains some work to be done especially in some of today’s most
lively research areas to fully realize the consequences from the idea that statistical
models are approximations rather than truths.
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Bi  SEun  SEpor SBua “gpet  Sfad Sl tiin thoot  tsand
(Intercept) | 36.459 5.103 8.038 8.145 1.575 1.596 1.013  7.144  4.536  4.477
CRIM -0.108 0.033 0.035 0.031 1.055 0.945 0.896 -3.287 -3.115 -3.478
ZN 0.046 0.014 0.014 0.014 1.005 1.011 1.006  3.382 3.364  3.345
INDUS 0.021 0.061 0.051 0.051 0.832 0.823 0.990  0.334  0.402  0.406
CHAS 2.687 0.862 1.307 1.310 1.517 1.521 1.003 3.118 2.056 2.051
NOX -17.767 3.820 3.834 3.827 1.004 1.002 0.998  -4.651 ~-4.634 -4.643
RM 3.810 0.418 0.848 0.861 2.030 2.060 1.015  9.116  4.490  4.426
AGE 0.001 0.013 0.016 0.017 1.238 1.263 1.020 0.052 0.042 0.042
DIS -1.476 0.199 0.214 0.217 1.075 1.086 1.010 -7.398 ~-6.882 ~-6.812
RAD 0.306 0.066 0.063 0.062 0.949 0.940 0.990  4.613  4.858  4.908
TAX -0.012 0.004 0.003 0.003 0.736 0.723 0.981 -3.280 -4.454 -4.540
PTRATIO -0.953 0.131 0.118 0.118 0.899 0.904 1.005 -7.283 ~-8.104 -8.060
B 0.009 0.003 0.003 0.003 1.026 1.009 0.984  3.467  3.379  3.435
LSTAT -0.525 0.051 0.100 0.101 1.980 1.999 1.010 -10.347 -5.227 -5.176

TABLE 6

Boston Housing data: Comparison of Standard Errors.

APPENDIX A: THE BOSTON HOUSING DATA

Table 6 illustrates discrepancies between types of standard errors with the
Boston Housing data (Harrison and Rubinfeld 1978) which will be well known to
many readers. Again, we dispense with the question as to whether the analysis is
meaningful and focus on the comparison of standard errors. Here, too, SEp. and
SE.,q are mostly in agreement as they fall within less than 2% of each other,
an exception being CRIM with a deviation of about 10%. By contrast, SEp.,; and
SE,.,q are larger than their linear models cousin SEy;, by a factor of about 2 for
RM and LSTAT, and about 1.5 for the intercept and the dummy variable CHAS.
On the opposite side, SEp,; and SEg,,q are less than 3/4 of SEy, for TAX. For
several regressors there is no major discrepancy among all three standard errors:
ZN, NOX, B, and even for CRIM, SEy;, falls between the slightly discrepant values
of SEboot and SES,md

Table 7 compares standard errors after the

illustrates the RAV test for the Boston Housing data. Values of RAVJ that fall
outside the middle 95% range of their permutation null distributions are marked
with asterisks.

Table 8 illustrates the RAV test for the Boston Housing data. Values of RAV]
that fall outside the middle 95% range of their permutation null distributions are
marked with asterisks.

APPENDIX B: ANCILLARITY

The facts as laid out in Section 4 amount to an argument against condition-
ing on regressors in regression. The justification for conditioning derives from an
ancillarity argument according to which the regressors, if random, form an ancil-
lary statistic for the linear model parameters 3 and o2, hence conditioning on X
produces valid frequentist inference for these parameters (Cox and Hinkley 1974,
Example 2.27). Indeed, with a suitably general definition of ancillarity, it can be
shown that in any regression model the regressors form an ancillary. To see this
we need an extended definition of ancillarity that includes nuisance parameters.
The ingredients and conditions are as follows:
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ﬂ J SE lin SE boot SE sand SSEEbﬁZt S.'SEES;”:j gg;:z(: tl in tboot tsand
(Intercept) 37.481 2.368 2.602 2.664 1.099 1.125 1.024 15.828 14.405 14.069
CRIM 4.179 1.746 1.539 1.533 0.882 0.878 0.996 2.39%4 2.715 2.726
ZN 0.826 1.418 1.359 1.363 0.959 0.954 0.995 0.583 0.608 0.611
INDUS -1.844 1.501 1.410 1.413 0.939 0.941 1.002 -1.228 -1.308 -1.305
CHAS 6.328 1.764 2.490 2.485 1.411 1.409 0.998 3.587 2.542 2.547
NOX -6.209 1.986 2.035 2.037 1.025 1.026 1.001 -3.127 -3.051 -3.048
RM 4.848 1.044 1.354 1.380 1.297 1.322 1.019 4.645 3.581 3.514
AGE 2.925 1.454 1.897 1.904 1.305 1.310 1.004 2.012 1.542 1.536
DIS -9.047 1.754 1.933 1.945 1.102 1.109 1.006 -5.159 -4.679 -4.652
RAD 1.042 1.307 1.115 1.128 0.853 0.863 1.011 0.797 0.935 0.924
TAX -5.319 1.343 1.155 1.157 0.860 0.862 1.003 -3.961 -4.607 -4.596
PTRATIO -4.720 0.954 0.982 0.982 1.029 1.029 1.000 -4.946 -4.806 -4.808
B -1.103 0.822 0.798 0.800 0.970 0.972 1.002 -1.342 -1.383 -1.380
LSTAT -21.802 1.377 2.259 2.318 1.641 1.683 1.026 -15.832 -9.649 -9.404

