Department of Statistics The Wharton School University of Pennsylvania

Statistics 621

Fall 2003

Module 5 Further Aspects of Multiple Regression

The ANOVA Table

All statistics programs including JMP provide an ANOVA (Analysis of Variance) table. This table includes the F ratio and p-value for testing the hypothesis

$$H_0: \beta_1 = 0, ..., \beta_K = 0$$

What does this hypothesis imply about the relationship between *y* and $x_1, ..., x_K$?

The *F* ratio is obtained as

$$F = \frac{Model \ SS \ / \ K}{Residual \ SS \ / (n - K - 1)} = \frac{R^2 \ / \ K}{(1 - R^2) \ / (n - K - 1)}$$

Large values of *F* and small *p*-values provide evidence against H_0 . A useful rule of thumb¹ is to reject H_0 at the .05 level whenever F > 4.

However, it is easier and more accurate to use the familiar p-value strategy: If the p-value < .05, then H₀: $\beta_1 = 0, ..., \beta_K = 0$ can be rejected at the .05 level of significance.

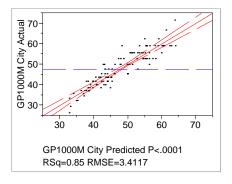
5-1

Example (car89.jmp) The multiple regression of GP1000M on Weight, Horsepower, Cargo and Seating yields

Response GP1000M								
Summary of								
RSquare	RSquare							
RSquare Adj	RSquare Adj							
Root Mean S	Root Mean Square Error 3.41169							
Mean of Res	ponse	Э	47.67511					
Observations	s (or 8	Sum Wgts) 109					
Analysis of								
Source	DF	Sum of Squa	res Mean Squar	re	F Ratio			
Model	4	6981.93	48 1745.4		9598			
Error 1	04	1210.52	64 11.6	4	rob > F			
C. Total 1	80	8192.4611		<.	0001			
Parameter								
Term		Estimate	Std Error	t Ratio	Prob> t			
Intercept	12	.930547	2.020835	6.40	<.0001			
Weight(lb)	0.0	0091318	0.001159	7.88	<.0001			
Horsepower	0.0	0857712	0.01509	5.68	<.0001			
Cargo	0.0	0346363	0.013277	2.61	0.0104			
Seating	-0	.476467	0.412437	-1.16	0.2506			

What should we conclude from the ANOVA table?

The *y* vs \hat{y} plot confirms this conclusion.



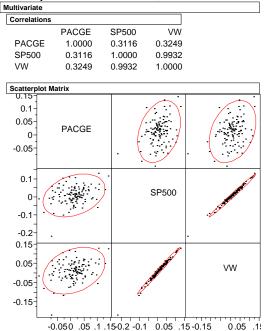
¹ Use this rule if you do not have a p-value handy. This rule is "conservative": any time the F > 4, the p-value < 0.05. However, there are some cases in which the F < 4 but the p-value is less than 0.95 (p < 0.05).

The F Test and Correlated Predictors

The ANOVA test comes in handy when, as usual, the predictors in a regression are correlated. The following example illustrates an extreme case.

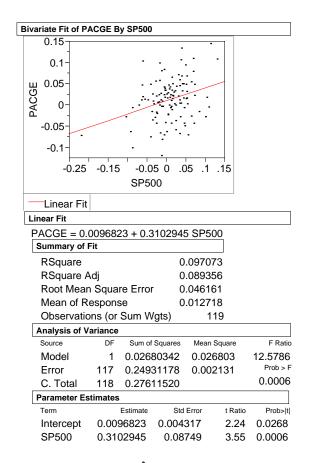
Example: A Market Model²

The file stocks.jmp contains monthly returns from 2/78 to 12/87 of VW, SP500, IBM, PACGE and Walmart. Let's focus on the relationship between PACGE, SP500 and VW.



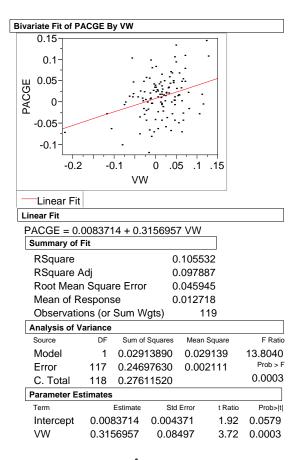
² The BAR casebook example that uses this data (p 138) focuses instead on the relationship of these indices with the returns on Walmart stock. The results are similar and similar issues of collinearity arise there as well.

