
LOSS FUNCTIONS FOR BINARY CLASSIFICATION AND CLASS

PROBABILITY ESTIMATION

YI SHEN

A DISSERTATION

IN

STATISTICS

For the Graduate Group in Managerial Science and Applied Economics

Presented to the Faculties of the University of Pennsylvania

in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2005

Supervisor of Dissertation

Graduate Group Chairperson

TO

MY PARENTS

ii

ABSTRACT

LOSS FUNCTIONS FOR BINARY CLASSIFICATION AND CLASS

PROBABILITY ESTIMATION

YI SHEN

SUPERVISOR: ANDREAS BUJA

What are the natural loss functions for binary class probability estimation? This

question has a simple answer: so-called “proper scoring rules”. These loss functions,

known from subjective probability, measure the discrepancy between true probabili-

ties and estimates thereof. They comprise all commonly used loss functions: log-loss,

squared error loss, boosting loss (which we derive from boosting’s exponential loss),

and cost-weighted misclassification losses. —We also introduce a larger class of pos-

sibly uncalibrated loss functions that can be calibrated with a link function. An

example is exponential loss, which is related to boosting.

Proper scoring rules are fully characterized by weight functions ω(η) on class

probabilities η = P [Y = 1]. These weight functions give immediate practical insight

into loss functions: high mass of ω(η) points to the class probabilities η where the

proper scoring rule strives for greatest accuracy. For example, both log-loss and

boosting loss have poles near zero and one, hence rely on extreme probabilities.

We show that the freedom of choice among proper scoring rules can be exploited

when the two types of misclassification have different costs: one can choose proper

scoring rules that focus on the cost c of class 0 misclassification by concentrating ω(η)

iii

near c. We also show that cost-weighting uncalibrated loss functions can achieve

tailoring. “Tailoring” is often beneficial for classical linear models, whereas non-

parametric boosting models show fewer benefits.

We illustrate “tailoring” with artificial and real datasets both for linear models

and for non-parametric models based on trees, and compare it with traditional linear

logistic regression and one recent version of boosting, called “LogitBoost”.

iv

Contents

Abstract iii

List of Tables viii

List of Figures viii

1 Introduction 1

2 Two-Class Cost-Weighted Classification 7

2.1 Cost-Weighting and Quantile Classification 7

2.2 Cost-Weighting and Change of Baseline 9

2.3 Cost-Weighted Misclassification Error Loss 10

2.4 Some Common Losses . 12

3 Proper Scoring Rules 14

3.1 Definition and Examples of Proper Scoring Rules 14

3.2 Characterizing Proper Scoring Rules 15

3.3 The Beta Family of Proper Scoring Rules 17

v

3.4 Tailoring Proper Scoring Rules for

Cost-Weighted Classification . 19

3.5 Application: Tree-Based Classification with Tailored Losses 22

4 F -losses: Compositions of Proper Scoring Rules and Link Functions 32

4.1 Introducing F -losses . 33

4.2 Characterization of Strict F -losses . 37

4.3 Cost-Weighted F -losses and Tailoring 42

4.4 Margin-based Loss Functions . 47

5 IRLS for Linear Models 49

5.1 IRLS for Proper Scoring Rules . 49

5.2 Fisher Scoring . 52

5.3 Canonical Links: Equality of Observed and Expected Hessians 53

5.4 Newton Updates and IRLS for F -losses 56

5.5 Convexity of F -losses . 57

5.6 Some Peculiarities of Exponential Loss 60

6 Stagewise Fitting of Additive Models 61

6.1 Boosting . 61

6.2 Stagewise Fitting of Additive Models by Optimizing General Losses . 63

7 Experiments 66

7.1 Examples of Biased Linear Fits with Successful Classification 66

vi

7.2 Examples of Cost-Weighted Boosting 82

8 Conclusions 94

vii

List of Tables

7.1 Pima Indian Diabetes: c = 0.1 . 74

7.2 Pima Indian Diabetes: c = 0.5 . 74

7.3 Pima Indian Diabetes: c = 0.8 . 75

7.4 German Credit: c = 1/6 . 76

7.5 Adult income: c = 0.2 . 79

7.6 Adult income: c = 0.5 . 79

7.7 Adult income: c = 0.8 . 80

7.8 Description of More UCI Data . 81

7.9 CW-Error for Data Cleve . 81

7.10 CW-Error for Data Ionosphere . 82

7.11 CW-Error for Data Spect . 82

7.12 CW-Error for Data Wdbc . 83

7.13 CW-Error for Data Wpbc . 83

viii

List of Figures

1.1 Hand and Vinciotti’s (2003) example of a nonlinear response surface

η(x) that permits linear classification boundaries. 5

3.1 Loss functions L0(q) and weight functions ω(q) for various values of

α = β: exponential loss (α = −1/2), log-loss (α = 0), squared error

loss (α = 1), misclassification error (α =∞). These are scaled to pass

through 1 at q = 0.5. Also shown are α = 4, 20 and 100 scaled to show

convergence to the step function. 19

3.2 Loss functions L0(q) and weight functions ω(q) for various values of

α/β = 3/7, and c = 0.3: Shown are α = 2, 3 ,6 and 24 scaled to

show convergence to the step function. 20

ix

3.3 Tree based on the Gini criterion, as in CART. Each split shows the pre-

dictor variable and the threshold that were used. Each node shows the

fraction of class 0 and class 1 instances (for example: “p=0.65:0.35”)

and the size of the node (for example: “sz=100%”). The terminal leafs

also show the final fitted class 1 probability, which is redundant with

the second number shown in the “p=.......” clause. 29

3.4 Tree based on the Beta criterion with parameters α = 16 and beta = 1.

Top to bottom, the tree splits of leafs with decreasing class 1 probabilities. 30

3.5 Tree based on the Beta criterion with parameters α = 16 and beta = 1.

Top to bottom, the tree splits of leafs with increasing class 1 probabilities. 31

4.1 Loss functions L0(q) and weight functions ω(q) for various values of

α, and c = 0.3: Shown are α = 2, 6 ,11 and 16 scaled to show

convergence to the step function. 47

x

7.1 Hand and Vinciotti’s Artificial Data: The class probability function

η(x) has the shape of a smooth spiral ramp on the unit square with axis

at the origin. The bold line marked “0.3 log” shows a linear logistic fit

thresholded at c = 0.3. The second bold line, marked “0.3 beta”, shows

a thresholded linear fit corresponding to a proper scoring rule in the

Beta family with parameters α = 6 and β = 14. The last bold line,

marked ”0.3 cw beta”, shows thresholded linear fit corresponding to

an cost-weighted F -loss derived from the Beta family with parameters

α = 4 and β = 4. 69

7.2 A variation of Hand and Vinciotti’s Artificial Data with unbalanced

classes: The class 1 probability η(x) has the shape of a smooth spiral

ramp with axis at the origin. Shown are estimated contours of the

levels 0.3, 0.5 and 0.7. The blue lines show log-loss estimates (logistic

regression), the red lines Beta tailored estimates, and the magenta lines

cost-weighted tailored estimated, with tailoring for the respective levels. 70

7.3 The Pima Indian Diabetes Data, BODY against PLASMA. The colored

lines show the probability contours estimated with logistic regression

(blue), Beta tailoring (black), and cost-weighted tailoring (red). 72

7.4 The Pima Indian Diabetes Data, BODY against PLASMA. The high-

lights represent slices with near-constant q (c − ǫ ≤ q1 ≤ c + ǫ). The

values of q in the slices increase left to right and top to bottom. Open

squares: no diabetes (class 0), filled circles: diabetes (class 1). 73

xi

7.5 German credit data: Graphical permutation tests for comparing the

test errors based on log-loss, Beta loss with α/β = c/(1− c), and cost-

weighted F -loss with c = 1/6. 77

7.6 Histogram of the estimated σ for Beta tailoring (upper panel) and esti-

mated α for cost-weighted tailoring (lower panel) for the German credit

data with c = 1/6. In the estimation of σ and α with optimization of

cross-validated cost-weighted error we constrained σ between 0.06 and

0.2 in 0.02 increments and α to {2, 3, 4, 5, 6, 8, 10, 12} with the corre-

sponding σ to {0.139,0.114,0.092,0.0887,0.081,0.070,0.063,0.057}. . . . 78

7.7 Log-loss, Beta loss and CW-Beta loss with stumps after 50 iterations:

estimated class boundaries at c = 0.3. The data are a variation of Hand

and Vinciotti’s Artificial Data, where the class probability function p(x)

has the shape of an ascending-descending smooth spiral ramp. 86

7.8 Similar to Figure 7.7: Log-loss, Beta tailored and cost-weighted tailored

loss after 300 iterations. 87

7.9 Cost-weighted misclassification test error for c = .3. Tailored losses

perform better than log-loss by about 2%, but there is a slight tendency

to overfit after about 50 iterations. 89

7.10 Similar to Figure 7.7: Log-loss, Beta tailored and cost-weighted tailored

loss with trees of depth three after 10 iterations. 90

xii

7.11 Boosting with trees of depth three to the artificial data: The picture

shows the cost-weighted misclassification loss for c = .3 on test sets.

There is no significant difference between log-loss and tailored losses,

and they all tend to overfit quickly. 91

7.12 German Credit Data: The frames show the cost-weighted misclassifi-

cation loss on holdout sets for c = 1/6.

Left panel: optimal choice of σ at 20 iterations; Right panel: at 200

iterations.

Black: log-loss; Blue: Beta tailored loss; Red: cost-weighted tailored

loss.

Recall, however, that linear regression with tailored loss performs better

than boosting (Table 7.4). 92

7.13 Adult Income Data: The three frames show the cost-weighted misclassi-

fication losses on the test set for c = .2, .5 and .8, respectively. Tailored

losses achieve better misclassification loss than log-loss during 300 it-

erations. The two types of tailoring are virtually indistinguishable.

Black: log-loss; Blue: Beta tailored loss; Red: cost-weighted tailored loss. 93

xiii

Chapter 1

Introduction

We consider predictor-response data with a binary response y representing the ob-

servation of classes y = 1 and y = 0. Such data are thought of as realizations of a

Bernoulli random variable Y with η = P [Y = 1] and 1− η = P [Y = 0]. The class 1

probability η is interpreted as a function of predictors x: η = η(x). If the predictors

are realizations of a random vector X, then η(x) is the conditional probability given

x: η(x) = P [Y = 1|X = x]. Of interest are two types of problems:

• Classification: Estimate a region in predictor space in which class 1 is observed

with the greatest possible majority. This amounts to estimating a region of the

form η(x) > c.

• Class probability estimation: Approximate η(x) as well as possible by fitting a

model q(x,b) (b = parameters to be estimated).

1

Of the two problems, classification is prevalent in machine learning (where it is some-

times called “concept learning”, betraying its origin in AI), whereas class probability

estimation is prevalent in statistics (often in the form of logistic regression).

The classification problem is peculiar in that estimation of a class 1 region requires

two kinds of criteria:

• The primary criterion of interest: misclassification rate. This is an intrinsically

unstable criterion for estimating models, a fact that necessitates the use of

• auxiliary criteria for estimation, such as the Bernoulli likelihood used in logistic

regression, and the exponential loss used in the boosting literature. These are

just estimation devices and not of primary interest.

The auxiliary criteria of classification are, however, the primary criteria of class prob-

ability estimation.

We describe two universes of loss functions that can be used as auxiliary criteria

in classification and as primary criteria in class probability estimation:

• One universe consists of loss functions that estimate probabilities consistently

or “properly”, whence they are called “proper scoring rules”. An example is

the negative log-likelihood of the Bernoulli model, also called Kullback-Leibler

information, log-loss, or cross-entropy (we use “log-loss” throughout).

• The other universe of loss functions is best characterized as producing estimators

that are “distorted” or uncalibrated. Why would one need such loss functions?

The reason is the same as in logistic regression where we model a “distortion”

2

of the probabilities, namely, the logit. We call such “distorted” loss functions

“F -losses” because their domains are scales to which functions (models) are

fitted. An example is the exponential loss used in boosting.

These two universes of loss functions allow us to address a peculiarity of classi-

fication: if a classification region is of the form q(x,b) > c, it is irrelevant for the

performance in terms of misclassification rate whether q(x,b) fits the true η(x) well,

as long as q(x,b) > c and η(x) > c agree well enough. That is, the classifier does not

suffer if q(x,b) is biased vis-à-vis η(x) as long as q(x,b) and η(x) are mostly on the

same side of c. It can therefore happen that a fairly inaccurate model yields quite ac-

curate classification. In order to take advantage of this possibility, one should choose

a loss function that is closer to misclassification rate than log-loss and exponential

loss. Squared error loss is more promising in that regard, but better choices of loss

functions can be found, in particular if misclassification cost is not equal for the two

classes.

The discrepancy between class probability estimation and classification has re-

cently been illustrated by Hand and Vinciotti (2003) with a striking artificial exam-

ple. It demonstrates how good classification can occur even in the absence of good

class probability estimation. The example, shown in Figure 1.1, consists of a function

η(x) that is a rule surface, meaning that all the level lines are linear yet the function

is nonlinear. If we consider the class of linear functions, possibly passed through a

nonlinear link function such as the logistic, we will find that they are insufficient for

3

fitting this surface globally on its domain because the level lines of linear functions

as well as their nonlinear transforms are parallel to each other. Yet, for each level

0 < c < 1 one can find a linear function that describes the level line η(x) = c per-

fectly. This linear function will be unable to fit η(x) globally, hence in order to find

it one has to be able to ignore or at least downweight those training data for which

η(x) is far from c, the level of interest. Hand and Vinciotti (2003) have shown how

such downweighting can be done algorithmically, but their suggestion of a modified

likelihood (their Equation (2)) is rather tentative. We show how reweighting follows

as a direct consequence of the choice of proper scoring rule, and we also introduce

techniques for “tailoring” proper scoring rules for this purpose. —On the side we

note that we will show in an exercise of exploratory data analysis that Hand and

Vinciotti’s (2003) scenario approximately holds in the case of the well-known Pima

Indians Diabetes data from the UCI Machine Learning Repository (2003).

As a second application of the freedom of choice of loss function, we show how

criteria for tree-based classification can be “tailored” if the interest is in small or large

class probabilities. This exercise will produce highly interpretable trees that vastly

more expressive than the usual trees grown with the Gini index (CART, Breiman et

al. 1984) or entropy (e.g.: C4.5, Quinlan 1993; S language, Clark and Pregibon 1992).

Combining tailored losses with flexible non-parametric fits such as boosting mod-

els does not achieve a similarly strong benefit as in linear models. We show empirically

that as the complexity of the functional classes increases, the effect of tailoring be-

comes less significant. Thus we conclude that proper scoring rules are best combined

4

X1

X
2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 1.1: Hand and Vinciotti’s (2003) example of a nonlinear response surface η(x)

that permits linear classification boundaries.

with more rigid models such as linear ones.

For the convenience of the readers, here is a layout of this dissertation:

Chapter 2 introduces the background of cost-weighted binary classification and

addresses the need of primary and auxiliary loss functions for this type of problem.

Chapter 3 defines loss functions that are called “proper scoring rules” on the

probability scale. They are characterized by weight functions ω(η). We then define a

family of proper scoring rules that is modeled by the Beta densities with parameters

α and β. This family not only is sufficiently rich to encompass most commonly used

5

losses but can also be tailored for the purposes of cost-weighted classification.

Chapter 4 defines a larger class of loss functions than proper scoring rules that

we call “F − losses”. They are compositions of (inverse) link functions and proper

scoring rules. They can also be regarded as “uncalibrated” proper scoring rules in the

sense that the estimated values are not probability estimates, but can be calibrated

to produce probability estimates by applying a monotone transformation. We then

show that F -losses are closed under cost-weighting, thus can also be tailored for the

purposes of cost-weighted classification.

