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Department of Statistics 
The Wharton School 

University of Pennsylvania 
 
Statistics 621               Fall 2003 

Module 4 
The Multiple Regression Model 

 
 
Example: Explaining and predicting fuel efficiency 
 
The file car89.jmp contains many characteristics of various 
makes and models of cars. Variables include: 
 

MPG City, Make/Model, Weight, Cargo, Seating, 
Horsepower, Displacement, Number of cylinders, Length, 
Headroom, Legroom, Price… 

 

Questions of interest 
“What is the predicted mileage for a 4000 lb. new design, 
and which characteristics of the design are crucial?”1 

“How much does my 200 pound brother owe me for 3000 
miles of riding with me?” 
 

To get started, let’s consider using simple regression to model 
the effect of Weight (lb) on MPG City 
 

————————————————— 
1 Such questions of mileage are important to manufacturers that sell cars in the US.  The so-
called CAFE standards set requirements for the average fuel efficiency of the fleet of cars 
produced by a manufacturer. 
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Applying Fit Y by X, we consider the regression of MPG City 
on Weight(lb) (using Fit Line) and the regression of  (p 110) 

(1/MPG City) on Weight(lb)2
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Linear Fit 

MPG City = 40.11 - 0.00655 Weight(lb) 
 

Transformed Fit Recip 
Recip(MPG City) = 0.00943 + 0.0000136 Weight(lb) 

Which of these regressions seems more reasonable? 
 
 
Do the signs of the slope coefficients make sense here? 
 

————————————————— 
2 Use the fit special dialog to get the reciprocal 1/Y of the response. 
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Based on the previous regressions we created a “new”, rescaled 
dependent variable3 

GP1000M = 1000/MPG 
 
The regression of GP1000M on Weight(lb) yields (p 111) 
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RSquar
RSquare 
Root Mean Square 
Mean of 
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0.76526
0.76313
4.23319
47.5946
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Summary of Fit 

Intercept 
Weight(lb) 

Term 
9.432339
0.013615

Estimate 
2.05451
0.00071

Std Error 
  4.59

 18.94

t Ratio

<.0001
<.0001

Prob>|t|

Parameter Estimates 

Linear Fit 

Bivariate Fit of GP1000M City By Weight(lb) 

  
What is the interpretation of the LS regression slope here? 
 
 
Is the only difference between the BMW 735i and the Suzuki 
Swift just the 2000-pound different in weight?
————————————————— 
3 Multiplying 1/MPG by 1000 serves only to multiply the intercept and slope estimates by 1000 
resulting in "friendlier" (and more impressive) regression output.  What other easily motivated 
change of scales would make the slope 2000 times larger still? 
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Other factors obviously contribute as well.  Let’s use the 
Multivariate command to explore the pairwise relationships 
between some of these. (p 115-116) 

GP1000M City
Weight(lb)
Horsepower
Cargo
Seating

  1.0000
  0.8798
  0.8334
  0.1672
  0.1620

  0.8798
  1.0000
  0.7509
  0.1816
  0.3499

  0.8334
  0.7509
  1.0000
 -0.0548
 -0.0914

  0.1672
  0.1816
 -0.0548
  1.0000
  0.4894

  0.1620
  0.3499
 -0.0914
  0.4894
  1.0000

GP1000M City Weight(lb)Horsepower Cargo Seating

    7 rows not used due to missing values.
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The multivariate command provides a correlation matrix and 
scatterplot matrix4 for all pairwise relationships between the five 
variables GP1000M, Weight, Horsepower, Cargo and Seating. 
 

Besides Weight, which variable is appears most strongly 
associated with GP1000M? 