A simple regression of PACGE on SP500 yields



What is the interpretation of $\hat{\beta}_1$ here?

A simple regression of PACGE on VW yields



What is the interpretation of $\hat{\beta}_1$ here?

Consider now what happens when *both* SP500 and VW are used together in a multiple regression

Res	ponse PACGE						
N	/hole Model						
[Summary of F	it					
	RSquare			0	.1146	581	
	RSquare A	٨dj		0	.0994	417	
	Root Mear	n Squa	are Erro	or O	.0459	906	
	Mean of Response 0.012718						
	Observatio	ons (or	Sum V	Vgts)		119	
[Analysis of Va	riance					
	Source	DF	Sum of	Squares	Mea	n Square	F Ratio
	Model	2	0.031	66507	0.0	15833	7.5131
	Error	116	0.244	45013	0.0	02107	Prob > F
	C. Total	118	0.276	11520			0.0009
[Parameter Est	imates					
-	Term		Estimate	Std	Error	t Ratio	Prob> t
	Intercept	0.00	54478	0.005	119	1.06	0.2895
	SP500	-0.8	21098	0.749	946	-1.09	0.2758
	VW	1.11	14984	0.731	784	1.52	0.1315

What has happened?³

³ If returns on Walmart are the response, the regression shown in the casebook on page 143 finds a significant effect for the value-weighted index. Thus, in that case, VW significantly improves a regression with SP500 alone, but not vice versa. Adding SP500 to a model that already has VW does not improve the fit, agreeing with underlying finance.

⁵⁻⁵

Collinearity

In a multiple regression of *y* on $x_1, ..., x_K$, linear redundancy – or correlation – among $x_1, ..., x_K$, is called *collinearity*.

Effects of collinearity:

Coefficient standard errors increase t-ratios decrease (and so p-values increase) Difficulty interpreting coefficients Coefficients change as others come and go.

These effects can be serious when collinearity is severe.

Why these effects happen:

Key fact: In a multiple regression, $\hat{\beta}_k$ is the effect of adding x_k last. (As shown in the leverage plots)

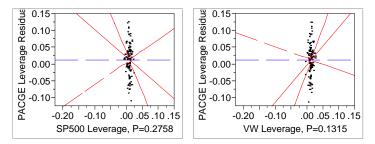
Variation of x_k with the other *x*'s fixed is limited (p 121) This manifests itself as

$$SD(\hat{\beta}_k) = \frac{\sigma_{\varepsilon}}{\sqrt{n}} \times \frac{1}{SD(adjusted x_k)}$$

where adjusted x_k is the residual from a multiple regression of x_k on all the other *x*'s

The increase in SE($\hat{\beta}_k$) leads to smaller t-ratios.

The following leverage plots for the multiple regression of PACGE on SP500 and VW illustrate this phenomenon.



What to do if you have severe collinearity (p. 147)

- Suffer⁴
- Remove natural proxies
- Transform or combine some of your predictors

⁴ Collinearity does not violate an assumption of the MRM. Rather, it causes problems in interpretation: the coefficients may not make much sense. If you only need to predict cases like the ones you have seen, it's not a problem. If you want to explain your predictions, it is.

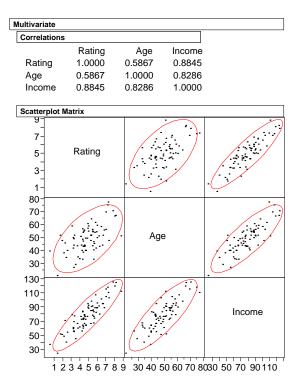
⁵⁻⁷

⁵⁻⁸

Example: Market Segmentation

A marketing project identified a list of affluent customers for its new PDA. Should it focus on the younger or older members of this list?

To answer this question, the marketing firm obtained a sample of 75 consumers and asked them to rate their "likelihood of purchase" on a scale of 1 to10. Age and income of consumers were also recorded.