Chapters 5 and 6 deal with optimization of proper scoring rules and F -losses. In

Chapter 5 we generalize the IRLS algorithm to arbitrary proper scoring rules and F -

losses for linear models. In Chapter 6 we generalize stagewise fitting of additive models

(=“boosting” in Friedman et al.’s (2000) interpretation) to arbitrary proper scoring

rules and F -losses. In Chapter 7, we illustrate the application of such algorithms to

artificial and real world data sets.

6

Chapter 2

Two-Class Cost-Weighted

Classification

2.1 Cost-Weighting and Quantile Classification

In a two-class classification problem, one observes data (X, Y), where X is predictor

or feature vector, Y is a binary response which is labeled 0 and 1. The observed

Y is regarded as a realization of a binary random variable following a Bernoulli

distribution. A problem of interest is to predict or classify future values of Y from the

information that the feature X contains. This amounts to the problem of dividing the

predictor space into two regions and classifying a case as 1 or 0 according to which

region the associated value of feature X falls in. Theoretically, the best (Bayes)

classification regions for assignment to class 1 are of the form {x | η(x) > c}, where

as before η(x) = P [Y = 1|x].

7

The determination of the threshold c is related to how much we weight the relative

cost of the two types of misclassification: misclassifying Y = 1 as 0 and Y = 0 as

1, respectively. In medical contexts, for example, a false negative (missing a disease)

is usually more severe than a false positive (falsely detecting a disease). If the cost

for class 1 misclassification is c1 and the cost for class 0 misclassification is c0, then

according to Bayes rule the optimal choice of c is c = c0/(c0 + c1). Without loss of

generality, one can always normalize the sum of c0 and c1 to 1: c0 + c1 = 1. The

threshold c = c0 is then the cost of class 0 misclassification. In those contexts where

costs are not mentioned, equal cost of misclassification is assumed, that is, c = 0.5.

Bayes rule is optimal in the sense of minimizing the cost of misclassification: the

expected costs of classifying as 1 and 0 are, respectively, c(1− η(x)) and (1− c)η(x).

Hence optimal classification as 1 is for c(1 − η(x)) < (1 − c)η(x) or, equivalently,

c < η(x). Thus, classification with normalized cost weight c is equivalent to “quantile

classification” at the quantile c.

In reality the posterior probability η(x) is unknown and has to be estimated from

the data. By convention, we use q(x) to denote an estimate of η(x). Therefore, one

uses an estimated classification region q(x) > c to approximate the true Bayes region

η(x) > c.

8

2.2 Cost-Weighting and Change of Baseline

A frequent confusion in classification concerns the roles of cost-weighting and change

of baseline frequencies of the two classes. For the convenience of the reader we show

how a baseline change affects the cost-weights or quantiles c (see, e.g., Elkan (2001)).

We use the following notation:

η(x) = P [Y = 1| x] ,

π = P [Y = 1]

f1(x) = P [x |Y = 1] ,

f0(x) = P [x |Y = 0],

which are, respectively, the conditional probability of Y = 1 given X = x, the

unconditional (marginal/prior/baseline) probability of Y = 1, and the conditional

densities of X = x given Y = 1 and Y = 0. The densities f1/0(x) describe the

distributions of the two classes in predictor space. The joint distribution of (X, Y) is

given by

η(y = 1, x) = f1(x) π , η(y = 0, x) = f0(x) π ,

and hence the conditional distribution of Y = 1 given X = x is

η(x) =
f1(x) π

f1(x) π + f0(x) (1− π)
,

which is just Bayes theorem. Equivalently we have

η(x)

1− η(x)
/

π

1− π
=

f1(x)

f0(x)
. (2.1)

9

We then compare this situation with another one that differs only in the mix of class

labels, π∗ and 1 − π∗, as opposed to π and 1 − π. Denote by η∗(x) the conditional

probability of Y = 1 given X = x under this new mix. From Equation (2.1) follows

that f1(x) and f0(x) are the same in both situations, hence

η∗(x)

1− η∗(x)
/

π∗

1− π∗
=

η(x)

1− η(x)
/

π

1− π
,

or, equivalently,

η∗(x) =
kη

kη + (1− k)(1− η)
,

where

k =
π∗

1−π∗

π∗

1−π∗
+ π

1−π

=
π∗(1− π)

π∗(1− π) + (1− π∗)π
.

Obviously thresholds c on η(x) and c∗ on η∗(x) transform the same way:

c∗ =
kc

kc + (1− k)(1− c)
,

so that η∗(x) > c∗ iff η(x) > c.

2.3 Cost-Weighted Misclassification Error Loss

Our goal is to find classification rules whose cost-weighted misclassification error for

given costs c and 1 − c is small. We assume that classification is performed by

thresholding an estimate q(x) of η(x): the estimated class is 1q(x)>c. We encounter

an error if Y = 1 and q(x) ≤ c, or if Y = 0 and q(x) > c. Hence the cost-weighted

misclassification loss at x can be written as

L(Y |q(x)) = (1− c)Y 1[q(x)≤c] + c(1− Y)1[q(x)>c] .

10

When the costs of the two types of misclassification are the same, c = 1− c = .5, this

is up to a factor 1/2 the plain misclassification error:

L(Y |q(x)) = 0.5 ·
(

Y 1[q(x)≤0.5] + (1− Y)1[q(x)>0.5]

)

At the population level, the conditional expected misclassification loss is:

EY |X=x L(Y |q(x)) = (1− c) η(x)1[q(x)≤c] + c (1− η(x))1[q(x)>c]

This is the expected loss associated with classification for a given value of X. Uncon-

ditionally, the cost-weighted misclassification loss or risk is:

EY,X (L(Y |q(X))) = (1− c) EX[η(X)1[q(X)≤c]] + c EX[(1− η(X))1[q(X)>c]]

One would like to find estimators q(x) that perform well in the sense that they produce

a small risk. There is, however, a problem: misclassification loss is a crude measure

and does not distinguish between class 1 probability estimates q(x) as long as they

are on the same side of c. Hence optimal estimators q(x) are highly non-unique. In

many application one can make an argument that one would like q(x) to be a good

estimator of η(x), not just q(x) > c to be a good estimator of η(x) > c. This is the

case when the cost c is not precisely defined, or as in some marketing application

when potential customers need to be prioritized for marketing campaigns according

to their estimated probability of taking a product.

There is yet another problem with misclassification error: It is possible that two

estimators have the same misclassification error yet of them is preferable to the human

11

expert. For example, consider the following two pairs or misclassification counts:

Actual
Class 1

Class 0

∗ 0

30 ∗

∗ 15

15 ∗

Both situations have the same unweighted misclassification error, yet they differ

strongly. It may help to consider the cost-weighted loss for each cost ratio: for the first

table it is 30·c+0·(1−c) = 30c, for the second table it is 15·c+15·(1−c) = 15. Thus,

if there is a potential of considering a class-0 cost c less than 0.5, one would clearly

prefer the first table, otherwise the second. As we will see, the criteria introduced

below will always prefer the first table over the second.

2.4 Some Common Losses

In Section 2.3 we illustrated some problems with misclassification loss. These prob-

lems arise from the crude nature of the loss function, one prefers to optimize over loss

functions with greater discriminatory properties. We give two standard examples:

Example 1. In logistic regression, one uses log-loss, (equivalently: Kullback-

Leibler loss, cross-entropy, or the negative log-likelihood of the Bernoulli model):

L(y|q) = −y log(q)− (1− y) log(1− q)

with the corresponding expected loss

R(η|q) = −η log(q)− (1− η) log(1− q)

12

Example 2. Squared error loss

L(y|q) = (y − q)2 = y(1− q)2 + (1− y)q2 ,

where the second equality holds because y takes only the values 0 and 1. The expected

squared error loss is

R(η|q) = η(1− q)2 + (1− η)q2 .

These two loss functions are smooth and they both produce particular solutions

of optimal estimates q. Moreover, one can quickly check that the optimal estimate

q is actually achieved at the true posterior probability η when minimizing the ex-

pected losses. Loss functions L(y|q) with this property have been known in subjective

probability as “proper scoring rules”. (See Garthwaite, Kadane and O’Hagan (2005,

Sec. 4.3) for recent work in this area.) There they are used to judge the quality of

probability forecasts by experts, whereas here they are used to judge the fit of class

probability estimators. Proper scoring rules form a natural universe of loss functions

for use as criteria for class probability estimation and classification.

13

Chapter 3

Proper Scoring Rules

3.1 Definition and Examples of Proper Scoring Rules

Definition: If an expected loss R(η|q) = ηL1(1−q)+(1−η)L0(q) is minimized w.r.t.

q by q = η ∀η ∈ (0, 1), we call the loss function a ”proper scoring rule”. If moreover

the minimum is unique, we call it a ”strictly proper scoring rule”.

According to the definition, we can easily see that the two examples in Section 2.4

are actually strictly proper scoring rules.

• For the expected log-loss, we have the first order stationarity condition

−
η

q
−

1− η

1− q
= 0

which has the unique solution q = η.

• For the expected squared error loss, we have the first order stationarity condition

14

−2η(1− q) + 2(1− η)q = 0

which has the unique solution q = η.

It is also easy to see that misclassification loss is a proper scoring rule yet not

strict since the optimal solution q is not unique: any q that falls to the right side of

the true classification boundary η = c is considered optimal.

3.2 Characterizing Proper Scoring Rules

In this section we give a characterization of proper scoring rules that goes back to Shu-

ford, Albert, Massengill (1966), Savage (1971) and in its most general form Schervish

(1989).

We write the stationarity condition under which classification loss functions L(y|q)

form proper scoring rules, and we will characterize them in terms of “weight func-

tions”. Writing the loss function as

L(y|q) = yL1(1− q) + (1− y)L0(q)

we have:

Proposition 1: Let L1(·) and L0(·) be monotone increasing functions. If L1(·) and

L0(·) are differentiable, then L(y|q) forms a proper scoring rule iff

L′
1(1− q) = ω(q)(1− q), L′

0(q) = ω(q)q (3.1)

15

If ω(q) is strictly positive on (0, 1), then the proper scoring rule is strict.

The proof follows immediately from the stationarity condition,

0 =
∂

∂q

∣

∣

∣

∣

q=η

L(η|q) = − η L′
1(1− η) + (1− η) L′

0(η) .

This entails

L′
1(1− q)

1− q
=

L′
0(q)

q
,

which defines the weight function ω(q).

Proposition 1 reveals the possibility of constructing new proper scoring rules by

choosing appropriate weight functions ω(q). Here are two standard examples of such

choices:

• Log-loss:

ω(q) =
1

q(1− q)

• Squared error loss:

ω(q) = 1

Misclassification loss does not fit in this framework because its losses L0(q) =

c 1[q>c] and L1(1− q) = (1− c) 1[q≤c] are not smooth. Yet there exists an extension of

the above proposition that allows us to write down a “generalized weight function”:

ω(q) = δc(dq)

We conclude with the observation that in general proper scoring rules do not allow

cost-weighting. That is, if ηL1(1 − q) + (1 − η)L0(q) defines a proper scoring rule,

16

then (1 − c)ηL1(1 − q) + c(1 − η)L0(q) in general loses the proper scoring property.

Cost-weighted misclassification error is a very special case in this regard.

3.3 The Beta Family of Proper Scoring Rules

We exemplify the idea of defining proper scoring rules with weight functions by

proposing a 2-parameter family that is sufficiently rich to encompass most commonly

used losses, among them log-loss, squared error loss, and misclassification loss in the

limit. This family is modeled after the Beta densities:

ω(q) = qα−1 (1− q)β−1 .

The losses are hence defined by

L′
1(1− q) = qα−1(1− q)β , L′

0(q) = qα(1− q)β−1 ,

up to an irrelevant multiplicative constant. Here is a list of special cases:

• α = β = −1/2: Boosting loss will be introduced in Section 4.1.

L1(1− q) =

(

1− q

q

)1/2

, L0(q) =

(

q

1− q

)1/2

.

• α = β = 0: Log-loss or negative log-likelihood of the Bernoulli model,

L1(1− q) = − log(q) , L0(q) = − log(1− q) .

• α = β = 1/2: A new type of loss, intermediate between log-loss and squared

error loss,

L1(1−q) = arcsin((1−q)1/2)−(q(1−q))1/2 , L0(q) = arcsin(q1/2)−(q(1−q))1/2 .

17

• α = β = 1: Squared error loss,

L1(1− q) = (1− q)2 , L0(q) = q2 .

• α = β = 2: A new loss closer to misclassification than squared error loss,

L1(1− q) =
1

3
(1− q)3 −

1

4
(1− q)4 , L0(q) =

1

3
q3 −

1

4
q4 .

• α = β →∞: The misclassification error rate,

L1(1− q) = 1[1−q>1/2] , L0(q) = 1[q≥1/2] .

Values of α and β that are integer multiples of 1/2 permit closed formulas for L1

and L0. For other values one needs a numeric implementation of the incomplete Beta

function.

Figure 3.1 and Figures 3.2 show proper scoring rules derived from the Beta family

with various parameters α and β for different costs.

18

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

q

L(
q)

a= −0.5
a= 0 a= 1

a= 4

a= 20a= 100
a= Infa= Inf

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

q

om
eg

a(
q)

a= −0.5

a= 0

a= 1

a= 4a= 20

a= 100

a= Inf

Figure 3.1: Loss functions L0(q) and weight functions ω(q) for various values of

α = β: exponential loss (α = −1/2), log-loss (α = 0), squared error loss (α = 1),

misclassification error (α =∞). These are scaled to pass through 1 at q = 0.5. Also

shown are α = 4, 20 and 100 scaled to show convergence to the step function.

3.4 Tailoring Proper Scoring Rules for

Cost-Weighted Classification

Recall that in cost-weighted classification one associates two types of misclassification

with different costs. Suppose c is the cost of class 0 misclassification and 1− c is the

cost of class 1 misclassification, then the cost-weighted misclassification loss is the

measure of accuracy:

Rc(η|q) = (1− c) η 1[q≤c] + c (1− η) 1[q>c]

19

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

q

L0
(q

)

a= 24

a= 6

a= 3
a= 2

a= Inf

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

q

om
eg

a(
q)

a= 24

a= 6

a= 3

a= 2

Figure 3.2: Loss functions L0(q) and weight functions ω(q) for various values of

α/β = 3/7, and c = 0.3: Shown are α = 2, 3 ,6 and 24 scaled to show convergence

to the step function.

Cost-weighted misclassification loss is characterized by the “generalized weight func-

tion” ω(q) = δc, a spike at c. The discreteness of this “weight function” is another

expression for the problems this loss function has and why it is not successful for

forming an empirical risk in estimation from data. Instead, one uses “smoother”

criteria such as log-loss or squared error loss which penalized deviations of estimates

q(x) from the truth η(x) at all levels, not only at c.

Smooth criteria, however, have the problem that they are not particularly adapted

to the actual problem at hand: classification at the threshold c. Instead, as for

example the weight function ω(q) = 1/[q(1−q)] of the log-loss shows, common smooth

criteria rely on estimated probabilities q near 0 and 1, and not those in the vicinity

20

of c which is the locus of interest. This consideration motivates our examination of

continuous losses other than log-loss and squared error loss, losses that may be better

adapted to particular thresholds c of interest. Intuitively, we look for losses with

smooth weight functions that approximate the spike δc, or at least shift the mass of

ω(q) off-center to reflect the cost-weights c and 1− c.

With this road map, it is natural to turn to the Beta family of weight functions

because Beta distributions are sufficiently rich to approximate point masses δc at any

location 0 < c < 1. The Beta densities

ωα,β(q) =
1

B(α, β)
qα−1(1− q)β−1

converge to ω(q) = δc(q), for example, when

α, β →∞ , subject to
α

β
=

c

1− c
.

