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Department of Statistics 
The Wharton School 

University of Pennsylvania 
 
Statistics 621               Fall 2003 

Module 5 
Further Aspects of Multiple Regression 

 
The ANOVA Table 
All statistics programs including JMP provide an ANOVA 
(Analysis of Variance) table. This table includes the F ratio and 
p-value for testing the hypothesis 

H0: β1 = 0, …, βK = 0 
What does this hypothesis imply about the relationship 
between y and x1,…, xK ? 
 
The F ratio is obtained as 
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Large values of F and small p-values provide evidence against 
H0.   A useful rule of thumb1 is to reject H0 at the .05 level 
whenever F > 4. 
 
However, it is easier and more accurate to use the familiar p-
value strategy:  If the p-value < .05, then H0: β1 = 0, …, βK = 0 
can be rejected at the .05 level of significance. 
                                                 
1 Use this rule if you do not have a p-value handy.  This rule is “conservative”: any time the  
F > 4, the p-value < 0.05.  However, there are some cases in which the F < 4 but the p-value is 
less than 0.95 (p < 0.05).   
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Example (car89.jmp) 
The multiple regression of GP1000M on 
       Weight, Horsepower, Cargo and Seating yields 
 

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.852239
0.846556
3.411697
47.67511

     109

Summary of 

Model
Error
C. Total

Source

    4
  104
  108

DF

 6981.9348
 1210.5264
 8192.4611

Sum of Squares

 1745.48
   11.64

Mean Square

149.9598
F Ratio

  <.0001
Prob > F

Analysis of 

Intercept
Weight(lb)
Horsepower
Cargo
Seating

Term

12.930547 
0.0091318 
0.0857712 
0.0346363 
-0.476467

Estimate

2.020835
0.001159
 0.01509

0.013277
0.412437

Std Error

  6.40
  7.88
  5.68
  2.61
 -1.16

t Ratio

<.0001
<.0001
<.0001
0.0104
0.2506

Prob>|t|
Parameter 

Response GP1000M 

 
 
What should we conclude from the ANOVA table? 
 
 
The y vs ŷ  plot confirms this conclusion. 
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The F Test and Correlated Predictors 
The ANOVA test comes in handy when, as usual, the 
predictors in a regression are correlated. The following 
example illustrates an extreme case. 
 
Example:  A Market Model 2  
The file stocks.jmp contains monthly returns from 2/78 to 
12/87 of VW, SP500, IBM, PACGE and Walmart.  Let’s focus 
on the relationship between PACGE, SP500 and VW. 

PACGE
SP500
VW

  1.0000
  0.3116
  0.3249

  0.3116
  1.0000
  0.9932

  0.3249
  0.9932
  1.0000

PACGE SP500 VW
Correlations

-0.05
0

0.05
0.1

0.15

-0.2

-0.1

0

0.1

-0.15

-0.05

0.05

0.15

PACGE

-0.050 .05 .1 .15

SP500

-0.2 -0.1 0.05 .15

VW

-0.15 0 .05 .15

Scatterplot Matrix

Multivariate 

 
                                                 
2 The BAR casebook example that uses this data (p 138) focuses instead on the relationship of 
these indices with the returns on Walmart stock.  The results are similar and similar issues of 
collinearity arise there as well. 
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A simple regression of PACGE on SP500 yields 
 

-0.1

-0.05

0

0.05

0.1

0.15

P
A

C
G

E

-0.25 -0.15 -0.05 0 .05 .1 .15
SP500

Linear Fit

PACGE = 0.0096823 + 0.3102945 SP500

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.097073
0.089356
0.046161
0.012718

     119

Summary of Fit

Model
Error
C. Total

Source

    1
  117
  118

DF

0.02680342
0.24931178
0.27611520

Sum of Squares

0.026803
0.002131

Mean Square

 12.5786
F Ratio

  0.0006
Prob > F

Analysis of Variance

Intercept
SP500

Term

0.0096823
0.3102945

Estimate

0.004317
 0.08749

Std Error

  2.24
  3.55

t Ratio

0.0268
0.0006

Prob>|t|

Parameter Estimates

Linear Fit

Bivariate Fit of PACGE By SP500

 
What is the interpretation of 1̂β  here? 
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A simple regression of PACGE on VW yields 
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VW

Linear Fit

PACGE = 0.0083714 + 0.3156957 VW

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.105532
0.097887
0.045945
0.012718