TABLE 7

Boston Housing data: Comparison of Standard Errors; regressors are transformed with cdfs.

B;  SEu, SEuna  RAV; 25% Perm. 97.5% Perm.
(Intercept) 36.459 5.103 8.145 2.458% 0.859 1.535
CRIM -0.108 0.033 0.031 0.776 0.511 3.757
ZN 0.046 0.014 0.014 1.006 0.820 1.680
INDUS 0.021 0.061 0.051 0.671% 0.805 1.957
CHAS 2.687 0.862 1.310 2.25b% 0.722 1.905
NOX -17.767 3.820 3.827 0.982 0.848 1.556
RM 3.810 0.418 0.861 4.087* 0.793 1.816
AGE 0.001 0.013 0.017 1.553% 0.860 1.470
DIS -1.476 0.199 0.217 1.159 0.852 1.533
RAD 0.306 0.066 0.062 0.857 0.830 1.987
TAX -0.012 0.004 0.003 0.512% 0.767 1.998
PTRATIO -0.953 0.131 0.118 0.806% 0.872 1.402
B 0.009 0.003 0.003 0.995 0.786 1.762
LSTAT -0.525 0.051 0.101 3.861% 0.803 1.798

TABLE 8

Boston Housing data: Permutation Inference for RAVJ (10,000 permutations).
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(1) @ = (¥, A): the parameters, where 1 is of interest and A is nuisance;
(2) S=(T,A): asufficient statistic with values (¢, a);
(3) p(t,a; ¥, N) =p(t|a; ¥) p(a; A): the condition that makes A an ancillary.

We say that the statistic A is ancillary for the parameter of interest, 1, in the
presence of the nuisance parameter, A. Condition (3) can be interpreted as saying
that the distribution of T is a mixture with mixing distribution p(a|\). More im-
portantly, for a fixed but unknown value A and two values 1, ¥, the likelihood

ratio
p(t,a; 91, A) _ p(t|a; ¥,)
p(t.a; ¥o, A)  p(t]a; )
has the nuisance parameter A eliminated, justifying the conditionality principle
according to which valid inference for @ can be obtained by conditioning on A.
When applied to regression, the principle implies that in any regression model
the regressors, when random, are ancillary and hence can be conditioned on:

p(y,X;0) = p(y| X; 0) px(X),

where X acts as the ancillary A and px as the mixing distribution p(a |\) with
a “nonparametric” nuisance parameter that allows largely arbitrary distributions
for the regressors. (The regressor distribution should grant identifiability of 8 in
general, and non-collinearity in linear models in particular.) The literature does
not seem to be rich in crisp definitions of ancillarity, but see, for example, Cox and
Hinkley (1974, p.32-33). For the interesting history of ancillarity see the articles
by Stigler (2001) and Aldrich (2005).

As explained in Section 4, the problem with the ancillarity argument is that it
holds only when the regression model is correct. In practice, whether models are
correct is never known.