 
 
 
To consider the joint effect of Weight and Horsepower on 
GP1000M, we apply the Fit Model command5 to obtain the 
multiple regression output (p 118) 
 

 

RSquare 
RSquare Adj 
Root Mean Square Error 
Mean of Response 
Observations (or Sum Wgts) 

0.841022
0.838105
3.499726
47.59468
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Summary of 

Intercept 
Weight(lb) 
Horsepower 

Term 
11.684254 
0.0089183 
0.0883837 

Estimate 
1.727038
0.000882
0.012264

Std Error

  6.77
 10.11
  7.21

t Ratio

<.0001
<.0001
<.0001

Prob>|t|
Parameter 

Response GP1000M 

 
 
To interpret this output, let’s first describe the underlying 
multiple regression model.  

————————————————— 
4 The density ellipses in each of these plots are estimates of the highest density population 
regions under the assumption of joint normality.  Note how these ellipses guide your eye towards 
the strongest linear associations. 
5 Fit Y by X  in JMP only performs simple regressions.  To fit a multiple regression, use Fit 
Model.  Here we select GP1000M as Y and add Weight and Horsepower to the Model Effects 
box in the dialog used to specify the multiple regression. 
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The Multiple Regression Model (MRM) 
 
A model for the relationship between  
 
 y - a dependent variable or response, and 
 

x1,…, xK - a set of independent variables, explanatory 
variables or predictors 

 
 
Denote the n observations of the K+1 terms y, x1, …, xK by 
 

yi, x1i,…, xKi,       i = 1,...,n 
 
Under the MRM, the data is assumed to be a realization of 
 

yi  =  β0  + β1x1i  + · · · + βK xKi  +  εi ,      i = 1,...,n   
 

ε1,…,εn  iid ~ 2(0, )N εσ  
 
Pictorially 
 
K = 1 
 
 
K = 2 
 
 
 
 
K ≥ 3, hyperplane 
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Remark:  Even for K > 1,  y  = β0 + β1x1 + · · · + βK xK   is usually 
just called the regression line. 
 
Some key interpretations: 
 
β0 + β1 x1i  + · · · + βK xKi   
 
 
 
 
β0 
 
 
 
 
 
βk  for  k = 1,…, K  (Careful!) 
 
 
 
 
 
 
 
σε 
 
 
 
 
β0, β1, …, βK  and σε  are the (usually) unknown parameters of 
the MRM.  An objective of regression is to estimate them. 
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The Least Squares (LS) Regression 
 
In order to estimate the "true" regression 
 

y  = β0 + β1x1 + · · · + βK xK  
 
we use the least squares (LS) regression 
 

y  = 0β̂  + 1̂β x1 + · · · + ˆ
Kβ xK 

 
which has the property of minimizing the sum of squared 
vertical distances from the plane to the data 
 
 
 
 
The values of 0β̂ , 1̂β ,..., ˆ

Kβ  are calculated by computer programs 
such as JMP which insert the data into formulas, (which if you 
must know, we’ll tell you during office hours). 
 
 
 
The values 0β̂ , 1̂β ,..., ˆ

Kβ  are called the least squares (LS) 
estimates of β0, β1,…, βK   
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Partial versus Marginal Regression Coefficients 
 
Returning to the previous regressions, let 
  y = GP1000M, x1 = Weight and x2 = Horsepower 
 
From the output on p 4-5, we can see that the LS regression  

GP1000M = 11.68 + 0.00891 Weight(lb) + 0.0883 Horsepower 
estimates the “true” regression  

y  = β0 + β1x1 + β2 x2 

In this model, β1 is called a partial regression coefficient. 
 
The interpretation of 1̂β  =  0.00891 here is  
 
 
 
In contrast, the LS regression line on p 4-3, 

GP1000M = 9.43 + 0.01362 Weight(lb) 
is an estimate of the “true” regression line 

y  = β0 + β1x1 
In this model, β1 is called a marginal regression coefficient. 
 