For a proof note that the conditions force the expectation to µ = c while the variance

converges to zero:

• The expected value of q under a Beta distribution with parameters α and β is

µ =
α

α + β
,

which equals c if c/(1− c) = α/β.

• The variance is

σ2 =
αβ

(α + β)2(α + β + 1)
=

c(1− c)

α + β + 1
,

which converges to zero if α, β →∞.

21

In a limiting sense, the ratio of the exponents, α/β, acts as a cost ratio for the classes.

One could also tailor in a slightly different way. Instead of matching the parame-

ters α and β to the mean, one could match to the mode:

c = qmode =
α− 1

α + β − 2

With either mean or mode matching, we obtain weak convergence ω(q)dq → δc(dq).

The above construction has obvious methodological implications for logistic re-

gression and also, as will be shown later, for boosting: log-loss and exponential loss,

which they use, respectively, can be replaced with the proper scoring rules generated

by the above weight functions ωα,β(q). In doing so we may be able to achieve im-

proved classification for particular cost ratios or class-probability thresholds when the

fitted model is biased but adequate for describing classification boundaries individu-

ally. The appropriate degree of peakedness of the weight function can be estimated

from the data. See Chapter 7 for examples.

3.5 Application: Tree-Based Classification with Tai-

lored Losses

There exists a link between proper scoring rules and information criteria used in tree-

based classification, such as entropy and the Gini index. In fact, every proper scoring

rule has a unique associated information criterion as follows:

H(η) = min
q

R(η|q) = R(η|η) .

22

Tree algorithms agree with each other in that they all estimate local conditional class

probabilities with simple proportions, but they differ in how they judge the fit of

these proportions in terms of information measures H. Here are the usual examples:

• α = β = −1/2: Boosting loss leads to a semi-circle criterion,

H(q) = 2 · [q(1− q)]1/2 .

• α = β = 0: Log-loss leads to entropy,

H(q) = −q log(q)− (1− q) log(1− q) .

• α = β = 1: Squared error loss leads to the Gini index,

H(q) = q(1− q) .

• α, β → ∞, α
β
→ c

1−c
: Cost-weighted misclassification loss leads to cost-

weighted Bayes risk:

Hc(q) = min((1− c) q, c (1− q)) . (3.2)

The Gini index is used in CART (Breiman et al. 1984) and entropy in C4.5 (Quinlan

1993) and the original tree functions in the S language (Clark and Pregibon 1992).

The semi-circle criterion was proposed by Kearns and Mansour (1996) as a criterion

for tree construction. Cost-weighted Bayes risk is not a strict information measure in

the same sense that cost-weighted misclassification loss is not a strict proper scoring

rule.

23

The following proposition shows that every information measure determines es-

sentially a unique proper scoring rule, modulo some arbitrary choices for those q

for which the function H(q) does not have a unique tangent, as for cost-weighted

misclassification losses at the location q = c.

Proposition: The information measure H(q) is the concave lower envelope of

its proper scoring rule R(η|q), with upper tangents η 7→ R(η|q). Conversely, if H(q)

is an arbitrary concave function, it determines a proper scoring rule R(η|q) which is

unique except at locations where there are multiple upper tangents, in which case any

of the tangents can be selected as part of the definition of the proper scoring rule.

Corollary: If H(q) is concave and smooth, its associated proper scoring rule is

L1(1− q) = H(q) + H′(q) (1− q) , L0(q) = H(q)−H′(q) q . (3.3)

For a proof, note that R(η|q) is affine in η and R(η|q) ≥ H(η), which makes

η 7→ R(η|q) an upper tangent for all q and hence H(q) the concave lower envelope.

Conversely, given a concave function H(q), there exist upper tangents at every q.

They are affine functions and can be written η 7→ η T1(q) + (1− η) T0(q), so one can

define L1(1− q) = T1(q) and L0(q) = T0(q). For the corollary, the upper tangent at

q is unique and can be written as an affine function η 7→ H′(q)(η− q) + H(q). Hence

R(η|q) = H′(q)(η− q)+H(q) defines the proper scoring rule: L1(1− q) = R(1|q) and

L0(q) = R(0|q).

24

Proposition: If H(q) is concave and sufficiently smooth, the weight function ω(q)

of the associated proper scoring rule is:

ω(q) = −H′′(q) . (3.4)

The proof is a simple calculation. The relation links concavity and non-negative

weights, as well as strict concavity and positive weights. The proposition indicates

that information measures with the same second derivative are equivalent. In other

words, information measures that differ only in an affine function are equivalent:

H(q) + C1 q + C0 (1 − q). This fact follows for all information measures, not only

smooth ones, from the equivalence of proper scoring rules that differ in two constants

only, L1(1− q) + C1 and L0(q) + C0.

Tailored classification trees: In light of these facts it is natural to apply the

tailoring ideas of Section 3.4 to information measures for tree-based classification. The

idea is again to put weight on the class probabilities that are of interest. “Weight”

is meant literally in terms of the weight function ω(q). In practice, areas of interest

are often the extremes with highest or lowest class probabilities. In the Pima Indians

diabetes data, for example, this may mean focusing on the cases with an estimated

probability of diabetes of 0.9 or greater. It would then be reasonable to use an

information measure derived from a weight function that puts most of its mass on

the right end of the interval (0,1). We will show experiments with weights that

are simple power functions of q. In terms of the Beta family of weights this could

mean using β = 1 and α > 1: ω(q) ∼ qα−1. An associated information measure is

25

H(q) ∼ −qα+1, but taking advantage of the indeterminacy of information measures

modulo affine functions, an equivalent but more pleasing choice is H(q) = (1− qα)q,

which is normalized such that H(0) = H(1) = 0.

The result of such an experiment for the Pima Indians Diabetes data (UCI ML

Database). Figure 3.5 shows a tree grown with the Gini index. The depth to which

it is grown and the quality of the fit is not of concern; instead, we focus on inter-

pretability. This tree shows the usual relative balance whereby most splits are not

more lopsided than about 1:2 in bucket size. Overall, interpretation is not easy, at

least in comparison to the trees shown in the following two figures. The latter were

obtained with information criteria from the Beta family. The tree in Figure 3.5 is

based on the parameters α = 16 and β = 1, which means a strong focus on large

class 1 probabilities (more correctly: class 1 frequencies). By contrast, Figure 3.5 is

based on α = 1 and β = 31, hence a strong focus on small class 1 probabilities.

The focus on the upper and the lower end of probabilities in these two trees

really amounts to prioritizing the splits from the bottom up and from the top down,

respectively. Accordingly, Figure 3.5 shows a highly unbalanced tree that peels off

small terminal leafs with low class 1 probability. As higher level terminal leafs peel

off the highest class 1 probability areas, subsequent terminal leafs must consequently

have ever lower class 1 probabilities. The result is a cascading tree that layers the

data as well as possible from highest to lowest class 1 probabilities. The dual effect is

seen in Figure 3.5: a layering of the data according to increasing class 1 probabilities.

26

While it may be true that the lopsided focus of the criterion is likely to lead to

suboptimal trees for standard prediction, cascading trees are vastly more powerful

in terms of interpretation: they permit, for example, the expression of dose-response

effects and generally of monotone relationships between predictors and response. For

example, both trees feature “plasma” as the single most frequent splitting variable

which seems to correlate positively with the probability of diabetes: as we descend the

trees and as the splitting values on “plasma” decrease in Figure 3.5 and increase in

Figure 3.5, the class 1 probabilities decrease and increase, respectively. In Figure 3.5

the variable “b.mass” asserts itself as the second most frequent predictors, and again

a positive relation with class 1 probabilities can be gleaned from the tree. Similarly,

Figure 3.5 exhibits positive dependences for “age” and “pedigree” as well.

A second aspect that helps the interpretation of cascading trees is the fact that

repeat appearances of the same predictors lower the complexity of the description

of low hanging leafs. For example, in Figure 3.5 the right most leaf at the bottom

with the highest class 1 probability q = 0.91 is of depth nine, yet it does not require

nine inequalities to describe it. Instead, the following four suffice: “plasma > 155”,

“pedigree > 0.3”, “b.mass > 29.9” and “age > 24”.

Interestingly the tree of Figure 3.5 that peels off low class 1 probabilities ends up

with a crisper high-probability leaf than the tree of Figure 3.5 whose greedy search

for high class 1 probabilities results only in an initial leaf with q = 0.86 characterized

by the single inequality “plasma > 166”.

27

We reiterate and summarize: the extreme focus on high or low class 1 probabilities

cannot be expected to perform well in terms of conventional prediction, but it may

have merit in producing trees with vastly greater interpretability.

The present approach to interpretable trees produces results that are similar to an

earlier proposal by Buja and Lee (2001). This latter approach is based on splitting

that maximizes the larger of the two class 1 probabilities. The advantage of the

tailored trees introduced here is that there actually exists a criterion that is being

minimized, and tree-performance can be measured in terms of this criterion.

28

|plasma<127/plasma>127

age<28/age>28

b.mass<30.9/b.mass>30.9

plasma<104/plasma>104 pedigree<0.48/pedigree>0.48

plasma<99/plasma>99

b.mass<29.6/b.mass>29.6

b.mass<29.9/b.mass>29.9

plasma<157/plasma>157

age<30/age>30

0.000 0.040 0.116 0.260

0.119

0.291 0.489

0.320

0.460 0.723

0.870

p= 1.00:0.00 p= 0.96:0.04 p= 0.88:0.12 p= 0.74:0.26

p= 0.88:0.12

p= 0.71:0.29 p= 0.51:0.49

p= 0.68:0.32

p= 0.54:0.46 p= 0.28:0.72

p= 0.13:0.87

sz= 12.1% sz= 6.6% sz= 9.2% sz= 6.6%

sz= 8.9%

sz= 7.3% sz= 11.7%

sz= 10.0%

sz= 6.6% sz= 8.6%

sz= 12.2%

p= 0.65:0.35

p= 0.81:0.19

p= 0.91:0.09

p= 0.99:0.01 p= 0.82:0.18

p= 0.68:0.32

p= 0.59:0.41

p= 0.38:0.62

p= 0.28:0.72

p= 0.39:0.61

sz=100.0%

sz= 62.5%

sz= 34.6%

sz= 18.8% sz= 15.8%

sz= 27.9%

sz= 19.0%

sz= 37.5%

sz= 27.5%

sz= 15.3%

Classification Tree : method = Gini misclass. error = 0.22 (=167/752)

F
igu

re
3.3:

T
ree

ba
sed

o
n

th
e

G
in

i
criterio

n
,

a
s

in
C

A
R
T

.
E
a
ch

sp
lit

sh
o
w
s

th
e

p
red

icto
r

va
ria

ble
a
n
d

th
e

th
resh

o
ld

th
a
t

w
ere

u
sed

.
E
a
ch

n
od

e
sh

o
w
s

th
e

fra
ctio

n

o
f

cla
ss

0
a
n
d

cla
ss

1
in

sta
n
ces

(fo
r

exa
m

p
le:

“
p
=

0
.6

5
:0

.3
5
”
)

a
n
d

th
e

size
o
f

th
e

n
od

e
(fo

r
exa

m
p
le:

“
sz=

1
0
0
%

”
).

T
h
e

term
in

a
l
lea

fs
a
lso

sh
o
w

th
e

fi
n
a
l
fi
tted

cla
ss

1

p
ro

ba
bility,

w
h
ich

is
red

u
n
d
a
n
t
w
ith

th
e

seco
n
d

n
u
m

ber
sh

o
w
n

in
th

e
“
p
=

.......”
cla

u
se.

29

|plasma<166/plasma>166

plasma<143/plasma>143

b.mass<40.7/b.mass>40.7

pedigree<0.83/pedigree>0.83

plasma<130/plasma>130

age<39/age>39

age<30/age>30

plasma<118/plasma>118

pedigree<0.5/pedigree>0.5

b.mass<29/b.mass>29

0.011 0.065

0.160

0.196

0.262

0.326

0.373

0.440

0.500

0.598

0.861

p= 0.99:0.01 p= 0.94:0.06

p= 0.84:0.16

p= 0.80:0.20

p= 0.74:0.26

p= 0.67:0.33

p= 0.63:0.37

p= 0.56:0.44

p= 0.50:0.50

p= 0.40:0.60

p= 0.14:0.86

sz= 11.7% sz= 10.2%

sz= 6.6%

sz= 6.8%

sz= 8.6%

sz= 11.4%

sz= 7.8%

sz= 6.6%

sz= 6.6%

sz= 12.9%

sz= 10.5%

p= 0.65:0.35

p= 0.71:0.29

p= 0.76:0.24

p= 0.79:0.21

p= 0.81:0.19

p= 0.83:0.17

p= 0.88:0.12

p= 0.91:0.09

p= 0.93:0.07

p= 0.96:0.04

sz=100.0%

sz= 89.5%

sz= 76.6%

sz= 69.9%

sz= 63.3%

sz= 55.5%

sz= 44.0%

sz= 35.4%

sz= 28.6%

sz= 21.9%

Classification Tree : method = Beta a = 16 b = 1 misclass. error = 0.25 (=188/752)

F
igu

re
3.4:

T
ree

ba
sed

o
n

th
e

B
eta

criterio
n

w
ith

pa
ra

m
eters

α
=

16
a
n
d

beta
=

1.

T
o
p

to
bo

tto
m

,
th

e
tree

sp
lits

o
f
lea

fs
w
ith

d
ecrea

sin
g

cla
ss

1
p
ro

ba
bilities.

30

|b.mass<23.2/b.mass>23.2

plasma<94/plasma>94

age<25/age>25 b.mass<26.3/b.mass>26.3

plasma<107/plasma>107

age<24/age>24

b.mass<29.9/b.mass>29.9

plasma<123/plasma>123

pedigree<0.3/pedigree>0.3

plasma<155/plasma>155

0.017

0.016 0.138 0.141

0.253

0.325

0.406

0.420

0.587

0.721 0.914

p= 0.98:0.02

p= 0.98:0.02 p= 0.86:0.14 p= 0.86:0.14

p= 0.75:0.25

p= 0.68:0.32

p= 0.59:0.41

p= 0.58:0.42

p= 0.41:0.59

p= 0.28:0.72 p= 0.09:0.91

sz= 7.8%

sz= 8.4% sz= 7.7% sz= 10.4%

sz= 12.6%

sz= 10.2%

sz= 8.5%

sz= 9.2%

sz= 8.4%

sz= 9.0% sz= 7.7%

p= 0.65:0.35

p= 0.62:0.38

p= 0.93:0.07 p= 0.56:0.44

p= 0.51:0.49

p= 0.45:0.55

p= 0.40:0.60

p= 0.35:0.65

p= 0.26:0.74

p= 0.19:0.81

sz=100.0%

sz= 92.2%

sz= 16.1% sz= 76.1%

sz= 65.7%

sz= 53.1%

sz= 42.8%

sz= 34.3%

sz= 25.1%

sz= 16.8%

Classification Tree : method = Beta a = 1 b = 31 misclass. error = 0.23 (=175/752)

F
igu

re
3.5:

T
ree

ba
sed

o
n

th
e

B
eta

criterio
n

w
ith

pa
ra

m
eters

α
=

16
a
n
d

beta
=

1.

T
o
p

to
bo

tto
m

,
th

e
tree

sp
lits

o
f
lea

fs
w
ith

in
crea

sin
g

cla
ss

1
p
ro

ba
bilities.

31

Chapter 4

F -losses: Compositions of Proper

Scoring Rules and Link Functions

We consider in this chapter a larger class of loss functions than proper scoring rules.