APPENDIX C: PROOFS
C.1 Proof of the Lemma in Section 3.3

e Noise e: Assuming constancy of the conditional distribution we obtain in-
dependence of the noise as follows:

E[f(e)9(X)] = E[E[f ()| X]9(X)] = E[E[f()]9(X)] = E[f ()| E[9(X)]

Conversely, if the conditional distribution of the noise is not constant,
there exists f(e) such that E[f(¢)|X] > E[f(e)] for X € A for some
A with P[A] > 0. Let g(X) = 14(X), and it follows E[f(e)g(X)] >
B[ (0] Elg(X)). )

e Nonlinearity n: The conditional distribution of n given X is a point mass.
The same argument as for noise applies, but restricted to point masses.
Because E[n] = 0 (due to the presence of an intercept) the point masses
must be at zero.

e Population residuals § = €+ n: Again, the conditional distribution must be
identical across regressor space, which results in both of the previous cases.
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C.2 Proof of the Proposition in Section 4

Lemma: The functional B(P) depends on P only through the conditional mean
function and the regressor distribution; it does not depend on the conditional noise
distribution.

In the nonlinear case the clause 3Py, Py : B(P1) # B(P2) is driven solely
by differences in the regressor distributions P;(dZ) and P9(dZ) because P; and
P share the mean function po(.) while their conditional noise distributions are
irrelevant by the above lemma.

The Lemma is more precisely stated as follows: For two data distributions
P;(dy,dZ) and Py(dy,d®) the following holds:

Pi(d) = Py(dF), (X)) 2 m(X) —  B(P)) = B(Py).

Proposition: The OLS functional B(P) does not depend on the regressor dis-
tribution if and only if ;L(X) is linear. More precisely, for a fixed measurable
function po(Z) consider the class of data distributions P for which po(.) is a
version of their conditional mean function: E[Y|X] = u(X) L tio(X). In this
class the following holds:

po(.) is nonlinear == AP, Py : B(P1) # B(P2),
to(.) is linear — VP, Py : [B(P1) = B(P2).

For the proposition we show the following: For a fixed measurable function
o (&) consider the class of data distributions P for which p(.) is a version of

their conditional mean function: E[Y|X] = u(X) L 11o(X). In this class the
following holds:

po(.) is nonlinear = dP,,Py: B(P1) # B(P2),
to(.) is linear — VPi,Py: [B(P1)=B(P2).

The linear case is trivial: if ,UO(X ) is linear, that is, po(€) = B'@ for some 3,
then B(P) = 3 irrespective of P(d#) according to (?7). The nonlinear case is
proved as follows: For any set of points @1, ...#p € IRPF 1in general position and
with 1 in the first coordinate, there exists a unique linear function @'Z through
the values of uo(&;). Define P(dZ) by putting mass 1/(p+1) on each point; define
the conditional distribution P(dy |&;) as a point mass at y = p,(%;); this defines
P such that B(P) = B. Now, if po() is nonlinear, there exist two such sets of
points with differing linear functions 3,'% and B3,/ to match the values of pg()
on these two sets; by following the preceding construction we obtain P; and Po

such that B(P1) = B; # By = B(P2).
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C.3 Proof Outline of Asymptotic Normality, Proposition of Section 5.4
Using E[6X | = 0 from (15) we have:

NZB-p) = (3XX) (i X')

C.4 Proof of the Proposition of Section 9.7

An important difference between 72(X) and o2(X) is that nonlinearities are
constrained by orthogonalities to the regressors, whereas conditional noise vari-
ances are not.

Consider first nonlinearities 7(X): We construct a one-parameter family of
nonlinearities 7:(X) for which sup, RAV}[n?] = oo and inf; RAV;[?] = 0. Gener-
ally in the construction of examples, it must be kept in mind that nonlinearities
are orthogonal to (adjusted for) all other regressors: E[n(X)X] = 0. To avoid
uninsightful complications arising from adjustment due to complex dependencies
among the regressors, we construct an example for simple linear regression with
a single regressor X; = X and an intercept Xo = 1. W.Lo.g. we will further
assume that X is centered (population adjusted for Xy, so that X;, = X;) and
standardized. In what follows we write X instead of X1, and the assumptions are

E[X]=0and E[X?] =1.

Proposition: Define a one-parameter family of nonlinearities as follows:

Lx)>g — p(t)
p(t)(1 —p(t))

We assume that p(t) > 0 Vt > 0. (We have 1 — p(t) > 0 for sufficiently large
t.) Assume further that the distribution of X is symmetric about 0, so that
E[n(X) X] =0. Then we have:

lim 4100 RAV [n?] = o0;
lim; o RAV [n?] = 0 if the distribution of X has no atom at the origin:
P[X =0]=0.

(41) m(X) = , where  p(t) := P[|X]| > t].

By construction these nonlinearities are centered and standardized, E[n,(X)] =
0 and E[n;(X)? = 1. They are also orthogonal to X, E[n;(X)X] = 0, due to the
assumed symmetry of the distribution of X, P[X > t] = P[X < —t], and the
symmetry of the nonlinearities, 7;(—X) = n.(X).