     119

Summary of Fit

Model
Error
C. Total

Source

    1
  117
  118

DF

0.02913890
0.24697630
0.27611520

Sum of Squares

0.029139
0.002111

Mean Square

 13.8040
F Ratio

  0.0003
Prob > F

Analysis of Variance

Intercept
VW

Term

0.0083714
0.3156957

Estimate

0.004371
 0.08497

Std Error

  1.92
  3.72

t Ratio

0.0579
0.0003

Prob>|t|

Parameter Estimates

Linear Fit

Bivariate Fit of PACGE By VW

 
What is the interpretation of 1̂β  here?
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Consider now what happens when both SP500 and VW are 
used together in a multiple regression 
 

RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

0.114681
0.099417
0.045906
0.012718

     119 

Summary of Fit

Model
Error 
C. Total

Source

    2 
  116 
  118 

DF

0.03166507
0.24445013
0.27611520

Sum of Squares

0.015833
0.002107

Mean Square

  7.5131 
F Ratio

  0.0009 
Prob > F

Analysis of Variance

Intercept 
SP500 
VW 

Term

0.0054478
-0.821098 
1.1114984

Estimate

0.005119
0.749946
0.731784

Std Error

  1.06 
 -1.09 
  1.52 

t Ratio

0.2895 
0.2758 
0.1315 

Prob>|t|

Parameter Estimates

Whole Model

Response PACGE

 
 
What has happened?3 

                                                 
3 If returns on Walmart are the response, the regression shown in the casebook on page 143 
finds a significant effect for the value-weighted index.  Thus, in that case, VW significantly 
improves a regression with SP500 alone, but not vice versa.  Adding SP500 to a model that 
already has VW does not improve the fit, agreeing with underlying finance.  
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Collinearity 
 
In a multiple regression of y on x1,…, xK, linear redundancy – 
or correlation – among x1,…, xK, is called collinearity. 
  
Effects of collinearity: 
 
 Coefficient standard errors increase 
 t-ratios decrease  (and so p-values increase) 
 Difficulty interpreting coefficients 
 Coefficients change as others come and go. 

 
These effects can be serious when collinearity is severe. 
 
Why these effects happen: 
 

Key fact:  In a multiple regression, ˆ
kβ  is the effect of 

adding xk last.  (As shown in the leverage plots) 
 
Variation of xk with the other x’s fixed is limited (p 121) 

 This manifests itself as 
 

SD( ˆ
kβ ) = 

1
( )kSD adjusted xn

εσ ×  

 
where adjusted xk  is the residual from a multiple 
regression of xk on all the other x’s 
 
The increase in SE( ˆ

kβ ) leads to smaller t-ratios. 
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The following leverage plots for the multiple regression of 
PACGE on SP500 and VW illustrate this phenomenon. 
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What to do if you have severe collinearity (p. 147) 
 

- Suffer4 
 
 
 
- Remove natural proxies 

 
 
 

-  Transform or combine some of your predictors 
  

                                                 
4 Collinearity does not violate an assumption of the MRM.  Rather, it causes problems in 
interpretation: the coefficients may not make much sense.  If you only need to predict cases 
like the ones you have seen, it’s not a problem.  If you want to explain your predictions, it is. 
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Example: Market Segmentation 
 
A marketing project identified a list of affluent customers for its 
new PDA.  Should it focus on the younger or older members of 
this list? 
 
To answer this question, the marketing firm obtained a sample 
of 75 consumers and asked them to rate their “likelihood of 
purchase” on a scale of 1 to10.   Age and income of consumers 
were also recorded. 
 

Rating
Age
Income

  1.0000
  0.5867
  0.8845

  0.5867
  1.0000
  0.8286

  0.8845
  0.8286
  1.0000

Rating Age Income
Correlations

1

3

5

7

9

30
40
50
60
70
80

30
50
70
90

110
130

Rating

1 2 3 4 5 6 7 8 9

Age

30 40 50 60 70 80

Income

30 50 70 90110

Scatterplot Matrix

Multivariate 
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The two simple regressions and multiple regression of Rating 
on Age and Income yields the following: 

 
Regression of Rating on Age 

Term Estimate Std Error t Ratio Prob>|t|
Intercept 2.067 0.487 4.24 <.0001
Age 0.059 0.009 6.19 <.0001

 
Regression of Rating on Income  

Term Estimate Std Error t Ratio Prob>|t|
Intercept -0.596 0.352 -1.69 0.0951
Income 0.070 0.004 16.20 <.0001

 
 

Multiple Regression Estimates 
Term Estimate Std Error t Ratio Prob>|t|
Intercept -0.736 0.295 -2.50 0.0149
Age -0.047 0.008 -5.74 <.0001
Income 0.101 0.006 15.63 <.0001

 
What’s going on? 
 