We call them F -losses for reasons that become clear below. There are two ways

of describing F -losses: The first way is to think of them as “uncalibrated” proper

scoring rules in the sense that the estimated values are not probability estimates,

but they can be calibrated to produce probability estimates by applying a monotone

transformation. We can also think of F -losses as the composition of (inverse) link

functions and proper scoring rules. This latter description will be our definition and

the former a result (Proposition 2).

32

4.1 Introducing F -losses

The constraint of probabilities to the 0-1 interval is inconvenient for modeling. If

one wanted, for example, to directly approximate probabilities with a linear model,

it would be difficult to bound the fit for those instances with extreme features. The

same problem occurs with any function class that has unbounded functions such

as polynomials and splines. The conflict between a desire for unbounded modeling

scales and the necessity of estimating probabilities that are bounded between 0 and

1 is overcome by the use of link functions.

We will refer to the “modeling scale” as “F -scale”. In a linear model we would

have F (x) =
∑

βjx
(j), and in an additive model F (x) =

∑

fi(x
(j)). The use of the

letter F is standard in machine learning and associated statistical literature such as

FHT (2000).

Unfortunately, the transformation F 7→ q(F) that maps F (x) to the probability

scale is by convention the inverse link function. We therefore have a need to use the

notation q 7→ F (q) for what is conventionally called the link function. This, however,

brings us into conflict with the notation for model fits x 7→ F (x). We will use both

notations and simply trust that the reader will be able to tell which is which from

the context. In summary, a model fit F (x) is passed through the inverse q = q(F) of

a link function F = F (q) to arrive at a fitted probability q(F (x)).

Definition: An F -loss is defined as the composition of the inverse q(F) = F−1(F)

of a continuous, strictly increasing (hence invertible) link function F (q) and a proper

33

scoring rule R(η|q):

R̃(η |F) = R(η |q(F))

An F -loss is called strict if its proper scoring rule is strict.

Remarks:

• All proper scoring rules are F -losses because the identity transformation quali-

fies as a link function. Note that the range of the link function is not required

to be all of the real line.

• If F (q) is a link function (continuous and strictly increasing), then by construc-

tion F (η) minimizes the F -loss: infF R̃(η|F) = R̃(η|F (η)). If the F -loss is

strict, this is the unique minimizer.

• There exists a question of non-identifiability between link functions and models

because almost all models are closed under addition of constants. Therefore,

a model fit F (x) combined with a link function F (q) is equivalent to a model

fit F (x) + k combined with a link function F (q) + k. Both map x to the same

probability q. One can therefore fix the translation of the F -scale w.l.o.g. by

requiring, for example, F (1/2) = 0 or F (c) = 0. Such requirements agree with

the convention in machine learning that uses 0 as the classification boundary

({F (x) > 0} estimates class 1) and (2Y − 1)F as the “margin” or “signed

distance” from the boundary.

• We can leave it to convenience whether the end points 0 and 1 of the unit

34

intervals are part of the domain of the link function. If they are included in the

domain and the link function is unbounded, then ±∞ will have to be included

in the range.

We give some common examples and counter examples of F -losses for classification

problems.

Example 1. Logistic loss: log-loss combined with the logistic link

F (q) = log
q

(1− q)

The link is symmetric about (1/2, 0). The inverse link is

q(F) =
1

1 + e−F

The resulting F -loss is

R̃(η|F) = η log(
1

1 + e−F
) + (1− η) log(

1

1 + eF
)

Example 2. Probit link and log-loss:

F (q) = Φ−1(q)

where Φ−1 is the inverse of the standard normal cumulative distribution function.It

is also symmetric about (1/2, 0). Then the inverse link is

q(F) = Φ(F)

The resulting F -loss is

R̃(η|F) = η log(Φ(F)) + (1− η) log(1− Φ(F))

35

Example 3. Log-log link and log-loss:

F (q) = − log(− log(q))

Then the inverse link is

q(F) = e−e−F

The resulting F -loss is

R̃(η|F) = η e−F + (1− η) log(
1

1− e−e−F
)

Notice that by using the Log-log link the F -loss is no longer symmetric since F is

mapped to the negative half of the real axis.

Example 4. Exponential loss: Boosting algorithms that will be introduced

later are often interpreted as minimizers of exponential loss. It is defined as

R̃(η|F) = η e−F + (1− η) eF = E e−(2Y −1)F

We will show below that exponential loss can be decomposed into a proper scoring

rule and a link function.

Example 5. Misclassification loss: Suppose we use a link function that maps

the classification boundary η = c to F = 0, then the transformed cost-weighted

misclassification loss with weight c is

R̃(η|F) = η 1[F<0] + (1− η) 1[−F<0]

This is an example of a non-strict F -loss. Obviously there exist many link functions

that result in the same F -loss.

36

(Counter)Example 6. SVM loss: The loss function used in classification with

support vector machines (SVM) provide a counter example: it is not an F -loss. An

SVM judges a classification boundary according to a sum of penalities for training

data on the wrong side of the boundary proportionately to their distance from the

boundary; no penalty is extracted for data on the correct side of the boundary. We

write the empirical SVM loss as

L̃(Y |F) = Y (1− F)+ + (1− Y) (1 + F)+ = (1− Y ∗F)+ ,

where as always Y ∗ = 2Y − 1. The expected SVM loss is

R̃(η|F) = η (1− F)+ + (1− η) (1 + F)+ = E[(1− Y ∗F)+] .

This is minimized when F = −1 if η < 0.5 and F = 1 otherwise. There does not exist

a link function that maps this loss to a proper scoring rule: Recall that F (η) must be

a minimizer of R̃(η|F), hence F (η) = −1 for η < 0.5 and F (η) = +1 for η ≥ 0.5, or

F (η) = 2 1[η≥0.5] − 1, which is neither a continuous nor a strictly increasing function.

4.2 Characterization of Strict F -losses

In this section we show that F -losses are essentially “uncalibrated” proper scoring

rules: the only requirement we need to impose on a loss function is that its estimates

are in a monotone relationship to the underlying class 1 probabilities. This monotone

relationship is essentially the (inverse) link function that calibrates F -estimates to

probability estimates.

37

Suppose Y is labeled as 0 and 1, then F -losses can be written in the form:

L̃(Y |F) = Y L̃1(−F) + (1− Y)L̃0(F)

R̃(η|F) = ηL̃1(−F) + (1− η)L̃0(F)

where L̃1(·) and L̃0(·) are monotonically increasing functions on the F -scale. This is

achieved by defining

L̃1(−F) = L1(1− q(F)) , L̃0(F) = L0(q(F)) ,

where q(F) is the inverse link function and y L1(1 − q) + (1 − y) L0(q) the proper

scoring rule whose composition is the F -loss.

All examples of the previous section can be written in this form. Note that proper

scoring rules can also be written in this form by letting

L̃1(−F) = L1(1− F) , L̃0(F) = L0(F) ,

where L1() and L0() define the proper scoring rule and the F -scale is the same as the

q-scale.

We now derive a criterion that determines whether loss functions of the above

form are indeed F -losses. We motivate the problem with the following example.

Example 7. Exponential loss: As mentioned in the previous sections, accord-

ing to some interpretations boosting can be considered as minimization of so-called

exponential loss:

L̃(Y |F) = e−Y ∗F (x) =
(1 + Y ∗)

2
e−F (x) +

(1− Y ∗)

2
eF (x)

38

where Y ∗ = 2Y − 1 is ±1 labeling of the classes. Expected exponential loss is

R̃(η|F) = EL̃(Y |F) = ηe−F + (1− η)eF . (4.1)

The question is whether exponential loss is an F -loss, that is, whether it can be

decomposed into a link function and a proper scoring rule. FHT (2000) showed part

of the way by indicating that the population minimizer of (4.1) is 1
2
log η

1−η
. The

interest in this expression is that it can be used to define a link function,

F (η) =
1

2
log

η

1− η
, (4.2)

with the effect that minimizing R̃(η|F) w.r.t. to F is equivalent to minimizing

R(η|q) = ηe−F (q) + (1− η)eF (q)

w.r.t q in the sense that the minima are linked by Equation (4.2). FHT (2000) did

not answer the other half of our question: whether a proper scoring rule emerges at

the other end of the link function in the form of R(η|q). This is indeed the case, by

construction: Rewriting the loss by plugging in the link function, R(η|q) = R̃(η|F (q)),

we obtain

R(η|q) = η

(

1− q

q

)1/2

+ (1− η)

(

q

1− q

)1/2

so that

L1(1− q) =

(

1− q

q

)1/2

, L0(q) =

(

q

1− q

)1/2

The minimum is attained at q = η by definition of F (q). Thus a proper scoring rule

results, and the exponential loss is shown to be an F -loss.

39

In light of this example, we can obtain a more general result regarding the char-

acterization of F -losses:

Proposition 2: Assume that L̃1(−F) and L̃0(F) are defined and continuously differ-

entiable on an open interval of the real line, that L̃′
0(F)/L̃′

1(−F) is strictly increasing,

and that its range is the positive half-line:

inf
F

L̃′
0(F)

L̃′
1(−F)

= 0 , sup
F

L̃′
0(F)

L̃′
1(−F)

=∞ .

Then L̃1 and L̃0 define a F -loss whose minimizer F = F (q) exists and is the unique

solution of

L̃′
0(F)

L̃′
1(−F)

=
q

1− q
.

Proof: The stationarity condition d
dF

(ηL̃1(−F) + (1 − η)L̃0(F)) = 0 produces the

above equation as a necessary condition for the minimizer. The assumptions grant

the existence of an inverse of the map F → L̃′
0(F)/L̃′

1(−F). This inverse is defined

on the open interval (0,∞). In addition, this inverse is necessarily strictly monotone,

which combines with the strict monotonicity of the odds ratio q/(1− q) to the strict

monotonicity of the minimizer F (q). QED

Finally, we note that symmetry of the F -loss, L̃1(F) = L̃0(F), implies symmetry

of the proper scoring rule, L1(q) = L0(q), and symmetry of the natural link about

(1/2, 0): F (q) + F (1− q) = 0. This follows from

F (q) = argminF [q L̃1(−F) + (1− q) L̃0(F)] ,

F (1− q) = argminF [(1− q) L̃1(−F) + q L̃0(F)] .

40

We give one more example to illustrate the application of the proposition.

Example 8. Power losses: These are losses of the form

R̃(η|F) = η(1− F)r + (1− η)F r, where F ǫ [0, 1], r > 1

They are strictly convex in F for r > 1, hence minima exist and are unique. First

order stationarity says
(

F

1− F

)r−1

=
η

1− η
.

Since the left hand side of the equation is a strictly monotonic function of F and the

right hand side of the equation is a strictly monotonic function of q, we conclude that

there exists a strictly monotonic minimizer F (η) which is

F (η) =
η1/(r−1)

η1/(r−1) + (1− η)1/(r−1)
.

Thus power losses are F -losses and therefore decompose into link functions and proper

scoring rules. The corresponding proper scoring rule is given by

L1(1−q) =

(

(1− q)1/(r−1)

q1/(r−1) + (1− q)1/(r−1)

)r

, L0(q) =

(

q1/(r−1)

q1/(r−1) + (1− q)1/(r−1)

)r

.

Remarks:

• We restricted the range of F to [0, 1] because otherwise the ratio L̃′
0(F)/L̃′

1(−F)

is not strictly monotone increasing.

• When 0 < r < 1, the loss R̃(η|F) is concave in F , and the stationarity condition

characterizes maxima instead of minima. The minimum is attained at F = 0 if

η < .5, and at F = 1 otherwise. It can not be mapped to a proper scoring rule

because the minimizers are just two points.

41

• For r = 1 we obtain the SVM loss, except that F is restricted to the unit

interval, which it isn’t for conventional SVMs.

4.3 Cost-Weighted F -losses and Tailoring

In this section we examine the extension of cost-weighting from misclassification losses

to F -losses. Recall from Section 3.2 that in general cost-weighted proper scoring rules

are no longer proper scoring rules. We will show, however, that cost-weighted F -losses

are F -losses as well. In particular, cost-weighted proper scoring rules are F -losses.

The closure of F -losses under cost-weighting is a considerable advantage of this

larger universe of loss functions over proper scoring rules. We will put this fact to

use for an apparently superior alternative of tailoring losses to costs c.

We first show that any cost-weighted F -loss can be decomposed into a link function

and a proper scoring rule, hence is an F -loss also:

Proposition 3: Assume the F -loss R̃(η|F) = ηL̃1(−F)+(1−η)L̃0(F) is decomposed

into a proper scoring scoring rule L(η|q) = ηL1(1−q)+(1−η)L0(q) and a continuous

and strictly monotone inverse link function q(F) = F−1(F): R̃(η|F) = L(η|q(F)).

Then the cost-weighted version of the F -loss,

R̃cw(η|F) = (1− c)ηL̃1(−F) + c(1− η)L̃0(F) ,

is also an F -loss. Its link function, proper scoring rule and weight function are ob-

tained as follows:

42

1. The link function of the cost-weighted F -loss is

F cw(q) = F

(

(1− c)q

(1− c)q + c(1− q)

)

.

2. The proper scoring rule of the cost-weighted F -loss is given by

Lcw
1 (1− q) = (1− c)L1

(

c(1− q)

(1− c)q + c(1− q)

)

,

Lcw
0 (q) = cL0

(

(1− c)q

(1− c)q + c(1− q)

)

.

3. If the proper scoring rule is differentiable, the weight function for the cost-

weighted analog is

ωcw(q) = ω

(

(1− c)q

(1− c)q + c(1− q)

)

(1− c)2c2

((1− c)q + c(1− q))3
.

The proof can be found in the appendix. If we write qcw(F) = F cw−1(F), and if we

further abbreviate qcw = qcw(F) and q = q(F), then the first assertion is equivalent

to

qcw

1− qcw
=

c

1− c
·

q

1− q

and

qcw =
cq

cq + (1− c)(1− q)
.

It should be kept in mind that q(F) does not provide consistent or calibrated prob-

ability estimates; qcw(F) does. The role of equations relating the two is to indicate

the functional form that cost-weighted probability estimates qcw(F) take. Because

q = 1/2 gets mapped to qcw = c, the class 1 decision regions q > 1/2 and qcw > c are

the same.

43

For tailoring to a specific cost c along the lines of Section 3.4, we need the first

and second moments of the normalized cost-weighted weight function ωcw(q). Recall

that the first moment is needed to match the weight function to the cost c, and the

second moment is needed as a measure of approximation to the point mass δc, which

is the “weight function” of cost-weighted misclassification loss.

Proposition 4: If ω(q) is a density function on (0, 1) with mean µ and variance σ2,

then

ωcw(q)

cµ + (1− c)(1− µ)

is also a density function, and its mean is

µcw =
cµ

cµ + (1− c)(1− µ)
.

Its variance is bounded by

c(1− c) min(c, 1− c)

(cµ + (1− c)(1− µ))3
σ2 ≤ σcw2 ≤

c(1− c) max(c, 1− c)

(cµ + (1− c)(1− µ))3
σ2 .

The proof can be found in the appendix. Here is the application that provides the

basis for tailoring with cost-weighting:

Corollary: If ω(q) is a symmetric density with existing expectation, µ = 1/2, then

µcw = c

and

8 c (1− c) min(c, 1− c) σ2 ≤ σcw2 ≤ 8 c (1− c) max(c, 1− c) σ2 .

44

Thus cost-weighting a symmetric weight function with costs c and 1 − c readily

achieves tailoring for cost c.