The interpretation of 1̂β  =  0.01362   here is  
 
 
 
What is the essential difference between partial and marginal 
regression coefficients? 
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To get some insight into what is going on, we note that a simple 
regression of Horsepower on Weight yields (p 120) 
 
 

Horsepower = −26.10 + 0.0533 Weight 
 
Substituting this expression for Horsepower into the multiple 
regression yields 
 
GP1000M = 11.68 + 0.00891 Weight + 0.0883 Horsepower 
 
                  = 11.68 + 0.00891 Weight + 0.0883 (−26.10 + 0.0533 Weight) 
 
                  = 9.43 + 0.01362 Weight 
 
which is just the previous simple regression! 
 
A “graphical view with nodes and edges” provides a convenient 
representation of what’s going on. 

 
  
 
 
 
 
 
 
“How much does my 200 pound brother owe me for 3000 miles 
of riding with me?”6 

————————————————— 
6 Is there ever a context in which you would rather have the marginal coefficient?  Yes.  Suppose 
you only know the weight of a car.  Which slope would help you estimate its fuel consumption? 
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Inference about β0, β1,…, βK   
 
Tests and confidence intervals used in simple regression 
generalize naturally to multiple regression. 
 
Yet another “astonishing fact” (which is probably not so 
surprising at this point) 

 Under the MRM, the sampling distributions of 
0β̂ , 1̂β ,..., ˆ

Kβ  are normal with means β0, β1,…, βK   
 
Along with the estimates 0β̂ , 1̂β ,..., ˆ

Kβ , programs such as JMP 
report their standard errors SE( 0β̂ ), SE( 1̂β ),..., SE( ˆ

Kβ )  
 

Confidence Intervals for βk 
 

Approximate 95% CI's for β0, β1, …, βK  are given by 
 
 
 

Hypothesis Tests for βk 

For testing the null hypothesis H0: [βk = c in the fitted model]  vs 

H1: [βk ≠ c in the fitted model],    t ratio = 
ˆ

ˆ( )
k

k

c
SE
β

β
−   

Hypotheses of the form H0: [βk = 0 in the fitted model]   
are usually of most interest. Why? 

 
If  |t ratio| > 2   or   p-value < .05   or   95% CI does not contain 
c, reject H0  at the .05 level of significance.   
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Example 
JMP provides t ratios and p-values for testing 
 
Suppose we consider adding the variables Cargo and Seating to 
the car89 regression.  What would you conclude about the effect 
of either addition from the following output?  (p 125) 
 

 

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.852239
0.846556
3.411697
47.67511

     109

Summary of 

Intercept
Weight(lb)
Horsepower
Cargo
Seating

Term

12.930547 
0.0091318 
0.0857712 
0.0346363 
-0.476467

Estimate

2.020835
0.001159
 0.01509

0.013277
0.412437

Std Error

  6.40
  7.88
  5.68
  2.61
 -1.16

t Ratio

<.0001
<.0001
<.0001
0.0104
0.2506

Prob>|t|
Parameter 

Response GP1000M 

 
 
 
 
 
 
 
Note that if Seating is removed here, the other t ratios and p-
values will change.   
 
WARNING!  Used properly, the t ratios justify removing at 
most one variable at a time.  Regression must then be rerun to 
get a new set of t ratios. 
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The Fitted Values and the Residuals 
 
As in simple regression, the LS regression line again serves to 
decompose the data into the fitted values and the residuals 
 

ˆi i iy y e= +  
where 
 

ˆiy  = 0β̂  + 1̂β x1i + · · · + ˆ
Kβ xKi     and     ˆi i ie y y= −  

 
 

 
Root Mean Squared Error (RMSE) – An Estimate of σε 
 
When the MRM holds, σε  is estimated by7 
 

21 ˆ( )
1 i iRMSE y y

n K
= −

− − ∑  

 
For example, in the car89 regression output on p 4-12, RMSE is 
given by Root Mean Square Error = 3.41. 
 
As in a simple regression, RMSE is also called the standard 
deviation of the residuals and measures the dispersion of the 
residuals about the LS regression line.  
 