Consider next heteroskedastic noise variances 02()_{' ): The above construction
for nonlinearities can be re-used. As with nonlinearities, for RAV [0?(X)] to rise

with no bound, the conditional noise variance o2 (X ) needs to place its large values

imsart-sts ver. 2014/07/30 file: Buja_et_al_A_Conspiracy-revl.tex date: June 16, 2015



MODELS AS APPROXIMATIONS 41

in the unbounded tail of the distribution of X. For RAV [¢(X)] to reach down to
zero, o2(X) needs to place its large values in the center of the distribution of X.

Proposition: Define a one-parameter family of heteroskedastic noise variances
as follows:

(Lxp>g — p(t))?
p(t)1 —p(t))
and we assume that p(t) >0 and 1 — p(t) >0 Vt>0. Then we have:
lim 400 RAV [07] = o0;
lim; g RAV [0?] = 0 if the distribution of X has no atom at the origin:
P[X =0]=0.

(42) o2(X) = where  p(t) = P[|X]| > t],

We abbreviate p(t) = 1 — p(t) in what follows.
RAV ] = E [n:(X)*X”?]

B p(t)lp(t)E [(1[|X|>t] —P(t))QXQ]

B p(t)lﬁ(t) E (x50 — 2 xpsg p(8) + p(t)?) X?]

- p(t)lﬁ(t) E [(1[|X\>t](1 —2p(t)) —|—p(t)2) XQ}

- p(t)1p<t) (B [11x159X7] (1 = 2p(1)) + p()?)

& P(t)lp(t) (p(t)t* (1 —2p(t)) +p(t)?)  for p(t) < %
- p(lt) (1 (1 = 2p(t)) +p(1))

> (1= 2p(t) +p(t)

~ as t 7T oco.

For the following we note 1 x|~y — p(t) = —1jx|<q + p(1):
RAV[n| = E [n(X)*X?]

- p(t)lp(t) E (1< - 5(1)* X?]

_ p(t)lp(t) E [(1gx1<q — 2 1xj<q 5(t) + 5(1)?) X?]

_ p(t;ﬁ(t) E [(1x1<n(1 — 25(t)) + (1)) X?]

- p(t)lﬁ(t) (B [11x10X*(1 = 25(8))] + B()°)

< p(t)l(t) (p(t)t* (1 —2p(t)) + p(t)?) for  p(t) < %
= p(lt) (2 (1= 25(t)) + B(t))
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42 A. BUJA ET AL.
assuming p(0) = P[X = 0] = 0.

C.5 Details for Figure 6

We write X instead of Xj, and assume it has a standard normal distribution,
X ~ N(0,1), whose density will be denoted by ¢(x). In Figure 6 the base function
is, up to scale, as follows:

2

f(z) = exp <—; :1;) , t>—1.

These functions are normal densities up to normalization for ¢ > 0, constant 1
for t = 0, and convex for ¢ < 0. Conveniently, f(z)¢(z) and f2(x)¢(x) are both
normal densities (up to normalization) for ¢ > —1:

f(l’) </>(37) = S1 ¢s1 (JI), 51 = (1 + t/2)_1/2,
Fa)x) = s20s(2), sp=(1+1)7172,

where we write ¢s(x) = ¢(z/s)/s for scaled normal densities. Accordingly we
obtain the following moments:

E[f(X)] = s1E[1|N(0,51%)] = s1 = (1+t/2)7%
E[f(X) X% = s1E[X’N(0,s1%)] = % = (1+/2)7%2,
E[f*(X)] = s E[1|N(0,s%)] = so = (1+8)7'/2
E[f2(X)X?] = s E[X?IN(0,5%)] = s2° = (141)73/2
and hence
R4V[f2(X)] _ E[fQ(X)XQ] _ 822 — (1—|—t)71

~ E[f*(X)] E[X?
Figure 6 shows the functions as follows: f(z)2/E[f?(X)] = f(x)?/s2.

C.6 Proof of Asymptotic Normality of RAVj, Section 10

We will need notation for each observation’s population-adjusted regressors:
Xje = (Xijor-s Xnjo) = Xj — X ;B .. The following distinction is elementary
but important: The component variables of X, = (X j,)i=1..n are i.i.d. as they
are population-adjusted, whereas the component variables of X;; = (Xm-;)izlm N
are dependent as they are sample-adjusted. As N — oo for fixed p, this depen-
dency disappears asymptotically, and we have for the empirical distribution of
the values {X; js}i—1. v the obvious convergence in distribution:

D D
{Xijsti=t.v  —  Xjo = Xije (N = o0).