It is somewhat dissatisfying that we are left with mere inequalities for the variance,

although they are sufficient for our purposes: if ω(q) becomes more spiky around 1/2

in terms of σ → 0, then ωcw(q) becomes more spiky around c in terms of σwc → 0

at the same rate. For a more complete result with an exact formula for σcw one has

to be more specific about ω(q). This works out for example if ω(q) is a symmetric

Beta weight function, but the formula is not a pretty sight. We start with a general

observation about symmetric Beta weights:

Corollary: If ω(q) ∼ qα−1(1 − q)α−1 is a symmetric Beta weight function, then the

cost-weighted version is

ωcw(q) ∼
qa−1(1− q)a−1

((1− c)q + c(1− q))2α+1

It is merely this denominator that achieves the redistribution of the weight func-

tion so as to center it at µcw = c. An exact expression for the corresponding variance

is as follows:

Proposition 5: If ω(q) = qα−1(1− q)α−1/B(α, α) is a symmetric Beta density, then

the normalized cost-weighted density has the following variance:

σcw2 = c2

(

(α + 1)

(1− c)(2α + 1)
2F1

(

1, α + 2, 2α + 2;
1− 2c

1− c

)

− 1

)

.

45

where 2F1() is the hypergeometric function.

Again, the proof can be found in the appendix. It seems somewhat surprising that

mere cost-weighting causes such complications. There may not be much intuition

behind the above formulas, but the concept behind them, namely cost-weighting, is

simple enough, and the application to tailoring of weights is useful as we will show.

In the remainder of the section we discuss the shape of the cost-weighted weight

functions for the symmetric Beta family.

• For α > 1 the weight function has a mode at

−(α − 2(3c− 1)) +
√

(α− 2(3c− 1))2 + 12c(2c− 1)(α− 1)

6(2c− 1)

In general, the mode and the expected value do not coincide. Thus if one wants

to put most of the weight on a certain threshold, one can set the above formula

to the desired value and backward calculate the corresponding cost c that is to

be applied to the cost-weighted F -loss.

• In the limit as α→∞, the weight function puts all mass at q = c. This follows

from the proposition that links α and σcw2.

• For α < 1, the weight function has a U-shape that puts more weight on the two

tails.

• For α = 1 and c 6= 1/2, depending on whether c is greater than 1/2 or not, the

weight function is either increasing or decreasing, thus puts more weight on one

tail.

46

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

q

L(
q)

a= 16
a= 11

a= 6

a= 2

a= Inf

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

q

om
eg

a(
q)

a= 16

a= 11

a= 6

a= 2

Figure 4.1: Loss functions L0(q) and weight functions ω(q) for various values of α,

and c = 0.3: Shown are α = 2, 6 ,11 and 16 scaled to show convergence to the step

function.

The calculations are given in the Appendix. Figure 4.1 illustrates the cost-weighted

weight functions and proper scoring rules for c = 0.3.

4.4 Margin-based Loss Functions

In this section we derive the connection between F -losses and margin-based loss func-

tions which have motivated many popular classification methods including boosting

and SVM. Yi Lin(2001) gave a nice discussion of margin-based loss functions where

he showed that many such loss functions are Fisher consistent in that they gener-

ate a classification procedure that is equivalent to Bayes’ rule for classification at the

47

c = 1/2 boundary. Here is a formal definition of margin-based losses: A margin-based

loss function is any loss function that can be written as

L̃(−Y ∗F)

where L̃(.) is a monotone increasing function and Y ∗ = 2Y−1 maps 0/1 coding of class

labels to ±1 coding. The quantity Y ∗F is called “the margin” and can be interpreted

as the “signed distance” of F from the boundary F = 0. Classification is done

according to Ŷ ∗ = sign(F) = 2 ∗ 1[F≥0]. A negative sign of Y ∗F is hence interpreted

as being on the wrong side of the boundary F = 0 indicating misclassification.

Expanding the above expression we get

L̃(−Y ∗F) = L̃(−(2Y − 1)F) = Y L̃(−F) + (1− Y)L̃(F) .

We recognize that such a loss is a special case of F -losses in which one sets both

L̃1 and L̃0 equal to L̃, assuming that additional conditions are satisfied that permit

the decomposition into a proper scoring rule and a link function. We can also see

that such a loss treats the two classes symmetrically, thus forcing equal costs on the

two types of misclassification error. Therefore, for the purpose of cost weighting, one

must allow asymmetry between the classes and use separate L̃1 and L̃0:

y ∗ L̃1(−F) + (1− y) ∗ L̃0(F) .

This in turn allows us to cost-weight the losses,

(1− c) ∗ y ∗ L̃1(−F) + c ∗ (1− y) ∗ L̃0(F) ,

which means replacing L̃1 with (1− c)L̃1 and L̃0 with c L̃0.

48

Chapter 5

IRLS for Linear Models

This chapter deals with optimization of F -losses for linear models. We start with

fitting a linear model for logistic regression by minimizing the negative log-likelihood

and show that the algorithm can be interpreted as an Iteratively Reweighted Least

Squares algorithm. Then we generalize the IRLS algorithm from logistic regression

to arbitrary proper scoring rules and F -losses, thus permitting us to play with the

choice of weights that induce loss functions.

5.1 IRLS for Proper Scoring Rules

Logistic regression is commonly computed with an Iteratively Reweighted Least Squares

or IRLS algorithm. We show that IRLS carries over to proper scoring rules in general.

Recall the form of a general proper scoring rule for a Bernoulli model:

L(η|q) = ηL1(1− q) + (1− η)L0(q)

49

A linear model is given by F (q) = xTb or, equivalently, q(F) = q(xTb) using the

inverse link. We assume the data is an i.i.d. sample (xn, yn) (n = 1, ...,N) where xn

are drawn from a distribution in predictor space. For brevity we write

qn = q(F (xn)) , q′n = q′(F (xn)) , q′′n = q′′(F (xn)) .

We minimize the empirical risk, that is, the mean of a proper scoring rule over the

observations:

R(b) =
1

N

∑

n=1,...,N

[ynL1(1− qn) + (1− yn)L0(qn)]

For concreteness we recall that this specializes for logistic regression to the well-known

form

R(b) = −
1

N

∑

n=1,...,N

[yn log(qn) + (1− yn) log(1− qn)]

For a Newton update we need the gradient and the Hessian. First the gradient:

∂bR = −
1

N

∑

n=1,...,N

(yn − qn)ω(qn)q′nxn,

For logistic regression, ω(q) = 1/(q(1 − q)) and q(F) = 1/(1 + exp(−F)). A sim-

plification peculiar to logistic regression occurs because q′(F) = q · (1 − q), hence

ω(q)q′(F) = 1 and therefore

∂bR = −
1

N

∑

n=1,...,N

(yn − qn)xn .

Setting the gradient to zero results in the so-called score equation.

The Hessian for the mean of the proper scoring rule is

∂2
b
R =

1

N

∑

n=1,...,N

[ω(qn)q
′2
n − (yn − qn)

(

ω′(qn)q′2n + ω(qn)q′′n
)

]xnx
T
n . (5.1)

50

Specializing again to logistic regression, we observe that ω′ = −(1 − 2q)/(q(1− q))2

and q′′ = (1− 2q)q(1− q) and hence the second term of the Hessian disappears and

we obtain:

∂2
b
R = −

1

N

∑

n=1,...,N

qn(1− qn)xnx
T
n

A Newton step has the form

bnew = bold −
(

∂2
b
R(b)

)−1
(∂bR(b))

In direct generalization of IRLS for logistic regression, we can write the update as an

IRLS step for general proper scoring rules:

bnew = bold + (XT WX)−1XT z

where the ‘working weights’ and the ‘working responses’ are, respectively,

wn = ω(qn)q′2n − (yn − qn)
(

ω′(qn)q′2n + ω′(qn)q′′n
)

(5.2)

zn = (yn − qn)ω(qn)q
′
n/wn (5.3)

Denote by y the vector of responses y′
ns, by X the N×(d+1) matrix with rows xT

n , by

q the vector of fitted probabilities with nth element qn, and by W a N × N diagonal

matrix with weights wn in the diagonal. The vectorized equation above shows that

the Newton updates can be written as solutions of a weighted least squares problem,

with iteration-dependent weights and responses. We wrote the IRLS update in an

incremental form whereas in the form usually shown in the literature one absorbs bold

in the working response z. We prefer the incremental form because of our interest in

stagewise fitting, which is an incremental procedure.

51

Specializing once again to logistic regression, we obtain the following familiar

expressions:

wn = qn (1− qn)

zn =
(yn − qn)

qn (1− qn)

5.2 Fisher Scoring

For Fisher scoring one replaces the Hessian ∂2
b
R(b) with its expectation, assuming

the current estimates of the conditional probabilities of the labels to be the true ones:

P[Y = 1|X = xn] = qn. This means Eyn
(yn − qn) = 0, hence the weights and the

working response simplify as follows:

wn = ω(qn) q′n
2

, (5.4)

zn = (yn − qn)/q′n . (5.5)

Some observations:

• The function ω(q) is the contribution to the working weights wn due to the

proper scoring rule. Logistic regression with ω(q) = q−1(1 − q)−1 up-weights

extreme probabilities near zero and one.

• The term q′2 is the contribution to the working weights wn due to the link

function.

• The losses do not enter in the working response zn.

52

• The observed responses yn do not enter in the current weights wn.

It is well known that for logistic regression with log-loss and the logistic link, Fisher

scoring and Newton iterations coincide. From a machine learning perspective, it

is curious to learn that there exist loss functions for which the dependence of the

weights on the responses disappears for structural reasons: this is the case for so-

called “canonical links”, which are well-known in statistics from generalized linear

models. They have a generalization to certain combinations of proper scoring rules

and link functions as we will show now.

5.3 Canonical Links: Equality of Observed and

Expected Hessians

We examine under what condition on the combination of proper scoring rules and

link functions, Newton steps and Fisher scoring steps are identical. The requirement

is

R′′(b) = Ey [R′′(b)] .

This condition is equivalent to requiring the weights wn in Equation (5.1) to be

independent of yn, which in turn is equivalent to

ω′(q) q′
2

+ ω(q) q′′ = 0 .

53

This differential equation can be solved immediately: The left side equals (ω(q) q′)′,

hence ω(q) q′ is a constant, which we may choose to be 1:

ω(q) q′ = 1 .

Since q = q(F) is the inverse of the link function F = F (q), we have F ′(q) =

1/q′(F (q)), and hence

F ′(q) = ω(q) = L′
1(1− q) + L′

0(q) , (5.6)

where the second equality follows from L′
1(1−q)+L′

0(q) = (1−q)ω(q)+ qω(q), which

is the sum of the Equations (3.1). The solution, unique up to an irrelevant additive

constant, is therefore

F (q) =

∫ q

ω(q)dq = L0(q)− L1(1− q) . (5.7)

We summarize:

Proposition 6: For any proper scoring rule there exists a canonical link function

F (q). The link function is unique up to a constant.

Here are the usual examples in the Beta family of proper scoring rules for α = β =

1, 0, -1/2 (Section 3.4):

• Squared error loss: L1(1− q) = (1− q)2 and L0(q) = q2, hence the inverse link

is

F (q) = 2q − 1 .

The canonical link is essentially the identity transform.

54

• Log-loss: L1(1− q) = − log(1− q) and L0(q) = − log(q), hence the natural link

is

F (q) = log
q

1− q
.

Its inverse is the logistic function.

• Boosting loss: L1(1− q) = ((1− q)/q)1/2 and L0(q) = (q/(1− q))1/2, hence the

natural link is

F (q) =

(

q

1− q

)1/2

−

(

1− q

q

)1/2

.

Its inverse is

q(F) =
1

2
+

(

F

2

)

(

(

F

2

)2

+ 1

)−1/2

.

The F -loss is given by

L̃0/1(F) =
F

2
+

(

(

F

2

)2

+ 1

)1/2

.

We see that the decomposition of the exponential loss into a proper scoring rule and

a link function does not result in a canonical pairing in which the observed and the

expected Hessian are idential. For exponential loss Newton iterations are not identical

with Fisher scoring iteration.

We conclude by noting that the converse of the above proposition holds also:

prescribing a link function as canonical essentially determines the proper scoring

rule.

Proposition 7: For any link function F (q) there exists a proper scoring rule for

which F (q) is canonical. The proper scoring rule is unique up to an additive constant.

55

This is immediately seen from Equation (5.6): F ′(q) = ω(q), and the fact that,

by Equations (3.1), ω(q) determines L1(1− q) and L0(q) up to a constant.

5.4 Newton Updates and IRLS for F -losses

For Newton updates based on general F -losses, the ingredients are

R(b) =
1

N

∑

n=1..N

[

yn L̃1(−xT
nb) + (1− yn) L̃0(yn xT

nb)
]

,

∂bR(b) =
1

N

∑

n=1..N

[

−yn L̃′
1(−xT

nb) + (1− yn) L̃′
0(x

T
nb)
]

xn ,

∂2
b
R(b) =

1

N

∑

n=1..N

[

yn L̃′′
1(−xT

nb) + (1− yn) L̃′′
0(x

T
nb)
]

xnx
T
n .

The current IRLS weights and responses are therefore

wn = yn L̃′′
1(−xT

nb) + (1− yn) L̃′′
0(x

T
nb) ,

zn = yn
L̃′

1(−xT
nb)

L̃′′
1(−xT

nb)
− (1− yn)

L̃′
0(x

T
nb)

L̃′′
0(x

T
nb)

.

Specializing to symmetric F -losses with L̃ = L̃1 = L̃0, the ingredients of Newton

updates are

R(b) =
1

N

∑

n=1..N

L̃(−y∗
n xT

nb) ,

∂bR(b) =
1

N

∑

n=1..N

L̃′(−y∗
n xT

nb) (−y∗
n)xn ,

∂2
b
R(b) =

1

N

∑

n=1..N

L̃′′(−y∗
n xT

nb)xnx
T
n ,

where we made use of (y∗
n)2 = 1. A Newton increment − (∂2

b
R(b))

−1
(∂bR(b)) can be

56

written as a weighted LS solution with the following current weights and responses:

wn = L̃′′(−y∗
n xT

nb) ,

zn =
L̃′(−y∗

n xT
nb)

L̃′′(−y∗
n xT

nb)
y∗

n .

For exponential loss L̃(F) = exp(F), some simplifications occur:

wn = exp(−y∗
n xT

nb) , zn = y∗
n .

The weights are exactly those of the boosting algorithm in the next section with

Fn = xT
nb.

These algorithms are worthwhile keeping in mind for the common cases where the

losses L̃i and hence R(b) are convex, as is the case for exponential loss. Convexity

and the ensuing stability of minimization may get obscured when an F -loss is decom-

posed into a link function and a proper scoring rule. On the other hand, in those

cases where the weight function ω(q) is tailored for classification with unequal cost

of misclassification, the F -loss is unlikely to be convex, and stability may be gained

by using Fisher scoring instead, whose expected Hessian is always positive definite.

5.5 Convexity of F -losses

Convexity of F -losses is of interest for two reasons:

• When the F -loss is convex, Newton steps may be more efficient than Fisher

scoring steps.

57

• Convexity of F -losses is assumed in theoretical work on consistency of classifica-

tion schemes, as for example in Lugosi and and Vayatis (2004) and Zhang (2004).

A special case of convex F -loss arises when a proper scoring rule is matched with

its canonical link function. Convexity follows because for canonical links the empirical

Hessian and the expected Hessian coincide, and the expected Hessian is always non-

negative definite. Convexity is more general than the case of canonical links, though.

For example, we saw above that the link function of exponential loss is not canonical,

that is, observed and expected Hessians do not coincide, yet exponential loss as a

F -loss is convex.

We give a general condition under which a pairing of a link function and a proper

scoring rule results in a convex F -loss. The condition is derived by requiring the

weights in the Hessian of Equation (5.2) to be non-negative: wn ≥ 0, that is,

ω(q) q′
2
− (y − q)

(

ω′(q) q′
2

+ ω(q) q′′
)

≥ 0 .