It again measures the predictive accuracy of the model used to 
forecast values for new cases.   
————————————————— 
7 RMSE2 is the “average” sum of squared deviations from the regression line. We divide by  
(n − K − 1) instead of n to compensate for the fact that the LS line always obtains a smaller sum 
of squared deviations than the true regression line. 
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R-square and Adjusted R-square 
 
As in simple regression, the multiple regression decomposition 
of the response into “signal” plus “noise” ( iii eyy ˆˆ += ) satisfies 
the amazing identity  

222 )ˆ()ˆ()( iiii yyyyyy −+−=− ∑∑∑  
namely 
 

Total SS = Model SS + Residual SS8 
 
Here, too, R2 gives “the proportion of the total variation 
explained by the regression”, namely     
 

2  1
 

Model SS Residual SSR
Total SS Total SS

= = −  

  
In the simple regression of GP1000M on Weight,  R2 = 
76.5%.  When Horsepower is added, R2 increases to 84.1%.   

 
Fact: R2 can never decrease when another independent variable x is 
added to a regression.  Why? 
 
 
To avoid this limitation, people sometimes use adjusted R2 
which is essentially R2 penalized for the number of x's in the 
regression. 
 
In the previous two regressions, adjusted R2 goes from 76.3% to 
83.8% when Horsepower is added. 

————————————————— 
8 As in simple regression, JMP labels the Residual SS as the Error SS. 
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Prediction Intervals for a Future Observation 
 

“Where will a future value of the response y lie?” 
“What GP1000M will I get with a car of a given weight and 
horsepower?” 

 
After running a multiple regression, each point on the  
LS regression 

ˆxy  = 0β̂  + 1̂β x1 + · · · + ˆ
Kβ xK      

is an estimate of the corresponding future point generated by the 
MRM 

yx = β0 + β1x1 + · · · + βK xK + εx 
 
For example, suppose we wanted to predict GP1000M for a new 
design where Weight = 4000 and Horsepower = 200. 

Using the regression of GP1000M on Weight and Horsepower, 
the predicted value of GP1000M for this new design is (p125) 
 
GP1000M = 11.68 + 0.00891 Weight(lb) + 0.0883 Horsepower 
                  = 11.6 + 0.00891 (4000) + 0.0883 (200) = 65.03 
 
JMP provides this calculation for you.9

————————————————— 
9At least, it will if you figure out how to ask it.  The trick is to add an extra row to the data. The 
last row of car89.jump contains the x values for the new design.  After running Fit Model to 
obtain the regression output, right-click on one of the title bars , and select Save Columns > 
Predicted Values    from the Pop-up menu.  The predicted values for all of the rows, including 
the new one, will be placed in a column to the right of the data.  This can also be done by 
selecting  Save Columns > Prediction Formula which also includes the prediction formula in the 
calculator window. 
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JMP also provides10 [57.9, 72.1] as a 95% prediction interval 
(PI) for yx when Weight = 4000 and Horsepower = 200 
What is the interpretation of this interval? 
 
 
These results can also easily be used to predict MPG for the new 
design.  By using the transformation 1000/GP1000M, the 
prediction of MPG is (1000/65.03) =  15.8  and the 95% PI is  
[1000/72.1, 1000/57.9] = [13.9, 17.27].  (p 131) 
 
 
The prediction of GP1000M for the simple regression on Weight 
is   
  GP1000M = 9.43 + 0.01362 Weight(lb) 
 
                                        = 9.43 + 0.01362 ( 4000) =  63.9 

and the 95% PI is [55.3, 72.5].    How do these compare with the 
above? 
 
 
As in simple regression, extrapolate with caution!   If x1,…, xK  
are not in the range of the data, predicting yx  is dangerous and 
the PIs are unreliable.  
 
Often the intercept in a regression is an extrapolation itself. The 
intercept is the prediction when all of the predictors are set to 
zero.  For data like these cars, we don’t see any cases like that, 
and so the intercept is quite far from the data.

————————————————— 
10Follow the steps in the previous footnote and select  Save Columns > Indiv Confidence 
Interval. 
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Some New Graphical Model Diagnostics 
 
In addition to the model checking methods we saw for simple 
regression, a variety of graphical methods are especially useful 
for multiple regression. 
 