 
 
 
 
 
 
Based on these results, how should the marketing firm direct 
their marketing efforts? 
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Example:  Advertising Allocation 
 
A rapidly growing firm would like to improve its allocation of 
advertising dollars between television and print media.  
Television now gets the largest share.  Should this continue? 
 
An initial analysis quantifies the effect of television advertising.  
  

 

200 

250 

300 

350 

400 

450 

Sa
les 

100 140 160 180 200 220 240 
TV Adv 

Linear Fit 

Sales = 124.08525 + 1.1813206 TV Adv

Intercept 
TV Adv 

Term 
124.08525 
1.1813206 

Estimate 
12.71322 
0.072286 

Std Error 
  9.76

 16.34

t Ratio

<.0001
<.0001

Prob>|t|
Parameter 

Linear 

Bivariate Fit of Sales By 

 
 
 
The scatterplot matrix (with “time” in the last column to show 
time trends) indicates that both sales and TV spending have 
grown over the two years, but so has print advertising.   
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Sales
TV Adv
Print Adv
Week

  1.0000
  0.8507
  0.9135
  0.8272

  0.8507
  1.0000
  0.9428
  0.9065

  0.9135
  0.9428
  1.0000
  0.9294

  0.8272
  0.9065
  0.9294
  1.0000

Sales TV Adv Print Adv Week
Correlations

250
300
350
400
450

120
160
200
240

20
50
80

110

10

40
60

90

Sales

250 350 450

TV Adv

120 180 240

Print Adv

20 50 80 110

Week

10 4060 90

Scatterplot Matrix

Multivariate 
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A multiple regression suggests a different impression for the 
effect of television advertising on sales.   
 

 

RSquare 
RSquare Adj 
Root Mean Square Error 
Mean of Response 
Observations (or Sum Wgts) 

0.835424
0.832165
20.70725
327.3931

     104

Summary of 

Model 
Error 
C. Total 

Source 
    2 

  101 
  103 

DF 
 219840.02 
  43307.80 

 263147.82 

Sum of Squares 
  109920

     429

Mean Square

256.3492
F Ratio

  <.0001
Prob > F

Analysis of 

Intercept 
TV Adv 
Print Adv 

Term 
228.91176 

 -0.13189 
1.6964939 

Estimate 
16.04249 
 0.16816 

0.204815 

Std Error 
 14.27
 -0.78
  8.28

t Ratio

<.0001
0.4347
<.0001

Prob>|t|
Parameter 

Response 

 

Conclusions 
 
Increased TV advertising – holding constant levels of print 
advertising – has no significant impact on sales.  Why? 
 
 
Increased print advertising would have a strong effect even 
when TV advertising was left unchanged.  Why? 
 
 
Might there be other collinear factors hidden from our 
analysis?  
 
Finally, don’t forget to check assumptions, in particular for 
trends in the residuals that might suggest important omitted 
factors. 
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Another Example 
Just because we are doing multiple regression does not mean we 
should ignore transformations.  Logs, in particular, can be very 
important in economic models.   
Models with logs of Y and X lead to slope interpretations as 
elasticities. The BAR casebook gives an example (p 148). 
 
Take-Away Review 
The F-test allows for you to look at the importance of several 
factors simultaneously.  When predictors are collinear, the F-
test reveals their net effect rather than trying to separate their 
effects as a t-ratio does. 
A leverage plot shows the contribution of each predictor to the 
regression, giving you a picture of what that variable adds to a 
model that contains all of the others.  
Collinearity does not violate any assumption of the MRM, but 
it does make regression harder to interpret.  In the presence of 
collinearity, slopes become less precise and the effect of one 
predictor depends on the others that happen to be in the model. 
 
Next Module 
Not all predictors are numerical.  Some of the most important 
predictors of a response label an attribute of the observation, 
such as the sex or specialty of a doctor. 
JMP allows you to easily include such categorical predictors in 
a regression, but leaves you with the burden of figuring out 
how to interpret the results.  We’ll start with that next time. 