This requirement results in two redundant inequalities, one for y = 1 and one for

y = 0. We summarize:

Proposition 8: A combination of proper scoring rule and link function results in a

convex loss R(b) if ω(q) and q(F) satisfy

−
1

q
≤

ω′

ω
+

q′′

q′2
≤

1

1− q
.

58

As a corollary, the combination of proper scoring rules in the Beta family with

equal exponents,

ω(q) = qα−1(1− q)β−1 ,

and scaled logistic links,

q(F) = 1/(1 + e−F/s) , F (q) = s log
q

1− q
,

result in convex F -losses iff

−1 ≤ α, β ≤ 0 , s > 0 .

These proper scoring rules result in convex F -losses for any scaled logistic link. Special

cases are exponential loss (α = β = −1/2, s = 1/2) and log-loss with the logit scale

(α = β = 0, s = 1). But squared error loss (α = β = 1) does not result in convex

F -losses with any scaled logistic link.

For the combination of the cost-weighted Beta family,

ωcw(q) ∼
qa−1(1− q)a−1

((1− c)q + c(1− q))2α+1
,

and the cost-weighted logistic link,

qcw(F) =
c

c + (1− c)e−F/s
, F cw(q) = s log

q

1− q
− s log

c

1− c
, (5.8)

convexity of the resulting cost-weighted F -losses holds iff

−1 ≤ α ≤ 0 , s > 0 .

This includes exponential loss for α = −1/2 and s = 1/2 as well as logistic loss for

α = 0 and s = 1.

59

5.6 Some Peculiarities of Exponential Loss

Exponential loss has some special properties under cost-weighting. We see that for

α = β = −1/2 the denominator of the cost-weighted weight function is constant and

hence:

ωcw(q) ∼ q−3/2(1− q)−3/2 .

That is, the weight function does not depend on the cost c. The link function, however,

depends on c according to Equation (5.8). In effect, cost-weighting exponential loss

is achieved by shifting the modeling scale alone:

F (q) = s log
q

1− q
− s log

c

1− c

Because for cost-weighted link functions one still has q′(F) = q(1− q)/s, the working

weights look superficially the same as without cost-weighting: wn = 1/s2 · [q(1−q)]1/2.

However, the meaning of q = q(F) has changed because this is now the shifted logistic

link.

60

Chapter 6

Stagewise Fitting of Additive

Models

6.1 Boosting

Boosting is an algorithm that has achieved huge success in the field of machine learn-

ing. It combines a group of weak classifiers a weighted voting scheme so that a strong

learner results. In the following we describe the most common version of the boosting

algorithm, discrete Adaboost, which was proposed by Freund and Schapire (1996):

Suppose the response y∗
n is labeled as -1 or 1,

1. Start with weights wn = 1/N , n = 1, ..., N .

2. For m = 1 to M :

(a) Fit a classifier fm(x) to the training data using weights wn.

61

(b) Compute the weighted misclassification error of fm(x):

errm =

∑

n=1,...,N wnI(y∗
n 6= fm(xn))

∑

n=1,...,N wn

(c) Compute the logit of the weighted misclassification error:

αm = log

(

1− errm

errm

)

(d) Set wn ← wn · exp[αm · I(y∗
n 6= fm(xn))], n = 1, ...,N.

3. Output sign[
∑

m=1,...,M αmfm(x)] as the ±1-labeled classifier.

Adaboost up-weights those points that are misclassified according to how well the

classifier performs at the current iteration. Thus intuitively, the classifier would focus

more on the hard cases in the next round.

In FHT(2000), Adaboost was viewed as stagewise additive fitting which exploits

Newton steps to optimize exponential loss, which we write as follows with non-

parametric fits in mind:

R =
1

N

∑

n=1...N

L̃(−y∗
n Fn) , L̃(F) = exp(F) .

The Newton updates are based on the following components:

wn = exp(−ynF old
n) , zn = yn ,

where F has the additive form

F (x) =
∑

t=1,...,T

ft(x)

In their paper, FHT also created LogitBoost which optimizes log-loss by fitting a

stagewise additive model.

62

6.2 Stagewise Fitting of Additive Models by Op-

timizing General Losses

In this section we adopt FHT’s view of boosting and adapt the IRLS iterations to

stagewise forward additive modeling.

For additive modeling one needs a set F of possible basis functions f(x). An

additive model is a linear combination of elements of F : F (x) =
∑

k bkfk(x). One

does not assume that F is a linear space because in a typical application of boosting

F would be a set of trees with a certain structure, such as stumps (trees of depth

one), that are not closed under linear combinations.

Stagewise fitting is the successive acquisition of terms f (K) ∈ F given that terms

f (1), . . . , f (K−1) for a model F (K−1) =
∑

k=1..K−1 bk f (k) have already been acquired.

In what follows we write F old for F (K−1), f for f (K), b for bK , and finally Fnew =

F old + b f . For a loss function

R(F) = Ex,y L(y|q(F (x))) ,

the conceptual goal is to find

(f, b) = argminf∈F , b∈IR R(F old + b f) .

Given a training sample {(xn, yn)}n=1..N , the loss is estimated by

R̂(F old + b f) =
1

N

∑

n=1..N

L(yn | q(F old(xn) + b f(xn))) .

With these modifications stagewise fitting can proceed according to the IRLS scheme

in such a way that each IRLS step produces a new term f , a coefficient b, and an

63

update F new = F old + b f based on current weights wn, current estimated class 1

probabilities qn, and current responses zn, as follows:

Fn = F old(xn) ,

qn = q(Fn) , q′n = q′(Fn) , q′′n = q′′(Fn) ,

wn = ω(qn) q′n
2
− (yn − qn)

(

ω′(qn) q′n
2

+ ω(qn) q′′n

)

,

zn = (yn − qn) ω(qn) q′n/wn .

In practice, f is the result of some heuristic search procedure such as greedy tree

construction or, in the simplest case, search for the best fitting stump (a tree with

only one split). Whatever this may be, we denote it by

f ← feature-proposer(X, W, z) .

We can think of f as a proposal for a derived predictor vector f = (f(x1), ..., f(xN))T

which is to be used instead of X in the IRLS step at the current stage. The remaining

task is to optimize the coefficient b for f . Sometimes, the coefficient b is absorbed in

f because the feature-proposer may find b at the same time as it performs the search,

so no optimization is necessary. At other times, the coefficient b has to be optimized

explicitly, for example through a line search:

b = argminb

1

N

∑

n=1..N

L(yn | q(Fn + bfn)) ,

or approximately by a simple weighted LS regression of z on f :

b =
zT W f

fT W f
.

64

The two standard examples for feature-proposers are the following:

• In “real Adaboost”, the class F is the set of trees of a fixed depth, which is

often only depth one and called “stumps”.

• In “discrete Adaboost”, the class F is the set of indicator functions of decision

regions obtained by thresholding trees.

Discrete Adaboost follows then the same heuristic tree construction as in real Ad-

aboost, followed by thresholding. When F is the set of stumps, the search for an

optimal stump can be performed exhaustively. In this case real and discrete Ad-

aboost are almost identical, except for the treatment of the intercept: real Adaboost

can adjust the intercept at each step due to the fitting of two constants (one on either

side of the split), whereas discrete Adaboost can fit only one constant, on the area

where the indicator is 1.

In general the role of the feature-proposer is to propose descent directions from

a stock of possible choices, the set F . The behavior of the feature-proposer and the

nature of the set F are of course crucial for the performance of the boosting scheme

based on them.

65

Chapter 7

Experiments

7.1 Examples of Biased Linear Fits with Successful

Classification

We illustrate the fact that linear models can be unsuitable as global models and yet

successful for classification at specific thresholds or, equivalently, for cost-weighted

misclassification loss. To this end we recreate an artificial example of Hand and

Vinciotti (2003) and show that our methods for tailoring loss functions to specific

classification thresholds allow us to estimate boundaries. We then show that the

Hand and Vinciotti (2003) scenario is a fair approximation to some well-known real

data, the Pima Indian diabetes data (UCI Machine Learning database). Finally we

apply our model to two more real data: German credit data and adult income data

from the UCI Machine learning database.

66

Example 1. Artificial data: We start with a linear model, that is, a composi-

tion q(bT x) of a linear function, bT x, and a link function, q(), as in logistic regression.

Note that the level curves, {x | q(bTx) = c }, are parallel lines. This fact can be used

to construct scenarios η(x) for which the model q(bTx) is globally inadequate and

yet can produce excellent classification boundaries. Such a construction was demon-

strated by Hand and Vinciotti (2003): they designed η(x) as a “rule surface” with

the shape of a smooth spiral ramp on the unit square, as depicted in Figure 7.1. The

critical feature of the surface is that the optimal classification boundaries η(x) = c

are all linear but not parallel. The absence of parallelism renders any linear model

q(bTx) unsuitable as a global fit, but the linearity of the classification boundaries al-

lows linear models to describe these boundaries, albeit every level requires a different

linear model. The point of Hand and Vinciotti’s (2003) and our schemes is to home

in on these level-specific models.

In recreating Hand and Vinciotti’s (2003) example, we simulated 4,000 data points

whose two predictors were uniformly distributed in the unit square, and whose class

labels had a conditional class 1 probability η(x1, x2) = x2/(x1+x2). We fitted a linear

model with the logistic link function q(t) = 1/(1+exp(t)), using a proper scoring rule

in the Beta family with α = 6 and α/β = 0.3/0.7 in order to home in on the c = 0.3

boundary (Section 3.4). We also fitted a linear model with the cost-weighted logistic

link q(t) = c/(c + (1 − c) exp(t)), where c = .3, using a proper scoring rule in the

cost-weighted Beta family with α = β = 4 (Section 4.3). Figure 7.1, which is similar

to Hand and Vinciotti’s (2003) Figure 1 shows the success: the estimated boundary is

67

close to the true 0.3-boundary. The figure also shows that the 0.3-boundary estimated

with the log-loss of logistic regression is essentially parallel to the 0.5-boundary, which

is sensible because logistic regression is bound to find a compromise model which, for

reasons of symmetry between the two labels, should be a linear model with level lines

roughly parallel to the true 0.5-boundary.

We also created a model which was based on a variation of Hand and Vinciotti’s

(2003) example. We simulated 4,000 data points whose two predictors were uniformly

distributed in the unit square, and whose class labels had a conditional class 1 prob-

ability η(x1, x2) = kx2/(x1 + kx2), where k is constant. The parameter k was used to

adjust the priors of the two classes, when k > 1, there were more class 1 than class 0,

otherwise there were more class 0 than class 1. In our simulated data, we set k = 5,

so class 1 was roughly 78% of the data. We would like to show that under an unbal-

anced design such as this, even when estimating a boundary η(x) = 0.5, one might

want to use a tailored loss other than log-loss. This is illustrated in Figure 7.2 which

shows the 0.3-boundary, 0.5-boundary and 0.7-boundary estimated with log-loss and

tailored losses. Indeed, the imbalance of the classes makes the tailored solutions

superior to log-loss even for the 0.5-boundary.

68

X1

X
2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 7.1: Hand and Vinciotti’s Artificial Data: The class probability function η(x)

has the shape of a smooth spiral ramp on the unit square with axis at the origin. The

bold line marked “0.3 log” shows a linear logistic fit thresholded at c = 0.3. The second

bold line, marked “0.3 beta”, shows a thresholded linear fit corresponding to a proper

scoring rule in the Beta family with parameters α = 6 and β = 14. The last bold line,

marked ”0.3 cw beta”, shows thresholded linear fit corresponding to an cost-weighted

F -loss derived from the Beta family with parameters α = 4 and β = 4.

69

X1

X
2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X1

X
2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X1

X
2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 7.2: A variation of Hand and Vinciotti’s Artificial Data with unbalanced

classes: The class 1 probability η(x) has the shape of a smooth spiral ramp with

axis at the origin. Shown are estimated contours of the levels 0.3, 0.5 and 0.7. The

blue lines show log-loss estimates (logistic regression), the red lines Beta tailored es-

timates, and the magenta lines cost-weighted tailored estimated, with tailoring for the

respective levels.

70

Example 2. Pima data: Our first real data example shows that Hand and

Vinciotti’s stylized scenario is met in the well-known Pima Indians diabetes data

when restricting attention to the two major predictors, here labeled “PLASMA” and

“BODY”. Figure 7.3 shows scatterplots of these two predictors with glyph-coding of

the classes. We illustrate the estimation for c = .1, c = .5 and c = .8. Cost-weighted

tailoring seems to indicate the spiral shape the best.

But is there really a spiral ramp? We give independent evidence in Figure 7.4

which shows thresholded class probabilities that are estimated with a completely

different method, namely, the nearest-neighbor method. The figure clearly shows the

sweeping motion of the level curves as the level is raised, lending credence to the idea

that the level curves may be well-approximated by a set of non-parallel lines.

For comparison, we report in Tables 7.1, 7.2 and 7.3 the mean of 10-fold cross-

validated cost-weighted misclassification loss (error) for different costs c. The tailored

losses often yield slightly better and never worse results than log-loss. If the numbers

are to be believed, cost-weighted Beta tailoring may hold a slight edge over plain Beta

tailoring.

71

50 100 150 200

20
30

40
50

60

PLASMA

B
O

D
Y

0.5

0.1

0.8

50 100 150 200

20
30

40
50

60
PLASMA

B
O

D
Y

0.50.1

0.8

50 100 150 200

20
30

40
50

60

PLASMA

B
O

D
Y

0.50.1

0.8

Figure 7.3: The Pima Indian Diabetes Data, BODY against PLASMA. The colored

lines show the probability contours estimated with logistic regression (blue), Beta tai-

loring (black), and cost-weighted tailoring (red).

72

B
O

D
Y

B
O

D
Y

B
O

D
Y

PLASMA PLASMA

Figure 7.4: The Pima Indian Diabetes Data, BODY against PLASMA. The highlights

represent slices with near-constant q (c− ǫ ≤ q1 ≤ c+ ǫ). The values of q in the slices

increase left to right and top to bottom. Open squares: no diabetes (class 0), filled

circles: diabetes (class 1).

73

Table 7.1: Pima Indian Diabetes: c = 0.1

class 1 error class 0 error cost-weighted error parameters

log-loss 0.5 36.7 0.055± 0.003 α = β = 0

Beta 0.7 34.4 0.054± 0.003 σopt = 0.08

cost-weighted 0.7 32.7 0.052± 0.004 αopt = 2

Table 7.2: Pima Indian Diabetes: c = 0.5

class 1 error class 0 error cost-weighted error parameters

log-loss 12.2 5.8 0.120± 0.008 α = β = 0

Beta 11.8 5.8 0.117± 0.009 αopt = 2

cost-weighted 11.8 5.8 0.117± 0.009 αopt = 2

Example 3. German credit data: This dataset has 1000 observations and 20

attributes of creditors of a bank. The goal is to predict the likelihood of good credit of

a customer. The data comes with a cost matrix that assigns a cost of 5 if a customer

is misclassified as good credit when he has actually bad credit, and a cost of 1 if a

customer is misclassified as bad credit when he actually has good credit. We labeled

a good credit as class 1 and a bad credit as class 0. Thus, to minimize the cost of

misclassification, we classify a customer as class 1 if η(x) > 1/6, otherwise class 0.