The two simple regressions and multiple regression of *Rating* on *Age* and *Income* yields the following:

	Regression of Rating on Age								
Term	Estimate	Std Error	t Ratio	Prob> t					
Intercept	2.067	0.487	4.24	<.0001					
Age	0.059	0.009	6.19	<.0001					
	Regression of Rating on Income								
Term	Estimate	Std Error	t Ratio	Prob> t					
Intercept	Estimate -0.596	Std Error 0.352		Prob> t 0.0951					
		••••	t Ratio						

Term	Term Estimate Std Error t Ratio P								
Intercept	-0.736	0.295	-2.50	0.0149					
Age	-0.047	0.008	-5.74	<.0001					
Income	0.101	0.006	15.63	<.0001					

What's going on?

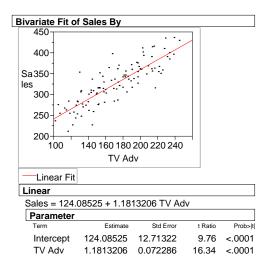
Based on these results, how should the marketing firm direct their marketing efforts?

5-9

Example: Advertising Allocation

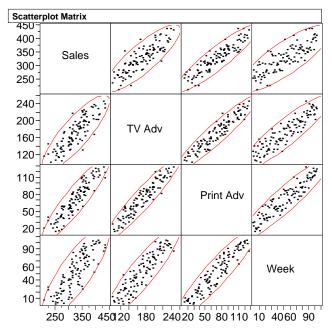
A rapidly growing firm would like to improve its allocation of advertising dollars between television and print media. Television now gets the largest share. Should this continue?

An initial analysis quantifies the effect of television advertising.



The scatterplot matrix (with "time" in the last column to show time trends) indicates that both sales and TV spending have grown over the two years, but so has print advertising.

Multivariate							
Correlations							
	Sales	TV Adv	Print Adv	Week			
Sales	1.0000	0.8507	0.9135	0.8272			
TV Adv	0.8507	1.0000	0.9428	0.9065			
Print Adv	0.9135	0.9428	1.0000	0.9294			
Week	0.8272	0.9065	0.9294	1.0000			



A multiple regression suggests a different impression for the effect of television advertising on sales.

_								
F	Response							
	Summary of	of						
	RSquare			0.	83542	4		
	RSquare Adj			0.	0.832165			
	Root Mean Square Error			20	20.70725			
	Mean of Response 327.3931					1		
	Observations (or Sum Wgts) 104)4		
	Analysis of							
	Source	DF	Sum of S	Squares	Mean S	Square		F Ratio
	Model	2	2198	40.02	109	920	25	56.3492
	Error	101	433	07.80		429		Prob > F
	C. Total	103	2631	47.82				<.0001
	Parameter							
	Term		Estimate	Std	Error	t Rat	io	Prob> t
	Intercept	228.	91176	16.04	249	14.2	7	<.0001
	TV Adv	-0.	13189	0.16	816	-0.7	8	0.4347
	Print Adv	1.69	64939	0.204	815	8.2	8	<.0001

Conclusions

Increased TV advertising – holding constant levels of print advertising – has no significant impact on sales. Why?

Increased print advertising would have a strong effect even when TV advertising was left unchanged. Why?

Might there be other collinear factors hidden from our analysis?

Finally, don't forget to *check assumptions*, in particular for trends in the residuals that might suggest important omitted factors.

Another Example

Just because we are doing multiple regression does not mean we should ignore transformations. Logs, in particular, can be very important in economic models.

Models with logs of Y and X lead to slope interpretations as *elasticities*. The BAR casebook gives an example (p 148).

Take-Away Review

The **F-test** allows for you to look at the importance of several factors simultaneously. When predictors are *collinear*, the F-test reveals their net effect rather than trying to separate their effects as a t-ratio does.

A **leverage** plot shows the contribution of each predictor to the regression, giving you a picture of what that variable adds to a model that contains *all* of the others.

Collinearity does not violate any assumption of the MRM, but it does make regression harder to interpret. In the presence of collinearity, slopes become less precise and the effect of one predictor depends on the others that happen to be in the model.

Next Module

Not all predictors are numerical. Some of the most important predictors of a response label an attribute of the observation, such as the sex or specialty of a doctor.

JMP allows you to easily include such categorical predictors in a regression, but leaves you with the burden of figuring out how to interpret the results. We'll start with that next time.

5-13