We recall (39) for reference in the following form:

LY - XPB)?, X%
~IY = X 8|12 %1 X412

(43) RAV, =

For the denominators it is easy to show that

Ly -x8)2 & E[8),

P
2

(44) . )
~IX5l® — E[X.7]
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For the numerator a CLT holds based on

45) e((Y - X8 X;i") = (Y - XB)% X% +0p(N7/2).

For a proof outline see Details below. It is therefore sufficient to show asymptotic
normality of (62, X;,?). Here are first and second moments:

E[§(0%,X;.%)] = E[5*X.% = E[&] E[X;.?],

Vigiz(0%, X% = E[8* X' - E* ;.2 = E[0'] B[X."] - E[6*) E|

The second equality on each line holds under the null hypothesis of independent
§ and X. For the variance one observes that we assume that {(Y;, XZ)}Zzl N to
be i.i.d. sampled pairs, hence {(51'2,Xi,j.2)}i:1..‘N are N ii.d. sampled pairs as
well. Using the denominator terms (44) and Slutsky’s theorem, we arrive at the
first version of the CLT for RAV}

e (o B )

With the additional null assumption of normal noise we have E[§%] = 3E[§%]?,
and hence the second version of the CLT for RAV/:

N E[X;.!
N2 (RAV, —1) 2 N<o, 3]5[”—1>.
Details for the numerator (45), using notation of Sections 7.1 and 7.2, in

particular Xj, = X; — X ;8 ;, and Xj; = Xj; — Xj[i-;:
(46)

(Y -XB). X;*) = (Y -XB)—X(B-0) (X0 — X (B — B4.)))

= (R4 (XG- O -26X(B-p).

Xj'2 + (X—j(IB—]o /6—]0)) J’(X—](B—j; - 16—]0)) >
= <(§2, Xj,2 > + ...
Ampng the 8 terms in “...”, each contains at least one subterm of the form 8 — 3
or B, — B, each being of order Op(N_1/2). We first treat the terms with just

one of these subterms to first power, of which there are only two, normalized by
N1/2,

X5,

7 (228(X(B-8)), X2) = =2 Lo, (37 Dicron Xk X2.) (B - 8)
= Yio.p Op()Op(N"12) = Op(N12),
e (0% 22X (X (85— B))) = =2 X (e Siron 2 Xise Xk ) (Byis — Bjok)
= Yz Or(1) Op(N7Y2) = Op(N7Y/2).

The terms in the big parens are Op(1) because they are asymptotically normal.
This is so because they are centered under the null hypothesis that J; is indepen-
dent of the regressors X;: In the first term we have

E[0;X;x X2, = E[6;] E[X; 1 X2,] =0

’L].]
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44 A. BUJA ET AL.

due to E[d;] = 0. In the second term we have
E[6; X e Xix] = E[6]] E[X;juXip] = 0

due to E[X; ;o X; 5] =0as k # j.

We proceed to the 6 terms in (46) that contain at least two S-subterms or one
[B-subterm squared. For brevity we treat one term in detail and assume that the
reader will be convinced that the other 5 terms can be dealt with similarly. Here
is one such term, again scaled for CLT purposes:

FE(XB=B)2 X0 = Ticop (% ooy XarXiuX2 ) NY2(3 = 5 (B — )
= D ki=o.pconst-Op(1) Op(N~Y2) = Op(N~—1/2).

The term in the paren converges in probability to E[X; ;X ;X 2 |, accounting

i,je
for “const”; the term N/ 2(& — f) is asymptotically normal and hence Op(1);
and the term (3; — ;) is Op(N~'/2) due to its CLT.

Details for the denominator terms (44): It is sufficient to consider the first
denominator term. Let H = X (X’X)"!X’ be the hat or projection matrix
for X.

Y =XB|> = Y'(I-H)Y
= + (Y|P -Y'HY)
= LIV - (FX R (AL XX) T (A %)
L, EY?Y - EYX|E XX 'E[XY]
— E[Y?]- E[YX'g]
= E|[Y - X'B)} due to E[(Y — X'8)X] =0
= E[§?].

The calculations are the same for the second denominator term, substituting X
for Y, X for X, Xj, for ¢, and 8, for B.
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APPENDIX D: NON-NORMALITY OF CONDITIONAL NULL
DISTRIBUTIONS OF RAV;
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Fi1c 9. Permutations distributions of R?&V, for the LA Homeless Data
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