We compared again log-loss with Beta tailoring and cost-weighted tailoring. The

target threshold is c = 1/6 based on the given cost information. When evaluating the

models, we estimated α by fitting models on randomly selected 640 cases, optimiz-

74

Table 7.3: Pima Indian Diabetes: c = 0.8

class 1 error class 0 error cost-weighted error parameters

log-loss 20.7 1.4 0.070± 0.006 α = β = 0

Beta 21.6 1.3 0.072± 0.006 σopt = 0.18

cost-weighted 21.6 1.2 0.070± 0.006 αopt = 2

ing cost-weighted misclassification loss on 160 cross-validation cases, and measuring

performance on 200 hold-out cases, —repeating this whole procedure 100 times (=

20 times 5-fold holdouts). Thus each method is now characterized by 100 values of

honestly estimated cost-weighted misclassification errors.

We now compare these three sets of values with a graphical version of a 2-sample

permutation test. The upper panel of Figure 7.5 shows the result of the comparison

of log-loss and Beta-tailored loss: The blue line represents the empirical quantile-

quantile curve with the sorted Beta loss values on the horizontal axis and the sorted

log-loss values on the vertical axis. The red band is a spaghetti graph that overplots

many (100) empirical quantil-quantile curves when the labels “log-loss” and “Beta

loss” are randomly permuted against the (200) values of the estimated misclassifi-

cation losses. The fact that the blue curve stays within the red band shows that

the distributions of the log-loss and the Beta loss error values are indistinguishable

modulo randomness.

Similarly, the lower panel of Figure 7.5 shows the comparison of log-loss with

cost-weighted F -loss. In this case the blue curve is consistently above the red band,

75

Table 7.4: German Credit: c = 1/6

class 1 error class 0 error cost-weighted error

log-loss 13.43 46.92 0.095± 0.001

Beta 10.64 59.44 0.094± 0.001

cost-weighted 8.75 56.32 0.083± 0.001

indicating a statistically significant difference simultaneously for all quantiles of the

error distributions.

For comparison, we report in Table 7.4 the mean of 100 cross-validated cost-

weighted errors for costs c = 1/6. The tailored losses yield better results than

log-loss, and cost-weighted tailoring performs best.

Figure 7.6 shows the distribution of the estimated σopt for Beta tailoring and αopt

for cost-weighted tailoring. In spite of its slightly better performance, cost-weighted

tailoring has a more erratic distribution of estimated parameter values in that a

majority is αopt = 2, but the tail straggles up to αopt = 12. This behavior does not

seem to impinge on performance, though.

76

0.06 0.08 0.10 0.12

0.
06

0.
08

0.
10

0.
12

Beta

Lo
g

0.06 0.08 0.10 0.12

0.
06

0.
08

0.
10

0.
12

Cost−Weighted Beta

Lo
g

Figure 7.5: German credit data: Graphical permutation tests for comparing the test

errors based on log-loss, Beta loss with α/β = c/(1 − c), and cost-weighted F -loss

with c = 1/6.

77

0.08 0.1 0.12 0.14 0.16 0.18 0.2

sigma.opt

0
5

10
15

20

0.1393 0.1144 0.0922 0.0887 0.0809 0.0700 0.0625 0.0570

sigma.opt(CW Beta)

0
5

10
15

20
25

30

Figure 7.6: Histogram of the estimated σ for Beta tailoring (upper panel)

and estimated α for cost-weighted tailoring (lower panel) for the German credit

data with c = 1/6. In the estimation of σ and α with optimization of

cross-validated cost-weighted error we constrained σ between 0.06 and 0.2 in

0.02 increments and α to {2, 3, 4, 5, 6, 8, 10, 12} with the corresponding σ to

{0.139,0.114,0.092,0.0887,0.081,0.070,0.063,0.057}.

78

Table 7.5: Adult income: c = 0.2

class 1 error class 0 error cost-weighted error parameters

log-loss 751 1950 0.066 α = β = 0

Beta 668 2190 0.065 σopt = 0.1

cost-weighted 556 2452 0.062 σcwopt

= 0.065

Table 7.6: Adult income: c = 0.5

class 1 error class 0 error cost-weighted error parameters

log-loss 1934 461 0.080 α = β = 0

Beta 1830 538 0.079 σopt = 0.07

cost-weighted 1830 538 0.079 σcwopt

= 0.07

Example 4. Adult income data: These are census data of adult annual income

with 14 attributes. We are interested in predicting whether a person’s income exceeds

50k or not. There are a training set of size 30, 162 and a test set of size 15, 060. We

hold out one-fifth of the training set as the validation set to choose the optimal

parameters of the weight functions. The cost-weighted misclassification errors on the

test set and the optimal parameters for c = .2, c = .5 and c = .8 are shown in

Tables 7.5, 7.6 and 7.7. Again, we see a slight benefit of tailored losses over log-loss

and slight superiority of cost-weighted tailoring over Beta tailoring.

79

Table 7.7: Adult income: c = 0.8

class 1 error class 0 error cost-weighted error parameters

log-loss 2979 42 0.042 α = β = 0

Beta 3003 31 0.042 σopt = 0.18

cost-weighted 2850 67 0.041 σcwopt

= 0.065

Example 5. More real world data from UCI.

We illustrate tailoring on a few more datasets from the UCI ML database. For

details about the datasets we refer to documentation given at this website. The

number of predictors (features), number of observations and the baseline classification

(proportion of 1’s) are shown in Table 7.8. It should be said that these datasets are

mostly not suitable for tailoring because of the large number of features relative to

the number of observations, which makes these cases of overly great flexibility and

hence likely overfit. Recall that tailoring is promising for biased models, and bias is

detectable only if the fitted function class is relatively rigid and the sample size is

relatively large. Tailoring would more likely be of help if model selection were applied

first to reduce the number of predictors.

Be this as it may, Tables 7.9, 7.10, 7.11, 7.12 and 7.13 show the results. In a

majority of cases tailoring does not contribute, but in a few situations it seems to

improve classification. Examples are the levels c = 0.8 for the Cleve data (Table 7.9)

where CW Beta tailoring is beneficial, but curiously Beta tailoring is not. In the

Ionosphere data (Table 7.10) both modes of tailoring improve classification at c = 0.5,

80

Table 7.8: Description of More UCI Data

cleve ionosphere spect wdbc wpbc

number of features 13 34 22 30 33

number of observations 296 351 267 569 194

proportions of 1’s 54% 64% 79% 37% 24%

Table 7.9: CW-Error for Data Cleve

c = 0.2 c = 0.5 c = 0.8

log-loss 0.055± 0.009 0.086± 0.011 0.065± 0.007

Beta 0.064± 0.010 0.082± 0.010 0.071± 0.008

cost-weighted 0.062± 0.011 0.082± 0.010 0.057± 0.007

but neither at c = 0.2 nor c = 0.8. For the next two datasets, Spect and Wdbc

(Tables 7.11 and 7.12), no benefit is discernable. The last dataset, Wpbc (Table 7.13)

shows an improvement for c = 0.5 but not for c = 0.2 and c = 0.8.

If there is a message, it is that the benefits of tailoring cannot be predicted without

trying. Essentially, one has to try a range of values α as we did in these data examples

where α was selected with cross-validation. [In detail: We form a training set of size

80%; we partition the training set again into a subset of 80% and and a hold-out set

of 20% to determine α; then we apply the model with the estimated α to the whole

training set and evaluate out-of-sample misclassication on the test set.]

81

Table 7.10: CW-Error for Data Ionosphere

c = 0.2 c = 0.5 c = 0.8

log-loss 0.030± 0.007 0.060± 0.008 0.070± 0.013

Beta 0.038± 0.005 0.054± 0.007 0.088± 0.012

cost-weighted 0.030± 0.007 0.054± 0.007 0.086± 0.011

Table 7.11: CW-Error for Data Spect

c = 0.2 c = 0.5 c = 0.8

log-loss 0.043± 0.006 0.097± 0.007 0.077± 0.015

Beta 0.041± 0.005 0.100± 0.008 0.081± 0.010

cost-weighted 0.042± 0.006 0.100± 0.008 0.080± 0.011

7.2 Examples of Cost-Weighted Boosting

We apply tailored losses to more flexible nonparametric models, in particular, boost-

ing with stumps or shallow trees. We will find evidence that the effect of weighting

with tailored losses becomes less important as the complexity of the fitted functional

class increases. We illustrate this with an artificial example fitted with stumps and

trees of depth three: while tailoring has a slight edge over log-loss when using stumps,

they perform equally when using trees of depth three. On the German credit data,

tailoring is inferior to log-loss, and on the adult income data tailoring is very slightly

superior to log-loss. Thus a mixed picture emerges: tailoring combined with boosting

can be beneficial, in particular when used with “very weak learners” such as stumps,

82

Table 7.12: CW-Error for Data Wdbc

c = 0.2 c = 0.5 c = 0.8

log-loss 0.018± 0.004 0.018± 0.006 0.013± 0.003

Beta 0.021± 0.005 0.017± 0.004 0.016± 0.004

cost-weighted 0.022± 0.005 0.017± 0.004 0.016± 0.004

Table 7.13: CW-Error for Data Wpbc

c = 0.2 c = 0.5 c = 0.8

log-loss 0.088± 0.021 0.118± 0.016 0.071± 0.014

Beta 0.106± 0.026 0.108± 0.008 0.111± 0.012

cost-weighted 0.102± 0.023 0.108± 0.008 0.104± 0.015

but it all depends on the data.

Example 1. Artificial data: We create a variation of Hand’s example in the

previous section. There are 2000 observations in the training set. Instead of letting

variable X1 uniformly distributed in [0, 1], we let it uniformly distributed in [−1, 1].

If X1 < 0, we let the posterior probability η(x) = x2
2/(x2

1 + x2
2), otherwise η(x) =

x2
1/(x2

1 +x2
2). Thus the posterior probability is a double spiral ramp around the origin

which, in a counter-clockwise sweep, ascends in the first quadrant and descends in

the second quadrant (see, for example, Figure 7.7). We illustrate estimation for cost

0.3 by fitting an additive model with stumps using Beta and cost-weighted tailored

losses. For the Beta tailored loss we choose σ = .1 fixed, while for the cost-weighted

83

tailored loss we choose α = 4 (σ = 0.10)fixed. (In particular, we do not estimate

these parameters from the data.) We then compare the results tailoring with log-loss,

which is FHT’s (2000) LogitBoost.

Figure 7.7 shows contour plots for the estimation of the .3 boundary when using

log-loss, tailored Beta loss and cost-weighted tailored loss at iteration 50. None of the

models generates accurate estimation in terms of geometrically correct boundaries.

Clearly log-loss performs the poorest. Yet, by using the tailored loss, one can recover

one side of the boundary. After 50 iterations, the stumps start to overfit. From

Figure 7.8, one can see that at iteration 300 stumps fit many small windows on one

side of the boundary yet they are never able to better approximate the boundary on

the other side. Log-loss shows a more symmetric attempt at capturing both sides of

the boundary.

Figure 7.9 shows the average cost-weighted misclassification losses for 10 simula-

tions on a test set of size 10, 000. In this artificial example, tailoring wins over log-loss

by a considerable margin of about 2%! We also notice a mild tendency to overfit after

about 50 iterations, an indication that boosting is in fact not immune to overfitting,

as is now common knowledge.

However, if we fit trees with depth three to this data, the advantage of tailoring

disappears. Figure 7.10 shows the estimate of the probability contour for c = .3 at

iteration 10. There is no significant difference between the tailored loss and log-loss.

Figure 7.11 shows the cost-weighted test error of log-loss and tailored losses. If one is

willing to fit a more complex model in this case, then it is overfitting that one should

84

worry about instead of the tailoring.

85

X1

X
2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

X1

X
2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

X1

X
2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Figure 7.7: Log-loss, Beta loss and CW-Beta loss with stumps after 50 iterations:

estimated class boundaries at c = 0.3. The data are a variation of Hand and Vin-

ciotti’s Artificial Data, where the class probability function p(x) has the shape of an

ascending-descending smooth spiral ramp.

86

X1

X
2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

X1

X
2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

X1

X
2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Figure 7.8: Similar to Figure 7.7: Log-loss, Beta tailored and cost-weighted tailored

loss after 300 iterations.

87

Examples 2 and 3. German credit data and adult income data: Boosting

trees is more complex than fitting linear models because an essential parameter of

boosting is the number of iterations used for fitting. The problem is that for every

number of iterations, the estimated optimal choice of the tailoring parameter σ may

be different. We therefore pre-specify a number of iterations, then randomly sample

a proportion of data from the training set and use it to estimate the optimal σ for

the specified number of iterations. We then apply the tailored loss with the optimal

σ to a test set.

For the German credit data, we estimate the optimal parameter σ both for 20 and

200 iterations. Figure 7.12 shows the mean cost-weighted misclassification loss on

holdout sets for c = 1/6 averaged over 100 simulations (20 runs of 5-fold holdouts).

Figure 7.12 shows a general tendency to overfit the data after about 30 iterations.

Tailoring is not beneficial on these data: log-loss dominates both types of tailoring

after about 20 iterations.

For the adult income data, we estimate the optimal parameter σ for 300 iterations.

Figure 7.13 shows the cost-weighted misclassification loss for three thresholds c =

.2, .5 and .8. The loss is computed from the given test set of these data. Figure 7.13

shows that tailoring is mildly beneficial. This holds when using stumps, but additional

experiments (not shown here) indicated that if one fits more complex models with

trees of larger depth, the advantage of tailoring disappears.

88

0 50 100 150 200 250 300

0.
11

0.
12

0.
13

0.
14

0.
15

t

te
st

.e
rr

Figure 7.9: Cost-weighted misclassification test error for c = .3. Tailored losses

perform better than log-loss by about 2%, but there is a slight tendency to overfit after

about 50 iterations.

89

X1

X
2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

X1

X
2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

X1

X
2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Figure 7.10: Similar to Figure 7.7: Log-loss, Beta tailored and cost-weighted tailored

loss with trees of depth three after 10 iterations.

90

0 50 100 150 200

0.
09

5
0.

10
5

0.
11

5
0.

12
5

t

te
st

.e
rr

Figure 7.11: Boosting with trees of depth three to the artificial data: The picture shows

the cost-weighted misclassification loss for c = .3 on test sets. There is no significant

difference between log-loss and tailored losses, and they all tend to overfit quickly.

91

0 50 100 150 200

0.
09

5
0.

10
0

0.
10

5
0.

11
0

0.
11

5

t

co
st

−
w

ei
gh

te
d

te
st

 e
rr

or

0 50 100 150 200

0.
09

5
0.

10
0

0.
10

5
0.

11
0

0.
11

5

t

co
st

−
w

ei
gh

te
d

te
st

 e
rr

or

Figure 7.12: German Credit Data: The frames show the cost-weighted misclassifica-

tion loss on holdout sets for c = 1/6.

Left panel: optimal choice of σ at 20 iterations; Right panel: at 200 iterations.

Black: log-loss; Blue: Beta tailored loss; Red: cost-weighted tailored loss.

Recall, however, that linear regression with tailored loss performs better than boosting

(Table 7.4).

92

0 50 100 150 200 250 300

0.
05

5
0.

06
0

0.
06

5
0.

07
0

0.
07

5

t

co
st

−
w

ei
gh

te
d

m
is

cl
as

si
fic

at
io

n
er

ro
r

0 50 100 150 200 250 300

0.
07

0.
08

0.
09

0.
10

0.
11

0.
12

t

co
st

−
w

ei
gh

te
d

m
is

cl
as

si
fic

at
io

n
er

ro
r

0 50 100 150 200 250 300

0.
03

6
0.

04
0

0.
04

4
0.

04
8

t

co
st

−
w

ei
gh

te
d

m
is

cl
as

si
fic

at
io

n
er

ro
r

Figure 7.13: Adult Income Data: The three frames show the cost-weighted misclas-

sification losses on the test set for c = .2, .5 and .8, respectively. Tailored losses

achieve better misclassification loss than log-loss during 300 iterations. The two types

of tailoring are virtually indistinguishable.

Black: log-loss; Blue: Beta tailored loss; Red: cost-weighted tailored loss.