Plots of the Raw Data:  Although it is not possible to plot all the 
data when K > 3, it may be useful to look at scatterplot matrices 
(pg 4-4) or 3-D spinning plots11. 
 
The following plots:  Actual by Predicted, Residual by 
Predicted, and Leverage Plots were produced by the Fit Model 
platform12 for the regression of GP1000M on Weight, 
Horsepower, Cargo and Seating.13   
 
How should each of these be used?  The key feature shared by 
all of these is that each offers you a “simple regression view” of 
the multiple regression.   
 
Simple regression is simple because you can easily plot the data 
and see what is happening.  These diagnostic plots shown by 
JMP with a multiple regression present various scatterplot views 
of a multiple regression. 
 

————————————————— 
11 Obtained with Graph > Spinning Plot In JMP. 
12 When Emphasis Select Leverage (the default) is selected. 
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The first two plots resemble the Fit Y by X plots of the data and 
residuals. For a simple regression, the one predictor supplied the 
x-axis.  For multiple regression, these use a mixture of the 
predictors for the x-axis – namely the predicted values. 
 
Actual By Predicted Plot 14 
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Residual by Predicted Plot 
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————————————————— 
14 JMP tries to show you a plot for every summary statistic.  This time, its showing a plot that 
goes with the R2 summary.  The higher the R2, the more the points in this plot cluster along the 
diagonal. 
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Leverage Plots 
Leverage plots show you a simple regression view of the partial 
regression coefficient 

Scatterplot: marginal coefficient 
Leverage plot: partial coefficient 

The slope of the fitted line in each leverage plot is the slope for 
the indicated predictor in the multiple regression.15 
 

30

40

50

60

70

G
P

10
00

M
 C

ity
 L

ev
er

ag
e 

R
es

i

1500 2500 35004000
Weight(lb) Leverage,
P<.0001

       

30

40

50

60

70

G
P

10
00

M
 C

ity
 L

ev
er

ag
e 

R
es

i

50 100 150 200 250
Horsepower Leverage,
P<.0001

 
 
 

30

40

50

60

70

G
P

10
00

M
 C

ity
 L

ev
er

ag
e 

R
es

i

0 20 40 60 80 120 160
Cargo Leverage, P=0.0104

       

30

40

50

60

70

G
P

10
00

M
 C

ity
 L

ev
er

ag
e 

R
es

i

2 3 4 5 6 7 8
Seating Leverage, P=0.2506

 

————————————————— 
15 So why are these called leverage plots?  They excel at revealing leverage points in the multiple regression that are 
hard to spot in the marginal views of the fit. BAR (p 63) describes the calculation of leverage in a simple regression.  
To make a version of these plots by hand is straightforward, but tedious.  To make the leverage plot for Weight, 
regress fuel consumption on the other predictors (HP, cargo, seating); save the residuals.  Now regress Weight on 
these three other predictors; save these residuals.  Finally (whew), plot the residuals of fuel consumption on the 
residuals of Weight.  Though tedious, you can see how the leverage plot removes the effects of the other predictors.  
It uses regression! 
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Take-Away Review 
 
Multiple regression extends the ideas of simple regression, 
allowing one to use several predictors to model simultaneously 
the variation in the response. 
 
The addition of other variables changes the interpretation of the 
slope:  the slope in a multiple regression is a “partial” effect, 
adjusted for the other predictors. 
 
The underlying MRM is a natural extension of the SRM, 
allowing for more predictors.  Under these assumptions, we can 
again use standard errors to form confidence intervals and test 
hypotheses. 
 
To assess the assumptions of the MRM, new diagnostic plots 
include plots of fitted value on actual values of the response, 
residuals on fitted values, and leverage plots. 
 
Next Module 
 
More on multiple regression, with an emphasis on the effects of 
correlation among the predictors (i.e., collinearity). 