93

Chapter 8

Conclusions

This work is concerned with binary classification and class probability estimation.

We described a very general class of loss functions, called F -losses, that can be used

for estimating “uncalibrated probabilities”. An important subset is formed by those

losses that produce calibrated probability estimates; they are known as “proper scor-

ing rules”. General F -losses are compositions of (inverse) link functions and proper

scoring rules. We showed that F -losses are closed under cost-weighting, that is, the

assignment of different weights to the two types of misclassification losses.

We described the known structure of proper scoring rules and showed how the

freedom of choosing among them can be used to tailor fitted models in such a way

that good performance is achieved at a prescribed ratio of misclassification costs.

Similarly, we showed how cost-weighting F -losses can achieve tailoring at given costs.

We also indicated that appropriate degree of tailoring can be estimated from the data

with cross-validation.

94

We gave evidence that tailoring can be of interest in two situations:

1. Tailoring tree-based classifiers to the high or the low end of class 1 probabilities,

thus producing trees with vastly greater interpretability than standard trees

based on the Gini index or entropy.

2. Tailoring to specific classification thresholds when the models are biased for

class probability estimation, yet are capable of describing good classification

boundaries. This case can occur, for example, in linear logistic models when

the sample size is relatively large compared to the number of fitted degrees of

freedom. In such situations it may be beneficial to downweight data points

whose class probabilities are far from the intended threshold. In linear mod-

els, the heavy reliance of log-loss and exponential loss on the most predictable

instances can be a drawback for classification where one cares most about a

specific classification boundary rather than global probability estimation.

Application of tailored losses to more flexible nonparametric models such as boosting

does not achieve similar improvements as in linear models or surprising interpretabil-

ity as in trees.

95

Bibliography

[1] Bregman, L. M. (1967). The Relaxation Method of Finding the Common Point

of Convex Sets and its Applications to the Solution of Problems in Convex Pro-

gramming. U.S.S.R. Computational Mathematics and Mathematical Physics 7

(1), 200–217.

[2] Breiman, L. (1996). Bias, variance and arcing classifiers. Technical Report 460,

Statistics Department, University of California at Berkeley, Berkeley, CA.

[3] Breiman, L., Friedman, J. H., Olshen, R., and Stone, C. J. (1984). Classification

and Regression Trees, Belmont, California: Wadsworth.

[4] Buja, A., and Lee, Y.-S. (2001). Data Mining Criteria for Tree-Based Regression

and Classification, Proceedings of KDD 2001, 27–36.

[5] Clark, L. A., and Pregibon, D. (1992). Tree-Based Models, in Statistical Models

in S, edited by J. M.Chambers and T. J. Hastie, Pacific Grove, CA: Wadsworth

& Brooks/Cole, 377–419.

96

[6] Collins, M., Schapire, R. E., Singer, Y. (2002). Logistic Regression, AdaBoost

and Bregman Distances, Machine Learning, 48 (1/2/3).

[7] Cressie, N. and Read, T. R. C. (1984). Multinomial Goodness-of-fit Tests, J. R.

Statist. Soc. B, 46, No. 3, 440–464.

[8] Domingos, P. (2000). A Unified Bias-Variance Decomposition for Zero-One and

Squared Loss. In: Proceedings of the Seventeenth National Conference on Artifi-

cial Intelligence, 564–569. Austin, TX: AAAI Press.

[9] Elkan, C. (2001). The Foundations of Cost-Sensitive Learning. In: Proceedings of

the Seventeenth International Joint Conference on Artificial Intelligence (IJCAI),

973–978.

[10] Freund, Y., and Schapire, R. (1996). Experiments with a New Boosting Algo-

rithm. In: Machine Learning: Proceedings of the Thirteenth International Con-

ference, 148–156.

[11] Friedman, J. H. (1997). On bias, variance, 0/1 - loss, and the curse-of-

dimensionality. Data Mining and Knowledge Discovery, 1, 55–77.

[12] Friedman, J. H., Hastie, T., and Tibshirani, R. (2000). Additive Logistic Re-

gression: A Statistical View of Boosting, The Annals of Statistics 28, No. 2,

337–407.

97

[13] Garthwaite, P. H., Kadane, J. B., and O’Hagan, A. 2005). Statistical Methods

for Eliciting Probability Distributions, J. of the American Statistical Association,

100, No. 470, 680-700.

[14] Hand, D. J., and Vinciotti, V. (2003). Local Versus Global Models for Classifi-

cation Problems: Fitting Models Where it Matters. The American Statistician

57, No. 2, 124–131.

[15] Kearns, M., and Mansour, Y. (1996). On the boosting ability of top-down de-

cision tree learning algorithms. Proceedings of the Annual ACM Symposium on

the Theory of Computing, 459–468.

[16] Kohavi, R., and Wolpert, D. H. (1996). Bias plus variance decomposition for zero-

one loss functions. In: Proceedings of the Thirteenth International Conference on

Machine Learning, 275–283. Bari, Italy: Morgan Kaufmann.

[17] Kong, E.B., and Dietterich, T.G. (1995). Error-correcting output coding corrects

bias and variance. In: Proceedings of the Twelfth International Conference on

Machine Learning, 313–321. Tahoe City, CA: Morgan Kaufmann.

[18] Lafferty, J. D., Della Pietra S., Della Pietra V. (1997). Statistical Learning Algo-

rithms based on Bregman Distances, in: Proceedings of the Canadian Workshop

on Information Theory 1997.

[19] Lin, Y. (2001) A Note on Margin-based Loss Functions in Classification in Statis-

tics and Probability Letters 68/1. 73-82.

98

[20] Lugosi, G., and Vayatis, N. (2004). On the Bayes-Risk Consistency of Regularized

Boosting Methods, The Annals of Statistics 32, 30-55.

[21] Murphy, A.H. and Daan, H. (1985). Forecast Evaluation, in: Probability, Statis-

tics and Decision Making in the Atmospheric Sciences, eds. Murphy, A.H. and

Katz, P.W.

[22] Quinlan, J.R. (1993). C4.5: Programs for Machine Learning. San Francisco, CA:

Morgan Kaufmann Publishers.

[23] Savage, L.J. (1973). Elicitation of Personal Probabilities and Expectations, J. of

the American Statistical Association 66, No. 336, 783–801.

[24] Schervish, M.J. (1989). A General Method for Comparing Probability Assessors,

The Annals of Statistics 17, No. 4, 1856–1879.

[25] Shuford, E.H., Albert, A., Massengill, H.E. (1966). Admissible Probability Mea-

surement Procedures, Psychometrika 31, 125–145.

[26] Winkler, R.L, (1993). Evaluating Probabilities: Asymmetric Scoring Rules, Man-

agement Science 40, No. 11, 1395–1405.

[27] Schapire, R.E., Singer, Y. (1998). Improved Boosting Algorithms Using

Confidence-Rated Predictions, in Proceedings of the Eleventh Annual Confer-

ence on Computational Learning Theory.

99

[28] Schapire, R.E. (2002). The Boosting Approach to Machine Learning: An

Overview. In: MSRI Workshop on Nonlinear Estimation and Classification.

[29] Tibshirani, R. (1996). Bias, variance and prediction error for classification rules.

Technical report, Department of Preventive Medicine and Biostatistics and De-

partment of Statistics, University of Toronto, Toronto, Canada.

[30] UC Irvine Machine Learning Repository (2003):

http://www.ics.uci.edu/˜mlearn/MLRepository.html

[31] Weisstein, E. W. (2005). Hypergeometric Function. From MathWorld–A Wol-

fram Web Resource.

http://mathworld.wolfram.com/HypergeometricFunction.html

[32] Zhang, T. (2004). Statistical Behavior and Consistency of Classification Methods

based on Convex Risk Minimization. The Annals of Statistics 32, 56-134.

100

Appendix: Proofs

Link function: Recall that F (p) is a minimizer of R̃(p|F). Now modify the cost-

weighted F -loss such that the combined coefficients involving c and p add up to one:

R̃cw(p|F) ∼
(1− c)p

(1− c)p + c(1− p)
L̃1(−F) +

c(1− p)

(1− c)p + c(1− p)
L̃0(F)

= R̃

(

(1− c)p

(1− c)p + c(1− p)

∣

∣

∣

∣

F

)

It follows that the minimizer is

F

(

(1− c)p

(1− c)p + c(1− p)

)

,

hence the link function is

F cw(q) = F

(

(1− c)q

(1− c)q + c(1− q)

)

,

which proves the assertion about the cost-weighted link function.

Proper scoring rule. Plug the new link function into the cost-weighted F -loss and

obtain

Lcw
1 (1− p) = (1− c)L̃1(−F

(

(1− c)p

(1− c)p + c(1− p)

)

) ,

Lcw
0 (p) = cL̃0(F

(

(1− c)p

(1− c)p + c(1− p)

)

) .

Recalling that the original proper scoring rule was L1(1−q) = L̃1(−F (q)) and L0(q) =

L̃0(F (q)) and comparing with the above equations, the assertion about the proper

scoring rule follows.

101

Weight function: The third part is obtained from the following calculation:

ωcw(q) =
Lcw′

0(q)

q

=
c

q
L′

0

(

(1− c)q

(1− c)q + c(1− q)

)

(1− c)c

((1− c)q + c(1− q))2

=
L′

0

(

(1−c)q
(1−c)q+c(1−q)

)

(1−c)q
(1−c)q+c(1−q)

(1− c)2c2

((1− c)q + c(1− q))3

= ω

(

(1− c)q

(1− c)q + c(1− q)

)

(1− c)2c2

((1− c)q + c(1− q))3

Normalizing constant: We assume that ω(q) is a density with expectation µ:

∫ 1

0

ω(q) dq = 1 , µ =

∫ 1

0

q ω(q) dq .

The normalizing constant of ωcw(q) is

∫ 1

0

ωcw(q) dq =

∫ 1

0

ω

(

(1− c)q

(1− c)q + c(1− q)

)

(1− c)2c2

((1− c)q + c(1− q))3
dq .

The following variable transformation will be used repeatedly in what follows:

t =
(1− c)q

(1− c)q + c(1− q)
, q =

ct

ct + (1− c)(1− t)
, (8.1)

ωcw(q) dq = [ct + (1− c)(1− t)] ω(t) dt

Thus the normalizing constant is

∫ 1

0

ωcw(q)dq =

∫ 1

0

ω(t) [ct + (1− c)(1− t)] dt = cµ + (1− c)(1− µ) ,

and the following is hence a density:

ωcw(q)

cµ + (1− c)(1− µ)
. (8.2)

102

Expectation: We start with the non-normalized weight function ωcw(q). With the

same variable transformation as above we have

∫ 1

0

q ωcw(q) dq =

∫ 1

0

ct

ct + (1− c)(1− t)
(ct + (1− c)(1− t)) ω(t) dt

=

∫ 1

0

c t ω(t) dt

= c µ

Normalizing according to (8.2), we obtain the desired result.

Variance inequalities: To derive the upper and lower bounds for the variance of

the cost-weighted density using the variable transformation (8.1):

σcw2 =
1

cµ + (1− c)(1− µ)

∫ 1

0

(q − µcw)2 ωcw(q) dq

=

∫ 1

0

(

ct

ct + (1− c)(1− t)
−

cµ

cµ + (1− c)(1− µ)

)2
ct + (1− c)(1− t)

cµ + (1− c)(1− µ)
ω(t) dt

=

∫ 1

0

(

c(1− c)(t− µ)

(cµ + (1− c)(1− µ))(ct + (1− c)(1− t))

)2
ct + (1− c)(1− t)

cµ + (1− c)(1− µ)
ω(t) dt

Thus:

σcw2 =
c2(1− c)2

(cµ + (1− c)(1− µ))3

∫ 1

0

(t− µ)2

ct + (1− c)(1− t)
ω(t) dt (8.3)

Trivially, the integral (without the preceding factor) is upper bounded by

1

min(c, 1− c)

∫ 1

0

(t− µ)2 ω(t) dt

and lower bounded by

1

max(c, 1− c)

∫ 1

0

(t− µ)2 ω(t) dt

103

With σ2 =
∫ 1

0
(t− µ)2ω(t)dt we have:

σcw2 ≤
c2(1− c)2

(cµ + (1− c)(1− µ))3

1

min(c, 1− c)
σ2

σcw2 ≥
c2(1− c)2

(cµ + (1− c)(1− µ))3

1

max(c, 1− c)
σ2

Noting c(1− c)/ min(c, 1− c) = max(c, 1− c) and its dual, the assertion follows.

Variance for the cost-weighted symmetric Beta density: A calculation similar

to the one that lead to Equation (8.3) shows, using V[X] = E[X2]− [EX]2:

σcw2 =
c2

cµ + (1− c)(1− µ)

∫ 1

0

t2

ct + (1− c)(1− t)
ω(t) dt − µcw2 (8.4)

This simplifies somewhat with µ = 1/2:

σcw2 = 2 c2

∫ 1

0

t2

ct + (1− c)(1− t)
ω(t) dt − c2 (8.5)

Specializing ω to the symmetric Beta density with parameter α, we get:

σcw2 =
2 c2

B(α, α)

∫ 1

0

tα+1(1− t)α−1

ct + (1− c)(1− t)
dt − c2 (8.6)

This integral can be expressed in terms of the hypergeometric function 2F1(a, b; c; z)

using the following fact:

2F1(a, b ; c ; z) =
1

B(b, c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− tz)a
dt .

(See, for example, Weisstein 2005.) Thus with a = 1, b = α + 2, c = 2α + 2 and

z = (1− 2c)/(1− c) we arrive at:

σcw2 = c2

(

(α + 1)

(1− c)(2α + 1)
2F1

(

1, α + 2, 2α + 2;
1− 2c

1− c

)

− 1

)

. (8.7)

104

Shape of the cost-weighted symmetric Beta: For the symmetric Beta family,

ωcw(q) is

ωcw(q) ∼
qα−1(1− q)α−1

((1− c)q + c(1− q))2α+1

We derive the stationary point of the function as follows: Set ωcw′

(q) = 0 and note

that

(

qα−1(1− q)α−1
)′

= (α− 1)(1− 2q)(q(1− q))α−2,

(

((1− c)q + c(1− q))2α+1
)′

= (2α + 1)(1− 2c)((1− c)q + c(1− q))2α

Thus the stationarity condition becomes

(α− 1)(1− 2q)(q(1− q))α−2((1− c)q + c(1− q))2α+1

− (2α + 1)(1− 2c)(q(1− q))α−1((1− c)q + c(1− q))2α = 0

which can be simplified to

3(1− 2c)q2 − (α− (6c− 2))q + (α− c)c = 0 .

Solving this equation we get the stationary points

−(α− 2(3c− 1))±
√

(α− 2(3c− 1))2 + 12(α− 1)c(2c− 1)

6(2c− 1)

Rewrite this expression as

−((α − 1)− 3(2c− 1))±
√

(α− 1)2 + 6(2c− 1)2(α− 1) + 9(2c− 1)2

6(2c− 1)

=
−((α− 1)− 3(2c− 1))±

√

(α− 1)2 + 3(2α + 1)(2c− 1)2

6(2c− 1)

105

Notice for α > 1, the weight function has a unique mode at

−(α − 2(3c− 1)) +
√

(α− 2(3c− 1))2 + 12(α− 1)c(2c− 1)

6(2c− 1)

The other stationary point is outside the [0, 1] interval.

For α < 1, the weight function has a unique minimum at

−(α− 2(3c− 1))−
√

(α− 2(3c− 1))2 + 12(α− 1)c(2c− 1)

6(2c− 1)

The other stationary point is out of bound.

For α = 1 and c 6= 0.5, the weight function has a unique mode and maximum at

0 or 1.

106

